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Abstract—Performance engineers are beginning to explore
software-level optimisation as a means to reduce the energy
consumed when running their codes. This paper presents POSE,
a mathematical and visual modelling tool which highlights the
relationship between runtime and power consumption. POSE
allows developers to assess whether power optimisation is worth
pursuing for their codes.

We demonstrate POSE by studying the power optimisation
characteristics of applications from the Mantevo and Rodinia
benchmark suites. We show that LavaMD has the most scope
for CPU power optimisation, with improvements in Energy
Delay Squared Product (ED

2
P) of up to 30.59%. Conversely,

MiniMD offers the least scope, with improvements to the same
metric limited to 7.60%. We also show that no power optimised
version of MiniMD operating below 2.3 GHz can match the
ED

2
P performance of the original code running at 3.2 GHz.

For LavaMD this limit is marginally less restrictive at 2.2 GHz.

I. INTRODUCTION

Advances in processor design have delivered improvements

in CPU performance for decades. As physical limits are

reached, however, refinements to the same basic technologies

are beginning to show diminishing returns [1]. One side-effect

of this is an unsustainable rise in system power use, which

the US Department of Energy has identified as a primary

constraint for exascale systems [2].

Hardware manufacturers are increasingly prioritising energy

efficiency in processor designs [3]. Research suggests that

software modifications will be required to fully exploit the

resulting improvements in modern processors [4]. The devel-

opment of new energy-aware performance engineering tools

and techniques will help developers to identify and capitalise

on this new class of optimisation.

In this paper we present the Power Optimised Software En-

velope (POSE). POSE is a mathematical and visual modelling

tool which provides insight into the energy consumption char-

acteristics of a code. Our work helps performance engineers

understand whether power or runtime optimisation is the best

strategy for improving the energy efficiency of their codes.

This research was sponsored through a U.K. Technology Strategy Board
project, number 131197 (Energy-Efficiency Tools For High-Performance
Multi- and Many-core Applications).

TABLE I: Performance Model Classifications

Domain

Approach Runtime Energy

Simulation SST [5], WARRP [6], PACE [7] Wattch [8], McPAT [9]
Analytical LogP [10], LogGP [11], PRAM [12] BTL [13], CAPE [14]
Heuristic Roofline [15], Amdahl’s Law [16] POSE, Energy Roofline [17]

The contributions made in this research are:

• We introduce POSE, providing derivations for its con-

stituent boundaries and an overview of the insights it

provides;

• We show how POSE can be targeted to specific platforms

and use-cases. Specifically, we investigate the trade-offs

between runtime and CPU power consumption;

• We use POSE to study codes from the Mantevo and

Rodinia benchmark suites. We assess the potential ben-

efits of power optimisation for each code, showing that

LavaMD offers the most scope for power optimisation

while MiniMD offers the least;

• Finally, we investigate how opportunities for power opti-

misation vary in response to frequency scaling for these

two codes.

The remainder of this paper is structured as follows: Sec-

tion II presents a survey of related work; Section III details

the construction of POSE along with the various insights it

provides; Section IV demonstrates our new modelling tool

with a study into the CPU power optimisation opportunities

presented by a range of benchmark applications; and finally

Section V concludes the paper and describes future research.

II. RELATED WORK

Performance modelling techniques enable the rapid explo-

ration of large hardware and software design spaces. Table I

categorises the performance modelling ecosystem based on

model domain and underlying approach.

978-1-5090-0172-9/15/$31.00 c� 2015 IEEE



A. Simulators

Performance simulators such as SST [5], WARRP [6] and

PACE [7] gather performance data by executing a simplified

representation of the original code. Using code as a modelling

input reduces the burden of model construction placed on

the user, meaning model accuracy depends instead on how

faithfully the simulator is able to model an underlying system.

These approaches can be extremely insightful when search-

ing for optimisations, however constructing and validating

representative simulations is often limited by the need for

numerous micro-benchmarks and also the time and state-space

overheads of the underlying discrete event simulator.

Tools such as Wattch [8] and McPAT [9] extend perfor-

mance simulators with models of power draw. These mod-

els use the energy costs associated with particular hardware

actions to estimate the power consumption characteristics of

simulated code.

