
RAL-TR-2010-004

January 2010

Jennifer Scott and Miroslav Tůma

The importance of structure in algebraic
preconditioners

c© Science and Technology Facilities Council

Enquires about copyright, reproduction and requests for additional
copies of this report should be addressed to:

Library and Information Services
SFTC Rutherford Appleton Laboratory
Harwell Science and Innovation Campus
Didcot
OX11 0QX
UK
Tel: +44 (0)1235 445384
Fax: +44(0)1235 446403
Email: library@rl.ac.uk

The STFC ePublication archive (epubs), recording the scientific output of the
Chilbolton, Daresbury, and Rutherford Appleton Laboratories is available
online at: http://epubs.cclrc.ac.uk/

ISSN 1358-6254

Neither the Council nor the Laboratory accept any responsibility for loss or
damage arising from the use of information contained in any of their reports
or in any communication about their tests or investigation

The importance of structure in algebraic

preconditioners

by

Jennifer Scott1 2 and Miroslav Tůma3 4

Abstract

In this paper, we consider level-based preconditioning, which is one of basic approaches to algebraic

preconditioning of iterative methods. It is well-known that while structure-based preconditioners can be

very useful, excessive memory demands can limit their usefulness. Here we present an improved strategy

that considers the individual entries of the system matrix and restricts small entries to contributing to

fewer levels of fill than the largest entries. Using symmetric positive definite problems arising from a wide

range of practical applications, we show that the use of variable levels of fill can yield incomplete Cholesky

factorization preconditioners that are more efficient than those resulting from the standard level-based

approach. The concept of level-based preconditioning, which is based on the structural properties of the

system matrix, is then transferred to the numerical incomplete decomposition. In particular, the structure

of the incomplete factorization determined in the symbolic factorization phase is explicitly used in the

numerical factorization phase. Further numerical results demonstrate that our level-based approach can

lead to much sparser but efficient incomplete factorization preconditioners.

Keywords: sparse symmetric linear systems, incomplete factorizations, preconditioners, level-based

approach.

1 Computational Science and Engineering Department, Atlas Centre, Rutherford Appleton Laboratory,

Oxfordshire OX11 0QX, England.

Email: jennifer.scott@stfc.ac.uk

Current reports available from http://www.numerical.rl.ac.uk/reports/reports.html.

2 This work was supported by the EPSRC grant EP/E053351/1.

3 Institute of Computer Science, Academy of Sciences of the Czech Republic, Pod Vodárenskou vež́ı 2,

18207 Praha 8, Czech Republic.

Email: tuma@cs.cas.cz

4 This work was supported by the international collaboration grant M100300902 of AS CR.

February 9, 2010

1 Introduction

Incomplete Cholesky factorizations are an important tool in the solution of large sparse symmetric linear

systems of equations Ax = b. Preconditioners based on an incomplete factorization of A (that is, a

factorization in which some of the fill entries and possibly some of the entries of A are ignored) fall into

three main classes:

(i) Threshold-based IC(τ) methods in which the locations of permissible fill entries are determined in

conjunction with the numerical factorization of A; entries of the computed factors that exceed a

prescribed threshold τ are dropped. Success of this approach depends on being able to choose a

suitable τ and this is highly problem dependent.

(ii) Memory-based IC(m) methods in which the amount of memory available for the incomplete

factorization is prescribed and only the largest entries in each column are retained.

(iii) Structure-based IC(`) methods in which an initial symbolic factorization phase determines the

location of permissible fill entries using only the sparsity pattern of A. Each potential fill entry is

assigned a level and an entry is only permitted in the factor if its level is at most `. This kind of

fixed fill strategy allows the memory requirements to be determined before the second phase that

performs an incomplete numerical factorization.

Many refinements, variants and hybrids of the above approaches have been proposed and used to solve

problems from a wide range of application areas. In Section 2, we provide a brief historical overview and

highlight some of the important developments in the field over the past 50 years. We are interested in

structure-based incomplete factorization preconditioners that have both predictable memory requirements

and depend on the entries of A. We propose a general class of methods based on computing an incomplete

LDLT factorization IC(`, τ, m), where L is unit lower triangular and D is diagonal, ` ≥ 0 is the target

number of levels of fill, τ is a drop tolerance and m controls the maximum number of entries allowed

in the factor. In Section 3, we introduce a modification to the standard level-based approach. Rather

than allowing all the non-zero entries of A to contribute to ` levels of fill, we restrict small entries to

contributing to fewer levels and allow the largest entries to contribute to more than ` levels. We explain

how this variable level approach can be implemented using a minor change to an existing algorithm for

computing a symbolic incomplete factorization. Then, in Section 4, we consider transferring the structure

of the symbolic incomplete factorization to the numerical factorization, allowing extra entries outside the

symbolic pattern if sufficient memory is available and the entries are large enough. Numerical results that

illustrate the effectiveness of our proposed level-based strategy for practical applications are presented in

Section 5 and, finally, some concluding remarks are made in Section 6.

2 Background

Sparsity structure was the main ingredient of the first algebraic preconditioners that were developed in

the late 1950s. At that time, the sparsity structure essentially expressed the stencils for discretized partial

differential equations on structured grids. In particular, the EBM-2 method of Buleev [7] interpolated

values of the function at a grid point using a combination of the function values at neighbouring grid

points. The solution process was accelerated by additional parametrization derived from smoothness

assumptions. The resulting system expressed what we call now the preconditioned system of equations,

in which the preconditioner was directly combined with the system matrix. The method was generalized

to stencils for three dimensional problems in [8]. An independent derivation and its interpretation as

an incomplete factorization (that is, a factorization in which some of the fill entries are ignored) for a

matrix from a simple 5-point stencil was given by Varga [37] (see also [3, 29]). Note that [37] is also well-

known for introducing the concept of regular splittings. Further early developments included additional

corrections that led to heavily parametrized procedures and included more complicated stencils. Later,

1

modifications of the interpolation that implicitly expressed incomplete decompositions were proposed to

change in individual steps of the iterative procedure [36]. An overview of the early procedures and the

motivations behind them may be found in [21, 22].

