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Abstract

We propose a hybrid formulation combining stochastic reduced basis methods with polynomial chaos expansions for solving linear random
algebraic equations arising from discretization of stochastic partial differential equations. Our objective is to generalize stochastic reduced basis
projection schemes to non-Gaussian uncertainty models and simplify the implementation of higher-order approximations. We employ basis
vectors spanning the preconditioned stochastic Krylov subspace to represent the solution process. In the present formulation, the polynomial chaos
decomposition technique is used to represent the stochastic basis vectors in terms 'of multidimensional Hermite polynomials. The Galerkin
projection scheme is then employed to compute the undetermined coefficients in the reduced basis approximation. We present numerical studies
on a linear structural problem where the Youngs modulus is represented using Gaussian as well as lognormal models to illustrate the performance
of the hybrid stochastic reduced basis projection scheme. Comparison studies with the spectral stochastic finite element method suggest that the

proposed hybrid formulation gives results of comparable accuracy at a lower computational cost.
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1. Introduction

In recent years, there has been a resurgence of interest in
developing numerical algorithms for analysis of systems
governed by stochastic partial differential equations (PDEs).
Such problems arise in a number of areas, including structural
mechanics, fluid mechanics, heat transfer and flow through
random porous media. The basic idea of uncertainty
quantification is to estimate distributions for the field variables
and subsequently for the outputs of interest, given probabilistic
models for the PDE coefficients. In principle, the Monte Carlo
simulation (MCS) technique can be readily applied to solve
such problems to an arbitrary degree of accuracy, provided

sufficient number of samples are used [1-3]. Even though’

significant advances have been made in improving the
efficiency of the MCS technique, the associated computational
cost can be prohibitive for problems with large number of
degrees of freedom (DOF).
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Perturbation and sensitivity based methods offer computa-
tionally efficient alternatives to the MCS technique and have
been popularly applied to compute the first two statistical
moments of the response quantities; see, for example, [4-9].
However, the major drawback of such local approximation
techniques is that the results become inaccurate when the
coefficients of variation of the input random variables are
increased.

An alternative approach referred to as the spectral stochastic
finite element method (SSFEM) was pioneered by Ghanem and
Spanos [10]. The SSFEM is based on a spectral representation
of uncertainty in terms of multi-dimensional Hermite poly-
nomials also referred to as polynomial chaos (PC) expansions.
The solution process is treated as an element in the Hilbert
space of random functions and is approximated by its
projection onto a finite subspace spanned by orthogonal
Hermite polynomials. A Galerkin projection scheme is used
to convert the original stochastic PDE into a set of coupled
deterministic PDEs. In recent years, the spectral approach has
been applied to solve a wide class of stochastic problems
namely, elasticity problems [10], random vibration [11}, soil
mechanics [12], transport process in heterogeneous media [13],
plasticity problems [14], fluid dynamics [15], mid-frequency
structural dynamics [16], and wave propagation in random
media [17]. It has been shown that unlike perturbation-based
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simplicity. However, in some cases, it may be preferable to use
a lognormal process to represent uncertainty, particularly when
the quantity under consideration is constrained to be always
positive. This is true when modeling the Youngs modulus,
conductivity or permeability of a random heterogeneous solid.
A lognormal process can be written as the exponential of a
Gaussian process as follows [43]

hy(x; w) = exp(h(x; w)). (12)

Discretizing the random field A(x;w) as earlier using the KL
expansion scheme and substituting in the preceding equation
gives

N
hy(x; w) = exp <(h(x; W)+ \//l—iﬁihi(x)). (13)
i=1

Since ﬁ,(x; w) is a random function it can be decomposed
using the PC expansion scheme as follows

where I‘,-(O) are multidimensional Hermite polynomials in
61,6,,...,0 and k! are the coefficients of expansion.

It follows from Egs. (14) and (9) that the global stiffness
matrix for a lognormal model can be written in a form similar
to the Gaussian case, i.e.

Py
K(@0) = KiI0). (15)
i=0
A Gaussian stochastic process can be considered as a special
case of lognormal stochastic processes since we recover Eq. (11)
when only the first order terms in the PC expansion are retained
in Eq. (15). We would also point out that even though the
discussion in this section was focused on a structural problem,
the semi-discretized form of the governing equations are similar
to those obtained when modeling steady-state heat transfer [18]
or fluid flow in a random heterogeneous media [36].

