
Axioms for Concurrency

Faron Moller

Doctor of Philosophy

University of Edinburgh

1989

Abstract

We study properties of equational characterisations of congruences defined over

process algebras. The languages on which we concentrate are based on CCS,

and our equivalences are generally restricted to observational congruences. We

start by defining and investigating the notion of extensionality or w-completeness

of an axiomatisation with respect to some semantic equivalence, as an extension

of simple completeness, and show that, whereas in some cases the ability to w-

completely axiomatise a system is straightforward, there are sometimes difficulties

in doing this when our algebra contains the symmetric full merge operator.

We then consider the problem of decomposing a process into the parallel com-

position of simpler processes. Here we present several example systems where we

can prove that any process term can be expressed uniquely as the parallel composi-

tion of prime process terms, those processes which cannot themselves be expressed

as a parallel composition of at least two nontrivial processes.

We next consider the possibility of the nonexistence of finite axiomatisations

for certain systems. In particular, we show that strong observational congruence

over a subset of the usual CCS algebra with the full merge operator cannot be

completely characterised by any finite set of equational axioms, thus requiring the

power of the Expansion Theorem to present an infinite set of axioms within a

single axiom schema. We then go on to prove that no reasonable stronger notion

of congruence can be finitely axiomatised, thus explaining the difficulty presented

in searching for complete laws for noninterleaving semantic congruences where the

Expansion Theorem fails.

Finally we consider the same problems in an algebra containing . a sequencing

operator rather than the usual CCS action prefixing operator.

1

Acknowledgements

I would first like to record my gratitude to Robin Milner who demonstrated to

me the recipe for a good supervisor: an abundant supply of inspiration, endless

patience and encouragement, and a touch of gentle prodding when the results were

slow coming.

Further inspiration, scholarly debate, and fun were always on offer from Mads

Dam and Andreas Knobel. They were both willing sounding boards to my ideas,

offering illuminating comments which almost always shaped my viewpoint and

outlook on the problems addressed by this thesis.

After Robin and Mads and Andreas, my problems and ideas were then pre-

sented to the Wednesday afternoon Concurrency Club, where I was always guar-

anteed substantial and eager comments on the ideas, bringing them from half- to

three-quarter-baked status. I thank all members of the Club who ever made a

comment during one of my talks, as I am sure every comment made had its effect

on the final product. I especially thank David Walker and Cohn Stirling for extra

discussions and interest taken in my ideas outside of the Club.

In the end, it was Chris Toftf who influenced' the later stages of the work and

took an early draft of my thesis on a skiing holiday.

Life was made enjoyable by numerous new friends I have made in Scotland,

who made the experience of doing a thesis bearable. My thanks go out especially

to Martin, Laurent, Lise, Murray and Ally. I am totally and forever thankful to

Alice Dumas, my life-time friend, for her undying support.

This work was financially supported by a Scholarship from the Association of

Commonwealth Universities.

2

Table of Contents

Abstract 	 1

Acknowledgements 	 2

Declaration 	 3

Introduction 	 7

	

1.1 	Extensional Completeness8

	

1.2 	Unique Decompositions9

	

1.3 	Finite Axiomatisability11

	

1.4 	Layout of the Thesis12

Background 	 15

	

2.1 	Process Algebras15

	

2.2 	Equivalences Between Processes20

2.2.1 	Transition Systems20

2.2.2 Strong Observational Congruence24

2.2.3 Weak Observational Congruence25

	

2.3 	Equational Characterisations28

2.3.1 An Equational Proof System29

2.3.2 Soundness, Completeness, and w-Completeness30

4

Table of Contents 	 5

w-Complete Axiomatisations 	 33

	

3.1 	A Simple Nondeterministic Language34

	

3.1.1 	Finite Terms34

	

3.1.2 	Regular Behaviours42

	

3.2 	Concurrency With The Left Merge Operator42

	

3.3 	Concurrency With The Full Merge Operator59

Unique Decomposition Results 	 70

	

4.1 	Full Merge Language71

	

4.2 	A Simpler Proof76

	

4.3 	Adding Communication79

	

4.4 	Adding Silent r's 83

Nonexistence of Finite Axiomatisations 93

5.1 	Saturated Axiomatisations94

5.2 	Strong Congruence 97

5.2.1 	Preliminary Results 99

5.2.2 	Main Result106

5.2.3 	Adding Communication 107

5.3 	Noninterleaving Semantic Congruences108

5.3.1 	Preliminary Results 112

5.3.2 	Main Result120

Sequencing with the 0 Process 	 122

- 	6.1 	Introduction123

	

6.2 	CCS With Sequencing127

Table of Contents

6.2.1 Equational Axiomatisation 130

6.2.2 Completeness for Closed Term Reasoning 132

6.2.3 A Finite Axiomatisation137

6.2.4 Reasoning About Open Terms 138

6.3 	Comparison with BPAC 143

6.3.1 The BPA Equivalence as an Observational Congruence 	. 143

6.3.2 Adding Merge and Communication152

6.4 	The Non-Finite-Axiomatisability of BPA1 155

6.4.1 Preliminary Results 156

6.4.2 Technical Lemmata 159

6.4.3 Main Result166

7. Conclusions and Open Problems 	 168

	

7.1 	w-Complete Axiomatisation for the Full Merge Language169

	

7.2 	The Non-Finite-Axiomatisability of Observational Congruence. . 	173

Bibliography 	 178

Chapter 1

Introduction

The need to be able to reason about computer programs in a rigorous formal

way is self evident. This applies even more so to programs involving parallel con-

structs than to those written in a purely sequential programming language. This

is due to the inherent intuitive difficulties discovered by experience posed by the

nondeterministic behaviour of such programs. These methods for reasoning must

furthermore be formal to allow verification proofs to be at least partly mechanised,

as systems for which we desire to prove properties grow in size. Indeed there now

exist several automated systems for reasoning about concurrent processes, just

one example being the Concurrency Workbench', a prototype automated tool for

reasoning about CCS agents, processes defined using Milner's Calculus of Com-

municating Systems [MIL80].

The motivation for this thesis is to add to the understanding of reasoning about

concurrent processes using strictly equational logic. Rewrite rule based systems

founded on equational theories are ideal for implementing in an automated tool,

so a clear understanding of the equational theory of concurrent processes forms

the basis of a rigorous proof technique amenable to automation. In this thesis

we consider three basic problems of equational reasoning within process algebras.

Concurrency Workbench is currently under development in a joint SERC-funded
project between the Laboratory for the Foundations of Computer Science at the Univer-
sity of Edinburgh and the University of Sussex.

7

Chapter 1. Introduction 	 8

Firstly, we analyse the possibility of reasoning about open terms (terms with free

variables) in our process algebras. Such terms represent underspecified processes

in which the indeterminates are placemarkers for unknown subprocesses which

may for example be implemented by someone else, or may be irrelevant with re-

spect to the property of processes which we are currently considering. Secondly,

we consider the problem of decomposing processes into parallel components, and

analyse when this can be done completely (that is, decomposed into nondecom-

posable components) in exactly one way. This would allow us to reason about

the components of a system, and also allow us to find possibly the most optimal

implementation of a specification with respect to the amount of parallelism which

can be exploited in the implementation. Finally, we consider problems regarding

the finite axiomatisability of certain systems. This study would lead us to deduce

some finite presentation of a complete equational theory of a system, or more

interestingly, to deduce when such a finite system cannot exist.

1.1 Extensional Completeness

A complete axiornatisation for reasoning about open terms of some process alge-

bra with respect to some semantic congruence would amount to what is referred

to for example in the lambda calculus as a complete extensional theory, or an w-

complete axiomatisation. Such an extensional theory for CCS would allow us to

reason about underspecified concurrent systems without having to resort to tactics

other than pure equational reasoning, such as some form of induction. This would

almost certainly give much simpler proofs to many valid open statements in CCS

than can be derived within a simply complete axiornatisation. For example, using

the usual complete axiornatisation for finite CCS terms, the proofs of the associa-

tivity and commutativity of the parallel operator are less than straightforward to

prove, involving lengthy proofs by induction (see, e.g., [MIL80], Theorem 5.5).

An automated system for reasoning about CCS processes based on an exten-

sional axiornatisation would neither need to restrict itself to agents (closed term

processes), nor need to resort to any tactic other than pure equational reasoning.

Chapter 1. Introduction 	 9

1.2 Unique Decompositions

If it were the case that in some system for reasoning about concurrent processes

we could prove the validity of a unique decomposition theorem, then this would

provide two points of interest. Firstly, it would gives us a start towards a normal

form for processes, leading towards the ability to prove certain completeness re-

sults. More importantly, it would allow us to reason about the maximal degree of

parallelism which exists within a system.

For example, consider a language over the signature E = to,., +, 11 1, consisting

of the usual CCS operators representing the null process, action prefix, nondeter-

ministic choice and full merge. A normal form for process terms in this language

could be defined to be

II P 	(n>O),
1<i<n

where each P represented a prime process and as such is in some form of prime

normal form. A prime process over this language would be one which could not be

expressed as the parallel composition of two or more nontrivial processes. Upon

performing some transition, the term may evolve into a nonprime process, but it

must move from its state in order to express any global concurrency. As such,

prime normal forms could be defined to be

a.p, 	(n>O),
1<i<n

where each pi was in normal form. Such prime normal forms would of course

be restricted to prime processes; for instance, a.b.O + b.a.O would not be a prime

normal form term as it is not prime, being equal to the composite term a.O 11 b.O.

