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ABsTRACT. Lyapunov functions for classical STR, SIRS and SIS epidemi-
ological models are introduced. Global stability of the endemic equilibrium
states of the models is thereby established.
Key words: Direct Lyapunov method, Lyapunov functions, epidemiological
models, endemic equilibrium state, global stability.

1. INTRODUCTION

Establishing global properties of a dynamical system is generally a nontrivial
problem. The most successful approach to the problem is the direct Lyapunov
method [1]. However the method requires an auxiliary function with specific prop-
erties, a Lyapunov function, which is not easy to find. In this article we introduce a
family of Lyapunov functions for three-compartment epidemiological models, which
appear to be also useful for more sophisticated models.

We have to note that the global stability of SITR, SIRS and SIS models which
are to be considered in this paper has been already established by applying the
classical Poincaré-Bendixson theorem, or by combination of that with the direct
Lyapunov method applied on a limited area of the phase space [2], [3], [4], [5]-
Periodic orbits are ruled out using the Dulac criteria or a condition of Busenberg
and van den Driessche [6]. The direct Lyapunov method enables us to obtain
the result straightforwardly. Furthermore, apart from the stability verification,
the direct Lyapunov method provides insight into other properties of the system;
for example, it allows us to find and compare the rates of convergence toward an
equilibrium state for different models and under different conditions.

2. SIR AND SIRS MODELS

Following the classical assumption [5], [7], [8], we divide the entire population
of size N into subpopulations of epidemiological significance: the susceptible, the
infective and the removed compartments with sizes S,/ and R respectively, that
is N =S8 + I + R. After infection an individual moves from the susceptibles com-
partment into the infectives compartment and then into the removed compartment
as a result of recovery, isolation or death caused by the disease. We assume that
recovery implies permanent or temporary acquired immunity; in the latter case
there is a return of the removed individuals into the susceptibles compartment.
A model based on these assumptions is known as a SIR (acquired immunity is
permanent) or a STRS (acquired immunity is temporary) model [5], [7], [8]. The
transfer diagram of the model is in Fig 1.
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Fi1GURE 1. Transfer diagram of the STRS model.

We assume that the population size N is constant, that is deaths are balanced
by births. The births are proportional to the population size N with a birth rate ~.
All disease-associated deaths are from the R compartment. The susceptibles and
the infectives may also die from causes not connected with the disease with the
rate o > 0.
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An infection can be transmitted through contacts between the infectives and
the susceptibles (horizontal transmission) and, for some diseases, from an infective
parent to an unborn or newly born offspring (vertical transmission). The horizontal
transmission is assumed to occur according to the mass action incidence 8 % Ver-
tical transmission can be incorporated into a model by assuming that a fraction p
of the offspring from the infectives are infected at birth and hence a part of birth
flux, pyI, enters the infective compartment while the remaining births, YN — pvyI,
come to the susceptibles compartment [5] (see Fig. 1).

If an average life expectancy of the susceptibles, an average infective period
and an average period of immunity are 1/0, 1/§ and 1/a respectively, then the
differential equations are

(1) § = (HaN-p2 —(@tm) - (ato)s,
I = ﬂ%—(5+o—p’Y)I.

If immunity is permanent, then the average period of immunity 1/« is infinite and
a = 0, so that the STRS model reduces to the SIR model. We do not need an
equation for the removed class R, since N = S + I + R = constant.

Many authors postulate 0 = v to ensure that deaths exactly balance births.
However for the majority of endemically persistent diseases, such as measles, chick-
enpox and pertussis, the class of susceptibles is composed from mainly younger
people, for whom the rate of natural mortality does not necessarily coincide with
that of the population as whole. In developed countries, due to comparatively low
child mortality, the natural susceptibles mortality rate o is considerably lower than
~ and can be neglected whereas for developing countries, where child mortality is
commonly high, 0 may exceed . Therefore there is no reason to limit ourselves
by the particular case ¢ = y. Furthermore, we may assume that the vaccination of
the susceptibles is proportional to the susceptible population [5, p. 37]. Then the
rate o is the sum of the death rate of susceptibles and of the vaccination rate. In
this case o is also not necessarily equal to ~.

