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1 Introduction

We are interested in solving linear systems

Ax = b, (1)

where A is a large sparse symmetric matrix and the right-hand side b is a given dense vector. In the

positive definite case, a direct method computes a Cholesky factorization of a permutation of A, that is,

PAPT = LLT , where L is a lower triangular matrix and P is a permutation matrix. In the indefinite

case, a factorization PAPT = LDLT is computed, where L is now unit lower triangular and D is a block

diagonal matrix with blocks of order 1 or 2. The solution process is completed by performing forward

and back substitutions (that is, by first solving a lower triangular system and then an upper triangular

system).

Most modern direct solvers have a number of distinct phases. The analyse phase optionally chooses

a pivot sequence and, using only the sparsity pattern of A, predicts the non-zero pattern of the factors

for the chosen pivot sequence. The factorize phase computes the numerical factorization using the data

structures set up by the analyse phase. The forward and back substitutions are performed by the solve

phase, which may be called repeatedly for different right-hand sides b. In general, to maintain numerical

stability, it is necessary to modify the pivot sequence during the factorize phase, delaying small pivots

until alternatives are available or they are safer to use. These delayed pivots cause additional fill-in of the

factors beyond that predicted by the analyse phase and, in addition to providing a logistical overhead,

lead to extra numerical work in both the factorize and solve phases.

A technique to recover from inaccuracies in the factorization is to use the computed matrix factorization

as a preconditioner for an iterative method, such as iterative refinement or the Flexible Generalized Minimal

Residual method (FGMRES) [3].

In this paper, we concentrate on reducing the number of delayed pivots. We can apply a (diagonal)

scaling matrix S to (1) symmetrically

SASS−1x = Sb.

This is equivalent to solving the following system

Â = SAS

b̂ = Sb

Ây = b̂

x = Sy.

If we are able to choose a good scaling, the matrix Â will be numerically easier to factorize than A.

That is, the number of delayed pivots is reduced enabling, in some cases, a factorization to be computed

where previously memory (or time) limitations made it impossible.

How to find a good scaling S is still an open question, but a number of scaling heuristics have been

proposed and are widely used. In this paper, we experiment with scalings available from the HSL library

[14]. In particular, we use the sparse indefinite direct solver MA57 [10] with the different scalings available

in HSL, and use an iterative method to further improve accuracy. This study extends the work of Pralet

[16]; our contribution is to carry out a systematic experimental study of these scalings applied to a large

number of practical problems, including some highly challenging systems.

2 The Scalings

2.1 No Scaling

Many problems can be solved without the use of scaling and, as our numerical experiments will show,

this often results in smaller residuals (before the application of refinement) than if a scaling is used and

further, without the overhead of scaling, can lead to the fastest solution times.
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2.2 MC30

MC30 is the oldest scaling in HSL and is described as a symmetric adaption of the method described in the

paper of Curtis and Reid [6]. It scales A = {aij} to the matrix Â = {âij} where

âij = aij exp(si + sj),

with the aim of minimizing the sum of the squares of logarithms of the absolute values of the entries:

mins

∑

aij 6=0

(log |âij |)
2

= mins

∑

aij 6=0

(log |aij | + si + sj)
2 .

This is achieved by a specialized conjugate gradient algorithm.

2.3 MC64

MC64 finds a maximum matching of an unsymmetric matrix such that the largest entries are moved on

to the diagonal [11]; this leads to an unsymmetric scaling such that the scaled matrix has all ones on

the diagonal and the off-diagonal entries are of modulus less than or equal to one. The approach can be

symmetrized by the method of [12], which essentially amounts to initially ignoring the symmetry of the

matrix and then averaging the relevant row and column scalings from the unsymmetric permutation.

In recent years, MC64 has been widely used in conjunction with both direct and iterative methods. It

is used in the sparse direct solver SuperLU of Demmel and Li [8], where it is particularly advantageous

to put large entries on the diagonal because SuperLU implements a static pivoting strategy that does not

allow pivots to be delayed but rather adheres to the data structures established by the analyse phase.

Benzi, Haws and Tuma [5] report on the beneficial effects of scalings to place large entries on the diagonal

when computing incomplete factorization preconditioners for use with Krylov subspace methods. The

symmetrized version was developed following the success of MC64 on unsymmetric systems; it is used by

default within the HSL 2007 version of MA57.

2.4 MC77

MC77 uses an iterative procedure [18] to attempt to make all row and column norms of the matrix unity

for a user-specified geometric norm ‖ · ‖p. We shall consider the infinity and one norms in this paper. The

infinity norm is the default within MC77 due to good convergence properties. It produces a matrix whose

rows and columns have maximum entry of exactly one. The one norm produces a matrix whose row and

column sums are exactly one (a doubly stochastic matrix) and is, in some sense, an optimal scaling [4].

We denote MC77 in the infinity norm and in the one norm by MC77∞ and MC771 respectively.

2.5 Hybrid Scalings

We observe that MC64 and MC77∞ are aiming for similar properties of the matrix — both will produce a

matrix with row and column infinity norms close to 1. However, the MC64 scaling will further guarantee,

if it is successful, that each row and column maximum will be in a unique row and column. It may be

possible to use MC77∞ as a hot start, that is, to cheaply identify a partial transversal for MC64, but such an

algorithmic combination is beyond the scope of this paper. We will however try each scaling as a simple

prescaling to all other scalings.
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3 Methodology

3.1 Codes used

In addition to the above scaling packages, we will use the following HSL codes.

MA57 This package implements a multifrontal algorithm and is designed for the solution of large sparse

symmetric indefinite systems. For efficiency, Level 3 BLAS are used. A large number of options

are offered that can be used to tune the performance for a particular problem class or computer

architecture. In our tests, we use the default settings except that (unless stated otherwise) we select

the MeTiS ordering [15], we disable the internal call to the scaling routine MC64, and we treat all

matrices as indefinite (that is, we allow numerical pivoting with a threshold parameter of 0.01).

MA60 This subroutine uses the following iterative refinement scheme to improve the quality of the solution:

(a) compute the residual r = Ax − b;

(b) solve Ad = r for d; and

(c) update x = x − d.

These three steps are repeated until a satisfactory error is obtained or the number of cycles of

iterative refinement is greater than the maximum allowed. We use the default maximum limit of 16.

The termination condition requires the error estimate to be less than machine precision; full details

are provided in the user documentation for MA60.