Given that our congruence over this signature allows for a unique decomposi-

tion theorem to hold, any term could be expressed uniquely as a normal form as

defined above. Moreover, we could define the maximum amount of parallelism of

an agent as follows: Given a process P expressed in normal form by

Chapter 1. Introduction 	 10

= H (1: ai5.p3),
1:5i<m 1<j<n

the maximum amount of parallelism which inherently exists within P would be
given by

maxpar(P) = >2 	max maxpar(pij)),
1<i<m " ''

where here we let >2 i = 1. Such a definition could have implications on the
iEØ

implementation of a process specified by a CCS agent; it would reveal to the

implementor how much parallelism he could attain in implementing the abstract

process, telling him how many actual control processes he could use to maximise

efficiency.

It is not in general the case that such a decomposition result is possible. For

instance, if the operational semantics of the full merge operator obeys the following

CSP rule (cf. [BR084], [H0A85])

P — -P,, Q - -Q'

OQ - P'IIQ'

then we can see that the possibility of a unique decomposition fails immediately,

as

a.O = a.O a.O

= a.O a.O 	a. 0.

Also, as pointed out by R. van Glabbeek ([KL087]), a unique factorisation result

could not hold for certain failure or readiness semantics, where we have the law

a.(b.x + b.y) = a.b.x + a.b.y,

for in this case the process term a.a.O + a.a.a.O + a.a.a.a.O would have two distinct

decompositions, namely

a.a.O + a.a.a.O + a.a.a.a.O

= (a.O + a.a.0) H (a.O + a.a.0)

a.O 11 (a.O + a.a.O + a.a.a.0).

Chapter 1. Introduction 	 11

However, in this thesis we show that the result does hold for the above subset

of CCS under the usual operational laws for the operators (with or without com-

munication via synchronisation of complementary actions allowed with the parallel

operator), -with respect to strong and weak observational congruence.

1.3 Finite Axiomatisability

One of the major problems which this thesis addresses is that of the nonexistence of

finite equational axiomatisations for concurrent systems. In particular, we show

that the above subset of CCS is not finitely axiomatisable under the semantic

equivalence of strong observational congruence. The implications of such a result

are straightforward: in order to completely axiomatise the congruence within the

system, we need to find some (hopefully elegant) valid axiom schemata in order to

represent an infinite set of axioms. In the case of strong congruence, the Expansion

Theorem of CCS provides just what is needed.

We however manage to extend our result to apply over the same language

under any reasonable congruence stronger than strong observational congruence.

Thus we show that if we had some reasonable (defined in a strict, formal sense)

noninterleaving semantic congruence, we would need to find some alternative ax-

iom schemata to replace the Expansion Theorem, which would no longer hold in

our stronger equivalence.

An interesting point about our nonexistence proofs is that they necessarily em-

ploy a method unlike that usually used for such results. The typical style of proof

for this type of result is of a model-theoretic nature, using the following technique:

suppose we have some infinite set T of axioms which completely characterises our

notion of congruence, and that this theory can be expressed as T = U>o Ti, where

To c 7 c T2 C ... is an increasing chain of theories approximating T. Suppose

further that for each k > 0 there is a statement Sk such that T F Sk, but 7j V Sk.

Then there cannot exist a finite axiomatisation for our congruence. For suppose

that J is a finite set of valid axioms which also characterises our congruence.

Chapter 1. Introduction 	 12

Then we would have that F F Sk for each k > 0. From the validity of the axioms

in F, we could deduce that T F A F, and so (from the compactness theorem) that

T' F AF for some finite T' c T. But then there would be a k such that T' C 7k,,

and so we would have that 7j, F T' F A F F 8k, so by monotonicity we would have

that 7 	5,,, contradicting Tk 1/ 8k

Using the above technique, we must be careful about one point in particular.

In order for our complete theory T to imply each of the axioms in F, we must

be sure that our theory T is not simply complete with respect to our congruence,

but in fact complete for the extensional theory. In view of the fact that such a

complete set of laws is not discovered in this thesis for the language in which we are

interested, we could not apply the above model-theoretic argument. Hence all of

our nonexistence of finite axiomatisation results are proven using a proof-theoretic

strategy, rather than the usual model-theoretic method outlined above.

1.4 	Layout of the Thesis

In the remainder of this introduction, we summarise the work presented in the

thesis.

In Chapter 2, we present the necessary background material to our study. In

particular, we describe the framework for the process algebras in which we shall

be interested, as well as the equivalences between processes with which we shall

work. Finally we fix some fundamental notions about equational proof systems in

order to prove results about equational provability.

In Chapter 3, we investigate the extensional theories for strong observational

congruence for different subsets of CCS. In particular, we derive a complete set of

equations for extensional reasoning about a simple language of nondeterministic

agents, followed by a complete extensional axiomatisation for a language con-

taining the full and left merge operators, thus allowing concurrent computations.

Finally, we present the difficulties involved in trying to do the same for the subset

Chapter 1. Introduction 	 13

of CCS containing the full merge operator in the absence of the simplifying left

merge operator, and leave the problem of its extensional axiomatisation unsolved.

In Chapter 4, we investigate the unique decomposability of CCS agents.

We first prove that the unique decomposition theorem is valid for a small subset

of CCS with respect to strong observational congruence when communication

is prohibited. We actually present two proofs of this result, the first originally

presented by Milner and used as a model for the more difficult cases to follow, and•

the second a much simpler proof which works only in this basic framework. We

then proceed on to show that the factorisation result remains valid when we allow

communication, and also when we abstract away from internal communications

by considering weak observational congruence.

In Chapter 5, we present two major results on the nonexistence of finite

equational axiomatisations for process algebras. The first result shows that strong

observational congruence over the above subset of CCS cannot be finitely axioma-

tised, thus showing the necessity of some axiom schemata such as that presented

by the Expansion Theorem. Before going on to the second major result, we com-

ment on the applicability of the proof to the same language when communication

is allowed by the parallel operator. We then extend the result to show that no rea-

sonable congruence which is stronger than strong observational congruence can be

finitely axiomatised, thus posing the problem of finding applicable axiom schemata

when trying to characterisea noninterleaving semantic congruence where the Ex-

pansion Theorem is no longer valid.

In Chapter 6, we consider the same problems for a different process alge-

bra, a subset of ACP, which utilises a sequential composition operator in place

of the CCS action prefix operator. We first introduce the 0 process into this

framework in a manner different from, and seemingly more natural with respect

to observational behavioural semantics than that of the researchers in the Dutch

school who are the innovators and main proponents of this type of process alge-

bra. We do however define their congruence over this language with the 0 process

and characterise it as an observational congruence. We then proceed to examine

our semantic congruence, presenting a finite equational axiomatisation for closed

Chapter 1. Introduction 	 14

term reasoning for the nondeterministic language, and present problems with its

extensional axiomatisability. Finally, we extend the proof of the previous chapter

to show that this language with the full merge operator added cannot be finitely

axiomatised.

In Chapter 7, we present a short summary of our results, and outline some

of the problems which we could not solve but whose solutions would find their

rightful place in the main body of this thesis.

Chapter 2

Background

In this chapter, we lay the groundwork for our study. We present the languages

in which we shall be interested, as well as the behavioural equivalences which we

shall be studying. We also present relevant definitions and known results concern-

ing our languages and equivalences. Finally, we present properties of equational

characterisations which we shall be studying.

2.1 Process Algebras

Almost all of the languages which we shall consider will be sublanguages of that

defined by the signature given in Figure 2-1, presented as a two-sorted algebra in

the style of [EHR85]. We first presuppose a rionempty set of atomic action symbols

Act, as well as a set of process variables Var. Then the languages which we shall

consider will be defined to be the least sets of terms containing the variables Var,

and closed under different subsets of the term-building operators given in the

signature of Figure 2-1.

This set of operators is derived from a subset of those in the pure CCS. How-

ever, the usual parallel operator has been split into two separate operators, rep-

resenting whether or not communication can occur between concurrent processes.

As a way of introduction to the operators in the full signature, we give here some

remarks on each of them.

15

Chapter 2. Background 	 16

Sorts 	P 	 (processes)

	

Act 	 (atomic actions)

Operators 	0 	P

ActxP —P

+ PxP—*7

PxP—*P

PxP—P

IL 	(P—P)—*P

(null program)

(action prefix)

(nondeterministic choice)

(full merge)

(left merge)

(parallel)

(recursive definition)

Figure 2-1: CCS-like operators

0 is a nullary operator representing the null process, one which can perform.

no observable action, but simply terminates.

. is a binary operator which given an action symbol a E Act and a process

p, returns the process which can perform the action a and evolve into the

process p upon so doing.

+ is a binary operator which given two processes, returns the process which

is capable of choosing between the two and observably behaving exactly as

the chosen process.

11 is a binary operator which given two processes, returns the process which is

capable of performing the actions of each of the processes, in the order which

the two processes would have performed them, in an arbitrary interleaved

fashion.

IL is a binary operator which given two processes, returns the process which

is capable of performing the actions of the two processes concurrently as

with the interleaving operator 11 above, but with the stipulation that the first

process (the left operand) must contribute the first action.

Chapter 2. Background 	 17

1 is the usual CCS binary parallel operator which given two processes, returns

the process which is capable of performing the actions of the interleaved

processes as defined for the full merge operator 11 above, but also at any time

performing an action r representing the synchronisation of complementary

actions, each being offered at once by the two processes involved, and then

evolving into the same concurrent composition of the resulting processes.

p is a unary operator which given a function from processes to processes rep-

resented by a pair (x.t(x)), consisting of a variable x and a process term t(x)

with x (possibly) appearing free (i.e., not within the scope of another p op-

erator involving the same variable x), returns the process P which represents

a particular solution to the equation P = t(P).

When writing out terms from some subset of this signature, we shall use paren-

theses to allow for unambiguous parsing. However, we shall minimise their use by

allowing the action prefix operator to take precedence over all of the concurrency

operators, which in turn will take precedence over the recursion operator, which

finally in turn will take precedence over the summation operator. Furthermore,

for the sake of economy in writing, we shall usually omit occurrences of the action

prefix operator, and occurrences of 0 at the ends of action-prefixed subterms, thus

for example rendering a.b.0 I.c.0 as ab I c.