3. Stochastic Krylov subspace

Let us next consider in more detail the system of linear
random algebraic equations of the form K(#)u(8) =£(8), where
the coefficient matrix K(8) is given by Eq. (15). This equation
can be rewritten in a more convenient form as

P
(Ko + ZK,-M&)) u(f) =1, (16)

i=1

where K, is the mean stiffness matrix and K; are weighted
stiffness matrices. P; depends on the order of KL expansion
used to discretize the field for the case of Gaussian stochastic
process; see Eq. (8). For lognormal stochastic processes, P;
depends on the order of KL expansion as well as the order of
the PC decomposition used in Eq. (14).

Stochastic reduced basis methods [26,27] approximate the
solution of Eq. (16) using basis vectors spanning the stochastic

Krylov subspace defined below

K, (K(@),1) = span{f, K(O)f, K(O)*f,--, K(0)" 't} (17)

The following theorem motivates the application of the
stochastic Krylov subspace for solving Eq. (10) [27].

Theorem 1: If the minimal random polynomial of a
nonsingular random square matrix K(8) has degree m, then
the solution to K(B)u(B)=f lies in the stochastic Krylov
subspace K,,(K(6),f).Hence, a stochastic reduced basis
approximation of the solution process can be written as

6(0) = Eg¥o(O) + E1y1(0) + - + £,y (0) = W(0)E, (18)
where W(0) = {y(0), ¥1(0), ..., ¥u(@®} € RD s a get of

basis vectors spanning the stochastic Krylov subspace X, (K(
6),6) and &= {&,¢y, ...,
mined coefficients.

It is to be noted here that the number of basis vectors
required to compute accurate approximations depends on the
degree of overlap of the PDFs of the e1genvalues of the

e R™! is a vector of undeter-

Entt

using a small number of basxs vectors, 1t is preferable to use a
preconditioner. The key idea here is to transform the coefficient
matrix such that the PDFs of the modified eigenvalues
numerically tend to have a high degree of overlap. Following
[26,27], we use the deterministic matrix (K(ﬂ))_1 = KD"] as the
pre-conditioner. This choice is motivated by the observation
that KEIK(B) will numerically behave like a matrix with a
small number of distinct eigenvalues, particularly for small
randomness. Note here that, in theory, convergence can be
guaranteed as long as the preconditioner is invertible.
However, by using the preconditioner suggested here,
convergence can be significantly accelerated - in other
words, it becomes possible to achieve high accuracy using a
small number of basis vectors.

The first three basis vectors spanning the preconditioned
stochastic Krylov subspace can be written as

Yo(0) = K5't, ¢1(0) = K3'K(@)yo(8) and ,(6)

= K5 K(0)y,(6). (19)

For Gaussian random fields when K(8) = K, + Z 0.K;, the
basis vectors simplify to the form

Vo(0) = ug, Y1 (6) = Zdioi and ¥(6)
i=1

N N

=1 j=1

where  uy=Kj'f €R",
e;= K3’ Kd, eR".

Nair and Keane [27] and Sachdeva et al. [29] have applied
reduced basis methods using upto three basis vectors for static
and dynamic analysis of structural systems. Using the
representation given in Egs. (19) and (20) it is cumbersome
to implement higher order projection schemes; for example

d,=K;'Ku, €R*  and



186 S.K. Sachdeva et al. / Probabilistic Engineering Mechanics 21 (2006) 182-192

the fourth and fifth basis vectors would look like

N
Y3(0) = Z £,:0,0,6 and
k=1
(21
N N N N
2O > bbb,
i=1 j=1 k=l [=1

where quzKO Kek €R" and gljkl_KO kalERn

It is to be noted here that the basis vectors in Egs. (20) and
-(21) only apply to the case when the random field is Gaussian.
Hence, an alternative representation is required for non-
Gaussian uncertainty models. It follows from Eq. (19) that
the kth basis vector can be written as Y, = (Ka‘ K(0))"K0"1f .
Since the basis vectors are functions of random variables, it is
proposed to apply PC expansions to arrive at a numerically
more tractable description. Further, each basis vector can be
computed recursively as ;.1 = K5 K(6)y,. Hence, by making
use of the idea of pseudo-spectral expansions [30] and the
recursive representation of basis vectors, it becomes possible to
write all the higher order basis vectors in terms of
multidimensional Hermite polynomials.