MI15 This routine uses the Flexible Generalized Minimal Residual method with restarts every m itera-

tions, FGMRES(m), to solve the linear system Ax = b, optionally using preconditioning. If Gaussian

elimination with static pivoting has been used to compute an approximate LU factorization of A,

FGMRES(m) can be used to recover full backward error stability (see Arioli, Duff, Gratton and Par-

let [3]). In this case, the left preconditioner is chosen to be the identity and the right preconditioner

is chosen to be P
(i)
R = PR = (LU)−1. In our experiments, we choose the left preconditioner to be

the identity and we right precondition by a solve with MA57, allowing a maximum of 20 iterations

for convergence with a restart at m = 10 (These parameters were chosen following numerical exper-

imentation). Our termination condition is the default, except we set the control parameter CNTL(2)

(the absolute value of the residual) to 10−16.

3.2 Test environment

Our test problems are all taken from the University of Florida Sparse Matrix Collection [7] and were

chosen by selecting the real symmetric problems of dimension less than 100,000 that can be factorized by

MA57 on our test machine. This gives us 367 problems, of which 158 are positive semi-definite and 21 are

singular; further details are given in Appendix A.

In our experiments, we generated the right hand side b by choosing x to be the vector of all ones and

forming b = Ax.

All the tests were conducted on a 2.8 GHz Intel Pentium 4 CPU with 1GB of RAM, using the Goto

BLAS [13]. The g95 Fortran compiler was used with the option -O2, all denormals were flushed to zero,

and all computations were performed in double precision. All reported times are CPU timings in seconds.

3.3 What makes a good scaling?

In order to evaluate different scalings, we have to determine what we are looking for. Ultimately, when

solving linear systems, users are interested in a combination of three things:

Ability to solve As we have already observed, for some problems, scaling may be required to make the

problem tractable, either in terms of memory, time or accuracy.
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Speed In many applications, it is important that the problem is solved as fast as possible. If a direct

method is used, solving for multiple right hand sides (or repeatedly solving for one or more right-

hand sides) cheaply may also be an essential aspect — with the implication that refinement may be

a significant additional cost.

Accuracy The problem needs to be solved to the required degree of accuracy. This will involve avoiding

poor pivots during the numerical factorization, using an iterative procedure once the factorization

is complete, or a combination of the two. We measure accuracy using the scaled residual

‖Ax − b‖

‖A‖‖x‖ + ‖b‖
. (2)

In this paper, we use the infinity norm ‖x‖∞ = maxi |xi| and its induced matrix norm ‖A‖∞ =

maxi

∑

j |aij |.

3.4 Measures used in this paper

Delayed pivots We use the number of delayed pivots reported by MA57 as a predictor of speed and, to

some extent, numerical stability. Given an initial pivot order, the time and the memory required

to factorize and then solve the linear system will depend on the number of delayed pivots. A large

number of delayed pivots can also, in some cases, be indicative of a numerically difficult factorization

that would be unstable without pivoting.

Scaling time Assuming the required accuracy is attained with and without scaling, a scaling that results

in a faster factorization need not be advantageous if the combined time of scaling, factorizing and

solving exceeds the unscaled solution time. We are also interested in the relative speeds of the

different scaling algorithms.

Factorization time This is the time taken for the numerical factorization phase. For a given pivot order

and threshold parameter u, this will depend on the scaling used.

Total time This is total time taken for the scaling followed by the analyse, factorize and solve phases of

MA57 followed by refinement.

MA57 residual This is the residual (2) evaluated using the original unscaled matrix directly after a

single solve with MA57.

Iterative refinement residual This is the residual after MA60 (iterative refinement).

FGMRES residual This is the residual after MI15 (FGMRES(10)).

3.5 Performance Profiles

Because we have a large test set, many of our results are presented using performance profiles, as described

in [9]. Let S represent the set of scalings that we wish to compare. Suppose that a given scaling i ∈ S

reports a statistic sij ≥ 0 when run on example j from the test set T , and that the smaller this statistic

the better the solver is considered to be. For example, sij might be the time for problem j using scaling

i. For all problems j ∈ T , we want to compare the performance of scaling i with the performance of the

best scaling in the set S.

For j ∈ T , let ŝj = min{sij ; i ∈ S}. Then for α ≥ 1 and each i ∈ S we define

k(sij , ŝj , α) =

{

1 if sij ≤ αŝj

0 otherwise.
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Figure 1: Performance profile for radix and non-radix (default) scalings.
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The performance profile of solver i is then given by the function

pi(α) =

∑

j∈T k(sij , ŝj , α)

|T |
, α ≥ 1.

As already noted, in this study, the statistics used are timings, the number of delayed pivots and residual

sizes. The range of α illustrated is chosen in each case to highlight the dominant trends in the data.

4 Numerical Experiments

4.1 Scaling by the radix

It was common practice in the past [6] to scale by a power of the radix (on most modern machines, a power

of two) in order to eliminate numerical errors due to scaling. This works because it acts as an integer

addition on the exponent rather than a floating point calculation, with potential loss of precision. Further

such a scaling was faster to apply due to this.

The procedure seems to have fallen out of favour with modern processors being able to apply any

scaling cheaply, and as powers of sixteen (the radix on some older machines) were found to be rather too

blunt an instrument when the threshold pivoting parameter used by partial pivoting within a direct solver

was often chosen to be u = 0.1 (these days, u = 0.01 is more commonly used and is the default threshold

in MA57).

In Figure 1, we report on using MC30- and MC64-based radix and non-radix scalings. These results show

that the radix scaling reduces the residual from the MA57 solver in more cases than it does not, although
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Figure 2: Performance profiles of the residuals after iterative refinement and after FGMRES for the original

and the MC64 scaled matrices
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in most cases the improvement is less than one order of magnitude, and any advantage can be almost

eliminated through iterative refinement.

The number of delayed pivots shows an interesting property we have yet to explain. We would expect

the non-radix scaling to produce fewer delayed pivots as it has improved the numerics of the problem; this

is indeed the case with MC64, however with MC30 we see that the converse is true.

For the remainder of the experiments in this paper, we use a non-radix based scaling.