Further developments for incomplete factorizations included their classification by the order (first or

second order) of the polynomial defining the interpolation on the grid points, extensions to larger stencils,

and the development of early matrix formulations and existence criteria for breakdown-free factorizations.

The key relation that has been gradually better understood is that between stencil multiplications,

local interpolation and extrapolation on a grid, and the combinatorial elimination process (that is, the

elimination process based on a graph structure).

The real breakthrough in the practical use of preconditioning using an incomplete factorization came

with two important papers. Firstly, Meijerink and van der Vorst [26] recognised the importance of

preconditioning for the conjugate gradient method. This paper also implied an understanding of the

crucial role of the separate computation of the incomplete factorization as well as recognizing the possibility

of prescribing the sparsity structure of the preconditioner by allowing additional diagonals. Discussing

the sparsity structure in the form of diagonals was very natural since simple matrix stencils typically

restrict nonzeros to a few diagonals [16, 27]. The other key paper that helped to popularize incomplete

factorizations was that of Kershaw [24]. Kershaw introduced the idea of locally replacing pivots by a

small positive number to prevent breakdown of the factorization, and this led the way to incomplete

factorizations in which dropping is based solely on the size of the computed entries [1, 2] (see also the

detailed experimental results in [30]).

The hierarchy of sparsity structures that can be prescribed for incomplete factorizations of general

matrices was introduced by Watts in 1981 [38]. Since that time, the notation IC(`) for an incomplete

Cholesky factorization (or, for general systems, ILU(`)) based on the concept of levels of fill that we

discuss in Section 3, has become commonplace. It was soon realised that although IC(1) can be a

significant improvement over IC(0) (that is, an appropriate iterative method preconditioned using IC(1)

generally requires fewer iterations to achieve the requested accuracy than IC(0)), the fill-in resulting from

increasing ` can be prohibitive in terms of both storage requirements and time to compute and then apply

the preconditioner (see, for example, [12]). Moreover, the amount of fill-in is difficult to predict. It is easy

to explain this increase in density with ` since, while entries of the error matrix A − LLT (where L is

the exact Cholesky factor) are zero inside the prescribed sparsity pattern, outside they can be very large,

and the pattern of IC(`) (even for large `) may not adequately represent the pattern of L. The error

can be particularly large for matrices in which the entries do not decay significantly with distance from

the diagonal. D’Azevedo, Forsyth, Tang [10] started to solve the problem by combining the approach by

levels with dropping by values. Other early global tools to correct dropping by values were introduced by

Munksgaard [28], who tried to get the fill-in curve close to that of the exact decomposition by dynamic

changes in the drop tolerance.

Around the same time, an important strategy based on combining dropping entries by value with

keeping a prescribed number of the largest entries was proposed [15]. A columnwise algorithm based on

a similar concept was presented by Jones and Plassmann [23]. They retain the nl largest entries in the

strictly lower triangular part of the l−th column of L, where nl is the number of entries in the l−th column

of the strictly lower triangular part of A. Another approach that has predictable storage requirements and

depends on the matrix entries is the ILUT factorization of Saad [34]. A drop tolerance τ is used to drop

all entries in the computed factors that are smaller than τl, where τl is the product of τ times the l2-norm

of the l−th row of A. Additionally, only the largest entries in each column of L and row of U are retained.

For general unsymmetric matrices, ILUT has proved very popular but note that it ignores symmetry in

A and, if A is symmetric, the sparsity patterns of L and UT will normally be different.

The algorithm of Lin and Moré [25] for symmetric matrices aims to exploit the best features of the

Jones and Plassmann factorization and the ILUT factorization of Saad. This approach retains the nl + p

largest entries in the lower triangular part of the l−th column of L (p is a chosen memory parameter) and

uses only memory as the criterion for dropping entries (thus having the advantage of not requiring a drop

2

tolerance). The reported results of Lin and Moré for large-scale trust region subproblems indicate that

allowing additional memory can substantially improve performance on difficult problems.

These later approaches do not take into account the structure of the levels. One reason for this is

that, as already observed, the structure may fill in quickly as ` increases and, importantly, until relatively

recently it was not clear how this structure could be computed efficiently, especially for larger `. A

significant advancement came with the work of Hysom and Pothen [20] (see also [19]). They describe

the relationship between level-based factorizations and lengths of fill paths and propose a fast method of

efficiently computing the sparsity pattern of IC(`) (and ILU(`)) factorizations, opening the way to the

further development of structure-based preconditioners.

Among recent results, the usefulness of level-based preconditioners in parallel computing environments

was emphasised in [19]. Their efficiency in the context of a Newton-Krylov method was shown in [6, 31].

Efficiency of block level-based preconditioners is illustrated in [17].

The main goal of this paper is to show that sparsity structure plays an important role in algebraic

preconditioners. While the progress that has been achieved in the field of incomplete factorization

preconditioners is substantial, we strongly believe that constructing algebraic preconditioners by

considering only the size of the entries, possibly complemented by limits on the overall memory or on

the number of additional entries, has important limitations. We are persuaded that to increase robustness

we need to use other available tools. In particular, we need to exploit the sparsity structure of the factors.