The system (1) has two equilibria: an infection-free equilibrium Eq = (So, Io),

with
So = (a+7>N, Iy =0,
a+o

and an endemic equilibrium E* = (S*, I*), where

" a+v\ N . o+ 1
§* = = r=—""7 (1-—)nN
(a+a> Ry’ a+5+0< Ry

The parameter

Bla+7)
(a+0)(d+0—DpY)

is often called the basic reproduction number. The condition Ry > 1 ensures exist-
ence of the positive endemic equilibrium state E*. We assume that this condition
holds.

For a,p # 0 the positive quadrant Rﬁ_ of the ST plane is not an invariant set

of the system (1). Indeed, at S = 0 we have S < 0 for all T > fjpﬂny , and hence

the boundary S = 0 is penetrable from R3. This deficiency is avoided by the
substitution (S,I) — (P,I) where P = S + ‘ﬁ%N . In the new variables we have

Ro =

S PI . PI -
(2) P=A3N -~ ~oP, T=p5 -4l
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where ¥ = v+ a + (a + o)(a + pv) /B, §=a+0+0cand = a+o. The
phase space of the system (2) is the positive quadrant Rf_ of the PI plane. The
system (2) obtained by the shift of the system (1) along the S axis inherits the
global properties of the system (1) and vice versa. When a,p = 0 (that is for the
SIR model with no vertical transmission) the system (2) coincides with (1). In the
new variables the endemic equilibrium state E* has coordinates

5N 5 1
=12 p=T(1- =N,
s Ro ) Ro

and Ry = 22, Tt follows from (2) that

P*I*
3) R

Global properties of the system (2), and hence the system (1) are given by the
following Theorem.

— 3N —GP* = §I*.

Theorem 1. The endemic equilibrium state E* of the system (2) (and hence that
of the system (1)) is globally stable.

FIGURE 2. Level curves of the Lyapunov function V (P, I).

Proof. A Lyapunov function

. P P T I
@) WRDZP(F—mFJ+I(F_mF)
is defined and continuous for all P,I > 0 (see Fig. 2) and satisfies
ov p* ov I*

It is easy to see that the endemic equilibrium state E* = (P*,I*) is the only
extremum and the global minimum of the function V(P,I) in RZ. In the case of
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the system (2), using (3), the function V' (P, I) satisfies

V(PI) = ?N—ﬂ% —3P—§N% —i—,B];I—i-&P*
+ﬂ% —EI—ﬂP]\I;* +orr
::wﬁ—%—;+0
+%§N(—£}+1+é§-1>

P* P\?
— —’A?NF(l—F> <0 forall P,I1>0.

The equality V (P, I) = 0 holds only on the straight line P = P*. Since the endemic
equilibrium state E* is the only invariant set of the system (2) on the straight
line P = P*, by the asymptotic stability theorem (see [9, p. 28] or [10, p. 58]) the
equilibrium E* is globally asymptotically stable. The theorem is proven. O

Remark 1. Many authors assume that a “feasible region”
5 ={(S,I) e R*S,I>0; S+ 1< N}

is the phase space of the system and consider stability in this region only; in this
case the term “global stability” implies “asymptotic stability in ¥”. However if o #
the “feasible region” does not coincide with a stable invariant set of the system

2={(S,)eR?)S,I>0; S+I<

e
.
a+o

Furthermore, since the Lyapunov function employed here is global by its nature
allowing to prove stability of the system in the whole positive quadrant Ri, we see
no reason to limit ourselves by a region of that.

Remark 2. Tt follows from the Theorem that when the positive endemic equilibrium
state E* exists (i.e. when Rg > 1), the infection-free equilibrium Ej is an unstable
point. Since the S axis is a stable subspace of this, it is a saddle point.

Also the case Ry < 1 (when there is no positive endemic equilibrium state)
is not particularly interesting, it is easy to prove that in this case the infection-
free equilibrium FEjy is globally stable. It suffices to observe that in this case the
derivative of a Lyapunov function

P P
L(P,I) =Py (— —1n—> 4T
0 Py
satisfies
. P P\2 .
L(P,T)=-7—2N(1-—) —6(1-Rg)I<0 forall P,I>0.
P P,
3. SIS MODEL

Some infections (e.g. gonorrhoea) do not give rise to acquired immunity in the
host. In this case an individual who has recovered from the infection will again be
susceptible immediately after recovery. Hence there is no R class and the population
is composed from the susceptibles and the infectives only, i.e. N = S + I. The
corresponding model is known as a SIS model [5], [7], [8] which can be regarded as
the limiting case of the STRS model when the average period of immunity 1/« — 0.
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FI1GURE 3. Transfer diagram of the SIS model.