4.2 Use of unscaled matrix for refinement

It is worth noting that the unscaled matrix A should be retained for any iterative method used to refine

the solution computed by the direct solver. Figure 2 demonstrates that using the scaled matrix will, in

general, result in a larger residual (as measured with the original matrix). This is easily explained because

we are then, in effect, solving a perturbed system.
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Figure 3: Performance profile for time to find and apply scaling only
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4.3 Numerical comparison of scalings

We assess each of our four main scalings (MC30, MC64, MC771, MC77∞) by itself and in combination with each

other scaling (for example, MC30 followed by MC64). We first consider what the ‘best’ prescaling for each

scaling is (ie MC30 by itself or after MC64) and then compare the performances of these best (combination)

scalings before making our final recommendations. It is worth noting that, for each scaling, there are some

problems on which it is the best, and if it is important to reduce factorization time and/or the amount

of fill-in, users may want to try a variety of scalings on a representative sample of their problems before

deciding which to use.

In Figure 3, we present a performance profile of the scaling times for the basic scalings. It is clear that

MC77∞ is significantly faster than MC64.

4.3.1 MC30

We considered MC30 by itself and prescaled by MC64, MC77∞ and MC771. The results showed little difference

between these scalings, with MC771 producing marginally fewer delayed pivots and MC77∞ giving slightly

better residuals for a little additional scaling time. However, for a very small minority of problems, MC771

is slow. We shall not use a prescaling as the overhead does not justify the gain.

4.3.2 MC64

Comparing MC64 prescaled by each of the other scalings we again found that prescaling with MC77 giving

a small advantage for a small additional computational cost.

4.3.3 MC77 Infinity Norm

Comparing the various prescalings for MC77∞ shows that we should avoid MC30 as a prescaling, and that

MC64 and MC771 both reduce the number of delayed pivots. However, use of MC77∞ by itself gives the

smallest MA57 residuals, although this advantage is eliminated by the use of an iterative method. The

performance profiles in Figure 4 illustrate these differences.

4.3.4 MC77 One Norm

The use of any prescaling with MC771 generally impairs its performance, although prescaling with MC77∞

gives a minor reduction in the MA57 residual.
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Figure 4: Performance profiles comparing various prescalings for MC77∞
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Figure 5: Number of delayed pivots for best variants
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Figure 8: MA57 residual for best variants
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4.3.5 Overall results

In the remainder of this paper we compare the performance of no scaling, MC30, MC64, MC771, and MC77∞

(with no prescaling):

Results are presented in Figures 5–8. Note that, after refinement (with iterative refinement or FGM-

RES) the residuals are comparable in quality, and, for each problem, none of the scalings needed more

than four iterations.

Pralet [16] reports that MC30 performs poorly on many indefinite problems, and our results support

this finding. In terms of the number of delayed pivots, all the other scalings perform far better than no

scaling, with comparable results for MC771 and MC64. With respect to the scaling times, MC64 is slower

than the other scalings while MC77∞ is the fastest. The total time is lower for MC771 than for the other

scalings but MC64 is slightly more robust (there are a small number of problems on which both the MC77

scalings do not perform well). If we look at the MA57 residuals, MC77∞ performs almost as well as no

scaling, while MC30 generally performs worse (however the difference in the residual quality is eliminated

once an iterative method is used).

To avoid distortions due to small problems (that are difficult to reliably time), in Table 1 we concentrate

on problems that take at least 0.1 seconds to solve (whichever scaling is used). For each problem j and

each scaling i, we record the total time tij and then compute

αij = tij/tj

where tj = min{tij}. A problem is regarded as ‘not solved’ if it runs out of memory or αij > 10. In

Table 1, we report the number of problems for which αij is at most 1, 1.1, 1.2, etc. For a given scaling,
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Table 1: Performance data for the larger problems that require more than 0.1 seconds to solve. For each

α interval the best results are highlighted in bold.

α No scale MC30 MC64 MC77∞ MC771

1.0 181 5 5 30 21

1.1 212 110 64 184 133

1.2 214 153 133 224 204

1.3 220 165 180 225 218

1.4 223 169 208 227 227

1.5 223 177 220 228 228

1.6 223 179 224 228 229

1.7 225 183 226 228 230

1.8 225 185 226 228 230

1.9 225 187 228 228 230

2.0 225 187 228 228 230

Not Solved 6 15 0 1 0

αmax - - 2.83 - 3.16

(a) MeTiS

α No scale MC30 MC64 MC77∞ MC771

1.0 151 17 15 37 27

1.1 180 58 45 129 93

1.2 183 98 81 166 143

1.3 187 115 108 181 169

1.4 187 131 131 189 185

1.5 188 137 147 190 190

1.6 189 141 164 192 193

1.7 191 148 171 192 194

1.8 191 151 185 192 195

1.9 191 153 190 192 195

2.0 191 153 194 194 195

Not Solved 4 15 0 0 0

αmax - - 3.80 8.94 3.26

(b) AMD
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Table 2: Ten Interesting Problems

Name m Application Properties

FIDAP/ex14 3973 Fluid Dynamics Finite Element Indefinite

GHS indef/bloweybl 30003 Materials Problem Indefinite,

Rank Deficient (rank 30002)

GHS indef/copter2 55476 Fluid Dynamics Problem Indefinite

GHS indef/ncvxqp1 12111 Optimization Augmented System Indefinite

GHS indef/ncvxqp9 16554 Optimization Augmented System Indefinite

Oberwolfach/LFAT5000 19994 Model Reduction Positive Definite

Schenk IBMNA/c-30 5321 Non-Linear Optimization Indefinite

Schenk IBMNA/c-52 23948 Non-Linear Optimization Indefinite

Schenk IBMNA/c-54 31793 Non-Linear Optimization Indefinite

Schenk IBMNA/c-62 41731 Non-Linear Optimization Indefinite

αmax denotes maxj αij . Data is shown for both Approximate Minimum Degree (AMD) [1, 2] and MeTiS

orderings. The MeTiS ordering takes longer to compute and so there are more problems included for

MeTiS.

The results show that only MC771 and MC64 solve all the problems in a time that is within an order of

magnitude of the best (although there is only one problem that MC77∞ does not succeed on). If we look

only at α ≤ 2.0, MC771 slightly outperforms MC64. It is not clear whether this conclusion will hold if, in

the future, we look at larger problems. We will see in the next section that slow total solution times for

MC64 are a result of the scaling taking a significant proportion of the total time, whereas the slowest times

for MC771 are due to the production of a poor scaling that leads to a large number of delayed pivots.

5 Interesting Problems

We now examine more closely ten problems (see Table 2). These were chosen to illustrate where some of

the scalings do poorly. We note that all the problems are part of our main test and the Schenk IBMNA

problems are from a larger set of such problems (see Appendix A).