Notice that we have not included either of renaming or restriction from pure

CCS in our languages. This was simply because the problems of axiomatisations

which we wish to address in this thesis arise without these operators, and adding

them is usually not a problem with respect to axiomatisability; these operators

are generally easily dealt with via their distributivity properties. Furthermore, we

shall make little use of the recursion operator p. The sole purpose of including it

in the above signature is so that we can relate a particular result of Milner's on

regular (finite-state) behaviours to our work. For the rest of the thesis, we shall

work solely with finite CCS terms. This is as we are interested firstly in complete

axiomatisations for our languages, which is not possible in general in the case of

recursive terms using the parallel construct, and secondly in finite axiomatisations,

Chapter 2. Background 	 18

which seems likely not to be the case with regular behaviours (due to the results

of e.g., [CON71]).

More importantly, we allow the set Act to be a parameter in the definition of

our languages, and consider our systems to be defined as two-sorted signatures.

This is in contrast to the usual approach in CCS, where we only deal with a single

sort P, that consisting of our process terms. In that case, action prefix is considered

as defining a set of unary operators {a. I a E Act}, one for each available action

symbol. This adds complications to axiomatisations which we want to avoid.

For instance, in what follows we shall wish to prove some results regarding the

nonexistence of finite equational axiomatisations of certain congruences over our

languages. In particular, we shall want to show that over a simple subset of

finite CCS terms, the Expansion Theorem is not replaceable by any finite set of

equational axioms. If We took the usual view of CCS, with an infinite action

set Act this result would be almost immediate, as in order to express all that is

expressed by the Expansion Theorem, each of the infinite number of unary action

prefix operators would have to be explicitly mentioned. For instance, consider the

following instance of the Expansion Theorem:

all/3 = cx/3 + /9cx.

This is actually an axiom schema representing an infinite number of axioms (when

Act is infinite), where cx and /3 are metavariables ranging over the set Act. In

our formulation, cx and /3 above are simply variables of sort Act, and the above

represents a single axiom containing cx and /3 as variables. More strongly than

this though, our result will say that the Expansion Theorem cannot be replaced

by a finite set of axioms even if the action set Act is finite, indeed even if it is a

singleton set. Thus our proof will say that the Expansion Theorem is somehow

inherently not finitely axiomatisable.

For a given process language 2, we shall distinguish the sublanguage 20 C P

consisting of the closed terms in 2, or what Milner calls agents. These are the

terms which have no free process variables, where the set of free process variables

of a term is specified by the following definition.

Chapter 2. Background 	 19

Definition 2.1.1 The set of free process variables of a term t, denoted by fv(t),

is defined structurally as follows:

Fv(x) =
MO) = 0,
fv(at) = fv(t),

fv(t+u) = fv(t)Ufv(u),

fv(tjlu) = fv(t)Ufv(u),

fv(tILu) = fv(t)Ufv(u),

fv(tlu) = fv(t)Ufv(u),

fv(,ux.t) = fv(t) \ {x}.

Thus we have the set of agents of P defined by:

20 = {tEPIfv(t)=O}.

Any process variable which occurs free in a term t E 'P (i.e., not bound by the

t operator) represents some unspecified process which can be replaced by some.

agent in the language at any time. We shall thus define the substitution of terms

for variables accordingly by the following definition.

Definition 2.1.2 (Substitution) Given a term t and a substitution o which

is simply a mapping from some finite subset V of Var to 1', specified as a set

f
Px/x I X E v}, we define to to be the term i with the occurrences of the free

variables appearing in V replaced by the terms to which they are mapped by o.

All of the equivalences which we define shall be defined initially for closed

terms only. However, we shall extend these equivalences to apply to open terms

as well by defining t ' u if for all closed substitutions o defined over the set

fv(t) U fv(u), we have that tor 'S.' uo-. It is clear that the resulting relation is con-

servative (the new relation restricted to 'P0 is precisely the equivalence with which

we started), that it is an equivalence relation on all of 2, and that if the original

equivalence was in fact a congruence on 'P0 (i.e., was a substitutive equivalence

relation), then the new relation itself will be a congruence on the whole of P.

Chapter 2. Background 	 20

2.2 Equivalences Between Processes

2.2.1 Transition Systems

The equivalences in which we shall be interested for our languages will be obser-

vational equivalences as defined by Milner and Park (see e.g., [MIL80], [PAR81])

via the notion of bisimulations. These equivalences are defined with respect to

a labelled transition system, a general model of computation • 	described in

[KEL76] and used extensively in the study of CCS-like languages for defining the

operational behaviour of processes. For a given process algebra P parameterised

by an action set Act, a labelled transition system is a relation -p P x Act x P

which formally defines what atomic actions a term in our language P is capable

of performing, and what new processes will evolve upon performing particular ac-

tions: P --* P' means that the process P may perform the action a and evolve

into the process F' upon so doing.

For a particular language 7', the transition system which we define will satisfy

the subset of rules laid out in Figure 2-2 which pertain to the operators used

in the algebra of P. These rules give a structural operational semantics to our

process languages, a natural method of presenting such semantics first proposed in

[PLO81]. The rules are specified in an inferential style; if the sentence(s) mentioned

above a line hold(s), then the sentence below the line must also hold. For instance,

if the signature of our language includes the operators ., + and 11, then from rule

(1) we would have that b ---* 0, so by rule (3b) we would have that a 11 b -- all 0.

We in fact want to allow a transition to be valid when and only when it can

actually be derived from the rules laid out in Figure 2-2. Hence for a particular

language P defined by a subset of the complete signature of Figure 2-1, we define

our transition system to be the least relation -) c P x Act x P satisfying the

subset of rules which are relevant (that is, those rules involving the operators in

the signature of 2). This defines the operational behaviour of our processes.

Chapter 2. Background 	 21

(1)
at 	t

a 41

(2a)
t + U --* t'

a ti
(3a) tjjU _!_ t' H u

(4a)
tILu -- V H u

t--*tl
(5a) a

(5c)
' t I U 	'r)t I jU I

t{,Lxt'} 	
a

(6)
px.t --+ t'

a U —* u1
(2b)

t + U —4 u'

U a -4 U
(3b)

t II U ---*
t11

U'

a

(4b)
t IIu --+ t' I U

U a -4 U 1
(5b)

t I U --4 t I U'

Figure 2-2: Operational rules for CCS operators.

We can extend this definition to apply to sequences of atomic actions easily

enough as follows: for a sequence s = a1a2 •- an E Act*, we say p --- p' if for

some

	

a 	an_i 	an 	
'. P 	Po - Pi -- 	- Pa-i 	Pn = P

We shall often use this extension as a shorthand form of writing sequences of

transitions.

Given any language P defined over a signature taken as a subset of that given

in Figure 2-1 but not including the recursion operator p, any agent p e P° will

have associated with it a derivation tree, a finite unordered tree whose nodes are

labelled by terms of PO, and whose arcs are labelled by atomic actions from the

Chapter 2. Background 	 22

set Act. The root of the tree is labelled by the agent p itself, and each node has

emitting from it an arc corresponding to each of the possible transitions which

the agent can make, with the arc labelled by the action labelling the transition,

and leading to a node labelled by the agent into which the I
source node agent

would evolve under that transition. Thus the derivation tree of an agent specifies

the possible transition sequences which a term can undergo. For example, the

derivation tree of the agent a I b + c is given in Figure 2-3.

aib + C

bj

Olb 	a 1 	0

	

b 	
41

0 1 0 	OJO

Figure 2-3: Derivation tree for a I b + c.

Motivated by the above definition of derivation trees, we can define some useful

operations on agents, to specify the lengths of the longest and shortest possible

transition sequences which an agent is capable of performing. Firstly, the former

notion is given by the depth of the derivation tree, which is the longest path from

the root of the tree to any of its leaves.

Definition 2.2.1 The depth of a (finite) agent 	is given by

lapI = I+ Jp;

Ip+qI = max (IpI,l qI) ;

IIII = Ipl+IqI;

	

Ip qI 	
lpI+IqI, ifJ

1

p>0,
=

0, 	otherwise;

IrIl = IpI+IqI.

Chapter 2. Background 	 23

Secondly, the latter notion can be defined by defining the shortest path from the

root of the tree to any of its leaves.

Definition 2.2.2 The shortest transition length of a (finite) agent f(.) is given

by

= 0;

Il(ap) = l+Il(p);

ifq=0,

Il(p+q) = 	Il(q), 	 ifpj=O,

mm (11(p), 11(q)), otherwise;

11(pIlq) =

I
11(pILq) 	

11(p)+1l(q), if IpI>O,

1. 0, 	otherwise;

11(plq) = min (to

U{1+Il(p'q) I astp--p'}

U{1+11(plq') I asiq--*q'}

U{1+11(p'jq') I 3astPpIAq__*q}).

We shall often want to extend these two measures to open terms, which we do as

follows: for t = fv(t),

and

With these definitions, we can state the following simple propositions.

Proposition 2.2.3 IpI = max In I 3s e Act', 3PI st p -- p'}.

Proof:

By structural induction on p. 	 U

Chapter 2. Background 	 24

Corollary 2.2.4 p --+ p' ===> II > Jp'I.

Proof:

Jp'I = n == 38 E Acts, 2p" st p' 	p"
as

p 	"

=

Proposition 2.2.5 l(p) = mm {n I 3s e Act's, 3p' st p 	p'

and Vp",Va E Act, p'

Proof.

By structural induction on p.

2.2.2 Strong Observational Congruence

The first and main congruence in which we shall be interested is known as strong

observational congruence, or simply strong congruence. The basic idea behind this

equivalence is as follows: given a process language 7', two agents taken from the

sublanguage 7'O of closed terms are deemed to be equivalent exactly when they

share the same possibilities of acting (that is, they can perform exactly the same

atomic actions according to the transition system defined as above), and can also

evolve into equivalent processes upon doing identical actions. Formally, this notion

is defined using the notion of a strong bisimulation relation (cf., e.g., [MIL80], or

[PAR81]).

