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Abstract 
Developed by Japan, the Greenhouse Gases Observing Satellite (GOSAT), also known as 

IBUKI, was successfully launched on January 23, 2009 and is used to monitor greenhouse gases 

on the Earth’s surface. Observations started in April 2009, and the Level 1, Level 2 and Level 3 

products became available to general users in November 2009, February 2010 and October 2010, 

respectively. For this paper, Kriging methods were proposed to generate the spatial distribution 

of the daily GOSAT’s XCO2 and XCH4 data within the region of East Asia from June 2009 to 

May 2010. The relationship between the distance and the difference of the daily data in each 

month were represented by variogram models. The concentration distributions of XCO2 and 

XCH4 in East Asia can be intuitively seen on a Kriging interpolation map. Seasonal changes 

were observed. The concentration of XCO2 was high in winter and spring, which might due to 

the  smoke and dust from coal burning. The concentration of XCH4 changed significantly with 

latitude in  autumn and winter, mainly according to temperature change. In addition, by 

comparison, the Level 2 Kriging interpolation values were lower than the ground observed data 

and consistent with the higher tendency of Level 3 data.  

 

1. Introduction 

 
With the continuous development of human society and associated increase in industrialization, 

atmospheric concentrations of carbon dioxide (CO2) and methane (CH4) have also increased 

(IPCC FAQ 7.1 2007). According to the World Data Centre for Greenhouse Gases (WDCGG) 

analysis, the average CH4 concentration across the world was 1797 parts per billion (ppb) in 

2008. This value was an increase of 151% from the average value for the 18th century (715 

ppb). 

The current concentration of CO2 is 385.2 parts per million (ppm) which is 2.0 ppm more 

than it was in 2007. The current concentration has increased 38% from the pre–industrial global 

level of 280 ppm. In recent years, due to a series of environmental changes caused by this 

increase, the greenhouse effect has received increased attention (Kondratyev and Varotsos 1995, 

Varotsos et al. 2007). For example, the Kyoto Protocol was signed in Japan in 1997 and focused 

on the possibility of adopting a requirement to reduce levels by 5% relative to the 1990 level, 

but there was no noticeable progress with CO2 emissions reduction (Varotsos 2002). At the 

opening of the United Nations Climate Change Conference in Copenhagen in 2009, determining 

how to reduce greenhouse gas (GHG) emissions was included in the agenda of the participating 

countries, but there, no substantial progress was made. 

Asia has the third largest nominal Gross Domestic Product (GDP) of all the continents, after 

North America and Europe. The largest economies in Asia include China, Japan, India, South 

Korea and Indonesia, which are all in this study region. The collective economic activity of the 

region represents roughly 25% of the global domestic product. Rapid growth in large regional 

economies such as China and India has elevated human prosperity (Preston et al. 2006). 

According to World Bank statistics from 2008, China’s and India’s populations were 132,564 

million and 113,996 million, respectively, which accounted for 36.8% of the total world 

population. Thus, a study of this region's GHG (greenhouse gas) emissions has great 

significance for understanding global climate change.  

As an important way to address this problem, satellite monitoring plays a crucial role in the 

observation and assessment of global GHG because nadir satellite remote sensing measurements 

can observe the GHG molecules in the entire air column (Buchwitz et al. 2007). Scanning 

Imaging Absorption Spectrometer for Atmospheric CHartographY (SCIAMACHY) on 

Environmental Satellite (ENVISAT), which was an earth–observing satellite instrument 

launched on March 1st, 2002 (Cracknell and Varotsos 2007), makes necessary observations of 

CO2 and O2 absorptions of the backscattered solar radiation in the near–infrared (NIR) and 

shortwave infrared (SWIR) (Buchwitz et al. 2005). This requires high accuracy and sensitivity 

to near–surface GHG concentrations. The latest satellite instrument with high surface GHG 
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sensitivity since the SCIAMACHY on ENVISAT is the Greenhouse Gases Observing Satellite 

(GOSAT).  