Results for these problems are given in Table 3, and the relative timings for the different phases of

MA57 are shown in Graphs 9 and 10. We display results for both AMD and MeTiS orderings because, for

our relatively small problems, the MeTiS time is a large proportion of the total solution time but this is

not the case for AMD. Note that, because the analyse phase uses only the sparsity pattern, the analyse

timings are independent of the scaling used.

These problems illustrate that, with the exception of MC30, there are problems for which each scaling

is, by some measure, optimal. They also demonstrate each of the scalings can behave poorly. We note

that, following iterative refinement, all residuals are comparable and hence are omitted. The optimization

problems, which are characterized by having a mixture of extremely large and extremely small eigenvalues,

provide the most challenging systems on which none of the scalings do consistently well.

Let us first consider using no scaling. This, in general, results in small MA57 residuals (recall Figure

8) and, without the scaling overhead, the total solution time can be small (copter2, c-30, c-52). However

there is a penalty in the large number of delayed pivots (LFAT5000, ncvxqp1) and, in the extreme case

(bloweybl), this can lead to the problem not being solved because memory is exhausted.

While the results of the previous section tell us that MC771 is generally the best scaling in terms of

delayed pivots, problems ncvxqp1 and c-62 illustrate that its behaviour is erratic and using MC64 can

lead to significantly fewer delayed pivots. On the worst case problem we found (c-62) the impact on the

factorize time of the number of delayed pivots was almost a factor of four. On many of the problems,
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Table 3: Results for Ten Interesting Problems

Delayed Pivots MA57 Residual

Problem none MC30 MC64 MC77∞ MC771 none MC30 MC64 MC77∞ MC771

ex14 4825 839 586 735 692 1.17e-16 1.92e-13 4.78e-14 3.69e-14 2.72e-14

bloweybl - 9652 9652 10435 19559 - 1.37e-12 3.08e-12 7.28e-16 2.75e-13

copter2 120 108 110 118 60 1.27e-12 1.62e-12 1.27e-12 1.38e-12 1.39e-12

ncvxqp1 1.7e5 59697 13184 40234 38788 3.02e-19 8.13e-18 1.26e-13 2.13e-17 3.55e-17

ncvxqp9 6217 6147 2808 6234 3275 1.20e-16 1.20e-16 4.32e-19 6.01e-17 1.20e-16

LFAT5000 46309 13 13 13 13 1.16e-16 1.54e-16 2.19e-16 1.59e-16 1.75e-16

c-30 24 0 1 6 0 6.02e-17 6.96e-16 1.99e-16 3.51e-17 7.13e-16

c-52 950 17116 825 880 738 6.43e-17 1.29e-16 8.04e-18 2.01e-18 1.29e-16

c-54 7135 19012 1881 5395 2681 8.16e-17 1.53e-15 4.92e-14 1.63e-16 8.16e-17

c-62 5.5e5 5.5e5 1333 5.0e5 1.1e5 1.73e-16 1.73e-16 1.86e-14 4.09e-16 6.24e-15

Scaling Time Factorize Time

Problem none MC30 MC64 MC77∞ MC771 none MC30 MC64 MC77∞ MC771

ex14 0 0.025 0.088 0.016 0.023 0.273 0.033 0.023 0.025 0.023

bloweybl - 0.040 0.099 0.033 0.038 - 0.069 0.069 0.070 0.142

copter2 0 0.252 0.876 0.213 0.188 4.38 4.60 4.46 4.35 4.37

ncvxqp1 0 0.019 0.636 0.019 0.021 102 14.5 2.34 8.75 8.09

ncvxqp9 0 0.017 0.532 0.020 0.019 0.161 0.160 0.552 0.158 0.063

LFAT5000 0 0.026 0.045 0.021 0.029 22.5 0.020 0.020 0.020 0.020

c-30 0 0.015 0.042 0.014 0.016 0.015 0.014 0.015 0.015 0.014

c-52 0 0.057 0.135 0.056 0.054 0.091 1.23 0.090 0.089 0.088

c-54 0 0.096 1.29 0.093 0.092 0.322 1.63 0.172 0.235 0.187

c-62 0 0.104 0.550 0.140 0.133 751 752 11.9 435 42.4
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MC64 results in slightly larger MA57 residuals and problems ncvxqp9, c-30 and c-54 illustrate that MC64 can

be expensive, with the total solution time for these relatively small problems dominated by the scaling

time. For larger problems, we anticipate that the time to scale will be a small fraction of the total time

regardless of the scaling used.

MC77∞ is competitive when we compare the total solution times, and it leads to small MA57 residuals.

Furthermore, it appears to be the most robust for singular problems (although in our tests we have not

applied the MC64 modification suggested in [12] that is intended to cope better with singularity).

6 Conclusions

We conclude that, while the performance of MC64 and MC771 is equally good for most problems, MC64

is more consistent, with MC771 behaving poorly on a small minority of problems. This must, however,

be set aside the amount of time required to compute the scaling — MC64 was by far the most expensive

to compute and, for the size of problems tested, sometimes led to large total solution times. MC64 is

also observed to occasionally produce MA57 residuals that are two or three orders of magnitude larger

than MC771, but we found these could be reduced by using MC77∞ as a prescaling. Either MC64 (possibly

prescaled by MC77∞) or MC771 would make a good default approach for a direct solver but we would also

recommend that, if the user has a series of problems to solve, it may be worthwhile performing initial

experiments before deciding which scaling to use. We note that for larger problems the scaling time may

not be a significant proportion of the total solution time, so MC64 may prove better on this domain. MC30

is probably best avoided for indefinite problems.

A small number of steps of iterative refinement will, in most cases, remove any significant differences

in the size of the residuals. For very large problems, it will be necessary to hold the matrix factors out

of core. MA57 does not offer a facility for this but there is a new out-of-core multifrontal solver in HSL

called HSL MA77 [17]. For an out-of-core solver, the solve phase is expensive (since the cost of reading in

the factor data once for the forward substitution and once for the back substitution adds a significant

overhead). In this case, it is advantageous not to require the use of refinement (or, at least, to minimize

the number of iterative steps). To this end, MC77∞ may be the best choice (although it may suffer a very

large number of delayed pivots for some problems).

Finally, we remark that, for our test matrices, it was often not necessary to do any scaling at all.

However, without scaling the worst case behaviour was more extreme than for any of the scalings we tried

and, of course, we do not know if the test data was prescaled before being included in the University of

Florida Sparse Matrix Collection.