B. Analytical Models

Analytical models distil the structure and behaviour of a

program into a set of parameterised mathematical expressions.

Performance predictions are then obtained by solving these

expressions for the required input parameters.

Analytical models produce results more quickly than sim-

ulations, making them particularly suitable for parameter

studies. Ensuring the model is expressive enough to capture

all possible program behaviours is challenging however and

requires a deep understanding of the target application.

Examples of this approach include LogP [10], LogGP [11]

and PRAM [12], which provide model skeletons which must

then be tailored to individual codes. This approach has also

been applied to modelling energy consumption, with examples

including BTL [13] and CAPE [14].

C. Heuristic Models

Heuristic models represent the most abstract category of

performance models and the one to which our work belongs.

Rather than attempting to faithfully represent an entire system,

heuristic models provide a simplified analogy which helps

developers reason about particular properties of a code. Ease

of construction and the clarity of their insights mean heuristic

models are well suited to the early stages of optimisation.

Ahmdal’s Law [16], arguably the best known heuristic

model, states that the performance gains from parallelisation

are limited by the serial portion of a parallel program. A

further example of this approach is the Roofline model [15],

which frames application performance in terms of its opera-

tional intensity and two system bottlenecks; off-chip memory

bandwidth and floating point performance. This simplification

limits Roofline’s use as a predictive model but does mean

a developer can easily isolate the limiting factor of code

performance and target their optimisation efforts accordingly.

POSE serves as a preliminary ‘first cut’ modelling tech-

nique intended to guide energy-aware optimisation efforts.

Our model provides an asymptotic analysis of the scope for

optimisation in the power and runtime domains, allowing
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Fig. 1: E1t2 Power Optimised Software Envelope

performance engineers to focus their efforts wherever they

will be most beneficial. POSE draws inspiration from the

Roofline model in that its insights are also presented in

an intuitive graphical format. POSE differs from the other

models described in that it does not identify optimisation

opportunities, but rather which tools and approaches are best

suited to finding them.

Horowitz proposed the Energy Delay Product as a metric to

evaluate the energy and performance trade-offs in low power

design [18]. Brooks extended this by weighting each compo-

nent to better reflect the demands of specific domains [19]. We

refer to these as the Emtn family of metrics, which includes

power (E1t−1), energy (E1t0) and time (E0t1) as members.

Most of the examples found in this paper use Energy Delay

Squared Product (E1t2), described by Brooks et al. as the most

appropriate Emtn metric when considering a fixed micro-

architecture [8].

III. POWER OPTIMISED SOFTWARE ENVELOPE

Energy is the integral of power consumed over time, or put

simply E = P̄ t. As such, the energy efficiency of a code

can be achieved either through shortening its runtime (t) with

conventional program optimisations or reducing average power

consumption (P̄ ) with power optimisations. POSE enables

performance engineers to compare the potential benefits of

each approach for a given code and thus focus their efforts on

whichever offers the greatest rewards.

The POSE heuristic partitions the energy/runtime plane into

areas with differing performance characteristics relative to

some initial unoptimised code and input. POSE is a general

purpose heuristic which applies to all members of the Emtn

group with m > 0 and n � 0, and indeed any metric that

increases in line with runtime and energy consumption. We

introduce the bounds which constitute POSE and provide their

derivations for the Emtn family of metrics. The only prereq-

uisites of our model are that time and energy consumption can

be accurately measured or calculated for the target platform.

A. Feasible Performance Envelope

POSE is built around the concept of a Feasible Performance

Envelope. We construct this by plotting lines of gradient Pmin



and Pmax in Figure 1. These values represent the minimum

and maximum rates of power consumption that can occur

during normal operation of the target platform. The (Runtime,

Energy) costs incurred by running any given code θ under

similar conditions must be represented within this envelope.

B. Optimisation Bound

To constrain our search space further we consider the metric

we wish to reduce.

Definition 1. For logically equivalent codes θ and λ, the

transformation θ ! λ is a valid optimisation with respect to

a cost metric M iff M(λ) � M(θ).

