— Preprint —
Accepted for publication at Cyber Resilience Workshop 2022
Final published version available at: https://doi.org/10.1109/CNS56114.2022.10092919

Towards Cost-Benefit-Aware Adaptive Monitoring
for Cyber-Physical Systems

Michael Vierhauser*, Rebekka Wohlrab!, Stefan Rass*}
* LIT Secure and Correct Systems Lab, Johannes Kepler University Linz, Austria
t Chalmers | University of Gothenburg, Gothenburg, Sweden
¥ Institute of Artificial Intelligence and Cybersecurity, Universitaet Klagenfurt, Austria

Abstract—Cyber-Physical Systems (CPS) are becoming ubiq-
uitous in many different domains, for example, in the form of
Unmanned Aerial Vehicles (UAVs), (semi-)autonomous systems,
or robotic applications. Given that CPS frequently operate in a
safety-critical context, and interact and collaborate with humans,
ensuring that these systems behave as intended and adhere to their
specified security and safety requirements at runtime is essential.
Providing automated support for monitoring is a fundamental
part of collecting information about the system, and facilitating
subsequent analysis and reasoning. However, while advances have
been made, particularly in self-adaptation and self-management,
the monitoring aspect is often neglected, resulting in suboptimal
data collection that does not consider associated monitoring costs,
changing environments, or varying benefits of the collected data.
Such benefits range from accountability in the aftermath of a
security incident, up to proactive defense against risks if connected
to alarming. In this paper, we outline our initial concept for cost-
benefit-aware adaptive runtime monitoring, for (but not limited
to) safety and security requirements. As part of this work, we
identify relevant monitoring aspects and create a Cost-Benefit-
Aware Adaptive Model (CBAAM), conceptualizing the costs and
benefits of adaptive monitoring. This is also especially relevant
for security, saving resources, e.g., budget and computational. We
further present an architecture for defining and executing these
adaptations and discuss our research roadmap and next steps.

Index Terms—Runtime Monitoring, Cost-Benefit Analysis, Self-
Adaptation, Adaptive Monitoring

I. INTRODUCTION

Cyber-Physical Systems (CPS) are becoming ubiquitous,
with examples ranging from autonomous systems [1] such
as Unmanned Aerial Vehicles (UAVs) [2], [3], to Cyber-
Physical Production Systems, to name but a few. As these
systems typically operate in safety-critical environments, ex-
hibiting tight integration between hardware and software, and
interacting with humans, it is crucial that these systems adhere
to their specified requirements and behave as intended. For
example, Robot Operating System (ROS) based systems require
additional protection outside ROS since as of version 1 of ROS,
security mechanisms are only gradually being integrated, with
ROS2 and SROS. However, legacy systems or implementations
under tight resource constraints may still run in “plain” ROS,
hence lacking native, built-in security. While such systems are
typically configured towards a correct functionality, keeping
the correct behavior under changing environmental conditions,
possibly induced by hostile entities, requires additional effort.
Therefore, providing means to monitor, analyze, and dynami-
cally adapt systems is key for ensuring correct, efficient, and

above all, secure and safe operation as part of self-adaptive sys-
tems [4] that adapt system behavior and structure accordingly.
To enable self-adaptation, it is crucial to ensure that relevant
properties are monitored, so that adaptations can be adequately
planned and executed. Insofar, as it concerns the system’s basic
functionality, sensors and actors in robotics are built to exactly
adapt to the environment according to the robot’s functional
specification. Our focus in the following thus revolves around
how to adapt to unexpected or unintended changes in the
environment. While most self-adaptive systems do provide so-
phisticated mechanisms for analyzing and adapting its behavior
and structure, the actual monitoring aspect itself, in many cases,
remains largely static and inflexible. To collect the right amount
of data at the right point in time, adaptive monitoring [5] is
required to adapt the monitoring infrastructure alongside the
System under Monitoring (SuM). This not only ensures that
relevant security and safety constraints can be checked, but
also that only required data is collected, reducing bandwidth,
energy consumption, and computation power (the latter being
of particular importance, if cryptographic protections shall be
implemented, which, for some public-key primitives, can be
expensive in several regards).

Existing adaptive monitoring approaches focus on system
states to reduce the number of monitors, or adjust periodic or
event-driven monitoring tasks [6], [7]. A widely adopted tech-
nology in the security domain are security incident and event
monitoring (SIEM) systems [8], primarily found in enterprise
environments, generally consisting of many sensors that contin-
uously measure system performance characteristics and compile
them into up-to-date pictures about the system’s “health state”.
Furthermore, predictive analytics is often leveraged to receive
early warnings about the system potentially running into race
conditions, and logging of monitored events is crucial for
forensic investigations and accountability (particularly relevant
in instances where the system has no or weak immanent
security, such as ROS in its early versions [9]). Combining this
with model- and logic-based methods enables the application
of control theory here to secure a system at runtime [10].