7 Code availability

All the codes discussed in this report are included in the 2007 release of the mathematical software library

HSL. All use of HSL requires a licence; details of how to obtain a licence and the packages are available

at http://www.cse.scitech.ac.uk/nag/hsl/.
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A Test Set

We list below the set of problems we tested out scalings on. The number of negative pivots was found

through the use of MA57 and the estimated condition number from MA60, in both cases using MC64 as a

scaling. Singular matrices are structurally singular as detected by MC64 and hence no condition number

was calculated.

Name m nnz(A) Neg Pivots Est Cond Singular

ACUSIM/Pres Poisson 14822 365313 0 2.0678E+05

Alemdar/Alemdar 6245 24413 3583 1.5934E+05

Andrews/Andrews 60000 410077 0 1.0000E+00

Bai/bfwb398 398 1654 398 1.3583E+01

Bai/bfwb62 62 202 62 1.0694E+01

Bai/bfwb782 782 3382 782 1.3590E+01

Bai/mhd3200b 3200 10758 0 1.5504E+05

Bai/mhd4800b 4800 16160 0 2.3291E+05

Bai/mhdb416 416 1364 0 1.9557E+04

Bai/odepb400 400 399 0 - Yes

Bates/Chem97ZtZ 2541 4951 0 1.9341E+01

Bindel/ted B 10605 77592 0 4.2811E+01

Bindel/ted B unscaled 10605 77592 0 4.2811E+01

Boeing/bcsstk34 588 11003 0 1.0029E+03

Boeing/bcsstk35 30237 740200 3 3.7671E+12

Boeing/bcsstk36 23052 583096 0 4.6990E+09

Boeing/bcsstk37 25503 583240 3 2.6967E+13

Boeing/bcsstk38 8032 181746 0 2.1529E+08

Boeing/bcsstk39 46772 1068033 1 2.3058E+07

Boeing/bcsstm34 588 12429 237 2.1995E+05

Boeing/bcsstm35 30237 18211 20 - Yes

Boeing/bcsstm36 23052 166389 0 - Yes

Boeing/bcsstm37 25503 14765 40 - Yes

Boeing/bcsstm38 8032 7842 47 - Yes

Boeing/bcsstm39 46772 46772 0 2.0000E+00

Boeing/crystk01 4875 160383 3 1.0171E+16

Boeing/crystm01 4875 55107 0 6.0047E+01

Boeing/crystm02 13965 168435 0 5.8600E+01

Boeing/ct20stif 52329 1375396 0 1.6264E+09

Boeing/msc00726 726 17622 0 2.2845E+03

Boeing/msc01050 1050 15103 0 6.6758E+13

Boeing/msc01440 1440 23855 0 2.6843E+05

Boeing/msc04515 4515 51111 0 3.8341E+06

Boeing/msc10848 10848 620313 0 1.6516E+07

Boeing/msc23052 23052 588933 0 4.6849E+09

Boeing/nasa1824 1824 20516 20 1.4485E+05

Cannizzo/sts4098 4098 38227 0 8.8386E+04

Cote/vibrobox 12328 177578 3 5.5486E+19

Cunningham/m3plates 11107 6639 0 - Yes

Cunningham/qa8fk 66127 863353 1 1.3002E+16
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Name m nnz(A) Neg Pivots Est Cond Singular

