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Abstract 

Current instant messengers store the users’ phone book contacts typically unen-
crypted or hashed on a central server. In case of a server’s corruption, all con-
tacts are either directly available in plaintext or can be unmasked using a simple 
dictionary attack. To solve this problem, we present procd [pʁoːst], a python 
implementation for privacy preserving contact discovery. procd is a trustless 
solution that requires neither plaintext numbers nor hashes of single phone num-
bers to retrieve contacts. Instead, we transfer hashed combinations of multiple 
phone numbers, which increases the effort for dictionary attacks to an unfeasible 
level using today’s hardware. 
 

Keywords: private contact discovery; private set intersection; secure multi-
party computation; private information retrieval 
 

 

 

1 Introduction 

State-of-the-art social networks and messaging services store a social graph 
of its users to suggest communication options. Having a service provider 
storing and sharing a social graph is not privacy-preserving and should be 
avoided whenever possible. 
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procd [pʁoːst] – Private RObust Contact Discovery is our approach to 
private contact discovery with increased robustness against brute force at-
tacks and without the need to store a social graph. We instead use a minimal 
social graph each user already has on its phone, the address book. Thus, the 
contact data remains distributed and owned by the user 

Our goal is to find a way to increase the complexity of a brute force attack 
to a point where it is computationally infeasible to find an input that hashes 
to the processed values. For a dictionary attack on contacts, an attacker sys-
tematically tries each possible phone number as an input to match and un-
mask a hashed value to reveal numbers and connections. 

 
 
 

2 Related work 

The Signal1 messenger includes one of the most promising implementations. 
Signal clients hash their phone number locally before uploading (Marlin-
spike, 2017) it to the Signal servers. However, even though this is better than 
uploading and storing everything in plaintext, a typical phone number only 
consists of about ten digits. Hence, these hashes are vulnerable to dictionary 
attacks (Bošnjak et al., 2018). Signal is aware of this issue and therefore has 
to rely on a hardware solution called Software Guard Extension (SGX) from 
Intel. This, however, moves the trust issue to another party – the hardware 
manufacturer. 
 
 
 

3 Method 

For our approach, we aim to meet three criteria: 
1. no exchange of plaintext contact information 

2. robustness against brute-force attacks 

3. no dependency on single proprietary hardware solutions. 
We hence, propose an unbalanced private set intersection with increased 
input complexity.  
                                                 
1  https://signal.org/blog/private-contact-discovery/ 
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3.1 Pairwise hashing 

Instead of hashing a single phone number, we form a hash of a pair of num-
bers. Each hashed pair consists of a user’s phone number and one of her con-
tacts. 

In pairwise hashing, the server only ever sees the published hashes and 
does not gather any registered client’s information. Even though the input 
complexity increases drastically, most benefits vanish if an attacker already 
has information like the (1) relation between the targets or (2) the individual’s 
phone number. Therefore, it is necessary to salt the hash with a privately 
disclosed secret known only to the two parties trying to communicate. 

Once a client knows about already registered contacts, a Diffie-Hellman 
key exchange (Li, 2010) is used to enable authentication and initiate private 
communication. The public keys can be extracted from our public database. 
However, we cannot just post each party’s public key linked to their phone 
number. Hence, we apply a way to get a hold of each other’s public key 
without exposing the corresponding phone number, neither in plaintext nor 
hashed. As mentioned earlier, we suppress false positives by hashing our 
combinations in two different orders, starting with Bob or starting with Alice. 
This way it is possible to store one’s public key alongside the hash known by 
both parties. 

 

3.2 Experiment 

A REST API serves as an interface to GET an intersection of already regis-
tered contacts and POST a user registration to our exemplary service. Figure 1 
shows all used system entities and their interfaces. 

The REST API processes the user requests and inserts or retrieves infor-
mation from the public PostgreSQL database, which holds all hashed phone 
number combinations together with their public keys. The client constructs 
two dictionaries of number combinations before interacting with the API. 
These two dictionaries differ in the order of phone numbers, but both can 
contain a common secret (salt), unique to each contact. The first dictionary 
(Dict1) is used to publish all contacts to the contact discovery service. The 
second dictionary (Dict2) is not published but is used to verify any retrieved 
hash from the service and filter false positives. Additionally to the dictionary, 
a user’s public key is appended to the hash combinations before publishing 
so that the desired public key can be retrieved and used for an encrypted 
communication initiation through the messaging service. 
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Fig. 1  System overview 

 
 
 

4 Evaluation 

In the following paragraphs, we analyze and discuss our architecture with 
regard to each of the three criteria we aimed for. 
 

4.1 Robustness against dictionary attacks 

The workload to compute hashes is horizontally scalable. Thus, the critical 
metric to evaluate the feasibility of computing a specific dictionary is the 
price to pay for the necessary computing resources. 

On a modern computer (six cores, 2.8 GHz), it takes 0.00063 milliseconds 
(6.3e−7 seconds) to compute a SHA1 hash. This translates to 1.5e+6 hashes 
per second. Assuming the desired output hash is computed after half of the 
possible combinations (input complexity of 8e+20 without salt), it would take 
approximately 8 million years of computing to get the desired hash. A com-
parable VM rental on Azure is about 0.30 $ per hour. Hence an attacker 
would need 21 billion USD for a successful dictionary attack.  

Table 1: Dictionary attack cost estimation 

Input complexity  Estimated time Estimated cost  
of computation 

German number hash (1e+6) 1 second < 0.01 USD 

Number hash (4e+11) 1.5 days 10 USD 

Pairwise German number hash (1e+12) 7.3 days 52 USD 

procd German number hash (5e+18) 10,000 years  262 million USD 

Pairwise WhatsApp User hash (8e+20) 8 million years 21 billion USD 

procd WhatsApp User hash (4e+27) 40 trillion years 105 quadrillion USD 
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Table 1 shows the estimated time required to compute the desired hashes 
for a contact list of 200 entries on modern hardware (single machine) with 
their estimated costs alongside the different hashing complexities. 

Using our methodology, the upfront cost of resources necessary to com-
pute a specific dictionary in question is incredibly high. Further, increasing 
the hash’s complexity through a salt is reasonable, as unmasking a single 
hash would otherwise lead to the exploitation of the corresponding diction-
ary. Hence, not only a registered phone number but its entire address book 
would be exposed. 

 

4.2 Comparison 

Compared with the contact discovery methods of other state-of-the-art mo-
bile messaging applications, none of the popular applications meets all our 
criteria. 

Table 2: Privacy protection overview (Kales et al., 2019) 

 Whats-
App 

Tele-
gram 

Signal Threema paired procd 

Processes phone numbers in 
plaintext   – – – – 

Processes hashes of contacts – –     
Uses salted hashes to  
prevent dictionary attacks 

– – – – –  

Relies on trusted hardware – –  – – – 
Cost to unmask a single 
phone number (self-
discovery) 

$ 0 $ 0 $ 10 $ 10 $10 $ 276 

Cost to unmask German 
numbers (106) $ 0 $ 0 $ 0.01 $ 0.01 $52 $ 262M 

 

5 Conclusion 

We introduced a new unique method (pairwise phone number hashing) for 
private contact discovery and increased our robustness against dictionary 
attacks effectively using a common shared secret. Additionally, we imple-
mented a mechanism to retrieve a public key to initiate communication. With 
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our procd approach, we successfully improved unbalanced private set inter-
sections for the specific use case of contact discovery. 

Our experiment shows that a trustless private contact discovery design is 
possible, and no exchange of plaintext data is needed. 
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