Definition 2.2.6 A binary relation 7?. C 7'0 x 2° is a strong bisimu1a6ki if

whenever p'Rq, then for all a e Act,

p --- p' implies aq' such that q -— q' A p'flq'; and

q -—* q' implies 2p' such that p -—* p' A p'J?.q'.

Chapter 2. Background 	 26

synchronisation, and should be unobservable to any observer of the system - the

composite system is not communicating with the outside environment, but rather

communicating internally. Thus we would like to abstract away from this internal

silent or unobservable action r.

The equivalence we shall define for this purpose is going to be a straightforward

refinement of the strong observational equivalence defined above. However, instead

of matching actions exactly, we shall only require observable actions to be matched,

modulo the occurrence of any finite number of invisible r actions before and after

the observable action.

For this case, we make some assumptions about the action set Act, which are

usual in the presentation of CCS. These are made to define what complementary

actions are, to allow for two processes to synchronise or communicate. Firstly we

split the silent action r E Act away from the set A C Act of visible action, and

express the set Act as Act = A U {r} (where r 0 A). Then we assume that we

can further partition the set A of visible actions into two equinumerous disjoint

sets A = A U& where A = {a a E Al. The mapping a i—* a defines a bijection

from A to A, and is extended to all of A by defining a= = a. Then two actions a
and a are deemed to be complementary actions, and are the actions which can be

used by two processes to synchronise, as specified by rule (5c) of Figure 2-2.

For ,t E Act (either a visible action or r), we shall say that p = p' if p 	p'
for some rn, n > 0. We can again extend this definition to apply to sequences of

atomic actions as follows: for a sequence S = /11z2 .. fL, E Act*, we say p = p'
if for some Po, Pi,

P = Po 	Pi 	 pn__1 	pn = p'.

We also allow for the case where n = 0 above in writing p =4 p' (or also written

simply as p = p') whenever p a p' for some m > 0. With this new transition

system, we can now define our refined equivalence which will abstract away from

internal silent 'r actions. This we do using the notion of a weak bisimulation

relation (cf., e.g., [MIL80], [M1L85]).

Chapter 2. Background 	 27

Definition 2.2.8 A relation 7?.. C PO x 'P° is a weak bisimulatiori zff whenever

p7?q, then for all s E A*,

p = p' implies q' such that q =. q' A p'7?q'; and

q 	q' implies 3p' such that p 	p' A pi?.q'.

Then with this definition, we say that two agents p, q E P0 are weakly obser-

vationally equivalent (or simply observationally equivalent), or weakly bisimilar,

written p q, if there is a weak bisimulation R containing the pair (p, q). Again

the relation defined here is the largest weak bisimulation, and is easily seen to be

an equivalence relation. However, it is well known not to be a congruence relation.

This is revealed by the following counterexample: we can easily show that a Ta,

but a+aa ra+aa (as ra+aa==a, but for no p, a does a+aa==. p). We

would dearly like our equivalence to be a congruence relation though - if two

process terms are to be deemed equivalent, we would like them to be interchange-

able as subterms in some bigger expression. That is, given any context C[.] (i.e.,

a term with a "hole" in it), we would like to be assured that whenever p 	q

we have that C[p] C[q]. Such a property would assure us that we could safely

interchange equivalent programs as subprograms of a larger system. Thus we shall

refine our equivalence by defining c to be the largest congruence contained in .

This congruence is known as (weak) observational congruence, and gives us exactly

the relation we are looking for: p 	q if for all contexts C[.], C[p] C[q].

We can actually define this congruence directly using the following proposition.

Proposition 2.2.9 p 	q if for all ji E Act,

p --+ p' implies q' such that q = q' A p' q'; and

q -- q' implies 2p' such that p =. p' A p' q'.

Proof:

See e.g., [M1L85], Proposition 2.6. 	 11

Chapter 2. Background 	 28

We shall freely use this alternate characterisation when dealing with observational

congruence in the sequel.

One last concept which we shall find useful when dealing with action sequences

involving silent r actions is as follows.

Definition 2.2.10 The 7--free projection i of a string s E Act* is defined to be

the string s with all occurrences of r removed. Formally, we have the following:

a = a; (aEA)

=

=

2.3 Equational Characterisations

Once we have defined a particular observational congruence as above using the

notion of bisimulations, we would like to have some method of determining when

two processes are equivalent. The general technique is to try to construct a bisim-

ulation relating the two processes in question. Techniques for doing this can be

found in e.g., [MIL80] and [SAN82]. However as we have pointed out, it is not

always sufficient simply to show that two processes are related in some bisimula-

tion, as the congruence we are actually interested in is not always identical to the

equivalence defined by the bisimulation notion. Also, constructing bisimulations

(and proving that the relation constructed is a bisimulation) is often not such

a straightforward task. Fortunately, much effort has been expended on deriving

alternate characterisations of observational congruences. In particular, equational

axiomatisations for different process algebras abound. Quite clearly, equational

proofs are bound to be much simpler than bisimulation constructions. Further-

more equational systems, involving the laws of equivalences (reflexivity, symmetry

and transitivity) as well as the law of substitutivity, naturally define congruences.

Thus we have no problems of mismatch between our semantic congruence and the

notion defining the basis of our proof technique.

Chapter 2. Background 	 29

2.3.1 An Equational Proof System

Given a process language defined over a signature, and a set of equational axioms

over that language, we can generate equivalences between terms in the language

by using axioms or applying the rules of equational logic: reflexivity, symmetry,

transitivity and substitutivity. There are several different equivalent approaches

for defining a formal system for doing these syntactic manipulations. As we would

like to prove some results on the limitations of proving statements in our algebras

using equational logic, we would like now to fix a particular system about which to

argue. Thus in this section we shall present a natural deduction style proof system

following [PRA65] parameterised by a set T of equational axioms.

Our proof system will allow proofs of equivalences in the forms of proof trees,

where the trees are put together by inferences. The inferences will be of the

-

following form:

..., ti =ui,

t = u
(rile).

	

This inference is meant to state that from the set of premises { •", t j = u, 	}
we can assume the conclusion t = u. A valid proof of a statement will then be a

finite proof tree built up from such inferences, where the statement being proven

is the lone statement at the root of the tree (at the bottom), and there are no

premises at the leaves of the tree (that is, all topmost inferences have empty sets

of premises).

The inferences which are allowed are as expected: firstly, every axiom of Y can

be instantiated with an empty premise:

to- =
uo- (t = u). 	(where t' = U E T, and o, is some substitution).

An axiom is intended to state a universally true fact. Then we need to allow

inferences based on the laws of equational reasoning. The first three, corresponding

to reflexivity, symmetry and transitivity, are as follows:

t
(refi), 	 (symm),

t 	 u

t=u, U=V

t=v
(trans).

Chapter 2. Background 	 30

The final set of inferences correspond to substitutivity, and are taken from the

subset of the following inferences involving the operators in the signature of the

language which we happen to be considering.

t

at = au
(sub.)

tI = U15 t2 = U 2
(sub)

tl + t2 = Ui + U 2

tI = U11 t2 = U 2
(sub)

t111t2 = uiiI.u2

tl = Ul, t2 = U 2
(sub

tl 11 t2 = U1 11 U2

il = Ui, t2 = U 2
(sub)

tl i2 = U1 U2

t=u

4ux.t = 4

ux.0 (sub,)

Thus for a given set of axioms T, our fixed proof system will be the above

natural deduction style system. Whenever we can produce a proof of a statement

t = u in this system, we shall denote this fact either by T I- t = u or equivalently

by t =T u. Having fixed a firm formal system, we can do rigorous proofs on certain

properties of equational logic for our process algebras. For instance, this formal-

ism will figure prominently in our proofs of the nonexistence of finite equational

axiomatisations in what follows.

We shall sometimes want to discuss a certain extension to the above proof sys-

tem, and allow not just ordinary axioms in the set T, but also include conditional

axioms of the form

ti = Ui (1<i<n)

t=u

These new inferences fit well into our framework, and will be included as valid

inferences in a proof tree whenever they appear in the set T of axioms.

2.3.2 Soundness, Completeness, and w- Completeness

The purpose of defining our proof system above was so that we could use equational

logic to syntactically reason about processes instead of having to give semantic

Chapter 2. Background 	 31

justifications for relating processes. Thus if we intend on using our equational

system, we would like to be sure that any equivalences which we can possibly

generate are going to be valid semantic equivalences, and that if two agents are

semantically equivalent, then we can prove them to be so in our syntactic formal

system. These two important notions are respectively referred to as soundness
and completeness of a system, and are formally defined as follows.

(Soundness:) For a given congruence over a process language

2, an axiom system T is sound if for all terms t, u E P we have

that T H t = u == t u.

(Completeness:) For a given congruence over a process lan-

guage 2, an axiom system T is complete if for all (closed) terms

p,qEP°we have that pq = TF- p=q.

Equational systems satisfying the above for different process algebras are abun-

dant, and many shall be referred to in the following chapters of this thesis. How-

ever, one of the motivations of this thesis is the axiomatisability of the theory of

open term reasoning. In the above definition of completeness, we are only guaran-

teed to prove valid equivalences between closed terms in our language. We shall

indeed see that in general there are valid equations relating open terms which are

not derivable in a system which is "complete" by the above definition. Thus we

could not rely just on equational logic to prove valid equivalences between under-

defined processes (those expressed by terms containing free process variables). In

general, we would need to invoke extra techniques (such as structural induction)

to prove such equivalences.

This deficiency leads us to define the following stronger notion of completeness,

w-completeness, which captures more closely the dual property of soundness..

(w-Completeness:) For a given congruence 	over a process

language 2, an axiom system T is w-complete if for all terms

t,uEPwe have that tu == YHt=u.