As mentioned above, the work of Hysom and Pothen offers relatively cheap tools for computing level-based

factorizations. These are sufficiently general to allow changes to the general strategy of the level-based

approach. We propose one possible generalization. The structure of levels that we obtain represents a

symbolic incomplete factorization.

Furthermore, we believe that it can be necessary to combine the decomposition by levels with a dropping

strategy based on the magnitudes of entries. Our approach starts with the level-based structure obtained

by the symbolic factorization. We then use two additional parameters: a memory multiplier m and a drop

tolerance τ . The memory multiplier determines the maximum memory allowed for the preconditioner in

terms of the incomplete factor size computed by the symbolic factorization. Any additional memory is

predistributed to the individual columns of the final factor. The drop tolerance is then used to decide

whether an entry should be dropped or kept in the factor. The implementation keeps track separately of

the entries inside the structure returned by the symbolic factorization and those outside it. Entries that

are removed either from the symbolic structure or from the additional space available if m > 1 provides

further space for the incomplete factor. The details are explained in Section 4. By using a combination

of these approaches, our aim is to obtain an incomplete factorization that retains some of the global

characteristics of the full factorization. and provides a good preconditioner.

3 Variable levels of fill in an IC(`) preconditioner

In this section, we briefly recall the concept of levels of fill in an incomplete matrix factorization and

summarise the approach of Hysom and Pothen [20] for efficiently performing a symbolic IC(`) factorization.

We then propose a simple generalization that encourages the dropping of small entries from the incomplete

factorization by preassigning small entries in A an initial level greater than 0 and we explain how our

modification can be incorporated into the symbolic factorization. We use the notation L = {lij} to denote

the complete factor of A and L̂ = {l̂ij} to denote an incomplete factor.

3.1 The incomplete fill path theorem and symbolic IC(`) factorization

It is convenient to use some basic concepts and notation from graph theory. The pattern of a sparse

symmetric matrix A = {aij} of order n can be represented by an undirected graph G = (V, E) with

vertices V = {1, . . . , n} and edges E. An edge {i, j} is present in E if and only if aij 6= 0 and i 6= j.

Vertices i and j in V are neighbours (or are adjacent to each other) if edge {i, j} ∈ E. The adjacency set

3

for i is the set of its neighbours, that is,

adj(i) = {j | j ↔ i, i, j ∈ V },

where we use the notation i ↔ j to denote that i and j are neighbours. A path of length k in G is an

ordered set of distinct vertices (v1, v2, . . . , vk, vk+1), with vi ↔ vi+1 (1 ≤ i ≤ k). A path in G connecting

vertices i and j is a fill path if the index of each of the intermediate vertices is less than min(i, j).

An important result that characterizes the fill in the complete factor of A is the fill path theorem of

Rose, Tarjan and Lueker [32, 33]. This states that lij is non zero if and only if there is a fill path connecting

i and j in G.

Two rules appear in the literature for assigning levels to fill entries, referred to as the sum rule [10]

and the max rule [16]. Following the work of Hysom and Pothen [20], we use the more common sum rule,

which states that entries of the factor that correspond to nonzero entries of A are assigned the level 0

while each potential fill entry is assigned a level

level(i, j) = min
1≤l≤min{i,j}

{level(i, l) + level(l, j) + 1}.

That is, a level is assigned that is one more than the sum of the levels of the two causative entries. A fill

entry is permitted in the incomplete factor provided level(i, j) ≤ `.

The incomplete fill path theorem of Hysom and Pothen [20] states that, if the sum rule is used,

level(i, j) = ` if and only if there exists a shortest fill path of length `+1 joining i and j in G. Hysom and

Pothen use this result to develop the scheme outlined in Algorithm 1 for computing the sparsity pattern of

a single column of the incomplete factor L̂. The procedure uses a breadth first search that finds a shortest

Algorithm 1 Symbolic IC(`) factorization: computes the sparsity pattern of column k of L̂. The row

indices of the entries in column k are returned in adj
′

(k) and nzk is the number of such entries. length is

an array of size n.

1 Input: G, ` and k.

2 Initialise: initialise the queue to hold only k;

3 flag k as visited;

4 set length(k) = 0 and nzk = 0.

5 do

6 if (the queue is empty) exit

7 take i from the queue

8 forall (j ∈ adj(i))

9 if (j already flagged as visited) cycle

10 flag j as visited

11 if (j < k .and. length(i) < `) then

12 add j to the queue

13 set length(j) = length(i) + 1

14 else if (j > i) then

15 nzk = nzk + 1

16 add j to adj
′

(k)

17 end if

18 end forall

19 end do

path between vertex k and vertices reachable from k via a traversal of at most ` + 1 edges. A key feature

is that the structure of each column of L̂ can be computed independently (and hence in parallel). Note

that since the number of entries in each column of L̂ is not known initially, Algorithm 1 may first be used

4

with line 16 omitted and then repeated after allocating the adjacency set adj
′

(k) for column k of L̂ to

have size nzk.

3.2 Preassigning levels: Strategy I

It is convenient to define ilev(i, j) to be the number of levels of fill to which each nonzero entry aij of A

may contribute. In a standard IC(`) algorithm, ilev(i, j) is set to ` for each nonzero aij . To try and ensure

that small entries contribute to fewer levels of fill in the incomplete factorization than larger entries, the

approach we propose preassigns ilev(i, j) for each entry of A individually to have an integer value that

depends on |aij |.

We begin by computing the absolute values of the smallest and largest entries of A, which we denote

by msmall and mbig, respectively. We then take the logarithm of each nonzero |aij | and distribute these

between the mgrp = [log(mbig)− log(msmall)]+1 groups that uniformly span the set of logarithm matrix

values {log|aij |}. In practice, we have observed that a number of the groups can be empty so that the

entries of A are distributed between ngrp ≤ mgrp non-empty groups, which we refer to as slots. We index

the slots as 1 to ngrp, with the entries of smallest absolute value in slot 1 and those of largest absolute

value in the slot with index ngrp. How the initial levels are preassigned then depends on whether ` < ngrp

or ` ≥ ngrp.