Cunningham/qa8fm 66127 863353 0 5.4000E+01

Cylshell/s1rmq4m1 5489 143300 0 6.1290E+05

Cylshell/s1rmt3m1 5489 112505 0 9.7393E+05

Cylshell/s2rmq4m1 5489 143300 0 3.8003E+07

Cylshell/s2rmt3m1 5489 112505 0 6.7942E+07

Cylshell/s3rmq4m1 5489 143300 0 3.8531E+09

Cylshell/s3rmt3m1 5489 112505 0 6.7893E+09

Cylshell/s3rmt3m3 5357 106526 0 6.7057E+09

FIDAP/ex10hs 2548 29928 0 1.3659E+10

FIDAP/ex10 2410 28625 0 1.6079E+10

FIDAP/ex12 3973 42092 1133 2.6678E+17

FIDAP/ex13 2568 39098 0 1.8463E+14

FIDAP/ex14 3251 35013 900 2.4485E+10

FIDAP/ex15 6867 52769 0 3.8524E+11

FIDAP/ex2 441 13640 28 2.4914E+09

FIDAP/ex32 1159 6251 295 9.3953E+17

FIDAP/ex33 1733 11961 0 1.6386E+11

FIDAP/ex3 1821 27253 0 1.4210E+10

FIDAP/ex4 1601 16950 450 2.6840E+03

FIDAP/ex5 27 153 0 6.7076E+07

FIDAP/ex9 3363 51417 0 1.7961E+11

Gaertner/nopoly 10774 40808 1 1.0000E+00

GHS indef/a0nsdsil 80016 200021 29318 1.5974E+06

GHS indef/a5esindl 60008 145004 21030 1.0516E+06

GHS indef/aug3dcqp 35543 77829 8000 4.3362E+08

GHS indef/blockqp1 60012 340022 40001 1.2799E+02

GHS indef/bloweya 30004 80005 10002 1.2391E+09

GHS indef/bloweybl 30003 70001 10001 - Yes

GHS indef/bloweybq 10001 39996 0 7.2846E+15

GHS indef/brainpc2 27607 96601 13800 7.1489E+04

GHS indef/bratu3d 27792 88627 12167 1.0818E+03

GHS indef/c-55 32780 218115 13659 3.4324E+04

GHS indef/c-58 37595 295076 15134 2.0567E+04

GHS indef/c-59 41282 260909 17469 5.0170E+03

GHS indef/c-62ghs 41731 300537 16573 1.1151E+04

GHS indef/c-63 44234 239469 18729 2.8262E+03

GHS indef/c-68 64810 315408 28264 2.7563E+05

GHS indef/c-69 67458 345714 29026 2.6966E+04

GHS indef/c-70 68924 363955 29622 1.8414E+04

GHS indef/c-72 84064 395811 36114 7.1888E+03

GHS indef/cont-201 80595 239596 40198 1.8451E+08

GHS indef/copter2 55476 407714 27726 6.8051E+05

GHS indef/dawson5 51537 531157 25794 8.3821E+05

GHS indef/dixmaanl 60000 179999 5340 2.1976E+05

GHS indef/dtoc 24993 34986 9997 - Yes

GHS indef/exdata 1 6001 1137751 3001 2.6611E+06

GHS indef/helm3d01 32226 230335 6771 1.6766E+06

GHS indef/k1 san 67759 303364 20804 - Yes

GHS indef/laser 3002 5000 1001 2.9973E+15

GHS indef/linverse 11999 53988 2838 7.2366E+03

18



Name m nnz(A) Neg Pivots Est Cond Singular

GHS indef/mario001 38434 114643 15304 4.2336E+04

GHS indef/ncvxbqp1 50000 199984 37398 8.2330E+08

GHS indef/ncvxqp1 12111 40537 5000 1.0271E+17

GHS indef/ncvxqp9 16554 31547 7500 6.9614E+08

GHS indef/olesnik0 88263 402623 27233 6.1771E+17

GHS indef/qpband 20000 30000 5000 1.2571E+01

GHS indef/sit100 10262 34094 3120 4.1956E+17

GHS indef/spmsrtls 29995 129971 15979 7.8561E+04

GHS indef/stokes128 49666 295938 16386 3.9189E+16

GHS indef/stokes64s 12546 74242 4098 8.1436E+14

GHS indef/stokes64 12546 74242 4098 2.9892E+19

GHS indef/tuma1 22967 50560 9607 1.0547E+03

GHS indef/tuma2 12992 28440 5477 8.6113E+02

GHS psdef/apache1 80800 311492 0 1.0668E+06

GHS psdef/crankseg 1 52804 5333507 0 1.9459E+05

GHS psdef/crankseg 2 63838 7106348 0 2.1824E+05

GHS psdef/cvxbqp1 50000 199984 0 6.3666E+06

GHS psdef/gridgena 48962 280523 0 3.7154E+05

GHS psdef/jnlbrng1 40000 119600 0 1.7775E+02

GHS psdef/minsurfo 40806 122214 0 8.2000E+01

GHS psdef/obstclae 40000 118804 0 4.2000E+01

GHS psdef/oilpan 73752 1835470 0 3.0539E+08

GHS psdef/s3dkq4m2 90449 2455670 0 6.9891E+10

GHS psdef/s3dkt3m2 90449 1921955 0 1.2010E+11

GHS psdef/torsion1 40000 118804 0 4.2000E+01

GHS psdef/vanbody 47072 1191985 0 2.4857E+13

GHS psdef/wathen100 30401 251001 0 5.1716E+01

GHS psdef/wathen120 36441 301101 0 7.2056E+01

Grund/meg4 5860 26324 54 7.8880E+05

Gset/G10 800 19176 400 4.3357E+04

Gset/G11 800 1600 400 2.3278E+04

Gset/G12 800 1600 400 3.3889E+03

Gset/G13 800 1600 399 3.3819E+04

Gset/G18 800 4694 401 2.6108E+04

Gset/G19 800 4661 401 7.2313E+03

Gset/G20 800 4672 402 1.0880E+06

Gset/G21 800 4667 401 2.5327E+04

Gset/G27 2000 19990 1000 4.6682E+04

Gset/G28 2000 19990 1000 5.3688E+04

Gset/G29 2000 19990 1001 5.7464E+04

Gset/G30 2000 19990 1001 2.8521E+04

Gset/G31 2000 19990 1000 2.0240E+04

Gset/G32 2000 4000 1000 1.6704E+04

Gset/G33 2000 4000 1001 3.1158E+04

Gset/G34 2000 4000 1000 2.5711E+04

Gset/G39 2000 11778 1001 5.4037E+04

Gset/G40 2000 11766 997 1.7115E+04

Gset/G41 2000 11785 999 8.4174E+04

Gset/G42 2000 11779 997 3.5004E+04

Gset/G56 5000 12498 2483 - Yes
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Name m nnz(A) Neg Pivots Est Cond Singular

Gset/G57 5000 10000 2500 4.6896E+04

Gset/G59 5000 29570 2503 4.5648E+04

Gset/G61 7000 17148 3480 - Yes

Gset/G62 7000 14000 3500 3.6970E+04

Gset/G64 7000 41459 3496 1.7626E+05

Gset/G65 8000 16000 4000 2.6700E+05

Gset/G66 9000 18000 4500 1.3318E+05

Gset/G67 10000 20000 5000 1.4857E+06

Gset/G6 800 19176 399 3.3607E+04

Gset/G7 800 19176 399 1.5595E+05

Gset/G8 800 19176 399 1.4547E+05

Gset/G9 800 19176 400 4.5451E+04

HB/1138 bus 1138 2596 0 5.1165E+05

HB/494 bus 494 1080 0 8.9041E+04

HB/662 bus 662 1568 0 4.7383E+04

HB/685 bus 685 1967 0 9.4624E+03

HB/bcsstk01 48 224 0 1.1364E+04

HB/bcsstk02 66 2211 0 4.3841E+03

HB/bcsstk03 112 376 0 3.8495E+05

HB/bcsstk04 132 1890 0 1.8571E+04

HB/bcsstk05 153 1288 0 8.1638E+03

HB/bcsstk06 420 4140 0 1.8221E+05

HB/bcsstk07 420 4140 0 1.8221E+05

HB/bcsstk08 1074 7017 0 1.0831E+05

HB/bcsstk09 1083 9760 0 2.4960E+04

HB/bcsstk10 1086 11578 0 3.3123E+04

HB/bcsstk11 1473 17857 0 2.0555E+07

HB/bcsstk12 1473 17857 0 2.0555E+07

HB/bcsstk13 2003 42943 0 1.8037E+06

HB/bcsstk14 1806 32630 0 2.8497E+04

HB/bcsstk15 3948 60882 0 3.7169E+05

HB/bcsstk16 4884 147631 0 2.5142E+03

HB/bcsstk17 10974 219812 0 4.3774E+06

HB/bcsstk18 11948 80519 0 1.3946E+06

HB/bcsstk19 817 3835 0 3.6154E+09

HB/bcsstk20 485 1810 0 4.4715E+09

HB/bcsstk21 3600 15100 0 6.8144E+04

HB/bcsstk22 138 417 0 1.5573E+04

HB/bcsstk23 3134 24156 0 5.2545E+09

HB/bcsstk24 3562 81736 0 1.1094E+09

HB/bcsstk25 15439 133840 0 5.9001E+07

HB/bcsstk26 1922 16129 0 8.1232E+05

HB/bcsstk27 1224 28675 0 1.3541E+04

HB/bcsstk28 4410 111717 0 7.6861E+07

HB/bcsstm02 66 66 0 2.0000E+00

HB/bcsstm04 132 132 0 - Yes

HB/bcsstm05 153 153 0 2.0000E+00

HB/bcsstm06 420 420 0 2.0000E+00

HB/bcsstm07 420 3836 0 4.7976E+02

HB/bcsstm08 1074 1074 0 2.0000E+00
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Name m nnz(A) Neg Pivots Est Cond Singular

