
procd: A Privacy-preserving Robust Implementation to Discover … 363

procd: A Privacy-preserving Robust
Implementation to Discover Contacts

in Social Networks

Fabian Deifuß

University of Wuppertal, Germany

fabian.deifuss@uni-wuppertal.de

Cornelius Ihle

University of Wuppertal, Germany

ihle@gipplab.org

Moritz Schubotz

FIZ Karlsruhe, Germany

moritz.schubotz@fiz-karlsruhe.de

Bela Gipp

University of Wuppertal, Germany

gipp@uni-wuppertal.de

Abstract

Current instant messengers store the users’ phone book contacts typically unen-
crypted or hashed on a central server. In case of a server’s corruption, all con-
tacts are either directly available in plaintext or can be unmasked using a simple
dictionary attack. To solve this problem, we present procd [pʁoːst], a python
implementation for privacy preserving contact discovery. procd is a trustless
solution that requires neither plaintext numbers nor hashes of single phone num-
bers to retrieve contacts. Instead, we transfer hashed combinations of multiple
phone numbers, which increases the effort for dictionary attacks to an unfeasible
level using today’s hardware.

Keywords: private contact discovery; private set intersection; secure multi-
party computation; private information retrieval

1 Introduction

State-of-the-art social networks and messaging services store a social graph
of its users to suggest communication options. Having a service provider
storing and sharing a social graph is not privacy-preserving and should be
avoided whenever possible.

364 Session 6: Emerging Technologies

procd [pʁoːst] – Private RObust Contact Discovery is our approach to
private contact discovery with increased robustness against brute force at-
tacks and without the need to store a social graph. We instead use a minimal
social graph each user already has on its phone, the address book. Thus, the
contact data remains distributed and owned by the user

Our goal is to find a way to increase the complexity of a brute force attack
to a point where it is computationally infeasible to find an input that hashes
to the processed values. For a dictionary attack on contacts, an attacker sys-
tematically tries each possible phone number as an input to match and un-
mask a hashed value to reveal numbers and connections.

2 Related work

The Signal1 messenger includes one of the most promising implementations.
Signal clients hash their phone number locally before uploading (Marlin-
spike, 2017) it to the Signal servers. However, even though this is better than
uploading and storing everything in plaintext, a typical phone number only
consists of about ten digits. Hence, these hashes are vulnerable to dictionary
attacks (Bošnjak et al., 2018). Signal is aware of this issue and therefore has
to rely on a hardware solution called Software Guard Extension (SGX) from
Intel. This, however, moves the trust issue to another party – the hardware
manufacturer.

3 Method

For our approach, we aim to meet three criteria:
1. no exchange of plaintext contact information

2. robustness against brute-force attacks

3. no dependency on single proprietary hardware solutions.
We hence, propose an unbalanced private set intersection with increased
input complexity.

1 https://signal.org/blog/private-contact-discovery/

procd: A Privacy-preserving Robust Implementation to Discover … 365

3.1 Pairwise hashing

Instead of hashing a single phone number, we form a hash of a pair of num-
bers. Each hashed pair consists of a user’s phone number and one of her con-
tacts.

In pairwise hashing, the server only ever sees the published hashes and
does not gather any registered client’s information. Even though the input
complexity increases drastically, most benefits vanish if an attacker already
has information like the (1) relation between the targets or (2) the individual’s
phone number. Therefore, it is necessary to salt the hash with a privately
disclosed secret known only to the two parties trying to communicate.

Once a client knows about already registered contacts, a Diffie-Hellman
key exchange (Li, 2010) is used to enable authentication and initiate private
communication. The public keys can be extracted from our public database.
However, we cannot just post each party’s public key linked to their phone
number. Hence, we apply a way to get a hold of each other’s public key
without exposing the corresponding phone number, neither in plaintext nor
hashed. As mentioned earlier, we suppress false positives by hashing our
combinations in two different orders, starting with Bob or starting with Alice.
This way it is possible to store one’s public key alongside the hash known by
both parties.

3.2 Experiment

A REST API serves as an interface to GET an intersection of already regis-
tered contacts and POST a user registration to our exemplary service. Figure 1
shows all used system entities and their interfaces.

The REST API processes the user requests and inserts or retrieves infor-
mation from the public PostgreSQL database, which holds all hashed phone
number combinations together with their public keys. The client constructs
two dictionaries of number combinations before interacting with the API.
These two dictionaries differ in the order of phone numbers, but both can
contain a common secret (salt), unique to each contact. The first dictionary
(Dict1) is used to publish all contacts to the contact discovery service. The
second dictionary (Dict2) is not published but is used to verify any retrieved
hash from the service and filter false positives. Additionally to the dictionary,
a user’s public key is appended to the hash combinations before publishing
so that the desired public key can be retrieved and used for an encrypted
communication initiation through the messaging service.

366 Session 6: Emerging Technologies

Fig. 1 System overview

4 Evaluation

In the following paragraphs, we analyze and discuss our architecture with
regard to each of the three criteria we aimed for.

4.1 Robustness against dictionary attacks

The workload to compute hashes is horizontally scalable. Thus, the critical
metric to evaluate the feasibility of computing a specific dictionary is the
price to pay for the necessary computing resources.