Most of these methods do not provide adequate support for
determining “optimal” monitors and lack the ability to specify
the costs associated with monitoring or to impose relevant
safety restrictions on specific monitors. For SIEM systems, the
cost factor is not necessarily a primary concern, conditional

— Preprint —
Accepted for publication at Cyber Resilience Workshop 2022
Final published version available at: https://doi.org/10.1109/CNS56114.2022.10092919

on the protected value being more than the investment for
security. However, in large-scale infrastructures, the optimal
placement of sensors for monitoring becomes a nontrivial issue,
with sophisticated solution methods [11], [12].

When the monitors are in place, their activation and data
delivery is again a matter of resource consumption and hence
optimization to merit their use for security. To enable effective
and efficient monitoring, the monitoring behavior needs to be
automatically adapted. This in turn requires us to first (/)
identify and document relevant properties and data values that
need to be monitored. Secondly, means to (2) capture the costs
associated with these properties (e.g., energy consumption, or
bandwidth [13], [14]). These properties then are to be linked
to the respective analysis tasks performing runtime checks,
with each check providing a certain benefit when performed.
Besides support for runtime checks, properties may also need
to be monitored to keep users informed about the state of
the system [15], [16]. From a human stakeholder perspective,
properties might be more or less relevant to monitor, and some
data needs to be updated more frequently (e.g., the location
of a UAV during a rescue mission) in the user interface (UI).
Hence, adaptive monitoring needs to (3) factor in user input
regarding monitoring preferences. To automatically optimize
adaptive monitoring, we propose “Cost-Benefit-Aware Adaptive
Monitoring”. Cost-benefit analysis is frequently used in self-
adaptive systems, e.g., to plan adaptions [17], [18], [19]. More
importantly, cost-benefit analysis is crucial to argue for a
security mechanism, since security mainly preserves existing
values rather than generating additional revenues. Therefore,
security based on monitoring and incident detection, automat-
ically selecting when, what, and how frequently important
system properties should be monitored, can provide valuable
economic arguments for such a security system inside a CPS.
This is especially important when “light” hardware is used,
possibly preventing the use of cryptographic protection that
requires strong computational resources to leverage public key
cryptography [20], [21] to protect the system.

In this paper, we present a simple cost-benefit analysis
method to dynamically adapt monitoring behavior. We first
present a model conceptualizing costs and benefits of adaptive
monitoring (Sect. II) and describe an initial approach for
defining and executing these adaptations (Sect. III). We then
report results from a preliminary evaluation (Sect. IV) and lay
out our research roadmap (Sect. V).

II. CONCEPTUALIZING MONITORING COSTS AND BENEFIT

Monitoring is an integral part of the Monitor-Analyze-Plan-
Execute over a shared Knowledge (MAPE-K) loop architecture
for self-adaptive systems [22], [23], and general intrusion de-
tection system (IDS). Our work here covers intrusion detection
as one possible purpose of monitoring, but is more general, in
the sense that it may raise alarms or serve predictive analytical
purposes (such as SIEM systems based on IDS would offer), but
additionally, facilitate self-adaptation depending on the current
conditions or state of the system. That is, our monitoring

methods are a form of self-enforcing security, differentiating
it from IDS and SIEM in other contexts.

One key requirement of monitoring is that appropriate infor-
mation should be collected at the right point in time, and that
data is collected frequently enough to ensure runtime analysis,
without negatively affecting system performance or blocking
resources (the latter extends to waste of human time in case of
false alarms). Both the required information and the frequency
are dependent on the context of the system.

For example, when a UAV performs a mission, certain
requirements need to hold before the UAV can take off.
A sufficient number of satellites must be available, and the
UAV’s flight controller must be properly initialized and fully
calibrated. The respective runtime checks need to be performed,
and the mission commander needs to be informed when a
UAV tries to take off before these requirements are met.
Subsequently, once the UAV has commenced its mission and
flies in close proximity to other UAVs, other runtime checks
become important, requiring different data to be collected.
In this case, collecting and checking GPS location, altitude,
or sensor data from individual UAVs has more benefits than
the previously already satisfied initialization/calibration data.
Runtime information regarding satellite fixes might still be
beneficial, as a poor signal can still occur, as well as active
attacks by jamming or injections of adversarial signals. How-
ever, a poor signal is less likely to occur in this state, it is
less valuable to monitor satellite fixes on a frequent basis. On
the contrary, jamming signals are more important to detect and
counteract, as are general unexpected injected signals that are
not corresponding to normal operation. In this context, adaptive
monitoring has been defined as “the ability a monitoring system
has to modify its structure and/or behavior, in order to respond
to internal and external stimuli” [5]. There is a need for “more
complete, flexible, reusable, and generic software engineering
solutions for supporting adaptive monitoring” [5].