HB/bcsstm09 1083 1083 0 2.0000E+00

HB/bcsstm10 1086 11589 54 1.3585E+05

HB/bcsstm11 1473 1473 0 2.0000E+00

HB/bcsstm12 1473 10566 0 1.5065E+04

HB/bcsstm13 2003 11973 0 - Yes

HB/bcsstm19 817 817 0 2.0000E+00

HB/bcsstm20 485 485 0 2.0000E+00

HB/bcsstm21 3600 3600 0 2.0000E+00

HB/bcsstm22 138 138 0 2.0000E+00

HB/bcsstm23 3134 3134 0 2.0000E+00

HB/bcsstm24 3562 3562 0 2.0000E+00

HB/bcsstm25 15439 15439 0 2.0000E+00

HB/bcsstm26 1922 1922 0 2.0000E+00

HB/bcsstm27 1224 28675 31 4.8041E+09

HB/lund a 147 1298 0 2.7603E+05

HB/lund b 147 1294 0 2.8441E+03

HB/nos1 237 627 0 5.3599E+06

HB/nos2 957 2547 0 1.3253E+09

HB/nos3 960 8402 0 5.9591E+04

HB/nos4 100 347 0 1.8046E+03

HB/nos5 468 2820 0 8.0483E+03

HB/nos6 675 1965 0 3.4852E+06

HB/nos7 729 2673 0 1.2934E+08

HB/plat1919 1919 17159 1 7.9845E+18

HB/plat362 362 3074 0 4.2775E+11

HB/saylr3 1000 2375 1000 7.7267E+03

HB/saylr4 3564 12940 3564 5.8993E+06

HB/sherman1 1000 2375 1000 7.7267E+03

HB/zenios 2873 15032 169 - Yes

HB/bcsstm01 48 48 0 - Yes

HB/gr 30 30 900 4322 0 3.7723E+02

Lourakis/bundle1 10581 390741 0 2.4218E+02

MathWorks/Kuu 7102 173651 0 2.2410E+04

MathWorks/Muu 7102 88618 0 4.2811E+01

Mulvey/finan512 74752 335872 0 1.5714E+01

Nasa/nasa1824 1824 20516 0 1.4588E+05

Nasa/nasa2146 2146 37198 0 1.5156E+03

Nasa/nasa2910 2910 88603 0 2.6965E+05

Nasa/nasa4704 4704 54730 0 8.1746E+06

ND/nd3k 9000 1644345 0 3.3513E+07

ND/nd6k 18000 3457658 0 3.7355E+07

Nemeth/nemeth01 9506 367280 6004 2.8731E+02

Nemeth/nemeth02 9506 202157 9506 2.1843E+00

Nemeth/nemeth03 9506 202157 9506 2.2625E+00

Nemeth/nemeth04 9506 202157 9506 2.4168E+00

Nemeth/nemeth05 9506 202157 9506 2.5939E+00

Nemeth/nemeth06 9506 202157 9506 2.8593E+00

Nemeth/nemeth07 9506 202159 9506 3.2327E+00

Nemeth/nemeth08 9506 202161 9506 3.7485E+00

Nemeth/nemeth09 9506 202506 9506 4.6004E+00
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Nemeth/nemeth10 9506 205477 9506 5.8754E+00

Nemeth/nemeth11 9506 208885 9506 8.0118E+00

Nemeth/nemeth12 9506 228162 9506 1.2416E+01

Nemeth/nemeth13 9506 241989 9506 2.4083E+01

Nemeth/nemeth14 9506 252825 8505 4.1514E+02

Nemeth/nemeth15 9506 274654 6004 2.6359E+02

Nemeth/nemeth16 9506 298259 5504 3.5618E+01

Nemeth/nemeth17 9506 319563 5504 2.4461E+01

Nemeth/nemeth18 9506 352370 5504 2.0767E+01

Nemeth/nemeth19 9506 413904 5504 1.7810E+01

Nemeth/nemeth20 9506 490688 5504 1.5768E+01

Nemeth/nemeth21 9506 591626 5504 1.2439E+01

Nemeth/nemeth22 9506 684169 5504 1.2522E+01

Nemeth/nemeth23 9506 758158 5504 1.2673E+01

Nemeth/nemeth24 9506 758028 5504 1.2697E+01

Nemeth/nemeth25 9506 760632 5504 1.2699E+01

Nemeth/nemeth26 9506 760633 5504 1.2699E+01

Norris/fv1 9604 47434 0 1.3761E+01

Norris/fv2 9801 48413 0 1.3764E+01

Norris/fv3 9801 48413 0 4.4205E+03

Oberwolfach/filter2D 1668 6209 1668 2.6357E+04

Oberwolfach/flowmeter0 9669 38530 9669 1.2928E+04

Oberwolfach/gas sensor 66917 885141 66917 3.4571E+06

Oberwolfach/gyro k 17361 519260 0 2.2871E+08

Oberwolfach/gyro m 17361 178896 0 7.3184E+05

Oberwolfach/gyro 17361 519260 0 2.2871E+08

Oberwolfach/LF10 18 50 0 1.4387E+05

Oberwolfach/LFAT5000 19994 49980 0 1.2189E+16

Oberwolfach/LFAT5 14 30 0 6.3750E+03

Oberwolfach/rail 1357 1357 5171 1357 1.3611E+04

Oberwolfach/rail 20209 20209 79721 20209 2.1805E+05

Oberwolfach/rail 5177 5177 20181 5177 5.4493E+04

Oberwolfach/rail 79841 79841 316881 79841 8.7231E+05

Oberwolfach/spiral 1434 9831 1434 8.5213E+04

Oberwolfach/t2dah a 11445 93781 11445 1.1868E+15

Oberwolfach/t2dah e 11445 93781 0 1.9647E+02

Oberwolfach/t2dah 11445 93781 11445 1.1868E+15

Oberwolfach/t2dal a 4257 20861 4257 3.8046E+14

Oberwolfach/t2dal bci 4257 20861 4257 3.2133E+17

Oberwolfach/t2dal e 4257 4257 0 2.0000E+00

Oberwolfach/t2dal 4257 20861 4257 3.8046E+14

Oberwolfach/t3dh a 79171 2215638 79171 3.3620E+14

Oberwolfach/t3dh e 79171 2215638 4 3.9912E+19

Oberwolfach/t3dh 79171 2215638 79171 3.3620E+14

Oberwolfach/t3dl a 20360 265113 20360 3.7941E+13

Oberwolfach/t3dl e 20360 20360 0 2.0000E+00

Oberwolfach/t3dl 20360 265113 20360 3.7941E+13

Okunbor/aft01 8205 66886 0 2.2281E+05

Pajek/GD97 b 47 132 23 - Yes

Pajek/USAir97 332 2126 161 - Yes
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Pajek/GD99 b 64 127 24 - Yes