The GOSAT was jointly developed by Japan’s Ministry of the Environment (MOE), National 

Institute for Environmental Studies (NIES), and Japan Aerospace Exploration Agency (JAXA) 

to observe concentrations of CO2 and CH4 from space (Yokota et al. 2004). It was launched on 

January 23, 2009, and orbits the earth in roughly 100 minutes at an altitude of approximately 

666 km returning to the same orbital path in three days. The observations from the GOSAT are 

being processed to generate the initial results for CO2 and CH4 column–averaged dry–air mole 

fractions (hereafter referred to as XCO2 and XCH4, respectively), which are calculated from the 

GOSAT radiant spectrum data obtained under cloud–free conditions (Akihiko et al. 2009).  

The global grid Level 3 data are generated by interpolating and extrapolating the Level 2 data 

and estimating the distribution of GHG concentrations on a global scale. And also, due to some 

uncertain factors such as the cloud coverage, observation points are positioned irregularly and 

the Level 2 data contain extremely high or low values. Therefore, the establishment of a method 

that generates the distribution map of XCO2 and XCH4 data from irregular observation points is 

being considered. This article combines the GOSAT Level 2 data with the Kriging method to 

analyse the spatial variations and distributions of GHG throughout the land surface in the 

regional scale. The Kriging method is a technique that was first developed for the applied fields 

of mining and geology (Journel and Huijbregts 1978). Since its development, this spatial 

information science has not only been applied in geology, but has also been widely used in soil 

science, agriculture, meteorology, oceanography, ecology and environmental management 

(Creutin and Obled 1982, Bilonick 1988, Cambardlla et al. 1994, Merino et al. 2001, Kumar 

and Ahmaed 2003). 

  However, the GHG concentrations above a continent depend on many factors such as weather 

systems and terrestrial vegetation. And some errors related with satellite retrievals and 

atmospheric transport models. (Alkhaled et al. 2008). Therefore, this paper assumes that the 

distribution of the GHG fluxes ignores these impacts. A combination of ground monitoring data 

was used to verify the feasibility of this approach and will provide a basic understanding of the 

accuracy of the GOSAT data. 

 

2. Study area and used data  

 

2.1 Regional climate 

 
The study region is located in eastern Asia on its Pacific coast. It stretches from 10° N to 50° N 

latitude and from 65° E to 150° E longitude. A broad range of climatological and geographical 

features exist within this region. Based on temperature and precipitation, the region can be 

roughly divided into three climate zones: arid and semi–arid, temperate and tropical (Preston et 

al. 2006). A combination of land classification maps (see figure 1) show that the arid and 

semi–arid region is composed of the northern extent of India and Pakistan as well as Mongolia 

and western China, and the landscape is composed of tropical savannah vegetation, grasslands, 

and desert (Shi et al. 2002). The temperate region is composed of the Tibetan Plateau, eastern 

China, Japan and the Korean Peninsula (Ren 1998). This landscape has been significantly 

altered due to centuries of deforestation and agriculture (Zhao et al. 2004). The tropical region 

is composed of central and southern India, Sri Lanka, Bhutan, Bangladesh, and Southeast Asia 

(i.e. Myanmar, Vietnam, Laos, Cambodia, and Thailand) (Preston et al. 2006). These subregions 

are geographically diverse and contain a number of hotspots for terrestrial and marine 

biodiversity.  

As the latitude of this study region has a large span, the temperature and precipitation show 

wide variations. For example: north of 30°N latitude, temperatures in January may be at or 

below freezing, particularly in the high altitude areas around the Himalayas. In contrast, the 

tropical areas south of 30°N, such as the Indian subcontinent, Southeast Asia, Indonesia, and the 
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Pacific Islands, generally experience temperatures above 25°C throughout the year (IRI/LDEO 

Climate Data Library). Regional rainfall and, consequently, temperature are strongly influenced 

by the summer and winter monsoons. The summer monsoon season influences the climate of 

this region from May to September and brings rain to South and Southeast Asia and east China. 

The northeast winter monsoon season controls the climate from December to February and is 

characterized by dry winds out of the northeast that bring significant rainfall to parts of 

Southeast Asia, but leave much of South Asia dry, particularly central and northern India. The 

two inter–monsoon or transitional seasons comprise March to April and October to November 

(Kawamura et al. 2004). Therefore, seasonal changes in this region occur during January, April, 

July, and October. 