The first basis vector ¥, (6) = K;'f can be rewritten in the
following form

Py
=SS, @
i=0

where P, depends on the order of PC expansion used for
decomposing the basis vectors and

'w‘* K'f Vi=0 @3)
' 0 V 1<i<P,

¥1(0)

Since higher order basis vectors need more terms for better
approximation, we shall use PC expansions of appropriate
order to minimize truncation errors. Further, since we make use
of the recursive representation of the basis vectors, each basis
vector should be computed using a PC expansion one order
higher than the preceding one. Here, for simplicity of notation
we assume P, as the number of terms used to approximate all
the basis vectors (clearly, P, should be sufficiently high to
approximate the highest order basis vector accurately).

Next, the PC expansion of the second basis vector y,(8) =
K5 K(6)¥,(8) can be written as

Py
= Vi, @9
i=0
where y? = K;'K,u, € R".

Now, taking advantage of the recursive representation of the
stochastic basis vectors, the higher order basis vectors can
readily be written as functions of random variables. The third
basis vector y;(8) = Kg’ K(8)y,(6) can be written as follows
by making use of Egs. (16) and (24)

PP

o' YD KW (25)

i=0 j=0

¥s(0) =

Note that the above equation contains the product of two
Hermite polynomials. For a more tractable computational
treatment, each basis vector should be represented as a linear
combination of a deterministic vector and a Hermite
polynomial. We eventually want to represent the third and all
higher order basis vectors in the form

i)
=> WL (26)
i=0

Equating the right hand sides of Egs. (25) and (26) and
multiplying both sides by I'; gives the following

¥s(0)

Py P P
DWITT =K5' Y S KyjIilyL, @7
i=0 i=0 =0

Applying the expectation operator (-) on the previous
equation and using the orthogonality property of the PC basis
gives the following expression for the deterministic vector Vi
€R”?

Z E Kl tjk
Vi =——0 | 28)
k ( Tz) » s

where the tensor Dy =(I';I;I';). We can compute all other
basis vectors on similar lines. To make the computations
efficient the tensor Dy can be calculated beforehand during the
preprocessing stage. It is worth noting that in the approach
presented here, we are using a pseudo-spectral approach [30] to
compute the higher-order basis vectors to avoid the compu-
tational effort and memory requirement associated with
calculation and storage of high-order tensors of the form (r;
Iy, - T; ) (these higher-order tensors would arise if the PC
expansmn scheme is directly applied to basis vectors
represented in the original form ¥, = [K;'K(8)I*K;'f).

A general expression for the deterministic vector vt (for
m>1) can be written in terms of the third-order tensor Dy, as

LSBT R,
v = ) : 29

The general expression for the stochastic basis vector
(6) can then be written as

ZW‘F (30)

i=1

Um1(0) =

Fmally, the set of stochastic basis vectors can be written as
¥ = [%(0) \01 (8)..., ¥/,()]. It is to be noted here that these
reformulated basis vectors are not exactly the same as those
defined earlier in Eq. (17), because of the PC decomposition.
However, if PC expansions of appropriate order are used, the
basis vectors would span the preconditioned stochastic Krylov
subspace more closely. It can also be noted from the derivation
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that the computational complexity involved in constructing the
PC expansion of the basis vectors will grow when the number
of random variables is increased. This observation follows
from Egs. (29) and (30) in which the number of matrix—vector
operations required to evaluate the PC expansion coefficients
y[x}c"“ is a function of P, which in turn depends on the total
number of random variables.

As in Eq. (18) the stochastic reduced basis representation for
the response process can be written as

0(0) = Eoig(0) + £,91(8) + -+ E,0,,0) =¥ (@0E, (31

where £ ={£,,£,,...,£,}T €R™! is a vector of undetermined
coefficients.

4. Stochastic projection scheme

Substituting Eq. (31) into the governing Eq. (16), we arrive
at the following system of linear random algebraic equations

Py
( > K,T,-) W(o)E =1. (32)
i=0

A projection scheme. needs to be applied to the above
system of equations to estimate the undetermined coefficients
€. An orthogonal Galerkin projection scheme is appropriate
when K(#) is a symmetric positive definite matrix. We present
next a Galerkin projection scheme in which orthogonality is
imposed in the sense of Eq. (2).

4.1. Galerkin scheme

The stochastic residual error vector can be written as

Py
€(0) = (}: K,-ri) W(o)5 1. (33)
i=0

In the Galerkin projection scheme, the residual vector (@) is
made orthogonal to all the stochastic basis vectors, i.e.