When ` < ngrp we uniformly decrease the number of slots to ` and set

ilev(i, j) =







[kij/q] if mod(kij , q) = 0

min(l, [kij/q] + 1) otherwise

(3.1)

where q = [ngrp/`] and kij (1 ≤ kij ≤ ngrp) is the index of the slot log |aij | belongs to. Thus the smallest

entries may contribute to a single level of fill and the largest to ` levels. For ` ≥ ngrp, we set

ilev(i, j) = ` − (ngrp − kij), (3.2)

with kij is as before. In this case, the largest entries again contribute to ` levels of fill while smaller entries

contribute to fewer levels.

Since we want to ensure very small entries of A do not contribute to fill entries in the sparsity pattern

of L̂, for all entries that are smaller in absolute value than the square root of machine precision multiplied

by the entry of largest absolute value belonging to the slot with index 1, we set ilev(i, j) = −(n+1). This

has the effect of removing these small entries from A during the symbolic factorization.

We will refer to the strategy we have described for preassigning the levels as Strategy I. Having

preassigned the levels, we can compute the sparsity pattern of each column of L̂ using a simple modification

to Algorithm 1. In addition to inputting ilev(i, j) for each nonzero aij of A, the only modifications we

need to make are to add an extra line after line 9

9a if (ilev(i, j) = −(n + 1)) cycle

and to replace line 11 by the line

11new if (j < k .and. length(i) < ilev(i, j)) then

Line 9a ensures very small entries that have been assigned an initial level of n + 1 are skipped over while

line 11new results in entries with ilev < ` potentially contributing to fewer levels of fill than they would in

the original Hysom and Pothen algorithm. We will refer to this algorithm as the modified HP algorithm.

3.3 Strategy II

Numerical results for Strategy I show that setting initial levels so that small entries contribute to fewer

than ` levels of fill can be advantageous (see Section 5). However, the gains are often small. To try and

5

improve the effectiveness of the preconditioner further, we have experimented with allowing the largest

entries to contribute to more than ` levels of fill. Recall that we distributed the set of logarithm matrix

values {log|aij |} between mgrp = [log(mbig) − log(msmall)] + 1 ≥ ngrp groups. Let mij be the group

that log|aij | belongs to. If mij ≥ ngrp, we set

ilev(i, j) = min(mij , ν ∗ `) (3.3)

for some ν > 1. Thus, the largest entries may contribute up to a maximum of ν ∗ ` levels of fill and rather

than being the maximum number of levels of fill allowed, ` becomes the target number of levels of fill, with

small entries restricted to contributing to fewer than ` levels of fill while the largest entries may contribute

to more levels. We will refer to this approach as Strategy II.

4 The IC(`, τ, m) preconditioner

For general matrices that are not diagonally dominant, the size of an entry of L is not necessarily related to

its level of fill. We therefore want a strategy that offers greater flexibility during the numerical factorization.

Our basic approach will be to allow entries outside the pattern predicted by the symbolic factorization

to be included provided there is sufficient space available in the preconditioner and, optionally, all entries

must be greater in absolute value than a chosen tolerance τ . We will also drop computed entries within

the predicted pattern if they are too small.

The (modified) HP algorithm is first used to compute the number nzl of entries in the sparsity pattern

of the IC(`) incomplete factor L̂. Based on the storage available for the preconditioner P , we then choose

a memory multiplier m. If m > 0, the number of entries in P will be at most m ∗ nzl; choosing m ≤ 0

indicates there is no restriction on the number of entries in P , which will be controlled only by the drop

tolerance τ . In the following subsections, we consider the possible choices for m, with and without a drop

tolerance.

4.1 Special case: m = 1, τ = 0.0

In the special case in which no entries are dropped because of their size (τ = 0) and the number of entries

in P is equal to nzl, the sparsity pattern of P is determined using the (modified) HP algorithm, the entries

of the original matrix A are copied into the data structure for P and then a right-looking algorithm is

used to compute the entries of P . The resulting preconditioner is a classical IC(`) preconditioner if all

entries of A are allowed to contribute to ` levels of fill.

4.2 m ≥ 1

Choosing m > 1 (or m = 1 with τ > 0) allows entries outside the sparsity structure of L̂ to be retained.

We begin by allocating arrays for the values and row indices of the entries of P to be of size [m ∗nzl] and

define eroom = [(m−1)∗nzl] to be the extra space that is not required by L̂. The sparsity pattern of L̂ is

determined using the (modified) HP algorithm and P is initially given this sparsity pattern. The entries

of the original matrix A are copied into the data structure for P , leaving eroom locations free at the start

of the arrays. If nzk is the number of entries in column k of L̂, the space provisionally assigned to column

k of P is spk = nzk + [eroom/n] (that is, the spare locations are shared equally between the columns).

The incomplete factorization is computed one column at a time using a left-looking algorithm. The

entries within each column are always sorted by increasing row index. This enables the strategy proposed

in the Yale sparse package [13, 14] to be followed. This keeps track of the columns that are required

to update the current column using a simple linked list, which is updated after each major step of the

left-looking algorithm. As each column is computed, it is moved forward so that its first entry occupies

the first available location in the arrays holding P . Any entries that are smaller in absolute value than τ

are dropped as they are computed and not included in P . Additional entries outside the sparsity pattern

6

of L̂ that was computed by the symbolic factorization are permitted provided there is sufficient room to

accommodate them and they are greater than τ . If there is insufficient space to include all such additional

entries, they are sorted and the largest are included in P . Conversely, if the number of accepted entries

for column k is less than spk, the spare space is added to the space spk+1 available for the next column.