 

2.2 GOSAT XCO2 and XCH4 data 

 
GOSAT monitors CO2 and CH4 globally from space using two instruments. The Thermal and 

Near Infrared Sensor for Carbon Observation Fourier–Transform Spectrometer (TANSO–FTS) 

detects the gas–absorption spectra of the solar SWIR reflected from the Earth’s surface as well 

as of the thermal infrared radiated (TIR) from the ground and atmosphere. From the SWIR data, 

the column densities of CO2 and CH4 data are acquired, and from the TIR data, CO2 vertical 

profiles are retrieved (Akihiko et al. 2009). Every three days, global GHG distributions are 

created, and by inversion with a chemical transfer model, sources and sinks of GHGs are finally 

retrieved. An initial retrieval of these gaseous concentrations was performed for measurement 

scenes of cloud–free conditions over land (Yokota et al. 2008, 2009). 

XCO2 is the ratio of the total number of CO2 molecules to the total number of dry air 

molecules that exist not only close to the Earth’s surface but also in the total vertical column 

from the surface up to the top of the atmosphere. The same definition applies for XCH4. The 

data release of the FTS Level 2 XCO2 and XCH4 column abundance products to general users 

started on February 18, 2010, and newly collected data are released every month. Table 1 shows 

the relationship between observation period and version of the used FTS Level 2 SWIR data 

(GOSAT Project 2010). 

 

2.3 Ground observation data 

 
The WDCGG, one of the World Data Centres (WDC) under the World Meteorological 

Organization’s (WMO’s) Global Atmosphere Watch (GAW) programme, has been operating 

since October 1990 at the Japan Meteorological Agency (JMA). The WMO WDCGG data 

contains all the metadata and observational data from about 320 stations, which the WDCGG 

accepted by November 2009. Based on the GOSAT coverage period, two stations’ monthly 

mean data were used as the ground verification point data in this region, and the stations were 

the Hong Kong Observatory (114.173° E, 22.312° N) and Yonaguni-jima island, Japan (123.02° 

E, 24.47° N) (see figure 2). The WDCGG website is http://gaw.kishou.go.jp/wdcgg/wdcgg.html. 

 

3. Method 

 

3.1 Data pre–processing 

 
Based on the version 01.xx of the GOSAT Level 2 data products, extremely low or high values 

of Level 2 XCO2 (lower than 360 ppm or higher than 390 ppm) and XCH4 (lower than 1.60 

ppm or higher than 1.90 ppm) are observed in some month in this region. In the Kriging 

interpolation, these data may have a significant impact on the interpolation result. So these 

extremely data are removed in the data pre–processing. This process also used in the Level 3 

data processing, called ‘screening’ (NIES GOSAT Project 2011). The screening process is 

performed using skewness and kurtosis to remove these extreme values that make the Level 2 
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data distribution differ markedly from normal distribution. Next, monthly data were used for the 

analysis: as the GOSAT comes back to the same path every 3 days, there are many duplicate 

data at the same point in 1 month, with numbers of the duplicate data ranging from 2–5. 

Therefore, the mean value of these data was used. In addition, according to the algorithm 

theoretical basis document for GOSAT TANSO-FTS Level 3 data, the GHG distribution 

tendency varies a lot between land and sea due to the difference in their empirical variograms 

(NIES GOSAT Project 2011). So, we removed all the data over the ocean by using ArcGIS 

software. The spatial distribution of the samples of XCO2 data in September 2009 is shown in 

figure 3, and, after treatment, the number of points was reduced from 1031 to 457. The 

histograms for these two data sets of original data and processed data are also given in the figure. 

According to this evidence, the two data sets were almost identical. 

 

3.2 Kriging method application 

 
The Kriging method, also known as space–local estimation or space–local interpolation, is a 

method of making linear, unbiased, optimal estimates of values of regionalized variables for 

un–sampled points by using the means of the original data of the regionalized variables and the 

structural features of semi–variogram (Kumar and Remadevi 2006). Although details on the 

Kriging techniques are well documented (Journel and Huijbregts 1978), a brief introduction of 

the relevant methods used is given below. 