Let us consider the SIS model with vertical transmission (see Fig. 3). The
differential equations are

. I
S = WN—,BSW—p’YI—FdI—O'S,

(5) i= 8% Grote-mL

where § is the rate of recovery, o and € are the rates of natural and disease-associated
mortality and other parameters are the same as for the SRS system (1). We again
assume that the population size IV is constant.

The system has two equilibria: an infection-free equilibrium state Ey = (%N ,0),
and an endemic equilibrium state E* = (S*,I'*), with

« TN . v 1
St=—-—— d I"= 1-— )N
o Ry an 0'+€( R0> ’

where Ry = m. The positive endemic equilibrium exists if Ry > 1. It is
easy to see that

S*I* * * *
(6) B =N+ @ —pNI"—08" = +o+e—pyI".

After a small alteration, the Lyapunov function (4) can be applied to the sys-
tem (5).
Theorem 2. The endemic equilibrium state E* = (S*,I*) of the system (5) is
globally stable.

Proof. A Lyapunov function

S S o+e I I
N=8(2 - m2)+-—77° p(_ _m=
U(S’) S (S* nS*>+(S+U+€_p’Y <I* nI*>

is a modification of the function (4). The endemic equilibrium state E* = (S*, I*)
is the only extremum and the global minimum of the function U(S,I) in R%. In
the case of the system (5), using (6), the derivative of the function satisfies

: SI
U@S,I) = yN—-B +(@E—-pnI—-0S
S*

S* S*
AN 4 B2 T (6 —py) T *
YN + B+ (0 —p7) gl+oS

o+e SI I .
+m(ﬂ——,@—s>—(0’+€)(1—])
s 5 s 5
= 7N(2——S*——S>+(5—p7)1(2——5*——S>
S 5%\ ?

That is U(S,I) < 0 for all S,T > 0 ensured by § — py > 0. Since U(S,I) = 0 holds
only for § = S* and the endemic equilibrium state E* is the only invariant set of
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the system on the line S = S*, by the asymptotic stability theorem [9], [10] the
equilibrium state E* is globally asymptotically stable.

Although the case § — py < 0 is hardly biologically feasible, the theorem holds
in this case as well. In this case an approach used in the previous sections, that
is the shift of the system to the right, can be applied. After the substitution

(S,I) — (P,I), where P =S — ‘LﬂmN, we have

R - PI . PI
(7) P:'YN_/BW_UP’ I::BW_(U—FE)I’

where ¥ = v+ o(py — §)/B8 > 0. The endemic equilibrium state of the system (7)
is given by

o+e « By —oa(c+e)

S Blo+e)

The Lyapunov function (4) introduced in the previous section can be straight-
forwardly applied to the system (7). The derivative of the function satisfies

* *

: PI P
V(PI) = AN -~ —oP 3N I+ oP*

F—i_ﬂ__?‘f
PI I*
— I—-B8=—P I*
+/3N (c+¢€) ﬂN + (o +¢)

P P
(5 )

2
P P
= AaN=—(1-2) < P,I>0.
5 (1 ) <0 for all P,LI>0

Hence in the case § — py < 0 the endemic equilibrium state of the system (7) and
consequently that of the system (5) is globally asymptotically stable as well. The
theorem is proven. O

In conclusion we have to note that a Lyapunov function with a term I/I* —
In(I/I*) was applied to a particular case of a STR model with no vertical trans-
mission by J. Mena-Lorca and H. Hethcote [4]. Unfortunately they did not extend
the method to the more general STR and STRS models covered in this paper. Also
they did not attempt to use a Lyapunov function which is symmetric with respect
to both S and I variables, as is introduced in this paper and which is simpler,
considerably more efficient, and appeals aesthetically.

The Lyapunov function of the type (4), applied here to the epidemiological mod-
els, is also extremely useful for Lotka-Volterra predator-prey systems [11], [12].
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