Chapter 2. Background 	 32

The term and the concept of w-completeness are used in [HEE86] in studying al-

gebraic specifications. However, this definition originally arises from the definition

of the infinitary w-rule of the)-calculus (cf., e.g., [BAR84], [H1N86]):

MZ=NZ VZ

M=N
	(w-rule).

We could get the power of this definition in our equational system easily enough

by simply allowing such a conditional axiom into our system; that is, allowing into

our axiom set the following law:

to— U0, Vo

t=u

However, we do not wish to allow this for two reasons. Firstly, we shall usually be

concerned with systems parameterised by a set T of unconditional axioms, so we

would not want to allow such a conditional law. More importantly though, we wish

to stay completely within equational reasoning. In order to use such an infinitary

law in a finite proof, we would need to invoke some extra powerful proof strategy

such as some form of induction just to generate the infinite set of premises.

Chapter 3

w-Complete Axiomatisations

Complete equational axiomatisations for process algebras exist in abundance. For

example, almost any standard reference on CCS (e.g., [MIL80], [M1L85]), CSP

(e.g.) [H0A85], [BR084]), or ACP (e.g., [BER84], [BER85]) will list several ax-

iomatisations for different languages, along with proofs of soundness and complete-

ness of the axiomatisations with respect to some semantic congruence. Indeed, we

shall meet several such axiomatisations for algebras based on CCS in this chapter.

However, rarely do these references deal with anything but closed-term rea-

soning, with the exception of [M1L84] and [M1L86], which (necessarily) deal with

the problem of relating open terms over the language of regular (finite-state) be-

haviours. In these latter studies, the equational theories for closed-term and open-

term reasoning coincide, so that the theory of closed-term reasoning is in itself

sufficiently powerful to prove true any valid open-term statement. Such is the

simplicity of the algebra that the w-completeness of the axiom set comes along

with the proof of simple completeness. However, this is not in general the case

when considering more complicated process algebras. Often it is the case that,

though a complete set of laws for some congruence over a process algebra is cer-

tainly sound for open-term reasoning, it need not be sufficient to prove all possible

valid open statements.

In this chapter, we investigate the axiomatisations of open theories for various

subsets of CCS. We shall see the mismatch occurring in the closed-term and open-

term equational theories, and discover that though it is often a simple matter

33

Chapter 3. w-Complete Axiomatisations 	 34

deriving a complete set of axioms for a given process algebra, this is by no means

the case when looking for an w-complete set of axioms.

3.1 A Simple Nondeterministic Language

We begin our study of Lo-complete axiomatisations with a consideration of a simple

algebra containing no operators for concurrent computation. The results presented

in this section are precisely a subset of those presented in [M1L84]. However, we

prove our results here without Miler's (implicit) assumption that we have an

infinite (non-exhaustive) action set'.

3.1.1 Finite Terms

The first language PO which we shall consider is a simple language of finite nonde-

terministic terms given by the signature E0 = {O, ., +}. The semantic equivalence

which we consider here will be the strong observational congruence defined in

Section 2.2.2.

The equational theory which we shall prove to be identical to the semantic

equivalence is the theory To consisting of the following four axioms:

(x + y) + z = x + (y + z); 	(A3) x + x =

x+y = y+x; 	 (A4) x+O = x.

The first point to notice about these axioms is that they characterise the usual

theory of strong observational congruence between closed terms, as shown in the

following proposition:

Proposition 3.1.1 The strong observational congruence over P°, the subset of

closed terms of the language P0 is exactly the congruence induced by the four

axioms of To given above.

'See the remark in Section 5.2 of [MIL80]

Chapter 3. w-Complete Axiomatisations 	 35

Proof:

See, e.g., [HEN85], Theorem 3.1. Alternately, the result follows from

the proofs in this section of the soundness and completeness of To for

arbitrary open terms (and thus for closed terms as well). 	0

Thus it turns out that we need not add any new axioms to deal with open terms

of the language. The proof of the fact that these four axioms exactly characterise

the congruence in the open theory is similar to the proof given in [HEN85] for the

above Proposition 3.1.1. It is broken down into two parts, proving soundness

and completeness of the axioms separately.

Proposition 3.1.2 (Soundness) To I- t = u = t '- u.

Proof:

It simply requires to show that for all terms t, u, and v:

(t+u)+v.-.it+(u+v); 	3. t + t 	t;

t+u ' u+t; 	 4. t+O " t.

But all ground instances of these hold (in each case, denoting left and

right sides by p and q, one can show from the definition of --) that

p --* p' if q 	p'), so the four laws follow immediately from the

w-completess rule for the semantic equivalence of open terms. 	0

The proof of completeness does not come so quickly, and will be treated in

depth, to set the stage for the more complicated languages which we shall be

considering later. The proof comes out of a sequence of propositions which define

and manipulate normal forms for terms of the language. The normal forms are

defined using a denotation function wh-ieh distinguishes between non-equivalent

process terms. The domain of values to which the denotation maps terms is given

by the least fixed point solution V0 to the set equation

Do = FIN (Var U Act x

Chapter 3. w-Complete Axiomatisations 	 36

where PFIN(S) represents the set of finite subsets of S.

Definition 3.1.3 The denotation of terms [• 	P0 —p V0 is given by:

101 = 0 	 j{atl = {(a, ItD}

= {x} 	It + U1 = [tJJ U u]J

Thus informally, the denotation of a term is a set containing all unguarded occur-

rences of variables in the term (those variables which appear but not as a subterm

in an action-prefixed term), as well as tuples representing the immediate actions

which the term can perform, together with the denotations of the resulting terms

into which the original term evolves. Being a set, idempotence is accounted for

(capturing axiom (A3)), the 0 process is absorbed (capturing axiom (A4)), and

order is ignored between summands (capturing axioms (A1) and (A2)).

The important properties which we shall use about the denotations of terms

are the following.

Proposition 3.1.4 (a, T) 	if t' such that t' = T with t --) V.

Proof:

By structural induction on t. 	 .. 	 0

Proposition 3.1.5 t 	--* p if either

(i) 3t, : t ---* V such that p = 	or

(ii) 3x E It] such that 	a

Proof-roof:

By By structural induction on t. 	 0

This proposition easily generalises to a sequence of actions as follows.

Chapter 3. w- Complete Axiomatisations

Corollary 3.1.6 t{P/} —I

N
-* p if either

(i) t' : t ---* V such that p = t'{P/}; or

3s1,s2,V,x with s= s1s2 such that t 	t', x € t'], and

p2, —* P.

Proof- roof:

By By induction on the length of s.

The denotation function is used to define the normal form of a term, which

will be an equivalent term which is expressed as a sum of action-prefixed normal

form terms added to a sum of variables. The normal form of a term is extracted

from its denotation as follows.

Definition 3.1.7 The normal form of terms nf() is given by:

nf(t) =

where

a(T) = > a.o(S) + 	x.
(a,S)ET 	 xET

By convention, we let .r(0) = 0.

Proposition 3.1.8 To. I- t = nf(t).

Proof:

By structural induction on t.

. 0 = o(0) = cr(j[0]) = nf(0);

x = 	= o(frI) = nf(x);

37

I

Chapter 3. -Complete Axiomatisations 	 38

ToHt=nf(t)cr(t}1)

== at
=0

a(o([t]))

=o({(a,I[i)})

=o[at)=nf(at);

• To I- t = nf(t) = o([t]I) and To I- u = nf(u) =

= t+u=TO o(I{tD+a(N)

=TO
tJUu})

	

o(j[t+u])=nf(t+u). 	0

Corollary 3.1.9 N = H ==> To I- t = u.

Proof:

t =T nf(t) = cr([tI) = o(Iu) = nf(u) =, u.

The next proposition is the main part of our completeness proof. It shows

that if two terms have distinct denotations, then there will be instantiations for

the variables in the terms which give rise to non-observationally congruent terms.

Hence the two terms will themselves be noncongruent according to our extensional

definition for observational congruence. The interesting point about the proposi-

tion is that it places no unnecessary restrictions on the action set Act; it merely

assumes that the set is nonempty - that there exists some a € Act. Clearly if

this were not the case, then there would be no observable difference between any

agents, and any observational congruence would collapse into the trivial congru-

ence equating all terms.

	

Proposition 3.1.10 Suppose that [t]1 0 [u; let fv (t) Ufv(u) 	= {x1 ,. .

m > max(ItI, Jul), a E Act, and j5 = { Am, .A2m,... , 4nm}, where A0 = 0 and

= aAk; then t{i5/}

Pro of:

Chapter 3. w- Complete Axiomatisations

By induction on JtJ + Jul. Suppose 	and let m,,p be given

as above; there are four cases to consider: x E 	\ 	x E Jul \
(b, T) E 	\ 	(b, U) E Jul \ j[t]j.