Note that if τ = 0, memory is the only criteria for dropping fill entries from P .

4.3 0 < m < 1

If 0 < m < 1, the number of entries in each column k of P must, in general, be less than the corresponding

number nzk in the IC(`) incomplete factor L̂, and we therefore need to decide how much space to initially

assign to each column of P . We perform a complete symbolic Cholesky factorization A = LLT and

compute the number of entries in each column of L. We then share out the [m ∗ nzl] entries allowed for

P so that the distribution for the individual columns is approximately proportional to the column counts

for L. We denote by nzpk the number of entries provisionally assigned to column k.

The incomplete factorization again proceeds column by column, using a left-looking algorithm. The

computation of column k starts by computing the sparsity pattern of column k of L̂ using the (modified)

HP algorithm. A temporary array of size nzk is allocated, initialised to zero and the entries of column k

of A then copied into it. If nzk is greater than the space spk available for column k, the entries in the

temporary array are sorted and only the spk entries of largest absolute value are kept.

Candidate entries with absolute value less than the drop tolerance τ are not included in P . If τ > 0,

this may mean that, when column k is processed, the final number of entries that are retained is less than

the space available for that column. In this case, the spare space sk is passed to the next column so that

the space for column k + 1 becomes spk+1 = nzpk+1 + sk.

4.4 m < 0, τ 6= 0

We use m < 0 to indicate that there are no memory restrictions on the size of P and entries are only

dropped because of their size relative to τ . In this case, we perform an incomplete factorization without

distinguishing between entries inside the pattern predicted by the symbolic IC(`) factorization and those

outside it. The storage requirements are not predictable. We initially allocate arrays for the values and

row indices of the entries of P to be of size max(2, |m|) ∗ nzl. If these arrays are subsequently found to

be too small, we reallocate them with larger size (saving the already computed columns using temporary

arrays) and then continue the incomplete factorization. Reallocation can be needed more than once and

failure only occurs if we do not have sufficient memory available to successfully allocate larger arrays. The

final incomplete factorization depends only on τ (and not on ` or m); we denote this by IC(τ).

4.5 Dropping strategies

The dropping strategy we use is absolute dropping so that a potential entry of P is dropped if its absolute

value is less than the chosen tolerance τ . An alternative approach is relative dropping (see, for example,

[35]). In this case, an entry is dropped whenever its absolute value is less than τ multiplied by some

quantity that expresses the average size of the computed entries. An appropriate choice for this might be

a norm of the computed column. Our preference is to use absolute dropping in incomplete factorizations

and this is used in the numerical experiments reported on in Section 5. Both absolute and relative

dropping have potential advantages and disadvantages. A drawback of relative dropping is that it can

hide significant growth in entries of the incomplete factor. This growth, which may result in a very unstable

preconditioner, can then be detected only numerically. However, for absolute dropping the growth can

be detected by monitoring the size of fill-in. We believe that this may be more useful for future adaptive

strategies. Another reason for offering absolute dropping is that some problems can involve large and

small entries that are sophistically coupled. This may happen, for example, when solving shell problems

from structural engineering (see, for example, [5]).

7

5 Numerical experiments

The numerical results reported in this section were performed on a single processor of a 2-way quad

Harpertown machine. All the software was written in Fortran; the g95 compiler with option -O was

used. The implementation of the conjugate gradient algorithm offered by the HSL [18] routine MI22 was

employed, with starting vector x0 = 0, the right-hand side vector b computed so that the exact solution

was x = 1, and stopping criteria

‖Ax̂ − b‖2 ≤ 10−6‖b‖2

where x̂ is the computed solution. In addition, for each test we imposed a limit of 800 iterations.

We define the iteration count for preconditoner P for a given problem to be the number of iterations

required by the iterative method using the preconditioner P to achieve the requested accuracy and we

define the preconditioner size to be the number of entries nz(P) in the lower triangular part of P .

While we are well aware that the number of entries in the preconditioner may increase but its

effectiveness decrease, in many practical situations, the mutual relation between the iteration count and

preconditioner size provides an important insight into the usefulness of an algebraic preconditioner if we

assume that the following two important conditions are fulfilled:

1. the preconditioner is sufficiently robust in its application field (robustness with respect to its parameter

space, not with respect to an application),

2. the time required to compute the preconditioner grows slowly with the problem dimension n.

We define the efficiency of P to be

iter × nz(P),

where iter is the iteration count for P . Assuming the preconditioners Pk (k = 1, . . . , m) each satisfy the

above conditions, we say that, for solving a given problem, Pi is the most efficient of the m preconditioners

if

iteri × nz(Pi) ≤ min
k 6=i

(iterk × nz(Pk)).

We use this measure of efficiency in our numerical experiments.

Unless stated otherwise, all our test problems are positive definite matrices of order at least 1000 taken

from the University of Florida Sparse Matrix Collection [9]. In the tables of results, n denotes the order

of A; nz(L̂) is the number of entries in the lower triangular part of L̂ (measured in thousands); iter and

eff ic are the iteration count and efficiency, respectively.