The important step in Kriging is the variogram analysis, which consists of calculating the 

experimental variogram and fitting the variogram model to the data (Kushavand et al. 2007). 

The experimental variogram is calculated by  using the following equation:  

 
2

1

)]()([
)(2

1




n

i

ii hxZxZ
hN

h                                (1) 

Where  h  is the estimated value of the semi–variogram for the lag of h ; n is the 

number; )(hN is the number of experimental pairs separated by vector h ; )( ixZ and 

)( hxZ i  are the values of the variable Z  at ix and hxi  , respectively, and ix and hxi   

are the positions in two dimensions.  

The variogram model, with minimum standard error is chosen from various theoretical 

models such as the spherical, exponential, gaussian, linear and rational quadratic. The 

appropriate model is chosen by the experimental variogram fitted to the theoretical model.  

A variogram represents both structural and random aspects of the data under consideration. A 

Spherical and Gaussian variogram model fitting to the experimental variogram data were used 

as an example to discuss the analysis process (see figure 4). The variogram values increase with 

increases in the distance of separation until it reaches the maximum (C ) at a distance known as 

the “range” ( A ). If at a distance nearly equal to 0, the variogram value is greater than 0, this 

value is known as the “nugget–effect” (
0C ). The total–sill of the variogram ( S ) is CC 0

. Often, 

C  is also treated equal to the sill of the variogram model fitted to the experimental variograms 

and 
0C . Both 

0C  and the S  characterize the random aspect of the data, whereas the A  and 

C  characterize the structural aspect of the data. 

The first step of a variogram analysis is to model and review the omnidirectional variogram 

to infer the sill of the anisotropic variograms. The total sill of an omnidirectional variogram 

provides an approximation of the total sill of the specific directional variograms. So, we 

adjusted the parameters of the experimental model to achieve the appropriate degree of model 

simulation. The sill, and the nugget effect were chosen based upon the omnidirectional 

variogram. 

The second major aspect of directional variogram modelling is examination of the anisotropy 

of the variable. The experimental variogram shows different length scales in different directions. 
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When modelling the variogram anisotropy, an anisotropic set of variograms should be fitted to 

the experimental variogram. If the sills of the variograms are comparable, but the ranges of the 

variograms change with direction, a variogram with components of the “geometric anisotropy” 

type should be fitted to the experimental variogram. 

The quality of the Kriging predictions were examined on the basis of the cross–validation 

results and on the basis of a Kriging variogram analysis. 

 

4. Results and discussion 

 
For data analysis, the variogram analysis, model fitting, Kriging interpolation and surface output 

were performed with the ArcGIS 9.3.1, GS+ for Windows 9.0 and Surfer 9.0 software 

applications.  

 

4.1 Statistics of the processed Level 2 data  
According to the data pre–processing methods, 12 monthly data set from June 2009 to May 

2010 were processed . 

From the processed results, we can see that the spatial distribution of the points and the 

numbers varies monthly (see figure 5). The reason of the retrieved area’s change is considered 

that the retrieval process accomplishes the creation of Level 2 data based on TANSO–FTS 

Level 1B data, which includes the pre–process, the data screening process, the retrieval process 

and the quality check process. Only the data that pass the quality check should be distributed to 

the public as a final data (NIES GOSAT Project 2010). . 

Basic statistics of the data analysis are shown in tables 2 and 3. The processed value of XCO2 

and XCH4 data were in the range of 360–400 ppm and 1.60–1.90 ppm respectively; the monthly 

standard deviation values were also relatively small. From the monthly trend of the mean values 

of the XCO2 the data was lower in September and October, but higher in March and April. 

Respectively, the mean values of XCH4 was trends lower in April, May and June, but higher 

from August to January. The seasonal variation is observed, but it needs a long time monitoring 

verification.  

The statistical analyses use skewness and kurtosis to characterize the location and variability 

of a data set. Skew is the degree of departure from the symmetry of a distribution. Kurtosis is 

the degree of ‘peakedness’ of a distribution. From tables 2 and 3, all the data conformed to a 

normal distribution (see figures 6 and 7). 