We plot curve B — E in Figure 1, which passes through θ

linking all points where M(λ) = M(θ). By Definition 1 any

optimised versions of θ must exist below this bound. Naturally

the equation for the Optimisation Bound depends on the metric

we are optimising for. Figure 1 shows the Optimisation Bound

for E1t2. The general form of this bound for the Emtn family

of metrics is derived as follows:

Eλ
mtλ

n = Eθ
mtθ

n

Eλ
m =

Eθ
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n

tλ
n
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Eθ
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n

tλ
n )
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C. Contribution Bound

Our second bound considers what it means to optimise for

reduced power draw.

Definition 2. An optimisation θ ! λ with respect to metric

M is a power optimisation iff the reduction in power draw it

delivers is responsible for the majority of the improvement in

terms of M .

We plot curve C — θ in Figure 1 linking all points for which

power and runtime factors contribute to M in the same ratio

as our original code. By Definition 2 any power-optimised

versions of θ must lie below this Contribution Bound. Again

the equation for the Contribution Bound depends on the metric

chosen. Figure 1 shows the bound for E1t2 while the general

form for Emtn metrics is derived as follows:
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We seek to use the most appropriate tools while searching for

optimisations. If an optimisation yields significant reductions

in runtime, with only minor reductions in power consumption,

then it is reasonable to classify it as a runtime optimisation.

Conventional time-based profilers and performance engineer-

ing tools are therefore better suited to finding these optimisa-

tions. It is the Contribution Bound which enables our model

to make this distinction.

D. Optimisation Limit

The bounds described thus far delineate those areas of the

energy/runtime plane in which runtime and power optimised

versions of a given code may exist. The final component

of POSE is the Optimisation Limit. This partitions runtime

optimisations into those which strictly dominate all power

optimisations and those which could be outperformed by some

power optimisation.

This limit is related to the Optimisation Bound and is

likewise based on Equation 1. It connects all points with the

same value for M as the maximally power-optimised point

in our envelope, C, shown as curve A — C in Figure 1. All

optimisations below this limit strictly dominate any possible

power optimisation.

E. POSE Insights

POSE partitions the feasible performance envelope of Figure 1

into areas with differing performance characteristics. Area

1 contains runtime optimisations which dominate the best

case power optimisation in terms of M (Strong Runtime

Optimisation). Area 2 contains runtime optimisations which

dominate θ in terms of M , yet may be outperformed by some

power optimised version of θ (Weak Runtime Optimisation).

Area 3 contains optimisations for which improvements to

M are primarily due to reduced power consumption (Power

Optimisation). Finally, Area 4 corresponds to codes with worse

performance than θ (Performance Degradation).

A key strength of POSE is that it produces quantitative and

actionable insights relating directly to properties of the code.

These insights fall into one of two broad categories, which

taken together allow a performance engineer to decide if power

optimisation is likely to prove worthwhile.

The first of these categories relates to the benefit offered by

power optimisation. Taking the difference in energy between

point θ and D gives us an upper limit on the amount of energy

which can be saved by reducing power consumption. Similarly,

the difference in value between M(θ) and M(C) gives an

upper bound on the improvement in our metric we can expect

to see from power optimisation.

The second category indicates the scope a code has for

power optimisation. The difference in runtime between inter-

sect E and θ represents the maximum increase in runtime we

could feasibly trade off to achieve a slower yet more energy

efficient code. The value tθ/tB represents the smallest speed

up which guarantees a code that outperforms θ with respect

to M . Finally, tθ/tA is the smallest speed up guaranteed to

outperform any power optimised version of θ.

The figures produced by POSE are all upper bounds, and the

benefits of power optimisation will be more modest in practice.

Even so, these figures are useful as they allow performance
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engineers to make informed decisions about where best to

focus their optimisation efforts.

It is worth restating that POSE is a metric-agnostic heuristic.

Figure 2 shows how the POSE heuristic varies with choice

of metric using Energy (E1t0) and Energy Delay Squared

Product (E1t2) as examples. POSE offers the same insights

regardless of the metric chosen.

IV. INVESTIGATION

We use POSE to investigate the scope for CPU power optimi-

sation for a selection of codes taken from the Mantevo [20]

and Rodinia [21] benchmark suites.

CPU energy consumption accounts for a significant portion

of the energy used by high performance systems [22] and

is therefore a prime target for optimisation. It can also be

measured accurately on commodity hardware [23] making it

a suitable candidate for POSE modelling.