To create flexible and adaptive monitors, we introduce Cost-
Benefit-Aware Adaptive Monitoring (CBAAM), which explicitly
captures what runtime data needs to be collected and what the
respective costs and benefits of monitoring are. Fig. 1 provides
an overview of the three major elements: The restrictions that
need to be ensured (e.g., due to security and safety regulations),
the runtime monitor, and the costs and benefits of monitoring.

e Runtime Monitors: Monitoring employs the notion of Mon-
itorable Properties (e.g., a UAV’s location or mission status) to
be collected and subsequently analyzed. Requirements related
to these properties may fail at runtime [24], [25], e.g., due to
unforeseen interactions between system components, due to un-
expected behavior of agents interacting with the system, or due
to environmental conditions. This can affect both functional and
non-functional requirements, e.g., quality constraints targeting
performance or reliability [26], [27], [28]. Requirements are
typically formalized in a high-level formal language and then
translated into a pattern of events, i.e., Runtime Checks [24].
For example, runtime checks can be used to ensure that UAVs
keep a minimum separation distance at all times.

— Preprint —
Accepted for publication at Cyber Resilience Workshop 2022
Final published version available at: https://doi.org/10.1109/CNS56114.2022.10092919

A particular challenge are integrity checks of sensor data,
which are up to cryptographic protection only during transit
of data, but the verification of the correctness (not necessarily
the same as or implied by authenticity), typically requires
redundant measurements and sensory. Since redundancy in
turn induces additional costs during design- and run-time,
optimizing the monitoring w.r.t. a balance between security
and redundancy adds positively to the economic aspect when
securing a CPS. Generally, we assume m & IN properties
P1,...,Pm Whose monitoring shall be optimized in terms of
frequency (checks per time unit) which are collected in a set P.
For example, redundant sensor queries to assure correctness of
information, but also for the preservation of security and safety
properties, such as bounds on pressure (e.g., when robots are
to pick up and place parts), or safety distances to be adhered
to. Corresponding to these properties, we let n € IN runtime
checks exist on one or more of the properties, all modeled as
predicates v; : A; — {0,1} fori=1,2,...,n; where A; C P
is the set of properties relevant for the check.

o Costs & Benefits: Manually defining monitoring frequencies
on property-level, and for each potential state a system can
transition, can quickly become both time-consuming and error-
prone. In the case of the UAV example, potentially dozens
of different runtime properties from the flight controller (GPS
data, altitude, vehicle status), as well as system-specific prop-
erties, such as mission status, queued waypoints, or distance
to other UAVs and obstacles are collected. Therefore, speci-
fying individual monitoring frequencies can easily result in a
combinatorial explosion of combinations of properties to be
monitored in certain system states. This is exacerbated as cer-
tain runtime checks require several properties, e.g., checking for
mission progress that relies on global mission properties, and
individual UAV data which introduces additional dependencies
between properties and associated runtime checks.

To tackle adaptive monitoring on a more abstract level, speci-
fying respective costs and benefits helps to reduce the effort and
overhead of defining adaptations for individual properties. Cost-
benefit analysis has been successfully used to define adaptation
strategies and perform adaptation in self-adaptive systems [17],
[29], [18]. This work extends these concepts to the security of
CPS. As part of our adaptive monitoring approach, we seek to
adapt the monitoring framework itself, optimizing the monitors
at runtime. Therefore, we link monitorable properties to their
associated costs, and runtime checks to their respective benefits
when a check is performed. Costs in CPS are typically related
to e.g., energy consumption and bandwidth usage [13], [30],
[17], whereas benefits represent the value and importance of a
runtime check and the requirement it stems from. For security,
the scope is respectively extended, which we do by introducing
predicates that express the correct or incorrect functionality of a
system, according to its specifications. This can, among other
things, mean that safety distances are undercut, or sensitive
information is accessed without permission.

e Safety Envelope & User/System Restrictions: The third
part is concerned with restrictions constraining how frequently

‘ Safety Envelope & H ime M
User/Sy

H Costs & Benefits ‘

Runtime

s constfained by

Restriction m—f—— Check has Benefit
(Analysis)
™
n‘ requires
Saf U B
Resiniction Preference Monitorable has Cost
S Property 0s
ystem
Limitation

Fig. 1: Cost-Benefit-Aware Adaptive Model
runtime checks can, should, and must be executed. Such
restrictions can stem from safety requirements constraining the
lower bounds of checks (e.g., a safety requirement requiring
GPS data to check potential violations of no-fly zones at least
once every second). Also, the upper bound can be constrained
by system limitations (e.g., that barometric altitude is updated at
most every 250 milliseconds from the internal flight controller).
These limitations have a direct impact on the cost-benefit
optimization and provide ranges for monitorable properties
and, in turn, the respective runtime checks that rely on these
properties. Additionally, users might be involved in operating
and monitoring the system, e.g., using a Ul to “monitor” UAVs
executing a mission. To facilitate human supervision, users may
want to specify/update how often properties are collected or
how often runtime checks are performed in certain states of a
mission (within the mentioned limitations) [31], [32].