 

4.2 Variogram analysis and theoretical model of the processed Level 2 data 

 
All the data were analysed to obtain the various fitting parameters for each model. The method 

for fitting models was to (1) analyse the data for all months with the variogram analysis module 

in GS+ for Windows software; (2) select the model with the root mean square standardized 

closest to 1 and the minimum residual sum of Downloaded by squares (RSS); and (3) obtain the 

various fitting parameters for each model in Surfer software. Finally, the model parameters were 

corrected by cross validation. The variogram models and related parameters for all the data are 

shown in tables 4 and 5. For all the XCO2 data, a Gaussian model resulted in a minimum 

standard error and was thus considered to be the best-fitting model for October and November 

2009, and February 2010; others were using the spherical model (see table 4). For the XCH4 

data sets, a Gaussian model fitted well with the data for October, November and December 2009, 

and January and February 2010, whereas for the other data, a spherical model gave a better fit 

(see table 5). 

Distinct classes of spatial dependence were obtained by the ratio of the nugget to sill 

( )/( 00 CCC  ). If the ratio was < 25%, between 25 and 75% or > 75%, the variable was 

considered strongly, moderately or weakly spatially dependent, respectively (Cambardlla et al. 
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1994). In table 4, all of the values of )/( 00 CCC   for the XCO2 data are below 50%, which 

indicated that the degree of spatial dependence was moderate, especially for July 2009 (10%), 

which were very strong. In table 5, the data show that the values of )/( 00 CCC   for XCH4 were 

between 25% and 50% in August 2009, February, March and May 2010 (29%, 33%, 47% and 

31%, respectively), so the degree of spatial dependence was moderate. Others were strongly 

spatial dependent.  

The nugget effect (
0C ) represents the variation caused by experimental errors and processes 

that occur on a scale smaller than the experimental sampling scale. The 
0C  of the XCO2 data 

was small for July 2009 (3.6) but large for April and May 2010 (20.0 and 28.0 respectively). In 

contrast, the 
0C  values for all of the XCH4 data were small and less variable (table 5). 

A large spatial range ( A ) indicates that the spatial distribution of the research object in the 

area is more irregular. When comparing the results across months, the range  of XCO2 for 

November, December 2009 and January 2010 was big (30.0 km, 36.0 km and 30.0 km 

respectively), and the ranges of XCH4 for October, November, December 2009 and January 

2010 were large (34.0 km, 26.0 km 30.0 km and 33.0 km, respectively), which means that the 

regularity of the spatial distribution of the data in these months was not strong. Therefore it is 

possible that range  be related not to the spatial variation but to the temporal variation. 

A coefficient of determination (R
2
) close to 1 means that the curve is smooth and the fit of the 

model is very good. For the XCO2 and XCH4 models, only the R
2
 value of the XCH4 data for 

April 2010 has less R
2
 (0.73). The models for the other data fit the data quite well. 

The RSS is a measure of the discrepancy between the data and an estimation model. A small 

RSS indicates a tight fit of the model to the data. For XCO2 result, the RSS was very small in 

October 2009, January and March 2010 (5.3, 3.2 and 7.7 respectively). All RSS for the XCH4 

data was small.  

The experimental variograms and the best–fitted theoretical model for all the data are shown 

in figures 8 and 9. And the best anisotropic set of variograms fitted to each experimental 

variogram are also shown in the figures.  

 

4.3 Kriging interpolation 

 
In accordance with the variance functional models obtained by adopting the Kriging method for 

optimal interpolation, the Surfer software was used to draw contour maps of XCO2 and XCH4 

and estimate variances. All the images were made with the same classification instructions. For 

the images of the interpolation results, the seasonal results, which include summer (June, July 

and August 2009); autumn (September, October and November 2009); winter (December 2009, 

January and February 2010); spring (March, April and May 2010), are shown in figures 10 and 

11. According to the seasonal changes, the XCO2 concentrations were higher in winter and 

spring (figures 10 (h-k)) and lower in summer and autumn (figures 10 (b-e)). This phenomenon 

may be due to smoke and dust because the majority of the developing countries in this region 

depend on coal for heating in winter. 