Our experiments were carried out on an Intel Core i5-3470

Ivy Bridge CPU, which supports Intel’s Running Average

Power Limit (RAPL) technology [24]. The choices of platform

and power measurement technique were motivated by their

availability as POSE places no restrictions on either.

A. CPU Power Consumption

Current processors are based on Complimentary Metal Oxide

Semiconductor (CMOS) technology. Equation 3 separates the

power draw of CMOS chips into component parts, of which

dynamic and leakage power are the most significant.

Ptot = Pdyn + Pleak + Pother (3)

Dynamic power is consumed when logic gates change state.

Leakage power exists because at microscopic scales the in-

sulating properties of silicon break down, allowing current to

escape even when gates remain inactive. Other forms of power

dissipation exist, though their effects are relatively minor [25].

Pdyn / CV 2Af (4)

Pleak = V ⇥ Ileak (5)

Equation 4 is an approximation for dynamic power in which

C denotes load capacitance, V the supply voltage, A the

activity factor and f the clock frequency. Equation 5 is a

simplified expression for leakage power which exploits the fact

that leakage current (Ileak) is not related to workload [26].

Activity factor captures the fraction of logic elements that

change state each clock cycle. Frequency and supply voltage

vary in tandem, taking values from a set of (frequency, voltage)

pairs known as P-states. Dynamic Voltage and Frequency

Scaling (DVFS) selects a P-state based on workload, or places

the CPU into an energy saving mode if no work is available.

Finally, capacitance and leakage current are constants dictated

by hardware design.

Processor architecture also plays a significant roll in de-

termining total power consumption. Each core in a multi-core

architecture operates independently with its own activity factor

and in some cases P-state. Equation 3 should be summed

across all cores to obtain a value for the entire processor.

B. Feasible Performance Envelope

The first step in applying POSE is to construct a feasible

performance envelope. Many manufacturers publish power

dissipation figures for their hardware, however for safety

reasons these are usually conservative estimates. POSE works

best when the power bounds are as tight as possible, therefore

we determine Pmin and Pmax empirically.

We specify power benchmarks using (S,A,C) tuples, with

P-state S, activity factor A and active core count C. Our

Pmin and Pmax benchmarks should reflect the range of values

these properties can take for a given code θ. This notion is

formalised by Equation 6.

Pmin = (Smin, Amin, Cmin | θ)

Pmax = (Smax, Amax, Cmax | θ)
(6)

The values of S, A, and C depend on the code and the

nature of the optimisations being considered. POSE models

for inherently serial codes should be constructed using single

threaded benchmarks where Cmin = Cmax = 1, for example.

The cpufrequtils package allows us to override DVFS

and manually set the desired P-state S. We control the number

of active cores C by specifying the number of threads used by

our benchmarking routines and pinning each one to its own

core to prevent migration. The remaining property is activity

factor, which is influenced by benchmark code.

We define the range of values that A can take for some

fixed S and C as [α, β] where 0 < α < β < 1. Our α

benchmark executes a single jmp instruction each clock cycle,

preventing instruction pipelining. It performs no calculations

or memory accesses while keeping control logic to a minimum.

Supporting benchmark code can be downloaded from the link

given in the Appendix.

Non-trivial codes perform more work per unit time than our

minimal benchmark. This additional work means more transis-

tors changing state per cycle, and hence a higher activity factor.

The only exception occurs when applications are blocked for

long periods, allowing the processor to enter an idle state. This

can be addressed by adding delays to the benchmark.

FIRESTARTER [27] serves as our benchmark for activity

factor β. This tool is designed to trigger near-peak power



TABLE II: Feasible Performance Envelope Parameters (W)