Py
(ZKfTi)'ﬁ(ﬂ)é—fJ_%(a), V j=0,12..,m (34

i=0

By imposing the above orthogonality condition in the sense
of Eq. (2), we obtain a reduced-order system of (m+ 1) X (m+
1) deterministic linear algebraic equations of the form

\ Vée 14
) (32)
Without any loss of generality the stochastic reduced basis

approximation in Eq. (31) can be rearranged and rewritten as
follows

Py
i(0) = [Z HiriJ 3 (36)
i=0

where II;= [¥),¥},...¢7"] ER™™D is a deterministic
matrix.

Substituting Eq. (36) into Eq. (35) gives the following

system of equations
Py
[Z I T, kj’ >E
k=0

P, P,
< [Z T, Z KT,
i=0 =0

= < [izo H,TI‘,} f>. (37

Simplifying the preceding equation gives

P, PI Py P,
(ZZZH?K,-H,;(F,-T,-F,C))E =D KT, (38)
i=0

=0 j=0 £=0

Substituting D, =(I";I;Tk) and using the fact that (I")=0
for i>0 and I'p=1, the above equation can be compactly
written as

P, P P N
(Z > H?ankn,-jk>5 = II3t. (39)
i=0 j=0 k=0

Eq. (39) is a reduced order deterministic system of linear
equations, which can be solved for the coefficient vector £.
These coefficients can then be used in conjunction with Eq.
(31) to approximate the solution process Gi(8).

4.2. Connections between SRBMs and SSFEM

In the SSFEM of Ghanem and Spanos [10], the solution
process is approximated using a PC expansion scheme as
follows

Py
a(0) = > wIy(0), | (40)
i=0

where u; € R” are vectors of undetermined coefficients and P,
depends on the order of PC expansion used for the solution
process. In contrast to SRBMs which have only m+1
undetermined coefficients, the SSFEM postulates an approxi-
mation withn n(P,+ 1) unknowns. It can be clearly seen from
(36) and (40) that if we set u,= II,£, the final form of the
solution process is the same for the hybrid scheme and the
SSFEM.

In the SSFEM, the PC expansion‘ in (40) is substituted into
the governing Eq. (16) and the Galerkin scheme is applied,
which leads to the following deterministic system of linear
algebraic equations

P Py
SO KuliIny = Tk =0,1,2,...,P,, @1

i=0 j=0

It is interesting to note that the equation for the
undetermined coefficients in (39) obtained using SRBMs is
quite similar to that obtained using the SSFEM. Despite the
fact that eqgs. (39) and (41) look similar they give rise to linear
algebraic equations with very different dimensionalities.
Specifically, the SSFEM approach leads to a system of
equations with much increased dimensionality—n(P,+1)X
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n(P;+1). In practice, P, can be ©(10) for problems with
modest number of random variables. Hence, the application of
the SSFEM to problems with large number of DOF and random
variables may become computationally prohibitive. In contrast,
SRBMs lead to a reduced-order (m-+1)X(m+1) system of
equations, where the number of basis vectors typically required
in practice to ensure good approximations is around three or
four.

5. Post-processing

Since the final expression for the solution process is an
expansion in PC basis functions, it is straightforward to
compute various statistics in the post-processing stage. In this
section we derive expressions for the statistical moments of the
solution and the norm of the stochastic residual error.

5.1. Statistical moments

Applying the expectation operator to Eq. (36) gives the
mean of the response process as

Py
(@) = <[ > H,T,-J >é, 42)
i=0

which reduces to the following simple expression due to the
properties of the PC basis functions.

() = Iyé. (43)

The covariance matrix of the response process can be
computed as

Ucoy = ([(8(6) —(a)(@(8) — (@)™ (44)

Substituting Egs. (36) and (43) into Eq. (44) gives the
following expression for the response covariance matrix

Py, P, P,
Ueoy = ) > TN~ MoEE" Y IINrY  @43)
i=0 j=0 i=0
Py
= ILTEE Iy + Moee™ 1Ty, 46)
i=0

which simplifies to the following after some algebraic
manipulations

Lie
Uew = 3 LEETIITI(I) — ITo£€ ™ IT]. ' @7)
i=0
Since the hybrid projection scheme leads to an explicit
expression for the solution process, its complete statistical
characterization becomes computationally feasible. For
example, we can employ simulation schemes in conjunction
with kernel density estimation techniques [44] to approximate
the PDF of the response quantities given the final expression
for the solution process in terms of a random polynomial.
Alternatively, the wide body of numerical methods developed
for reliability analysis such as the first-order reliability method

(FORM), second-order reliability method (SORM) and
importance sampling can be applied to the explicit expressions
for the solution process [39].