Suppose Xk E it], but Xk 0

then by Corollary 3.1.6, t{P/}
hm

0;
thus t{3/} u{l5I} == p 0 st u{l3/}

km
!- p;

lcm
however, if u{P/} 	p 0,

then again from Corollary 3.1.6, either:

(i) 	u' : u
km

u' st p = u'{/} (which is impossible,

as lul<m<km, so by Proposition 2.2.3, u
an .t);

or

('ii) 2i:O<i< lul<m, u',jstu a' —*u' with

x5 E lull sip5 akm
-~ p;

but p3 —f p'O

== i=(k.—j)m

== j= k, i=O, and u'=u (as i<m);

but then Xk E lull = Jul] (contradiction);

thus 	p " 0, so 	91 u{iö/};

Similarly, Xk E hull and Xk V j[t]j ==. 	91

Suppose (b, T) E 	but (b, T) V Jul;

by Proposition 3.1.4, 3tl st t' = T with t -L t';

so by Proposition 3.1.5, t{P/',}

thus t{i} u{P/}

== 3q v{i3/} st u{i/} -L q,

hence by Proposition 3.1.5, either:

(i) 3ul : u 	u' st q = u'{/} rI

thus by Proposition 3.1.4, (b, j{u'}j) E ![ull,
so since (b, T) 0 hull, Jul] V= T =

hence by the induction hypothesis (as from Prop osi-

tion 2.2.4, jill + lull < jtj + Jul),

39

Chapter 3. w-Complete Axiomatisations

v{i,i} 7L u'{i} (contradiction);

or

	

(ii) lx E Jul st P 	q;

that is, b = a, and ak> 0 st

xk E Jul and q = Akm_l;
km—I

hence q O 	0, so p 's-'0 st 	-_ p;

thus by Corollary 3.1.6, either:
Im— k

st" : t' a 	
t" st p 	'-i 0 (which is

impossible, as It'I :5 Itl - 1 < m - 1 < km - 1, so

ii

or

3i: 0 <i<it'i<m_ 1, 	 with
akm 1_

	

E t" st 	—* P-0;
akm 1 -

but p5 —+ pO

= i=(k—j)m-1>O;

(contradiction, as i < m - 1)

thus t{i} 71u{/},.

Similarly, (b, U) E Jul and (b, U)

D

Corollary 3.1.11 t u = 	I[t]j = Jul.

Proof:

Suppose [t]J 	f[u; let .;v-, j5 be as in Proposition 3.1.10;

then t{i} 9t u{P/}; hence by the w-completeness definition of the

semantic equivalence of open terms, t 7t u. 	 0

all

Corollary 3.1.12 (w-Completeness) t u ==> To F- t = u.

Proof.

Chapter 3. w-Complete Axiomatisations 	 41

Follows from Corollary 3.1.11 and Corollary 3.1.9. 	 0

As one last note to make about this sublanguage of nondeterministic terms,

the results presented here are basically as presented in [M1L84] and [M1L86] with

respect to regular behaviours. There Milner dealt with open terms of his language

in a different but equivalent manner. He firstly defined what it meant for a variable

to appear unguarded in a term as follows.

Definition 3.1.13 The set of unguarded variables of a term, U(.), is given by:

U(0)=Ø 	U(at)=Ø

U(x) = {x} 	U(t + u) = U(t) U U(u)

He then incorporated the effect of unguarded variables on terms into his definition

of bisimulation as follows.

Definition 3.1.14 t u if for all a E Act:

(i) t 	V implies Bu' such that u 	u' and t' 	u';

(ii) u ---* u' implies 3t, such that t -- t' and t' 	U';

(iii) U(t) = U(u).

Then the proposition which he states in [M1L86] without proof (as we do here) is

as follows:

Proposition 3.1.15 1 u ifft u.

Using similar notions as found in this section, Proposition 3.1.15 can be proven

assuming only a singleton action set. However, as we pointed out at the start of

this section, Milner's idea with his statement of the proposition was to allow a

potentially infinite action set.

Chapter 3. w - Complete Axiomatisations 	 42

3.1.2 Regular Behaviours

The regular behaviours defined in [M1L84] and [M1L86] also allow for recursive

definitions of terms, and Proposition 3.1.15 above relating and still holds

valid (where our definitions are suitablyextended to recursive terms where neces-

sary). However in order to prove this under the assumption of a singleton action

set, we must utilise a more clever trick than that employed in the previous section.

We must encode not the depths of the terms in the processes replacing the vari-

ables, but rather the number of states of the processes; being regular behaviours,

all of the terms represent finite-state agents, so finite terms all of the form Am as

above can be instantiated for the variables of non-congruent terms to get closed

instances of the processes which are not congruent.

3.2 Concurrency With The Left Merge

Operator

The next language P1 which we shall consider is a language which incorporates

nondeterministic choice as before, along with two operators for concurrent com-

putation, the full merge operator 11, and the left merge operator ([, introduced by

Hennessy and analysed extensively by Bergstra and Kiop et at. The language is

thus defined by the signature El = {O, ., +, IL}.

Notice here that our signature does not include the full merge operator 11. This

is because in fact as defined operationally in Figure 2-1, we need not introduce

the full merge operator into our signature at all, as we could define it simply

enough in terms of the left merge and choice operators as follows.

tHu 'E4 	tI[u + uJ[t.

Defined in this way, the operator behaves operationally precisely as expected:

the actions of the two process terms represented by its operands are interleaved

nondeterministically, with the choice of whether the first action deriving from the

Chapter 3. w-Complete Axiomatisations 	 43

first operand or the second operand itself being made nondeterministically. Thus

we shall only treat this operator as a form of syntactic sugar, allowing us to all

but ignore its existence in our analysis, forever reading t I u as t [u + u

The semantic equivalence which we consider here will again be the strong

observational congruence ".' defined above. The equational theory which we shall

prove to be identical to the semantic equivalence is the theory T1 consisting of the

following nine axioms.

(x+y)+z=x+(y+z)

x+y=y+x

x+x=x

x+O=x

Ol[x=O

cxIjy=c(xIIy)

(x + y)I[z = xl[z+ yz

(xII.y)11z = xI[(Y II z)

40=x

If our signature had included the full merge operator , then we would simply need

to add to the above list of axioms the defining law x 11 y = x[y + y[x.

The first thing to notice here is that we now have a richer axiom system than

that usually defined for dealing with closed expressions of this language. The final
(Li) o-nt

axiom(L5) can be omitted - which is what is always done - when considering
Ix

closed terms, as all closed instances of theeaxiomcan be proven by structural

induction using the other se,le -i axioms. Thus we have the following result.

Proposition 3.2.1 The observational congruence over P°, the sublanguage of

closed terms of the language P, is exactly characterised by the theory TO con-

sisting of the eight axioms (A1) - (A4), (L1) - (L4) given above.

Proof- roof:

All All closed instances of (L5) can be proven by structural induction using

the axioms of TO; so combining this with the results to follow on the

soundness and completeness of T1 for arbitrary open terms (and thus

closed terms as well), we arrive at our result. 	 0

Chapter 3. w-Complete Axiomatisations 	 44

However, the system TO itself is not enough to completely reason about open

terms over P. In particular, we shall show that TO 1/ (L5), which by the

Soundness Proposition 3.2.4 below is a valid law.

Proposition 3.2.2 Let:

V(0) =false;

V(x) = true;

V(at) = false;

V(t + u) = V(t) V V(u);

V(qu) = V(t);

F(0) = false;

F(x) = false;

F(at) —false;

F(t + u) = F(t) V F(u);

F(tI[u) = V(t).

(Thus intuitively, V(t) = true if the first action oft can be taken from a variable

process, and F(t) = true if the first action oft forced by a "IL" can be taken from

a variable). Then

O - = u = F(t) = F(u) A V(t) = V(u).

Proof:

We need to show that this property is preserved by reflexivity, sym-

metry, transitivity, and substitutivity, as well as by all the axioms of

(refi): F(t) = F(t) A V(t) = V(t)

(symm):

'(trans)

(suba)

F(t) = F(u) A V(t) = V(u)

F(u) = F(t) A V(u) = V(t)

F(t) = F(u) A V(t) = V(u),
F(u)= F(v) A V(u) = V(v)

F(t) = F(v) A V(t) = V(v)

F(t) = F(u) A V(t) = V(u)

F(at) = F(au) A V(at) = V(au)

Chapter 3. w- Complete Axiomatisations

F(t0) = F(u0) A V(t0) = V(u0),

(sub) 	
F(t1) = F(u1) A V(t1) = V(u1)

F(to+ti)=F(uo+ui) A V(10+t1)=V(u0+u1)

F(t0) = F(u0) A V(t0) =

(sub)
	F(t1) = F(u j) A V(t1) = V(u1)

F(t0 t1) = F(uo ui) A V(t0 t1) = V(no u1)

(Al) : F((t + u) + v) = F(t + (u + v))

A V((t + u) + v) = V(t + (u + v));

(A2): F(t + u) = F(u + t) A V(t + u) = V(u + t);

(A3) : F(t + t) = F(t) A V(t + i) = V(t);

(A4): F(t + 0) = F(t) A V(t + 0) = V(t);

(Li): F(O[t) = F(0) A V(0([t) = V(0);

(L2) : F(at[u) = F(a(t 1 u)) A V(atl[u) = V(a(t 11 u));

F((t + u)v) = F(t [v + uIlv)

A V((t+u)I[v) = V(t fv+ul[v);

F((tu)[v) = F(t(uv))

A V((tu)I!.v) = V(4(uj[v)).

These are all easily seen to hold. 	 L.

Corollary 3.2.3 TO /40 = X.

Proof:

F(40) = true 	false

45

Hence by Proposition 3.2.2, TO 1/40 = x. 	 0

Chapter 3. w-Complete Axiomatisations 	 46

We may now continue on to demonstrate that the theory T1 completely char-

acterises the extensional strong observational congruence over the language P.

Again we shall break our proof into two sections, a proof of soundness and a proof

of completeness of the axioms of T1. Firstly, the easy half is soundness:

Proposition 3.2.4 (Soundness) 7 F- t = u == t u.

Proof:

We only need to show that for all ground terms p, q, and r:

(p+q)+r 	p+(q+r) 	5. 	
0 ILP 	

0

p+q 	q + p 	6. 	ap[q 'S-' a(p 11 q)

p+p 	p 	 7. (p+q)[r 	p[r+qfr

p+O '- p 	 8. 	(pq)r 	p[(q 11 r)

9. 	PLO 'p

For cases 1 through 7, denoting left and right sides by P and Q, one

can show from the definition of --+ that P --- F' if Q --* P'; case 8

requires to be proven by induction on II + IqJ + Irl simultaneously with

(p H q) H r '' i II (q jJ r), using the easily-proven p II q i'.' q II p (or see,

e.g., [MIL80], Theorem 5.5 for a proof of the associativity of It); case

9 requires a structural induction proof. 	 0

For the proof of completeness, we again define a normal form for expressions,

and manipulate these to secure our result. However, its definition and some proofs

in this section require a nontrivial complexity measure on the structure of terms,

to justify that our inductively-defined concepts are well-defined, and--that our

inductive proofs are well-founded. The conditions which our complexity measure

C must satisfy, as will become clear later, are as follows.