Therefore, an additional set of n € IN constraints defining
the least or maximum frequency of checking a property needs
to be defined. These are specified as constraint pairs r;,7; such
that the frequency z; € [0, 1] of checking property P; lies in
therange 0 <r, <z; <7, <1lforv=1,...,n.

Bounding the frequency in the unit interval is done w.l.o.g.,
since x; is taken relative to a unit of time: that is, frequency
0 corresponds to no checks at all, while 1 means continuous
monitoring. The values O or 1 for the bounds render the
respective upper or lower bound trivial, if only one of the two
(or no constraint) is imposed.

III. CBAAM APPROACH OVERVIEW

Based on the aforementioned challenges we have created an
initial architecture, specifically augmenting the M (monitoring)
part of the MAPE-K loop [33] using our CBAAM model. Fig. 2
provides an overview of the four main elements.

e Monitoring Configuration: As described in Sect. II, three
sources of information, pertaining to runtime checks, restric-
tions, and cost/benefits are required to successfully establish
and deploy adaptive monitors. At design time, before the system
is put into operation, an initial set of these properties can be
captured, which is updated and later extended as the system
evolves. This information is part of the Knowledge Base and
serves as the input for the respective adaptive monitoring
process at runtime. Additionally, a user interface can be used,
e.g., a dedicated monitoring dashboard for inspecting and
modifying the configuration at runtime, adding new properties,
and triggering monitor optimization.

e Cost Manager: Once an initial configuration is specified, it
is handed over to the Cost Manager. Before adaptive monitors

— Preprint —
Accepted for publication at Cyber Resilience Workshop 2022
Final published version available at: https://doi.org/10.1109/CNS56114.2022.10092919

can be generated, the monitoring configuration needs to be pro-
cessed and checked for consistency to ensure that no conflicting
information is provided, e.g., that only unique properties are
specified, or that all relevant information regarding the runtime
checks is present (such as required properties and restrictions).
The configuration is then transformed into a cost-benefit matrix
serving as the input for the optimizer. This information is to be
considered as highly sensitive for itself, and is here assumed to
be under special protection and integrity checking (yet another
monitoring aspect, i.e., “self-monitoring”).
e Cost-Benefit Optimizer: For the optimization of the moni-
toring frequencies, we rely on a game-theoretic approach [34].
We assume a hypothetical zero-sum game between two
players: player 1 is the defender, seeking to optimize the
frequencies z1,...,z, of n properties to perform the runtime
checks v1,...,%,. Player 2 is either “nature” (an irrational
adversary) or a rational entity (an attacker) with — here unknown
— incentives. In either case, player 2 modifies properties whose
changes we can detect. This gives it the corresponding strategies
Ay, ..., A, (we adopt a one-to-one correspondence here, since
we can only protect against what we can anticipate). The
modeling then results in a square matrix A € {0,1}"*", with
row strategies being runtime checks 1;, and column strategies
being changes of the properties in the sets A;. The game’s
saddle point value val(A) is then a worst-case lower-bound
on the payoff (provable from the properties of Nash equilibria
in zero-sum games [34]), as the optimal “expected success”
(= probability) to detect an unwanted change, under all possible
event patterns covered by the properties being checked.
Computing val(A) is a matter of solving a linear program
(1). In this problem, we have A = (a;;) € R"",v =

val(A) € R and x = (21,...,2y):
maxy v
s.t. v < Z?:lajkxj7 k=1,....n
n
Y = 1,
0 < r, £ 3 < 7, j=1...,n
ey

where the last two sets of constraints are the conditions
imposed on the minimum required and maximum possible

check frequency. The linear program has a feasible solution
if >°1 , r; < 1. This solution is itself a sensitive part of the
system configuration and hence also needs to be put under
monitoring. This part is solvable by, for example, hardware
protection (e.g., smartcards) and standard cryptographic tech-
niques, such as key-dependent checksums or digital signatures,
as long as there is no change to the linear program itself. If so,
then more sophisticated mechanisms for updating may need to
be introduced. For example, sanitizable signatures that allow
only a designated party to change parts of a digital document,
here the linear program specification, without invalidating cryp-
tographic signatures attached to it. We leave the details here
aside, as the cryptographic protection of the linear program and
its solution is not the core concern of this work (we refer to
previous work in this space [35] for cryptographic possibilities).