5.2. Error norm of the residual

We now focus on computing the norm of the residual error
£(0). Since £(8) is a random function it can be decomposed
using the PC expansion as follows

Py Py Ps
e(0) = (Z Kfri) (}: erj> E—f=>"ar, (48)
i=0 j=0 i=0
where P; is related to the order of PC decomposition used.
Note that the order of the decomposition used here should be
greater than the order used to decompose the stochastic basis
vectors in order to minimize truncation errors, i.e. P3=P+P,
Rearranging the preceding equation and multiplying both
sides by I'; gives

Py Py Py
[(Z > K,.er,.rj> 3 —fJ Iy => &Il (49)
i=0

=0 j=1

Ensemble averaging of the above equation and using the
properties of PC basis functions give the following expression
for g,

Py Py n
> > KILED, —K(T;)

_i=0j=0
& = (T,%) . (50)

Hence, the final expression for £(0) is

P, Py o
Py ;) ;) K,-HjE Dijk ~KTr k)
8(0) = Z p=U j= (r,%) F,. (5])

i=0

The L, norm of the residual error can hence be written as

P, Py

le@ll = (@ e(0) = > > " elefIiI). (52)

i=0 j=0

The L, norm of the error can be used to analyze the
convergence trends of reduced basis methods of different
orders. It can also be used to estimate the error in the solution
when validation studies using MCS are too expensive [26].

6. Numerical studies

In this section we present numerical studies to illustrate the
application of hybrid SRBMs to a model stochastic PDE in
structural mechanics. The performance of the projection
schemes depends on the number of basis vectors, the type of
covariance function used to model uncertainty, the coefficient
of variation of the input random field, the number of random
variables arising from KL expansion of random fields and the
number of terms retained in the PC expansions. We study
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the accuracy of the hybrid projection schemes as a function of
the standard deviation of the input random field (¢). Results are
presented for both Gaussian as well as lognormal models. The
order of PC expansion is chosen to be sufficiently high to
minimize truncation errors due to pseudo-spectral decompo-
sition of the stochastic basis vectors. The results are compared
against MCS based on deterministic structural analysis. The L,
norm of the residual is also computed to investigate the
convergence trends of the hybrid projection scheme when the
number of stochastic basis vectors is increased.

The problem considered here is a thin square plate of unit
length (i.e. [0,1]1X[0,1]) clamped at one edge and subjected to
uniform in-plane tension at the opposite edge (from [10]). This
problem has been used earlier in the literature [39] for studying
the convergence behavior of PC projection schemes - we use
some of the functions from the SSFEM Matlab toolbox
developed there in our numerical studies. The random field
representing uncertainty in the Youngs modulus of  this

structure is discretized using the standard KL expansion

procedure. The exponential correlation function shown below
is used to represent uncertainty

x; — %) - Iy1 _)’2[) (53)

N
h(x,y) = eXp< by b,
The domain of the plate is discretized into 16 square four
noded quadrilateral elements as shown in Fig. 1, which leads to
a total of 50 dof considering 2 dof per node. The external loads
are assumed to be deterministic and of unit magnitude. The
modulus of elasticity of the plate is modeled first as a two-
dimensional Gaussian random field with the exponential
correlation model given in Eq. (53) with by=by=1. The
random field is discretized using the KL expansion scheme and
four terms are retained.

[ ] 1

Loading F

»

0.25
-8~ SRBM (2)
...... #~ SRBM (3)
02} |—— SRBM(4)
il SRBM (5)
~<~ SRBM (6)
SRBM
0.15 =

Error in Mean Displacement (%)
o

o
=)
&

el

B T T ——

0.05 0.1 0.15 0.2
Standard Deviation (o)

Fig. 2. Percentage error in the mean displacement at point 'E’ using up to 7
basis vectors as a function of the standard deviation of the random Youngs
modulus (Gaussian model).

For Gaussian random fields, SRBMs with up to seven
stochastic basis vectors are applied to compute the first two
statistical moments of the displacement. Response statistics are
computed for ¢=0.05,0.10,0.15 and 0.20. For each case, MCS
with a sample size of 500,000 is used to generate benchmark
results against which all other results are compared.