 C(at) > 	C(t);

 C(t +u) > 	C(t);

 C(t +u) > 	C(u);

 C(xI[t) > 	C(t);

 C(atl[u) > 	C(tHu);

 C((t + u)11v) > 	C(tI[v);

 C((t+u)Ij.v) > 	C(ul[v);

 C((tJLu)I[v) > 	C(t[(u 	v)).

Chapter 3. w-Complete Axiomatisations 	 47

With this in mind, let width(.) be defined as follows.

	

width (0) = 1; 	width(at) = 1 + width(t);

	

width(x) = 1; 	width(t + u) = width(t) + width(u);

width(tlLu) = width(t) + width(u).

Thus informally width(t) defines a certain size for the term t, namely, the number

of 10, x, a} symbols appearing in t.

	

Next let the two norms 	and 	be defined as follows.

110110 	= 	1; 	IlatIl.= 	1+11 t ll;

	

lixilo = 1; 	lIt + u 	= max (lIt ho, II u IL);

lit [u 110 = lIt IL + II u IL

- f width(t), if t is not of the form toI[ti
iti

,
1 	

j width(to), if t is of the form t0 t1.

That is, 11 t 11, gives the width of the term appearing to the left of the outermost

IL operator, if the outermost operator is IL; otherwise, I It 1 gives the width of the

whole term t. Then our complexity measure will be

C(t) = 	(lit Ito, 11 Ill),

a tuple ordered lexicographically. It is straightforward to check that this complex-

ity measure C actually does satisfy the above inequalities.

Again we shall attack the problem of completeness by defining a denotation

function for distinguishing between non-equivalent process terms, thus defining a

unique normal form for any term. In this case though, the domain Of values to

which the denotation function maps terms of P1 is somewhat more complicated

than before. However, it can be specified in the same way, as the least fixed point

solution V1 to the set equation

V1 = FIN (Var x V1 U Act x v1),

Chapter 3. w-Complete Axiomatisations 	 48

where again PFIN(S) represents the set of finite subsets of S.

Definition 3.2.5 The denotation of terms H 	P1 -* V1 is defined inductively

by case analysis of terms as follows.

101
= 	{(x,O)}

ftat = 	{(a,IJt)}

+ u = 	U

DIOILtIl = 0

XVI = 	{(x,IJt)}

atuI = 	{(a, lEt II u]J)}

lE(t + u)Jjv1 = 	lEt 1v1 U lEuI[v

= K(U 1101

This is a valid inductive definition, due to our complexity measure defined above.

Furthermore, we shall be justified in using the same case analysis in our inductive

proofs to follow.

Informally; the denotation of a term is a set containing tuples which either

represent the immediate actions which the term can perform along with the deno-

tations of the resulting terms which the original term evolves into, or the unguarded

variables appearing to the left of a IL operator together with the denotations of the

terms appearing on the right side of the L.

We have a problem in our analysis to follow which derives from the confusion

between the terms (tILu)I[v and tlL(u II v). These two terms, although being de-

fined to be semantically equivalent, give us trouble in our syntactic analysis. In

particular,

(at [u) I1v -- (t II u) II

whereas

at[L(uIIv)—.-*tll(uIIv) 	(tu) 1v.

The problem arises as we have not enough power yet to express the fact that

II u) II v = t (u 11 v)]1. Also, we confuse in our analysis the two semantically

equivalent terms x and 40. Problems arise in our analysis here when we have

Chapter 3. w - Complete Axiomatisations 	 49

x{i5/} —4 p,

whereas

Again, we cannot yet prove that it 	= it].

To deal with these problems in our analysis in the remainder of this section,

we shall continue to use = to represent syntactic identity, and introduce 	to

represent syntactic identity modulo the following laws:

(xIIy)j!z = xII(yIIz);

xJy = ylix;

X 11 = X.

Notice that these are semantically sound laws, as they are all derivable from the

sound set of laws T1, sotu =#- tu.

The important properties which we shall use about the denotation of terms are

the following.

Proposition 3.2.6

(i) (a, T) E 	implies st', t" such that t ---* t', T = I[t"I, and t'

(ii) t 	t' implies st" 	t' such that (a, t"1J) E

Proof-roof:

By By case analysis on the structure oft, using induction on the structural

complexity of t. We only demonstrate here the most difficult case of

t = (uJv)LW.

(i) (a, T) E i(u [v) Lwj = uJj(v I] w)

== 	t' ,t st uL(v 11 w) 	T=[[tg 	 JJ, and t

(by the inductive hypothesis)

Chapter 3. w- Complete Axiomatisations 	 50

== u---u'stt=u'II(vIIw)

== t---(u'jv)Iw = Vt"
— 0 0

== 	letting t' = (u' 11 v) 11 w and t" = t" 0'

we have t ---* i', T = [t"JI, and t' =—

(ii) (uv)jjw ---) t i

= 	u--+
U, St

t'=(u' 11 V) 11w

== 	u[(v II 	u'11(v II w) 	V

== 	2t" 	u' 11 (v 11 w) 	V st (a, t") E u[(v 11 w)

(by the inductive hypothesis)

But since (ul[v)iLw = ul[(v II w),

(ajJt"1j) E (u[v)[w). 	0

Proposition 3.2.7

t 	t' implies t{i±} --

(x) T) e 	and p -- p implies 3t', p' such that 	-- p',

T= 	and 	p 1 V{.P/}.

By structural induction on

By case analysis on the structure of t, using induction on the

structural complexity of t. Again we only demonstrate here the

most difficult case oft = (uI[v)w;

(XI T) E (ut[v)[w] = [u [(v J] w)I and P.,
--* r

== 	t0,p0 st u{i/}ll(v{15/} II w{/}) 	Po,

T = Jtoj, and Po p ii to I~ihl;
(by the inductive hypothesis)

=

st Po = Po, (v{i} II

Chapter 3. co-Complete Axiomatisations

t{l5/} -- (p II v{7}) II w{P/} 	Po,

Let p' = 1 w{7} and t' =

Then t{P/} ---* p', T = 	and p' 	p

0

Proposition 3.2.8 t{P/} -- p implies either

3tI such that t --* t' and p 	 or

t', p' such that (x, I[t']l) E tJJ, p, 	p', and

pp'Ht'{13/}.

Proof:

By case analysis on the structure oft, using induction on the structural

complexity oft. Again we only demonstrate here the most difficult case

oft = (uJlv)[w.

((ullv)ILw)){15/} = (u{/}[v{/}) [w{/} -- i

u{/} -- q st p = (q H v{i5i}) II w{I5/};

= u{/}[(v{l/} II

q 11 (v{ii} 0 w{fi/})

Thus by the inductive hypothesis, either

(i) 3tI St u (v H w) --* t

and q I (v{ii} H

= 	u---+ u' St t'=u'Ij (v 11 W)

t--*(u'!Iv)lIwto,

= 	2t' St t --+ t' and p

or

(ii), Ix,t',p' St (xjt') E I[u11(v11w), p -- p',

51

Chapter 3. -Complete Axiomatisations 	 52

and q II (v{i} II 	P' IIti

(X, [VI) € j[t, p

and p = p' H t'{I}. 	 D

Proposition 3.2.9 Assume that jActi = 00; let fv (t) ç = {x1,x2, ... ,x}, and

fi = {a.O, a2.0, ---,a n'o}y ..,a.O}, where a1, a2, ..., a, E Act are distinct action symbols not

appearing in t; then

(xk,T) E {t] implies 3p,i' such that t{P/} .-.) p, T =

and p

t{P/} --+ p implies t' such that (Xk, [t']) E j[t] and

Proof- roof:

By By case analysis on the structure oft, using induction on the structural

complexity of t. Again we only demonstrate the most difficult case of

t = (ujjv)j[w).

(xk)T) e (uj[v)j[w = [u, [(v j

= p, t, st u{i5/} j[(v{J5/} II w{/}) -- p,

T = 	and p

(by the inductive hypothesis)

==. 	- 	p' st p = p, 11 (v{P,I} jJ

==- 	(p' II 	0

((uv) LW) {i5/} ak
-.4p

== 	 - p' st p = (' v{i})
Wf PQ

== u{/}j[(v{I5/} jj w{151± })

ak 	/ 1— •i 	1 — \ -* p' II vP/j II wP/) p

=== 	t' st (Xk, t[t'I) E j[u[(v II

and p, 11 (v{i5/411w{P/}) 	t'{P/}

(by the inductive hypothesis)

Chapter 3. w-Complete Axiomatisations 	 53

	

=. (xkjt')Et and pt'{/}. 	 0

The denotations of terms are again used to define the normal form of a term,

which in this case will be an equivalent term which is expressed as a sum of

action-prefixed normal form terms added to a sum of left merge terms whose left

operands are variables. The normal form of a term is extracted from its denotation

as follows.

Definition 3.2.10 The normal form of terms nf(.) is given by:

nf(i) = o, (it]),

where

o(T) = 	a.o(S) + E xfr(S).
(a,S)ET 	 (z,S)ET

Once again, by convention we let o(0) = 0.

Proposition 3.2.11 T1 I- t = nf(t).

Proof- roof:

By By induction on the complexity of the structure of t, using the axioms

Of T, and the definitions of {.]J and orQ.