e Monitoring Executor: Once the optimizer provides the

Monito> Ana- Plan-
ring+ lysis ning
Cost
Manager
9 Cost-Benefit Monitoring
Optimizer Configuration
(4] Monitoring Knowledge Execution
| Executor Base
I
\ Sensors | Actuators |

\ System under Monitoring (SuM) |

Fig. 2: Main components of the CBAAM MAPE-K Extensions

property frequencies, this information needs to be distributed to
the monitors. It is used to set the frequencies at which data is
collected and distributed, e.g., to a rule engine performing the
runtime checks. This optimization can be performed when the
system is initially configured, but also when costs or benefits
change at runtime or when user preferences are updated.
With the integration of CBAAM and its adaptation mecha-
nism, we can automatically determine and update monitoring
frequencies and automatically update the respective monitors.

IV. PROTOTYPE AND EVALUATION

As an initial end-to-end proof of concept, we created a
complete software toolchain that allows defining the CBAAM
Monitoring Configuration in an editor and automatically gen-
erates monitoring code for a Robot Operating System (ROS)-
based [36] robot system, a Cost-Benefit Optimizer that deter-
mines optimal monitoring frequencies, and a rule engine that
performs runtime checks.

To provide a simple way for specifying properties, runtime
checks, restrictions, as well as costs and benefits, we designed
a Domain Specific Language (DSL) using the Eclipse Xtext
framework [37]. The editor (cf. Fig. 3) allows creating the
respective Monitoring Configuration, specifying relevant prop-
erties, cost, and benefits as well as restrictions (specified in ms
in the DSL) which are then transformed into a JSON repre-
sentation. The Cost Manager and Cost-Benefit Optimizer are
implemented in Python, and we use the pulp linear program-
ming module for the optimization. The resulting frequencies
provided by the optimizer are then used to generate moni-
tors for a ROS-based application, controlling and monitoring
TurtleBot3 robots [38]. ROS topic subscriptions and caching of
the monitoring data is automatically generated and configured,
and monitoring data is then distributed using Message Queuing
Telemetry Transport (MQTT) and the ROS bridge package.
Finally, for performing runtime checks, we use the Drools Rule
Engine [39] that receives data via MQTT broker and executes
checks (however, any other constraint engine, such as Complex
Event Process could be employed).

To assess the feasibility of our approach, we have created a
number of different monitoring configurations in the DSL and
used them to perform the optimization and generate monitors
for the TurtleBot. In total, we created 5 distinct configurations,
each containing 10 properties, using 10 different ROS topics
from the TurtleBot, and a corresponding runtime check for each

— Preprint —

Accepted for publication at Cyber Resilience Workshop 2022
Final published version available at: https://doi.org/10.1109/CNS56114.2022.10092919

Properties
id localtion data
name ‘'/odom’
cost bandwidth 50
system_restriction max_frequency 100

id slam map data
name '/map"'
cost bandwidth 300
system_restriction max_frequency 200

Checks
name check location requires slam map data, localtion data
benefit 50
safety min 2000
user range [upper: 2000 lower: 3000]

Fig. 3: XText DSL for specifying the Monitoring Configuration.

property (we randomly assigned 1-2 properties to a check). Ad-
ditionally, we specified restrictions (based on topic frequencies
and user preferences) and assigned costs and benefits to each
topic (guided by the size of the messages from each topic).
We executed our framework in a Gazebo simulation environ-
ment, simulating the robot and using Simultaneous Localization
and Mapping (SLAM) navigation, to verify that runtime data
was indeed collected properly. Each run (for each configuration)
was executed 3 times, lasting 10 minutes with an additional
60 seconds warm-up time. For each run, we collected and
validated the generated frequencies and number of messages
(i.e., properties) that were monitored and set to the runtime
checks for evaluation and we report average values over the
three runs. Furthermore, we performed an initial baseline
run, not restricting any of the property frequencies, resulting
in an average of 220,000 properties being monitored within
the 10-minute run. As some ROS topics provide data at a
frequency of > 10Hz, this is not surprising, and causes a
large number of messages (and in turn resources being used).
With our adaptive monitoring approach, we recorded between
~ 25,000 and 126,000 messages per run (depending on the
configuration), significantly reducing the number of messages,
and the resources used for monitoring when configured with
different costs/benefits. Additionally, if a property is not part
of any runtime check (i.e., its benefit is 0), it is automatically
excluded from the monitoring configuration during optimization
and does not need to be deactivated manually. We validated the
results (messages and generated frequencies) from all runs to
ensure that the optimization process worked indeed as desired.