On a modern computer (six cores, 2.8 GHz), it takes 0.00063 milliseconds
(6.3e−7 seconds) to compute a SHA1 hash. This translates to 1.5e+6 hashes
per second. Assuming the desired output hash is computed after half of the
possible combinations (input complexity of 8e+20 without salt), it would take
approximately 8 million years of computing to get the desired hash. A com-
parable VM rental on Azure is about 0.30 $ per hour. Hence an attacker
would need 21 billion USD for a successful dictionary attack.

Table 1: Dictionary attack cost estimation

Input complexity Estimated time Estimated cost
of computation

German number hash (1e+6) 1 second < 0.01 USD

Number hash (4e+11) 1.5 days 10 USD

Pairwise German number hash (1e+12) 7.3 days 52 USD

procd German number hash (5e+18) 10,000 years 262 million USD

Pairwise WhatsApp User hash (8e+20) 8 million years 21 billion USD

procd WhatsApp User hash (4e+27) 40 trillion years 105 quadrillion USD

procd: A Privacy-preserving Robust Implementation to Discover … 367

Table 1 shows the estimated time required to compute the desired hashes
for a contact list of 200 entries on modern hardware (single machine) with
their estimated costs alongside the different hashing complexities.

Using our methodology, the upfront cost of resources necessary to com-
pute a specific dictionary in question is incredibly high. Further, increasing
the hash’s complexity through a salt is reasonable, as unmasking a single
hash would otherwise lead to the exploitation of the corresponding diction-
ary. Hence, not only a registered phone number but its entire address book
would be exposed.

4.2 Comparison

Compared with the contact discovery methods of other state-of-the-art mo-
bile messaging applications, none of the popular applications meets all our
criteria.

Table 2: Privacy protection overview (Kales et al., 2019)

 Whats-
App

Tele-
gram

Signal Threema paired procd

Processes phone numbers in
plaintext   – – – –

Processes hashes of contacts – –    
Uses salted hashes to
prevent dictionary attacks

– – – – – 

Relies on trusted hardware – –  – – –
Cost to unmask a single
phone number (self-
discovery)

$ 0 $ 0 $ 10 $ 10 $10 $ 276

Cost to unmask German
numbers (106) $ 0 $ 0 $ 0.01 $ 0.01 $52 $ 262M

5 Conclusion

We introduced a new unique method (pairwise phone number hashing) for
private contact discovery and increased our robustness against dictionary
attacks effectively using a common shared secret. Additionally, we imple-
mented a mechanism to retrieve a public key to initiate communication. With

368 Session 6: Emerging Technologies

our procd approach, we successfully improved unbalanced private set inter-
sections for the specific use case of contact discovery.

Our experiment shows that a trustless private contact discovery design is
possible, and no exchange of plaintext data is needed.

References

Bošnjak, L., Sres, J., & Brumen, B. (2018). Brute-force and dictionary attack on
hashed real-world passwords. https://doi.org/10.23919/MIPRO.2018.8400211

Cimpanu, C. (2020). New Platypus attack can steal data from Intel CPUs. ZDNet. https://
www.zdnet.com/article/new-platypus-attack-can-steal-data-from-intel-cpus/

Evans, D., Kolesnikov, V., Rosulek, M. (2018). Pragmatic Introduction to Secure
Multi-Party Computation. Norwell, MA: Now Publishers.

Ihle, C., Schubotz, M., Meuschke, N., & Gipp, B. (2020). A First Step towards Con-
tent Protecting Plagiarism Detection. In Proceedings of the ACM/IEEE Joint
Conference on Digital Libraries in 2020 (pp. 341–344). New York, NY: ACM.
https://doi.org/10/ghg7rw

Kales, D., Rechberger, C., Schneider, T., Senker, M., & Weinert, C. (2019). Mobile
Private Contact Discovery at Scale. In 28. USENIX Security Symposium (USE-
NIX Security'19) (pp. 1447–1464). Berkeley, CA: USENIX Association.

Lee, K., Kaiser, B., Mayer, J., & Narayanan, A. (2020). An empirical study of wire-
less carrier authentication for SIM swaps. In Sixteenth Symposium on Usable
Privacy and Security (SOUPS 2020) (pp. 61–79). [Berkeley, CA]: USENIX Asso-
ciation. https://www.usenix.org/conference/soups2020/presentation/lee

Li, N. (2010). Research on Diffie-Hellman key exchange protocol. 2010 2nd Inter-

national Conference on Computer Engineering and Technology (Vol. 4, pp.
634–637). Piscataway, NJ: IEEE. https://doi.org/10/bdtfv3

Marlinspike, M. (2017). Technology preview: Private contact discovery for Signal.
Signal Messenger. https://signal.org/blog/private-contact-discovery/

Yanai, A. (2020). Private Set Intersection. https://decentralizedthoughts.github.io/
2020-03-29-private-set-intersection-a-soft-introduction/

In: T. Schmidt, C. Wolff (Eds.): Information between Data and Knowledge. Informa-

tion Science and its Neighbors from Data Science to Digital Humanities. Proceedings
of the 16th International Symposium of Information Science (ISI 2021), Regensburg,
Germany, 8th—10th March 2021. Glückstadt: Verlag Werner Hülsbusch, pp. 363—368.
DOI: doi.org/10.5283/epub.44954.