The XCH4 distribution changes were obviously affected by latitude in autumn and winter 

(figures 11 (d), (e), (f), (g), (h) and (i)). The XCH4 concentration was high south of 30°N 

latitude but low north of 30°N latitude. This may be mainly affected by temperature because in 

this area, the temperature of most of the region is below freezing in the area north of 30°N 

latitude, but in the area south of 30°N latitude, the temperature is between 0 ˚С and 25 ˚С. In 

summer and spring (figures 11 (a), (b), (c), (j), (k) and (l)), the distribution of XCH4 

concentrations was more uniform. 

 

4.4 Verification with the ground observation stations 

 
The results of the comparison of the Kriging values and the observation data are shown in figure 
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12. Overall, the Level 2 Kriging interpolation values were lower. In Hong Kong and Japan 

where the two observation stations are, the monthly average XCO2 Kriging interpolation data 

were lower than the ground observation data of by 4.8% and 2.2%, respectively (figures 12 (a) 

and (b)). The average XCH4 Kriging interpolation data were lower than the ground observation 

data by 4.2% (figure 12 (c)). According to the verification results in the FTS SWIR Level 2 

(V01.XX) product, which was provided by the GOSAT project, the average concentration of 

XCO2 and XCH4 were approximately lower than the validation data by 2–3% and 1–2%, 

respectively (NIES GOSAT Project 2010).  

From the monthly data, The XCO2 data and ground observation data were more consistent 

well. However, in some of the months, the Kriging interpolation values had some different. This 

may be due to the smaller number of samples in this region during these months, which resulted 

in the inaccurate interpolation results. However, the XCH4 interpolation results were 

inconsistent with the observational data. The reasons may be that there was smaller distribution 

of samples in this region. 

 

4.5 Comparison with FTS Level 3 data  

 
The FTS SWIR global Level 3 products were released to the GOSAT project users on 28 

October 2010. So, the XCO2 and XCH4 FTS Level 3 data from September 2009 were compared 

with the FTS Level 2 Kriging interpolation data as an example to evaluate the accuracy. The 

results are shown in figure 13. Overall, the spatial resolution of Level 3 map is about 2˚. In 

contrast, the spatial resolution of Level 2 Kriging interpolation map is about 0.8˚. And there are 

some blank areas in the Level 3 data. Two compared images were made with the same 

classification instructions. From the concentration distribution map, the interpolation results 

were consistent with Level 3 data, excluding individual areas such as XCO2 in the part of east 

China and XCH4 for south Japan. Therefore, it is possible because of the FTS Level 2 data has 

some lower concentration data than FTS Level 3 data (XCO2 and XCH4values lower than 370 

ppm and 1.74 ppm, respectively). 

 

5. Conclusion  

 
In this article, the Kriging method was applied to map the spatial distribution of XCO2 and 

XCH4 data obtained from the GOSAT. The data used included 12 months between June 2009 

and May 2010. The results reached are described below. 

GOSAT data can be used effectively as reference data for monitoring atmospheric GHG 

concentrations on a regional scale. The FTS Level 2 data will continue to update in the future, 

and also the FTS Level 3 data is produced to the users. This article used Kriging method to 

estimate the distribution of GHG concentrations over the land throughout the studied region. 

The parameters for the variogram model changed with the different months and fitted well for 

their corresponding variogram models. According to the Kriging interpolation map, the 

concentration of XCO2 was higher in winter and spring, which may be caused by smoke and 

dust from coal combustion. The concentration of XCH4 changed significantly with latitude and 

was mainly affected by temperature. In addition, from the verification of the results, the FTS 

Level 2 Kriging interpolation values were lower than the ground observation data, and 

consistent with FTS global Level 3 data without the individual areas of low concentration.  

There are several GIS software used in Kriging interpolation analysis. In this paper the 

Kriging method was evaluated based on Surfer and GS+ for windows. It provided convenient 

data screening and produced results with the smallest RSS and highest correlation of 

determination. This analysis is recommended to interpolate data and generate a map in a 

regional scale. In the future, with long time monitoring and comparison with other similar 

satellite data, it will be possible to verify the feasibility of this approach and examine the 

accuracy of the GOSAT data.  
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Tables 

 

 

Table 1. The observation period for which FTS Level 2 data are available. 