5.1 The effects of preassigning levels

In our first experiment, we look at the effects of preassigning levels of fill. Since we want to isolate

these effects from those caused by allowing additional memory and/or using a drop tolerance during the

numerical factorization, we restrict our attention to the case m = 1, τ = 0.0 (see Subsection 4.1). To

illustrate the potential benefits of preassigning levels, we start by presenting results for problem carsten3,

which arises from a finite difference discretization of a Kohn–Sham equation of physical chemistry in two

dimensions (see [4]). In Figure 5.1, the number of iterations needed for CG to achieve the requested

accuracy as a function of the number of entries in the incomplete factor IC(`, 0, 1) is presented for ` =

1, . . . , 15, both with and without preassigning levels (Strategy II with ν = 2). As ` increases, the number

of nonzeros increases and the number of iterations decreases. We see that, for this example, the efficiency

is consistently improved by preassigning the levels.

To assess the effect of preassigning the levels on a large set of problems, it is convenient to

use performance profiles [11]. For a fixed value of `, for each problem we computed the IC(`, 0, 1)

preconditioner with and without preassigning levels. Any problem for which the resulting preconditioned

CG method failed to converge both with and without preassigning levels was removed from the test

8

1 2 3 4 5 6 7

x 10
6

10
2

Number of entries in incomplete factor

C
G

 it
er

at
io

ns

with preassigning
without preassigning

Figure 5.1: The effect of allowing variable levels for problem carsten. Results are given for ` = 1, . . . , 15.

set T (`). Since the costs associated with computing and applying as well as storing an IC(`, 0, 1)

preconditioner increase with `, we are normally interested in small values of `. Here we consider ` = 3 and

use ν = 2 for Strategy II. The set T (3) comprises 97 problems.

1 1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Strategy II

Strategy I

No preassigning (3)

Figure 5.2: The efficiency performance profile for IC(3, 0, 1).

The efficiency performance profile for IC(3, 0, 1) is given in Figure 5.2. It is clear that overall there

is an advantage in preassigning levels. The improvement is often modest, particularly for Strategy I and,

in some instances, it is better not to preassign levels. Unfortunately, we are currently unable to predict

when this is the case. Looking in more detail at the results for Strategy I, we find that in many examples

9

1 1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Strategy II

No preassigning (6)

Figure 5.3: Efficiency performance profile comparing Strategy II with ` = 3 with IC(6, 0, 1) without

preassigning levels.

the number of iterations is the same as for not preassigning levels: the improvement in efficiency comes

from having fewer entries in L̂. Thus, as was our intention, Strategy I improves the sparsity of L̂ without

reducing its quality as a preconditioner. The achieved reduction in L̂ will be particularly beneficial if the

preconditioner is used to solve more than one system. On the other hand, Strategy II can produce denser

preconditioners that require fewer iterations. Some examples that illustrate this are given in Table 5.1.

With ` = 3, Strategy II allows the largest entries to contribute up to 6 levels of fill. In Figure 5.3,

we compare this with IC(6, 0, 1) without preassigning levels. We again see that preassigning levels is

advantageous. IC(6, 0, 1) produces preconditioners with more entries than Strategy II with ` = 3 and, in

some cases, L̂ can be significantly denser (and more expensive to compute and to apply). Based on our

findings, in the rest of the paper, we preassign levels.

Table 5.1: Results for IC(3, 0, 1) for a subset of our test set. nz(L̂) is in thousands. † indicates convergence

not achieved.

Problem No preassigning Strategy I Strategy II

nz(L̂) iter nz(L̂) iter nz(L̂) iter

Boeing/msc01440 76 12 76 12 86 5

Nasa/nasa2910 236 18 235 17 352 5

Boeing/ct20stif 6704 73 6608 73 16591 23

Wissgott/parabolic fem 5926 299 5175 289 7968 244

DNVS/ship 003 17146 113 15625 110 37529 57

5.2 Memory control

In this section, we illustrate the importance and usefulness of the memory control parameter m. In

Table 5.2, we report the number of entries in L̂ together with the number of iterations required for the

10

convergence of IC(1, 0, m) with m ranging from 0.2 to 25 for a simple five-point discretization of the 2D

Laplace equation with homogeneous Dirichlet boundary conditions on a unit square. We see that, as m

increases, so too does nz(L̂) while the number of iterations steadily decreases (see also Figures 5.4 and

5.5). Note in particular that our strategy for m < 1 yields IC-like preconditioners that have fewer entries

than the initial level-based structure but that nevertheless yield convergence.

Table 5.2: Results for IC(1, 0, m) for a range of values of m: simple Laplace equation. nz(L̂) is in

thousands.

m nz(L̂) iter

0.2 10 160

0.3 12 226

0.4 16 205

0.5 20 155

0.6 24 141

0.7 28 112

0.8 32 80

0.9 36 68

1 40 41

1.5 50 34

2 69 25

3 109 16

4 149 12

5 189 10

8 308 7

10 388 6

15 587 4

20 786 3

22 866 3

25 985 2

In Table 5.3, we present results for IC(`, 0, m) for a tougher problem, HB/bcsstk17. With ` = 1 we

found it was necessary to set m to be greater than 2.7 to achieve convergence while m = 5 gave a complete

factorization. Thus results are given for m in the range 2.7 to 5 and, for comparison, we ran ` = 0, 1, 2. We

see that, for fixed `, as m increases so too does nz(L̂) and, in general, the number of iterations decreases.

Note that if ` is increased to 3, for all the values of m in the given range nz(L̂) = 1596 ∗ 103 and a single

iteration is required.