CPU Cores Active

1 2 3 4

P-state (GHz) Pα Pβ Pα Pβ Pα Pβ Pα Pβ

1.60 8.92 11.29 10.47 15.13 12.01 19.01 13.51 23.06
1.70 9.11 11.62 10.73 15.76 12.38 19.83 13.97 23.95
1.80 9.29 11.98 11.02 16.29 12.77 20.67 14.46 25.14
1.90 9.61 12.36 11.33 16.96 13.15 21.52 14.93 26.20
2.10 9.97 13.12 11.99 18.42 14.12 23.56 16.10 28.81
2.20 10.19 13.58 12.39 19.06 14.59 24.66 16.78 30.06
2.30 10.47 14.04 12.74 19.92 15.10 25.74 17.39 31.53
2.40 10.71 14.56 13.17 20.81 15.73 27.01 18.11 32.97
2.50 11.04 15.15 13.65 21.72 16.34 28.37 18.97 34.83
2.60 11.36 15.67 14.16 22.83 17.14 29.95 19.81 36.43
2.70 11.71 16.34 14.64 23.95 17.82 31.48 20.74 38.39
2.90 12.47 17.79 15.92 26.37 19.46 35.25 22.85 42.01
3.00 13.00 18.64 16.68 27.91 20.45 37.43 24.03 44.96
3.10 13.39 19.38 17.44 29.35 21.49 39.18 25.41 47.46
3.20 13.93 20.43 18.26 31.07 22.83 41.52 26.88 49.61

TABLE III: Code Metrics for S = 3.2 GHz, C = 4

Code Runtime (s) Energy (J) Power (W) E1t2

MiniMD 30.29 847.00 27.96 777305
leukocyte 38.92 1197.91 30.78 1814992
CFD 29.72 933.33 31.40 824491
Heartwall 24.62 787.17 31.97 477261
streamcluster 33.86 1086.77 32.10 1246006
LavaMD 65.64 2117.51 32.26 9123533

consumption across a range of x86_64 processors. It consists

of hand optimised assembly routines which raise the activity

factor above the level achievable with high level languages.

Prime95 and Linpack were also evaluated as β benchmarks

however they were outperformed by FIRESTARTER.

We extended the Unix time binary to measure cumulative

power consumption figures. Our tool polls the RAPL interface

periodically to identify and compensate for any wraparound of

the RAPL registers. Techniques described by Hahnel et al. [28]

were used to promote measurement accuracy.

The benchmark parameter space is small enough for us to

fully characterise our processor by measuring all (S,A,C)
configurations. Benchmarking runs lasted for 120 seconds,

allowing sufficient time for power readings to stabilise. The

results of this characterisation are presented in Table II, which

identifies P-states by their frequency component.

C. POSE Models for Code Optimisation

Having characterised our system we now proceed to build

POSE models for benchmarks in the Mantevo and Rodinia

suites. These codes were compiled with ICC version 14.0.0.

Applications were run with the default configuration given by

their documentation where available. In the absence of suitable

defaults, parameters were chosen to yield runtimes in line with

the other applications. The energy and runtime costs incurred

by running each code is given in Table III.

All codes ran in parallel across four cores and spent

negligible time waiting for resources. We therefore disregard

optimisations which reduce parallelism (C < 4) or processor

TABLE IV: E1t2 POSE Coordinates

(a) Time (s)

Code θ A B C D E

MiniMD 30.29 24.37 25.02 29.90 30.29 30.70
leukocyte 38.92 30.33 33.20 37.21 38.92 40.72
CFD 29.72 23.01 25.52 28.22 29.72 31.30
Heartwall 24.62 18.95 21.27 23.24 24.62 26.09
streamcluster 33.86 26.02 29.29 31.92 33.86 35.92
LavaMD 65.64 50.35 56.87 61.76 65.64 69.76

(b) Energy (J)

Code θ A B C D E

MiniMD 847.00 1209.05 1241.33 803.52 814.18 824.98
leukocyte 1197.91 1504.62 1646.83 999.95 1046.14 1094.47
CFD 933.33 1141.19 1265.96 758.42 798.81 841.34
Heartwall 787.17 939.80 1055.06 624.58 661.77 701.18
streamcluster 1086.77 1290.65 1452.77 857.75 910.03 965.50
LavaMD 2117.51 2497.76 2821.05 1659.99 1764.15 1874.84

throughput (S < 3.2 GHz). This corresponds to the feasible

performance envelope given by Equation 7.

Pmin = (3.2 GHz,α, 4) = 26.88W,

Pmax = (3.2 GHz,β, 4) = 49.61W
(7)

Table IV summarises the POSE models constructed for each

code. The time and energy costs of each code are given in

the θ columns of Table IVa and Table IVb respectively. The

POSE model coordinates given in the remaining columns are

obtained by solving Equations 1 and 2 for these values, as

described in Section III.