The results show that CBAAM enables an effortless spec-
ification of costs and benefits using our DSL, that linear
optimization can be performed with no significant delay, and
that monitoring code can be automatically generated.

V. RESEARCH ROADMAP AND CONCLUSION

Our proof of concept implementation has confirmed that
specifying properties, runtime checks, and their associated costs
& benefits can be used to automatically optimize the frequency
of data collection and subsequent runtime checks. While the
prototype covers an end-to-end implementation, our ongoing
work focuses on three areas to extend our CBAAM framework:
e Dynamic Cost-Benefit Estimation: Currently, costs and
benefits are statically collected in our Monitoring Configu-
ration based on estimates (e.g., used bandwidth or severity

of a runtime check failure). Approaches such as time series
prediction [40] have been used to forecast quality of service
(QoS) attributes over time, the entirety of these techniques are
known as predictive analytics and predictive maintenance. This
information can be used to (1) dynamically adjust the benefits
of certain runtime checks, e.g., which are less likely to fail, and
re-optimize at runtime based on the collected data. Furthermore,
collected runtime information can also be used to (2) increase
accuracy of defined costs (e.g., by analyzing bandwidth or
CPU consumption, and adjusting costs at runtime). The game-
theoretic model herein offers the additional appeal of allowing
for online learning, since if the system will always “best-adapt”
its monitoring frequencies to the observed system status (i.e.,
the actions of the adversarial player 2 in terms of the game
model), it is known that the process will converge to the true
optimum (fictitious play [41]). This offers a lightweight method
of solving the linear program even with very limited resources,
at the cost of generally slow convergence to the optimum.
Thus, starting from an optimum that is pre-computed at design
time, and adapting this online during run-time can unify the
advantage of only light computational requirements for the
devices and adaptivity of the cost-benefit tradeoff for security.
e Monitoring Configuration Consistency: To ensure scal-
ability and provide support for a large number of properties,
runtime checks, and restrictions, automated validation of the
monitoring configuration is required. This ensures that no con-
flicting properties exist, or that no invalid ranges or restrictions
are defined. By using the Xtext framework, we can specify
additional constraints on the monitoring configuration using
the object constraint language (OCL) [42], [43]. This will
allow instant validation while creating the configuration and
immediate feedback to the user when an invalid configuration
is specified in the DSL. Furthermore, providing context assist,
e.g., by automatically collecting available properties from a
ROS instance alongside frequency restrictions, or extracting
properties from runtime checks further automates the task of
creating and maintaining the Monitoring Configuration.
o User Feedback & Runtime Updates: Finally, we work on
active user engagement at runtime. While the configuration
currently is static, we are planning on instantiating the config-
uration at runtime providing a runtime (monitoring) model of
the SuM that is used to provide feedback to the user about the
system and runtime checks. Users can adjust their preferences
at runtime. For example, runtime information about the location
of a UAV and mission data may be more important in certain
contexts and hence should be updated more frequently. This
information then feeds back into the CBAAM configuration and
triggers an update and re-optimization of the frequencies.
Once fully implemented, we are committed to making our
framework publicly available on GitHub.

ACKNOWLEDGMENTS

This work was partially supported by the Wallenberg Al,
Autonomous Systems and Software Program (WASP) funded
by the Knut and Alice Wallenberg Foundation, and the Linz
Institute of Technology (LIT-2019-7-INC-316).

(1]

(2]

[3]

(4]

(3]
(6]

(71

(8]

[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

— Preprint —
Accepted for publication at Cyber Resilience Workshop 2022
Final published version available at: https://doi.org/10.1109/CNS56114.2022.10092919

REFERENCES

A. Stocco, M. Weiss, M. Calzana, and P. Tonella, “Misbehaviour predic-
tion for autonomous driving systems,” in Proc. of the ACM/IEEE 42nd
Int’l Conf. on Software Engineering. ACM, 2020, pp. 359-371.

J. Cleland-Huang, M. Vierhauser, and S. Bayley, “Dronology: an incuba-
tor for cyber-physical systems research,” in Proc. of the 40th Int’l Conf.
on Software Engineering: New Ideas and Emerging Results Track. 1EEE,
2018, pp. 109-112.

V. V. Klemas, “Coastal and environmental remote sensing from unmanned
aerial vehicles: An overview,” Journal of Coastal Research, vol. 31, no. 5,
pp. 1260-1267, 2015.

P. Sawyer, N. Bencomo, J. Whittle, E. Letier, and A. Finkelstein,
“Requirements-aware systems: A research agenda for re for self-adaptive
systems,” in Proc. of the 18th IEEE Int’l Requirements Engineering Conf.
IEEE, 2010, pp. 95-103.