5.3 A comparison with IC(τ)

Tables 5.4 and 5.5 show results of experiments for problem TKK/tube1, an symmetric positive definite

matrix that comes from solving thin shell problems in three-dimensional structural analysis. The first

of these tables presents results for IC(`, τ, 1) with ` ranging from 4 to 15 and different drop tolerances

τ (smaller values of ` did not give convergence). We see that for fixed `, using a small non-zero drop

tolerance can reduce the number of entries in L̂ without adversely effecting its performance. The second

table presents results for IC(τ) (see Section 4.4). For this problem, to get convergence we found that the

drop tolerance needed to be approximately 5∗10−5 or less; by only varying τ , it was not possible to achieve

convergence with nz(L̂) less than 9.6 ∗ 106. This contrasts with the level-based preconditioner results in

Table 5.4, where convergence was achieved with significantly sparser L̂. A partial explanation is based on

the fact that the finite element discretization of thin shell problems couples unknown displacements and

bending moments that strongly differ in magnitudes and this fact makes the uni-parametric preconditioner

IC(τ) difficult to tune.

11

10
−1

10
0

10
1

10
2

0

50

100

150

200

250

nu
m

be
r

of
 it

er
at

io
ns

memory parameter

Figure 5.4: The iteration count as m increases: IC(1, 0, m) for the simple Laplace equation

10
4

10
5

10
6

0

50

100

150

200

250

nu
m

be
r

of
 it

er
at

io
ns

number of entries in preconditioner

Figure 5.5: The iteration count as nz(L̂) increases: IC(1, 0, m) for the simple Laplace equation

12

Table 5.3: Results for IC(`, 0, m) for ` = 0, 1, 2 and a range of values of m: problem HB/bcsstk17. nz(L̂)

is in thousands. † indicates convergence not achieved.

m ` = 0 ` = 1 ` = 2

nz(L̂) iter nz(L̂) iter nz(L̂) iter

2.7 592 † 945 † 1271 11

2.75 603 † 966 23 1292 10

2.78 603 † 977 18 1303 10

2.8 614 † 988 33 1314 10

2.85 625 † 999 † 1336 10

2.9 636 † 1021 17 1358 9

3 657 † 1054 17 1412 8

3.1 679 † 1086 17 1455 8

3.15 691 † 1108 16 1477 7

3.2 701 † 1119 70 1499 7

3.25 712 † 1141 14 1520 6

3.3 723 † 1163 15 1553 4

3.5 767 † 1228 12 1596 1

4 876 † 1402 9 1596 1

4.3 942 71 1510 6 1596 1

4.5 985 26 1576 3 1596 1

5 1094 16 1597 1 1596 1

Table 5.4: Results for IC(`, τ, 1) for a range of values of ` and small drop tolerances τ : problem TKK/tube1.

nz(L̂) is in thousands. † indicates convergence not achieved.

τ = 0.0 τ = 10−10
τ = 10−8

τ = 10−7

` nz(L̂) iter nz(L̂) iter nz(L̂) iter nz(L̂) iter

4 1654 520 1653 501 1639 506 1608 499

5 2188 283 2186 278 2158 313 2105 287

6 2863 223 2857 224 2800 197 2711 197

7 3705 159 3691 156 3584 158 3431 159

8 4662 † 4630 † 4458 744 4222 †

9 5628 † 5574 † 5322 † 4999 †

10 7383 230 7271 231 6835 204 6346 239

11 7624 325 7480 252 7030 261 6519 236

12 10532 158 10221 154 9344 123 8527 159

13 10588 135 10270 155 9386 139 8563 123

14 10612 135 10293 151 9405 139 8580 165

15 13667 83 13018 80 11619 61 10404 59

13

Table 5.5: Results for IC(τ) for a range of values of the drop tolerance τ : problem TKK/tube1. nz(L̂) is

in thousands. † indicates convergence not achieved.

τ nz(L̂) iter τ nz(L̂) iter

100 88 † 1e-2 14262 †

60 168 † 1e-3 16140 †

55 281 † 1e-4 9001 †

50 1458 † 5e-5 9649 471

45 2077 † 2e-5 9611 87

40 2253 † 1e-5 10050 18

10 4624 † 5e-6 10741 6

1 7151 † 1e-6 12451 2

1e-1 11565 † 0 21803 1

6 Concluding remarks

In this paper, we have presented a new strategy for computing an incomplete Cholesky factorization

preconditioner that is derived from the level-based approach. In particular, we proposed new strategies

for setting the levels and then exploited the sparsity structure computed during the symbolic factorization

throughout the numerical factorization. The numerical experiments confirmed that the proposed approach

is viable and can be regarded as one step in improving basic algebraic preconditioning strategies. It is

generally assumed that a universal algebraic preconditioning strategy for all types of problems is not

possible, but there still seems to be scope for improving the computational paradigms that we have. Our

next goals will include embedding our ideas into a more comprehensive scheme that will exploit blocks,

pivoting and possibly also a multilevel framework.

References

[1] M. A. Ajiz and A. Jennings. A robust incomplete Choleski-conjugate gradient algorithm. Inter. J.

Numer. Methods Engrg., 20(5):949–966, 1984.

[2] O. Axelsson and N. Munksgaard. Analysis of incomplete factorizations with fixed storage allocation.

In Preconditioning methods: analysis and applications, volume 1 of Topics in Comput. Math., pages

219–241. Gordon & Breach, New York, 1983.

[3] G.A. Baker, Jr. and T.A. Oliphant. An implicit, numerical method for solving the two-dimensional

heat equation. Quart. Appl. Math., 17:361–373, 1960.

[4] M. Benzi, J. C. Haws, and M. Tůma. Preconditioning highly indefinite and nonsymmetric matrices.

SIAM J. Sci. Comput., 22(4):1333–1353, 2000.

[5] M. Benzi, R. Kouhia, and M. Tůma. Stabilized and block approximate inverse preconditioners for

problems in solid and structural mechanics. Comput. Methods Appl. Mech. Engrg., 190(49-50):6533–

6554, 2001.

[6] M. Blanco and D.W. Zingg. A Newton-Krylov algorithm with a loosely coupled turbulence model for

aerodynamic flows. AIAA Journal, 45:980–987, 2007.