Year Month Data Version 

2009 Jun.  3-30 V01.10 

Jul.  1-31 V01.10 

Aug.  1-31 V01.20 

Sep.  1-30 V01.20 

Oct. 1-28 V01.30 

 
29-31 V01.10 

Nov.  1-30 V01.10 

Dec.  1-31 V01.10 

2010 Jan.  1-31 V01.10 

Feb. 1-7 V01.10 

 
 8-28 V01.20 

Mar.  1-15 V01.20 

 
16-31 V01.30 

Apr.  1-30 V01.30 

May  1-31 V01.30 
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Table 2. Basic statistics of processed Level 2 XCO2 data. 

Data 
XCO2 

No. 
Min Max Mean Std.  

Skewness Kurtosis 
Year Month (ppm) (ppm) (ppm) deviation 

2009 Jun. 228 360  392  375  6.70  - 0.18 - 0.38 

Jul. 194 360  396  374  6.82   0.08 - 0.39 

Aug. 335 360  398  373  6.36   0.34    0.21 

Sep. 457 360  389  373  5.09   0.02    0.12 

Oct. 598 360  386  373  3.81   0.16   - 0.05 

Nov. 462 360  390  375  4.63  - 0.25    0.59 

Dec. 351 363  390  377  4.09  - 0.54    1.60 

2010 Jan. 478 362  389  378  3.80  - 0.50    1.74 

Feb. 449 366  399  379  4.80   0.78    1.65 

Mar. 602 361  400  379  5.57   0.13    1.14 

Apr. 612 360  400  379  6.49  - 0.33    0.75 

May 461 361  400  378  7.64  - 0.04   - 0.13 

 

 

Table 3. Basic statistics of processed Level 2 XCH4 data. 

Data 
XCH4 

No. 
Min    Max   Mean Std.  

Skewness Kurtosis 
Year Month (ppm)  (ppm)  (ppm)  deviation 

2009 Jun. 250 1.61  1.84 1.75  0.04  - 0.62 0.16 

Jul. 223 1.60  1.89 1.76  0.04  - 0.75  1.51 

Aug. 348 1.63  1.90 1.78  0.05   0.16 0.20 

Sep. 468 1.69  1.87 1.78  0.04   0.27 - 0.46 

Oct. 607 1.60  1.90 1.77  0.04   0.23 0.14 

Nov. 467 1.66  1.87 1.77  0.04  - 0.29 - 0.27 

Dec. 352 1.66  1.84 1.77  0.03  - 0.71 0.12 

2010 Jan. 488 1.70  1.87 1.78  0.03  - 0.21 0.16 

Feb. 456 1.67  1.90 1.77  0.04   0.04 0.78 

Mar. 634 1.61  1.89 1.77  0.04   0.01 0.92 

Apr. 653 1.61  1.88 1.75  0.04  - 0.11 0.20 

May 485 1.62  1.89 1.75  0.05  - 0.17 - 0.06 
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Table 4. Theoretical model and related parameters of the processed Level 2 XCO2 data characteristics. 

Data Variogram 

Model  
 C0 

*1
  C0+C 

*2
 C0 /(C0+C)  A 

*3
 R

2
 

Residual 

SS Year Month 

2009 Jun. Spherical 14.5  46.5 0.3  5.5 0.85  72.4 

Jul. Spherical 3.6  48.1  0.1  8.0  0.91  52.5  

Aug. Spherical 18.0  38.1  0.5  8.0  0.92  20.5  

Sep. Spherical 13.5  26.9  0.5  17.0  0.94  11.3  

Oct. Gaussian 8.3  18.1  0.5  25.5  0.99   5.3  

Nov. Gaussian 12.3  27.3  0.5  30.0  0.96  15.3  

Dec. Spherical 7.6  20.0  0.4  36.0  0.90  21.1  

2010 Jan. Spherical 8.4  16.4  0.5  30.0  0.96   3.2  

Feb. Gaussian 16.8  32.3  0.5  14.0  0.97  20.9  

Mar. Spherical 18.8  36.8 0.5  11.0 0.98   7.7 

Apr. Spherical 20.0 48.0 0.4 7.5  0.86  74.0  

May Spherical 28.0  63.0  0.4  6.5  0.88  78.7  

*1
: Nugget effect  

*2
 : Structural Variance Sill  

*3
 : Range (km) 

 

 

Table 5. Theoretical model and related parameters of the processed Level 2 XCH4 data characteristics. 