The remainder of this section focusses on MiniMD and

LavaMD as the two codes representing the extremes of power

consumption. POSE models for these two codes are repro-

duced graphically in Figure 3a and Figure 3b, and the results

of these models are presented in Table V. Results for the

remaining codes can be found in the Appendix.

TABLE V: POSE Model Summaries

LavaMD
Best Case Energy Saved by Reducing Power Consumption 353.36J
Worst Case Slowdown as a result of Power Optimisation 4.12s
Best Case Improvement in E

1
t
2 from Power Optimisation 30.59%

Minimum Speed Up Guaranteed to Outperform θ 8.77s; 1.15⇥
Speed Up Required to Dominate Power Optimisation 15.29s; 1.30⇥

MiniMD
Best Case Energy Saved by Reducing Power Consumption 32.82J
Worst Case Slowdown as a result of Power Optimisation 0.40s
Best Case Improvement in E

1
t
2 from Power Optimisation 7.60%

Minimum Speed Up Guaranteed to Outperform θ 5.27s; 1.21⇥
Speed Up Required to Dominate Power Optimisation 5.92s; 1.24⇥

These results show that LavaMD is more amenable to power

optimisation than MiniMD, in terms of both scope and benefit;

a fact illustrated by the difference in size between the power

optimised areas in Figure 3a and Figure 3b.

D. POSE Models for Frequency Scaling

The relationship between P-state and energy consumption is

non-linear and workload dependent. Operating in low power
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states can increase runtime, offsetting any energy savings from

reduced power draw [29]. Application-aware DVFS can save

energy by selecting the optimal P-state schedule for a given

code [30]. This implies that code changes may effect the

optimal P-state assignment. We now use POSE to reason about

this class of optimisation.

The performance of MiniMD and LavaMD was measured

for each P-state supported by our system. Figure 4 shows that

the energy consumption of both codes can be reduced at the

cost of increased runtime. Despite this, the lowest E1t2 value

for both codes occurs at 3.2 GHz, meaning race-to-halt is the

optimal strategy in terms of this metric.

While useful, this simple analysis fails to account for poten-

tial co-optimisation of activity factor and P-state. It is possible

that different optimisations may be required to achieve optimal

performance in different P-states. The flexibility of POSE

allows us to model this scenario by considering optimisations

which can impact P-state as well as activity factor.

Equation 8 gives the feasible performance envelope corre-

sponding to this class of optimisation. We choose 3.2 GHz as

our initial ‘unoptimised’ baseline because this is the P-state

our system defaults to when running MiniMD or LavaMD.

Pmin = (1.6 GHz,α, 4) = 13.51W,

Pmax = (3.2 GHz,β, 4) = 49.61W
(8)

If two P-states have overlapping POSE models then it may

be possible for a power optimised code running at the lower

frequency P-state to outperform an unoptimised code running

at a higher frequency. Conversely, if their POSE models do

not overlap then switching to the higher performance P-state

dominates any possible power optimisation at the weaker state.

This analysis allows the weaker state to be excluded from any

search for power optimisations.

For MiniMD, Figure 4a shows that the first POSE model

which does not overlap with that for our baseline occurs at 2.2

GHz. This means that no power optimisations exist at P-states

2.2 GHz and below which can match the E1t2 performance

of our unoptimised baseline. Conversely, such an optimisation

may exist at frequencies between 3.2 GHz and 2.2 GHz as

shown by the overlapping of the respective POSE models.

For LavaMD this optimisation threshold is lower at 2.1 GHz,

lending support to the claim that of these two codes LavaMD

is more amenable to power optimisation.

Dynamic Concurrency Throttling has also been proposed as

a means to reduce energy consumption [31]. POSE could be

used to model such optimisations in a similar manner to our

P-state investigation; the only difference being the parameter-

isation of the feasible performance envelope (Cmin = 1).

V. CONCLUSION

This paper presents POSE, a mathematical and visual mod-

elling tool which captures the trade off between software

power consumption and runtime. POSE provides insights

regarding the scope a code has for power optimisation as

well as the level of improvement which can be expected.