The percentage errors in the mean and the standard
deviation of the vertical displacement at the corner 'E’ (see
Fig. 1) for different values of ¢ are shown in Figs. 2 and 3,
respectively. Note that in the figs. we use SRBM (m) to denote
the case when ’m’ stochastic basis vectors are used. For o <
0.15, high quality approximations can be achieved using only
three basis vectors. However, when ¢ is increased further,
around four-five basis vectors are required to ensure that the
approximation errors are lower than 1%. Fig. 4 shows the
convergence of the L, norm of the error as a function of the
number of basis vectors when ¢ is increased. It can be observed

12

~5~ SREM (2)
-~ SRBM (3)
—— SRBM (4)
»»»»» 4 SRBM (5)
< SRBM (6)
- SRBM (7)

-
(=)

=]

Error in Standard Deviation (%)

ok
0.05

0.1 0.15 0.2
Standard Deviation (o)

S

Fig. 1. Schematic of plate problem.

Fig. 3. Percentage error in the standard deviation of displacement at point "E’
using up to 7 basis vectors as a function of the standard deviation of the random
Youngs modulus (Gaussian model).
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1071 . . . ,

~6- std-0.05
e std-0.10
~+— std-0.15

~_std-0.20

L—2 Norm of the error

10—4 L L 2 L
2 3 4 5 6 7

Number of Basis Vectors

Fig. 4. Convergence of the L, norm of the residual error when the number of
basis vectors is increased (Gaussian model).

from the results that the error is lower for lower standard
deviation of the random field and it converges rapidly for all
values of ¢ as the number of basis vectors is increased.

We next consider the case when a lognormal model is used
to represent uncertainty in the Youngs modulus. Here, we
compute the mean and standard deviation of the displacement
when ¢ is increased up to 0.5. The lognormal field is generated
by exponentiating the underlying Gaussian random field with
the same covariance function as in Eq. (53). We use a second-
order PC expansion in terms of 4 uncorrelated random
variables arising from KL expansion to represent the lognormal
random field. Clearly, this is computationally more demanding
compared to the earlier case involving a Gaussian uncertainty
model since we now have to deal with a greater number of
terms in the final expression for the basis vectors.

Figs. 5 and 6 show the trends of the percentage errors in the
mean and the standard deviation, respectively. The effect of
increasing the number of basis vectors and o on the accuracy is

0.8 . . . . . " . ,
—« SRBM (3)
~ 0.7} |~ SRBM(4)
< ~%~ SRBM (5)
= ~&- SRBM (6)
5 06 |-b- SRBM(7) T
£
g 05}
[=%
(7]
O 04f
{4
]
2 03
]
5 02}
=
w
0.1f
0 1 1 1 1
005 01 015 02 025 03 035 04 045 05

Standard Deviation (c)

Fig. 5. Percentage error in the mean displacement at point 'E’ using up to 7
basis vectors as a function of the standard deviation of the random Youngs
modulus (lognormal model).

—~8 —»— SRBM (3)

2 ' | —— SRBM (4) 1

=t —%— SRBM (5)

S 7} |-« SRBM 6) 1
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]

o

°

5 5¢ ]

g

S 4r
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E 3l ]

e

o2t .
1L -]
0 H 1
005 01 015 02 025 03 035 04 045 05

Standard Deviation (o)

Fig. 6. Percentage error in the standard deviation of displacement at point ’E’
using up to 7 basis vectors as a function of the standard deviation of the random
Youngs modulus (lognormal model).

shown in these figures. It can be seen that the errors are
minimal at lower values of ¢. For 6> 0.30 the errors in mean
displacement computed SRBM(2) is higher. However, when
the number of basis vectors is more than two, the error in mean
displacement is always less than 0.3%.