Pajek/geom 7343 11898 3278 - Yes

Pajek/Journals 124 6096 0 3.4925E+01

Pajek/Reuters911 13332 148038 6651 - Yes

Pajek/Sandi authors 86 124 41 - Yes

Pajek/Stranke94 10 45 8 8.5660E+01

PARSEC/benzene 8219 125444 2 4.2025E+03

PARSEC/Na5 5832 155731 4 3.3141E+03

PARSEC/Si10H16 17077 446500 41 1.3175E+04

PARSEC/Si2 769 9285 1 7.1481E+02

PARSEC/SiH4 5041 88472 4 2.9581E+03

PARSEC/SiNa 5743 102265 5 2.2848E+03

Pothen/bodyy4 17546 69742 0 9.4636E+02

Pothen/bodyy5 18589 73935 0 5.7504E+03

Pothen/bodyy6 19366 77057 0 3.7715E+04

Pothen/mesh1e1 48 177 0 1.0634E+01

Pothen/mesh1em1 48 177 0 2.3109E+01

Pothen/mesh1em6 48 177 0 1.2390E+01

Pothen/mesh2e1 306 1162 0 2.5451E+02

Pothen/mesh2em5 306 1162 0 2.7325E+02

Pothen/mesh3e1 289 1089 0 1.7991E+01

Pothen/mesh3em5 289 1089 0 9.9978E+00

Rothberg/cfd1 70656 949510 0 7.4141E+05

Schenk IBMNA/c-18 2169 8657 901 4.0978E+03

Schenk IBMNA/c-19 2327 12072 865 3.5318E+03

Schenk IBMNA/c-20 2921 12803 1300 2.9179E+05

Schenk IBMNA/c-21 3509 17833 1490 7.4566E+03

Schenk IBMNA/c-22 3792 16332 1662 1.1931E+04

Schenk IBMNA/c-23 3969 17524 1649 7.2092E+02

Schenk IBMNA/c-24 4119 19909 1792 3.6510E+04

Schenk IBMNA/c-25 3797 26716 1407 1.9780E+03

Schenk IBMNA/c-26 4307 19422 1787 1.8403E+04

Schenk IBMNA/c-27 4563 17969 1942 8.2028E+03

Schenk IBMNA/c-28 4598 17594 1900 1.1770E+04

Schenk IBMNA/c-29 5033 24382 2211 4.7931E+04

Schenk IBMNA/c-30 5321 35507 2498 1.8460E+07

Schenk IBMNA/c-31 5339 41955 2220 3.0800E+04

Schenk IBMNA/c-32 5975 30223 2724 1.8066E+04

Schenk IBMNA/c-33 6317 31220 2791 8.7714E+03

Schenk IBMNA/c-34 6611 35472 2583 2.7082E+03

Schenk IBMNA/c-35 6537 34714 2423 1.2384E+04

Schenk IBMNA/c-36 7479 36710 3355 2.1399E+04

Schenk IBMNA/c-37 8204 41440 3454 9.0401E+03

Schenk IBMNA/c-38 8127 42908 3307 4.5595E+02

Schenk IBMNA/c-39 9271 73041 4034 2.2643E+04

Schenk IBMNA/c-40 9941 45721 4464 9.2783E+03

Schenk IBMNA/c-41 9769 55757 4320 2.5864E+09

Schenk IBMNA/c-42 10471 60378 4541 2.0615E+04

Schenk IBMNA/c-43 11125 67400 5194 1.0467E+05

Schenk IBMNA/c-44 10728 47864 4474 1.7307E+04
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Schenk IBMNA/c-45 13206 93829 6314 1.0803E+06

Schenk IBMNA/c-46 14913 72655 6830 3.7738E+03

Schenk IBMNA/c-47 15343 113372 6641 2.8708E+04

Schenk IBMNA/c-48 18354 92217 8137 2.5624E+04

Schenk IBMNA/c-49 21132 89087 8956 2.2409E+04

Schenk IBMNA/c-50 22401 108013 9799 2.7038E+05

Schenk IBMNA/c-51 23196 113123 9875 3.7426E+03

Schenk IBMNA/c-52 23948 113332 10288 1.4863E+09

Schenk IBMNA/c-53 30235 201224 13943 3.1408E+05

Schenk IBMNA/c-54 31793 211743 14129 2.5497E+09

Schenk IBMNA/c-56 35910 208405 15987 5.0943E+08

Schenk IBMNA/c-57 37833 221515 17836 2.4236E+04

Schenk IBMNA/c-60 43640 171109 19221 7.3556E+03

Schenk IBMNA/c-61 43618 176817 18575 1.0667E+04

Schenk IBMNA/c-62 41731 300537 16573 8.1087E+07

Schenk IBMNA/c-64b 51035 384438 23881 3.2770E+04

Schenk IBMNA/c-64 51035 384438 23881 7.7320E+08

Schenk IBMNA/c-65 48066 204297 20408 8.8270E+03

Schenk IBMNA/c-66b 49989 274498 22293 4.9722E+04

Schenk IBMNA/c-66 49989 274498 22293 2.9569E+04

Schenk IBMNA/c-67b 57975 294955 26718 1.9744E+04

Schenk IBMNA/c-67 57975 294955 26718 1.5961E+09

Schmid/thermal1 82654 328556 0 3.9160E+05

Simon/olafu 16146 515651 0 1.8654E+08

Simon/raefsky4 19779 674195 0 1.8508E+11

UTEP/Dubcova1 16129 134569 0 2.6115E+03

UTEP/Dubcova2 65025 547625 0 1.0397E+04
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