[7] N. I. Buleev. A numerical method for solving two-dimensional diffusion equations. Atomnaja Energija,

6:338–340, 1959.

14

[8] N. I. Buleev. A numerical method for solving two-dimensional and three-dimensional diffusion

equations. Matematičeskij Sbornik, 51:227–238, 1960.

[9] T. A. Davis. The University of Florida Sparse Matrix Collection. Technical Report, University of

Florida, 2007. http://www.cise.ufl.edu/~davis/techreports/matrices.pdf.

[10] E.F. D’Azevedo, P.A. Forsyth, and W.P. Tang. Drop tolerance preconditioning for incompressible

viscous flow. Int. J. Comput. Math., 44:301–312, 1992.

[11] E.D. Dolan and J.J. Moré. Benchmarking optimization software with performance profiles.

Mathematical Programming, 91(2):201–213, 2002.

[12] I. S. Duff and G. A. Meurant. The effect of ordering on preconditioned conjugate gradients. BIT,

29:635–657, 1989.

[13] S. C. Eisenstat, M. C. Gursky, M. H. Schultz, and A. H. Sherman. The Yale Sparse Matrix Package

(YSMP) – II : The non-symmetric codes. Technical Report No. 114, Department of Computer Science,

Yale University, 1977.

[14] S. C. Eisenstat, M. C. Gursky, M. H. Schultz, and A. H. Sherman. Yale Sparse Matrix Package

(YSMP) – I : The symmetric codes. Int. J. Numer. Meth. in Eng., 18:1145–1151, 1982.

[15] R. W. Freund and N. M. Nachtigal. An implementation of the look-ahead Lanczos algorithm for

non-hermitian matrices, part II. Technical Report TR 90-46, RIACS, NASA Ames Research Center,

1990.

[16] I. Gustafsson. A class of first order factorization methods. BIT, 18(2):142–156, 1978.

[17] P. Hénon, P. Ramet, and J. Roman. On finding approximate supernodes for an efficient block-ILU(k)

factorization. Parallel Comput., 34(6-8):345–362, 2008.

[18] HSL. A collection of Fortran codes for large-scale scientific computation, 2007. See

http://www.cse.scitech.ac.uk/nag/hsl/.

[19] D. Hysom and A. Pothen. A scalable parallel algorithm for incomplete factor preconditioning. SIAM

J. Sci. Comput., 22:2194–2215, 2001.

[20] D. Hysom and A. Pothen. Level-based incomplete LU factorization: Graph model and algorithms.

Technical Report UCRL-JC-150789, Lawrence Livermore National Labs, November 2002.

[21] Yu. M. Il′in. Difference Methods for Solving Elliptic Equations (in Russian). Novosibirskij

Gosudarstvennyj Universitet, Novosibirsk, 1970.

[22] Yu. M. Il′in. Iterative Incomplete Factorization Methods. World Scientific, Singapore, 1992.

[23] M. T. Jones and P. E. Plassmann. An improved incomplete Cholesky factorization. ACM Trans.

Math. Softw., 21(1):5–17, 1995.

[24] D. S. Kershaw. The incomplete Cholesky-conjugate gradient method for the iterative solution of

systems of linear equations. J. Comp. Phys., 26:43–65, 1978.

[25] C.-J. Lin and J. J. Moré. Incomplete Cholesky factorizations with limited memory. SIAM J. Sci.

Comput., 21(1):24–45, 1999.

[26] J. A. Meijerink and H. A. van der Vorst. An iterative solution method for linear systems of which

the coefficient matrix is a symmetric M-matrix. Math. Comp., 31:148–162, 1977.

15

[27] J. A. Meijerink and H. A. van der Vorst. Guidelines for the usage of incomplete decompositions in

solving sets of linear equations as they occur in practical problems. J. Comput. Phys., 44(1):134–155,

1981.

[28] N. Munksgaard. Solving sparse symmetric sets of linear equations by preconditioned conjugate

gradients. ACM Trans. Math. Softw., 6(2):206–219, 1980.

[29] T. A. Oliphant. An extrapolation process for solving linear systems. Quart. Appl. Math., 20:257–265,

1962.

[30] O. Østerby and Z. Zlatev. Direct Methods for Sparse Matrices, volume 157 of Lecture Notes in

Computer Science. Springer-Verlag, Berlin, 1983.

[31] A. Pueyo and D.W. Zingg. Efficient Newton-Krylov solver for aerodynamic computations. AIAA

Journal, 36:1991–1997, 1998.

[32] D. J. Rose and R. E. Tarjan. Algorithm aspects of vertex elimination on directed graphs. SIAM J.

Appl. Math., 34(1):176–197, 1978.

[33] D. J. Rose, R. E. Tarjan, and G. S. Lueker. Algorithm aspects of vertex elimination on graphs. SIAM

J. Comput., 5:266–283, 1976.

[34] Y. Saad. ILUT: a dual threshold incomplete LU factorization. Numer. Linear Algebra Appl., 1(4):387–

402, 1994.

[35] Y. Saad. Iterative Methods for Sparse Linear Systems. PWS Publishing Co., Boston, 1996.

[36] V. I. Sabinin. An algorithm of the incomplete factorization method. Chisl. Metody Mekh. Sploshn.

Sredy, 16(2):103–117, 1985.

[37] R. S. Varga. Factorizations and normalized iterative methods. In Boundary problems in differential

equations, pages 121–142, Madison, WI, 1960. University of Wisconsin Press.

[38] J. W. Watts-III. A conjugate gradient truncated direct method for the iterative solution of the

reservoir simulation pressure equation. Society of Petroleum Engineer J., 21:345–353, 1981.

16