E. Zavala, X. Franch, and J. Marco, “Adaptive monitoring: A systematic
mapping,” Inf. and Software Technology, vol. 105, pp. 161-189, 2019.
P. Casanova, D. Garlan, B. Schmerl, and R. Abreu, “Diagnosing unob-
served components in self-adaptive systems,” in Proc. of the 9th Int’l
Symposium on Software Engineering for Adaptive and Self-Managing
Systems. ACM, 2-3 June 2014, pp. 75-84.

T. Brand and H. Giese, “Generic adaptive monitoring based on executed
architecture runtime model queries and events,” in Proc. of the 13th Int’l
Conf. on Self-Adaptive and Self-Organizing Systems. 1EEE, 2019, pp.
17-22.

S. Kurowski and S. Frings, “Computational Documentation of IT In-
cidents as Support for Forensic Operations,” in Proc. of the 6th Int’l
Conf. on IT Security Incident Management & IT Forensics (IMF). 1EEE
Computer Society Press, 2011, pp. 37-47.

B. Breiling, B. Dieber, and P. Schartner, “Secure communication for
the robot operating system,” in 2017 Annual IEEE Int’l Systems Conf.
(SysCon). Montreal, QC, Canada: IEEE, 2017, pp. 1-6.

B. Ramasubramanian, A. Clark, L. Bushnell, and R. Poovendran, “Secure
Control under Partial Observability with Temporal Logic Constraints,” in
Proc. of the 2019 American Control Conf. (ACC). Philadelphia, PA,
USA: IEEE, Jul. 2019, pp. 1181-1188.

H. H. Miiller and C. A. Castro, “Genetic algorithm-based phasor mea-
surement unit placement method considering observability and security
criteria,” IET Generation, Transmission & Distribution, vol. 10, no. 1,
pp. 270-280, Jan. 2016.

N. Boumkheld, S. Panda, S. Rass, and E. Panaousis, “Honeypot Type
Selection Games for Smart Grid Networks,” in Decision and Game
Theory for Security, T. Alpcan, Y. Vorobeychik, J. S. Baras, and G. Dan,
Eds. Cham: Springer International Publishing, 2019, pp. 85-96.

R. C. Mendez, D. Dresscher, and J. Broenink, “Power and energy
communication services for control-software models,” in Proc. of the 3rd
IEEE/ACM Int’l Workshop on Robotics Software Engineering. 1EEE,
2021, pp. 55-62.

S. Parra, S. Schneider, and N. Hochgeschwender, “Specifying qos require-
ments and capabilities for component-based robot software,” in Proc. of
the 3rd IEEE/ACM Int’l Workshop on Robotics Software Engineering.
IEEE, 2021, pp. 29-36.

J. E. Fischer, C. Greenhalgh, W. Jiang, S. D. Ramchurn, F. Wu, and
T. Rodden, “In-the-loop or on-the-loop? interactional arrangements to
support team coordination with a planning agent,” Concurrency and
Computation: Practice and Experience, vol. 33, no. 8, p. e4082, 2021.
Y. Lim, N. Pongsakornsathien, A. Gardi, R. Sabatini, T. Kistan, N. Ezer,
and D. J. Bursch, “Adaptive human-robot interactions for multiple un-
manned aerial vehicles,” Robotics, vol. 10, no. 1, 2021.

M. J. Van Der Donckt, D. Weyns, M. U. Iftikhar, and R. K. Singh, “Cost-
benefit analysis at runtime for self-adaptive systems applied to an internet
of things application,” in Proc. of the 13th Int’l Conf. on Evaluation of
Novel Approaches to Software Engineering. SCITEPRESS, 2018, pp.
478-490.

1. Gerostathopoulos, C. Raibulet, and E. Alberts, “Assessing self-
adaptation strategies using cost-benefit analysis,” in Proc. of 44th Int’l
Conf. on Software Engineering: Companion Proceedings. ACM, 2022.
J. C. Moreno, A. Lopes, D. Garlan, and B. Schmerl, “Impact models for
architecture-based self-adaptive systems,” in Proc. of the Int’l Conf. on
Formal Aspects of Component Software. Springer, 2014, pp. 89-107.

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

(31]

(32]

(371
[38]

[39]

[40]

[41]

[42]

[43]

B. Dieber, S. Kacianka, S. Rass, and P. Schartner, “Application-level
security for ROS-based applications,” in Proc. of the 2016 IEEE/RSJ

Int’l Conf. on Intelligent Robots and Systems, Oct. 2016, pp. 4477-4482.
B. Dieber, B. Breiling, S. Taurer, S. Kacianka, S. Rass, and P. Schartner,

“Security for the Robot Operating System,” Robotics and Autonomous
Systems, vol. 98, pp. 192-203, 2017.