Similar trends can be observed for the percentage error in
the standard deviation of displacement shown in Fig. 6.
Specifically, highly accurate results can be obtained when more
than two basis vectors are used - the errors are close to zero
across all values of ¢ up to 0.5. Fig. 7 shows the trends of the L,
norm of the residual error as a function of ¢, From a theoretical
viewpoint, the Galerkin projection scheme used here mini-
mizes a energy norm or the K-norm of the error, i.e. ({u —a}7
K(6){u —1}) [27,28]. Hence, the decrease in the residual error
may not be strictly monotonic when the number of basis
vectors is increased. This also explains why the percentage

100 . . . s

Increasing Standard
Deviation

107

Error Norm

-
3
n

1078

L L i

2 3 4 5 6 7
Number of Basis Vectors

Fig. 7. Convergence of the L, norm of the residual error when the number of
basis vectors is increased (lognormal model).
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Table 1

Comparison of the percentage error in standard deviation of displacement
computed using SRBM:s and the SSFEM for Gaussian model with ¢=0.15 and
0.20

Order o=0.15 0=0.20
SRBM SSFEM SRBM SSFEM

1 5.363 5.374 10.438 10.455
2 0.454 0.513 1.878 1.984
3 0.076 0.084 0.531 0.559
4 0.039 0.039 0.254 0.259
5 0.034 0.034 0.178 0.179
6 0.033 0.033 0.152 0.153

error in mean and standard deviation does not decrease in a
monotonic sense when the number of basis vectors is increased.

Table 1 compares the percentage error in standard deviation
of displacement computed using the hybrid formulation with
the SSFEM of Ghanem and Spanos [10] as the order of
approximation is increased. A consistent comparison is made
possible since both schemes ultimately represent the solution
process in terms of a PC expansion (see Section 4.2)—the term
order is used here to refer to the order of the approximation in
Egs. (36) and (40). It can be noted from Table 1 that the
accuracy of the hybrid projection scheme is comparable to the
SSFEM. The results presented in the table are for Gaussian
models with 0=0.15 and 0.20.

It is also of interest to note that the hybrid scheme is
computationally more efficient than the SSFEM. Fig. 8 shows
how the hybrid schemes compare with standard PC projection
schemes in terms of computational efficiency. Clearly, the
reduced basis schemes are roughly 100 times faster than the
SSFEM. The plot shown in Fig. 8 was obtained for the case
when discretization of the plate problem results in 242 DOF. It
is worth noting here that a direct solver was used to generate
results using the SSFEM,; the application of iterative methods is
expected to lead to improvements in computational efficiency.
Even so, for systems with large number of DOF, the stochastic
reduced basis projection schemes proposed here will be

-+ PC
-8~ SRBM

10*
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Time (sec)
2

—
A

100}

1 2 3 4
Order of SRBM or PC

107"

Fig. 8. Comparison of wall time taken by the SRBMs and the SSFEM of
different orders to solve the plate problem with 242 DOF (Gaussian model).

significantly more efficient than the SSFEM since the size of
the final system of reduced-order equations is independent of
the number of DOF and the number of random variables. In
contrast, the size of the system of equations to be solved for the
undetermined coefficients in the SSFEM is a function of the
total number of DOF as well as the number of random
variables, i.e. a multiple of the original number of DOF; see
Section 4.2.

7. Concluding remarks

In this paper we introduced a hybrid formulation combining
stochastic reduced basis projection schemes with PC expan-
sions for solving linear random algebraic systems of equations
arising from discretization of stochastic partial differential
equations. The objective of the present work was to extend
SRBMs to non-Gaussian uncertainty models. To achieve this
generalization, the basis vectors spanning the stochastic Krylov
subspace are reformulated in terms of PC expansions in multi-
dimensional Hermite polynomials. By taking advantage of the
recursive representation of the stochastic basis vectors we used
a pseudo-spectral decomposition technique to evaluate higher
order basis vectors. As a result, a highly tractable and
computationally efficient representation of stochastic basis
vectors was obtained. In principle, an arbitrary number of basis
vectors can be used depending on the accuracy required in the
solution process. A reduced order system of equations is finally
obtained, which can be readily post-processed to compute the
statistics of .interests using the standard properties of PC
expansions.

We present detailed numerical studies to demonstrate the
utility of higher order SRBMs when applied to solve a system
of equations obtained by discretizing a model linear stochastic
PDE in structural mechanics. We have tested SRBMs for both
Gaussian and lognormal models. All the results generated are
benchmarked against Monte Carlo simulation outputs,
Numerical studies, as expected, suggest that higher order
SRBMs give better results compared to lower order ones.
Trends for the L, norm of the error show that even at higher
standard deviations the errors decrease rapidly when the
number of basis vectors is increased. Comparisons are also
made with the SSFEM [10] to show that the proposed hybrid
formulation gives results of comparable accuracy at a
significantly lower computational cost.
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