These insights help developers to determine whether power

or runtime optimisation is the best approach for improving

the efficiency of a code.

POSE works by partitioning the energy/runtime plane into

areas corresponding to runtime and power optimised versions

of an initial code with respect to an optimisation metric.

We provide derivations of POSE’s boundaries for the Energy

Delay Product family of metrics. We also discuss the various

insights our model provides.

We demonstrate POSE by modelling the CPU power con-

sumption of a number of codes taken from the Rodinia

and Mantevo benchmark suites. Our results illustrate that

runtime optimisation is the preferred approach to reducing

the energy consumption of MiniMD; power optimisation is

limited to improving the E1t2 of this code by at most 7.60%.
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Fig. 4: E1t2 POSE for P-state Optimisation of MiniMD and LavaMD

LavaMD shows more scope for power optimisation, offering

improvements of up to 30.59% in the same metric.

Our investigation into frequency scaling highlights the abil-

ity of POSE to rule out dominated configurations and hence

reduce the optimisation search space. We show that no power

optimised version of MiniMD operating at P-states below

2.3 GHz can match the ED2P performance of the original

unoptimised code running at 3.2 GHz. Once again LavaMD

shows more scope for optimisation, with this limit falling at

the marginally less restrictive level of 2.2 GHz.

We believe our results are of interest to performance

engineers and serve to demonstrate the practical utility of

POSE. POSE is being engineered for inclusion into Allinea

MAP [32], a well-known state-of-the-art application analytics

tool for HPC clusters and applications.

Future Work

Work is ongoing to develop the hardware and software re-

quired to measure power consumption at scale. This will allow

us further validate POSE by applying it to a broader selection

of scientific codes running on a range of architectures. The

quantitative nature of our technique makes it particularly well

suited to comparison studies. As such we intend to investigate

the power optimisation opportunities presented by a range of

different platforms.

Our ultimate aim is to demonstrate how POSE may be used

to identify specific optimisations. This will involve developing

feasible performance envelopes for individual subsystems in-

cluding memory, file systems and processors. We also intend to

profile specific classes of code and establish Pmin baselines for

each. Doing so would allow POSE to highlight optimisation

opportunities at a per-kernel, per-subsystem level and hence

facilitate targeted optimisation.

APPENDIX

Table VI summarises the results of POSE models for the

remaining codes documented in this paper. These results

were generated automatically. Software for building POSE

models and producing these energy performance reports can

be downloaded from http://warwick.ac.uk/pose.

TABLE VI: POSE Summaries for Remaining Codes

leukocyte
Best Case Energy Saved by Reducing Power Consumption 151.77J
Worst Case Slowdown as a result of Power Optimisation 1.80s
Best Case Improvement in E

1
t
2 from Power Optimisation 23.73%

Minimum Speed Up Guaranteed to Outperform θ 5.73s; 1.17⇥
Speed Up Required to Dominate Power Optimisation 8.59s; 1.28⇥

CFD
Best Case Energy Saved by Reducing Power Consumption 134.52J
Worst Case Slowdown as a result of Power Optimisation 1.58s
Best Case Improvement in E

1
t
2 from Power Optimisation 26.75%

Minimum Speed Up Guaranteed to Outperform θ 4.20s; 1.16⇥
Speed Up Required to Dominate Power Optimisation 6.72s; 1.29⇥

Heartwall
Best Case Energy Saved by Reducing Power Consumption 125.40J
Worst Case Slowdown as a result of Power Optimisation 1.47s
Best Case Improvement in E

1
t
2 from Power Optimisation 29.32%

Minimum Speed Up Guaranteed to Outperform θ 3.35s; 1.16⇥
Speed Up Required to Dominate Power Optimisation 5.68s; 1.30⇥

streamcluster
Best Case Energy Saved by Reducing Power Consumption 176.64J
Worst Case Slowdown as a result of Power Optimisation 2.06s
Best Case Improvement in E

1
t
2 from Power Optimisation 29.88%

Minimum Speed Up Guaranteed to Outperform θ 4.57s; 1.16⇥
Speed Up Required to Dominate Power Optimisation 7.84s; 1.30⇥
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