Data Variogram 

Model  
 C0 

*1
  C0+C 

*2
 

C0 

/(C0+C)  
A 

*3
 R

2
 

Residual 

SS Year Month 

2009 Jun. Spherical 0.0003  0.0019  0.2   6.5  0.89  7.3E-08 

Jul. Spherical 0.0005  0.0021  0.2   8.0  0.81  1.8E-07 

Aug. Spherical 0.0007  0.0024  0.3   5.9  0.87  2.1E-07 

Sep. Spherical 0.0005  0.0019  0.2  22.7  0.98  4.3E-08 

Oct. Guasian 0.0002  0.0025  0.1  34.0  0.99  1.2E-07 

Nov. Guasian 0.0004  0.0022  0.2  26.0  0.97  1.2E-07 

Dec. Guasian 0.0002  0.0014  0.2  30.0  0.99  2.8E-08 

2010 Jan. Guasian 0.0003  0.0013  0.2  33.0  0.99  1.7E-08 

Feb. Guasian 0.0004  0.0013  0.3  16.5  0.98  1.2E-08 

Mar. Spherical 0.0007  0.0015  0.5   9.4  0.81  8.5E-08 

Apr. Spherical 0.0004  0.0020  0.2   6.0  0.73  3.3E-07 

May Spherical 0.0007  0.0021  0.3   7.4  0.91  1.0E-07 

*1
: Nugget effect  

*2
 : Structural Variance Sill  

*3
 : Range (km) 
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Figure 1. Land cover classification map and various subregions of East Asia derived from ESA 

(European Space Agency) global land cover data. 
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Figure 2. Location of WMO WDCGG data at the Hong Kong and Yonaguni-jima stations. 
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Figure 3. Distribution and histogram of samples of Level 2 XCO2 data in September 2009. 

(a)Original data, (b) processed data. 
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Figure 4. Spherical and Gaussian variogram models fitted to the experimental variogram points. 
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Figure 5. Spatial distribution of processed Level 2 data from June 2009 to May 2010. 
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Figure 6. Normal distribution of processed Level 2 XCO2 data from June 2009 to May 2010. 
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Figure 7. Normal distribution of processed Level 2 XCH4 data from June 2009 to May 2010. 
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Figure 8. Experimental and fitted variogram for XCO2 data from June 2009 to May 2010. 
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Figure 9. Experimental and fitted variogram for XCH4 data from June 2009 to May 2010. 
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Figure 10. Kriging interpolation map of XCO2 in the four seasons of summer (a) June 2009, (b) July 2009 and (c) August 2009; autumn (d) September 2009, (e) 
October 2009 and (f ) November 2009; winter (g) December 2009, (h) January 2010 and (i) February 2010; and spring (j) March 2010, (k) April 2010 and (l) 

May 2010. 
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Figure 11. Kriging interpolation map of XCH4 in the four seasons of summer (a) June 2009, (b) July 2009 and (c) August 2009; autumn (d) September 2009, (e) 
October 2009 and (f ) November 2009; winter (g) December 2009, (h) January 2010 and (i) February 2010; and spring (j) March 2010, (k) April 2010 and (l) 

May 2010. 
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Figure 12. Monthly mean values of the Level 2 Kriging interpolation data and ground observation 

data: (a) XCO2 in the Hong Kong site, (b) XCO2 in the Yonaguni-jima site in Japan and (c) XCH4 in 

the Yonaguni-jima site in Japan. 
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Figure 13. Comparison of FTS Level 3 data and FTS Level 2 Kriging interpolation data in 

September 2009: (a1) and (a2) are XCO2 of FTS Level 3 data and FTS Level 2 Kriging interpolation 

data, respectively, (b1) and (b2) are XCH4 of FTS Level 3 data and FTS Level 2 Kriging 

interpolation data, respectively 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