P. Arcaini, E. Riccobene, and P. Scandurra, “Modeling and analyzing
mape-k feedback loops for self-adaptation,” in Proc. of 10th Int’l Sympo-
sium on Software Engineering for Adaptive and Self-Managing Systems.
IEEE, May 2015, pp. 13-23.

J. Kephart and D. Chess, “The vision of autonomic computing,” Com-
puter, vol. 36, no. 1, pp. 41-50, 2003.

K. Mahbub and G. Spanoudakis, “A framework for requirents monitoring
of service based systems,” in Proc. of the 2nd Int’l Conf. on Service
Oriented Computing. ACM, 2004, pp. 84-93.

S. Fickas and M. S. Feather, “Requirements monitoring in dynamic
environments,” in Proc. of 1995 IEEE Int’l Symposium on Requirements
Engineering. 1EEE, 1995, pp. 140-147.

L. Baresi, S. Guinea, R. Kazhamiakin, and M. Pistore, “An integrated
approach for the run-time monitoring of BPEL orchestrations,” in Proc.
of the Conf. on a Service-Based Internet. Springer, 2008, pp. 1-12.

A. Van Hoorn, J. Waller, and W. Hasselbring, “Kieker: A framework for
application performance monitoring and dynamic software analysis,” in
Proc. of the 3rd ACM/SPEC Int’l Conf. on Performance Engineering.
ACM, 2012, pp. 247-248.

H. Eichelberger and K. Schmid, “Flexible resource monitoring of java
programs,” Journal of Systems and Software, vol. 93, pp. 163-186, 2014.
J. Cémara, G. Moreno, and D. Garlan, “Reasoning about human partic-
ipation in self-adaptive systems,” in Proc. of the 10th IEEE/ACM Int’l
Symposium on Software Engineering for Adaptive and Self-Managing
Systems. 1EEE, 2015, pp. 146-156.

L. Baresi, D. Y. X. Hu, G. Quattrocchi, and L. Terracciano, “Neptune:
Network-and gpu-aware management of serverless functions at the edge,”
in Proc. of the 17th Symposium on Software Engineering for Adaptive and
Self-Managing Systems. ACM, 2022.

R. Wohlrab and D. Garlan, “A negotiation support system for defining
utility functions for multi-stakeholder self-adaptive systems,” Require-
ments Engineering, pp. 1-20, 2022.

R. Trestian, O. Ormond, and G.-M. Muntean, “Enhanced power-friendly
access network selection strategy for multimedia delivery over heteroge-
neous wireless networks,” IEEE Transactions on Broadcasting, vol. 60,
no. 1, pp. 85-101, 2014.

J. O. Kephart and D. M. Chess, “The vision of autonomic computing,”
Computer, vol. 36, no. 1, pp. 41-50, 2003.

S. Rass, S. Schauer, S. Konig, and Q. Zhu, Cyber-Security in Critical
Infrastructures: A Game-Theoretic Approach. SpringerNature, 2020.

S. Rass and D. Slamanig, Cryptography for Security and Privacy in Cloud
Computing. Artech House, 2013.

M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler,
and A. Y. Ng, “ROS: an open-source robot operating system,” in Proc.
of the ICRA Workshop on Open Source Software, vol. 3. Kobe, Japan,
2009, p. 5.

Eclipse , “Eclipse Xtext - Language Engineering Framework,” https://
www.eclipse.org/Xtext, 2022, [Last accessed: 25-05-2022].

Robotis, “TurtleBot E-Manual,” https://emanual.robotis.com/docs/en/
platform/turtlebot3, 2022, [Last accessed: 25-05-2022].

M. Proctor, “Drools: a rule engine for complex event processing,” in Proc.
of the Int’l Symposium on Applications of Graph Transformations with
Industrial Relevance. Springer, 2011, pp. 2-2.

A. Amin, L. Grunske, and A. Colman, “An automated approach to
forecasting qos attributes based on linear and non-linear time series
modeling,” in Proc. of the 27th IEEE/ACM Int’l Conf. on Automated
Software Engineering. 1EEE, 2012, pp. 130-139.

J. Robinson, “An Iterative Method of Solving a Game,” The Annals of
Mathematics, vol. 54, no. 2, p. 296, Sep. 1951.

T. Arendt, G. Taentzer, and A. Weber, “Quality assurance of tex-
tual models within eclipse using ocl and model transformations,” in
OCL@MoDELS, 2013, pp. 1-12.

J. Holtmann, J. Meyer, and M. von Detten, “Automatic validation and
correction of formalized, textual requirements,” in Proc. of the IEEE 4th
Int’l Conf. on Software Testing, Verification and Validation Workshops.
IEEE, 2011, pp. 486-495.