00=o(0)=o(10]I)=nf(0);

x
= TI xI[0 = o({(x,ø}) = cr(xI) = nf(x);

T1 Ft=nf(t)=oflIt]1)

== 	at
=T, a(u(I[tJI))

= o({(a, VIM

=oflatI)=nf(at);

2jHt= nf(t)=ci(t]I), T1Fu=nf(u)=cr(E{ufl

Chapter 3. w - Complete Axiomatisations 	 54

t+U=T 	t]I)+o(juJI)

Ti °(lIi U {u)

=o(jJt+u)= nf(t -I- u);

O[[t 	0 = 	= 	OIIt) = nf(0);

I F t 	= nf(t[u) = cr(I[tt[u),

J F uIJt = nf(uLt) = 	uILtJJ)

atu =. a(tI[u + u[fi)

=, a(o(f{tI[u) + o(I[uft.tU)

=T a(cr([ttu U

= a(o(I[t[u + u[t))

= a(oflIt II ZL]J))

=cr({(a,l[t II u)})
= o(IatuI) = nf (at l[u);

7 Ft=nf(t)=oflIt]1)

== x[t= x(t)

= o({x, WD
= cT (Ix ([t) = nf(xl[t);

F tv = nf(tI[v) =

T1 F uy = nf(4v) = o([utv]I)

= (t+u)y= tI[v+uI[v

=r 	t[v]) + a(ul[v])

T otI[vI U utJv)

= o((t + u)[vI) = nf((t + u)J[v);

7 F tl[(u II v) = nf(t[(u H v)) = 	11 v))

=. (t[u)y
=Ti IL(t v)

T a(tJ(u H v))

= o((tJ[u)[vJJ) = nf((iIIy)lv).

Corollary 3.2.12 [t_—u == 7Ft=u.

Chapter 3. w-Complete Axiomatisations 	 55

Pro of:

	

T nf(t) cT(I[t]j) = 	u) = nf(u) =T U. 	 0

For the proof of the following proposition, we need to invoke an inductive

argument on the sizes of the denotation sets, where the size is basically the rank

of the set. For this we make the following definition.

Definition 3.2.13 For S E V1,,

ifS=O, rank(S)

= 	1 +max{rank(T) I (a, T) E S V (x, T) E S}, otherwise.

Proposition 3.2.14 Suppose thatJul; assume further that lActi = 00;

let fv(t) Ufv(u) 9 = {x1,x2, ... ,x}, and p = {a1.0,a2.0,...,a.0}, where

a1, %,..., a, E Act are distinct action symbols not appearing in u or v; then

t{P/} 71 u{P/2 }.

Proof- roof:

By By induction on rank(11th). Suppose 11th 71 Jul, and let ±, be as given

in the proposition; there are four cases to consider: (x, T) € t] \ Jul,

(X, T) E Jul \ 11th, (a, T) E 11th \ Jul, (a, T) E Jul \ 11th:

Suppose (xk,T) E 11t, but (xk,T) 0

then by Proposition 3.2.9(i), 3p, t' st 	-- ,

T = 11t'h, and p

Suppose t{i3/}

Then 3q " 	st u{Pi} !i q;

so by Proposition 3.2.9(u), 3u' st (Xk, E{u']) E Jul

	

and q 	'.-'
ttfp/t I;

but (Xk, l[t'I) 0 {u] == l[t'h 71 lull

so by the induction hypothesis, t'{P/} 21 u'{P/4

(contradiction);

thus 	96 u{P/};

Chapter 3. w-Complete Axiomatisations 	 56

Similarly, (xk,T) E Jul and (xk,T) g 	== t{i}96u{ 3/};

• 	Suppose (a, T) E 	but (a, T) V Jul;

then by Proposition 3.2.6(i), 3t,,t" st t --* t',

T = l[t"], and V

thus by Proposition 3.2.7(i), t{i} --*

Suppose t{I} u{i5/};

Then 3p t'{i5/.} s u{17} --) p,

hence by Proposition 3.2.8, either:

(i) au' .st u ---* u' and p u'{P/}

hence by Proposition 3.2.6(u),

u' st (a, u1) E Jul;

thus since (a, t') 0 Jul, !{t']I

so by the inductive hypothesis,

t'{i3/} /-' u"{P/} 	u'{i7},.

	

(contradiction); 	or

3 x,u',p' st (X, u') E Jul,
p -- p',

and p p' H
i.e., 3j, u' st (x5, Iu') E Jul , a = a5,

and

but by assumption, a5 does not appear in t;

hence (a5, T) V It] for any T (contradiction);

thus t{i} 9L u{P/};

Similarly, (a, T) E Jul and (a, T) g It] == t{i} 7, u{i5i}.

U

Corollary 3.2.15 t - u == 	=

Pro of:

Suppose it 	u; let , ji be as in Proposition 3.2.14;

Chapter 3. w- Complete Axiomatisations 	 57

then t{i} 71.. u{f/±}; hence by the w-completeness definition of con-

gruence of open terms, t 71. u. 	 0

Corollary 3.2.16 (w-Completeness) t - u == T1 F- t = u.

Proof.

Follows from Corollary 3.2.15 and Corollary 3.2.12. 	0

As one last note about this sublanguage P1, we can come up with an alterna-

tive characterisation for the extensional observational congruence similar to that

presented in Proposition 3.1.15, by incorporating the effect of unguarded vari-

ables in terms into the definition of the bisimulation underlying the congruence.

However in this case, we must be more careful in our approach. With the sublan-

guage P0 of nondeterministic terms, once a variable process was started, all other

subterms were ignored. However with the terms in this sublanguage P1, we must

account for the subterms representing processes which run concurrently with vari-

able processes which may be started. Thus we redefine the notion of unguarded

variables in this case to account for the extra required information as follows:

Definition 3.2.17 The extended unguarded variable occurrences Ü(.) of terms

are defined inductively on the complexity of the structure of terms as follows:

Ü(o) = 0;

12(x) = {(x,0)};

U(at) = 0;

Ü(t+u) = 12(t)U12(u);

12(O [v) = 0;

ti(xv) = {(x,v)};.

Ü (at j[v) = 0;

ü((t+u)ILv) = Ü(tOv)Ut?(u[v);

= Ü(tI1(uIv)).

Our alternate characterisation of our semantic congruence of open terms will

then be given by the following definition.

Definition 3.2.18 1 u if for all a e Act:

Chapter 3. w-Complete Axiomatisations 	 58

(i) 	 3u'stu--+u' and t'u';

(ii,) u -- u' 	t' st t --+ V and V u';

'iii) (x, t') E ü(t) 	', 3u' st (x, u') E 12(u) and t'

(iv) (x, u') E U(u) == 	t' st (x, t') € 12(i) and V u'.

That this definition gives us our required congruence comes as a corollary of

the following technical propositions.

Proposition 3.2.19 	= {(a, t') t --) 	u {(x, t') I (x, I') E 12(t)}.

Proof:

By induction on the structural complexity oft, using the definitions of

--* and l2. 	 0

Proposition 3.2.20 t] =H if I U.

Proof.

Using Proposition 3.2.19, by induction on the structural complexity

oft. 	 0

Corollary 3.2.21 t u if t u.

Proof.

(==) Follows from Proposition 3.2.20, Corollary 3.2.12 and the

Soundness Proposition 3.2.4.

(4=) Follows from Corollary 3.2.15 and Proposition 3.2.20. 	11

Chapter 3. '-Complete Axiomatisations 	 59

3.3 Concurrency With The Full Merge

Operator

The next language P2 we consider is a language which does not contain the left

merge operator L in its signature, but rather only the full merge operator 11, which

was a derived operator in the language P. The language is defined by the sig-

nature E2 = {O, ., +, 1 }. This is the most basic language of nondeterminism and

concurrency used in CCS, but as we shall see, the difficult problems which this

thesis is addressing are confronted in this most simple language. Namely, we shall

demonstrate the difficulty in finding an u-complete set of equational axioms for

this language under strong observational congruence (and will in fact leave this

problem open), and will in a later chapter actually show that any complete (not

simply just w-complete) axiomatisation must be infinite.

Again the semantic equivalence which we consider here is the strong observa-

tional congruence defined above. This theory is completely characterised by the

following (infinite) set of axioms.

(x+y)+z = x+(y+z); 	(A3) x+x =

x+y = y+x; 	 (A4) x+O

m 	 n
(Expmn) For u = 	aixi and v

i=1 	 j=1

uiIv = 	a(xIlv) + E /3(uJIy).

Proposition 3.3.1 The strong observational congruence over closed terms of the

language P2 is exactly the congruence induced by the infinite axiom set

= {(A1),(A2),(A3),(A4)} u {(EXpmn) I rn,n > o}.

Proof:

Chapter 3. w-Complete Axiomatisations 	 Me

For a full proof, see, e.g., [HEN85], Theorem 4.1. Otherwise note

that to prove p 	q, we need simply eliminate all occurrences of the

full merge operator 11 from each of p and q using the (valid) Expansion

Theorem axioms (EXpmn), and prove the remaining terms (from the

sublanguage °) to be equal using the sum laws (A1)-(A4), which we

proved in Section 3.1 to be complete for reasoning about P0 terms.

However, these axioms do not suffice as an w-complete set of equational axioms

for our congruence. For example, as pointed out in [HEN85], these axioms cannot

prove the following valid laws.

(C1) (xfy) Iz = xI(yIIz);

(CO x j y = yllx;

(C3) X 11 =

in order to prove these using the theory T20, we would need to invoke a structural

induction argument However, we could easily produce a (counter-) model for the

equational theory 70 which would contradict each of these statements.

Another simple law which cannot be proven within 720 , even with the above

three laws (C1), (C2) and (C3) is the following Absorption Law expressing the

partial application of the Expansion Theorem axioms (Expmn).

(Abs) (ax +y)IIz = (crx+y)llz + cr(xlIz).

That this law is sound can again be proven by structural induction using the theory

it is a straightforward corollary of the Expansion Theorem laws (EXpmn) and

the +-idempotence law (A3). However again we could produce a countermodel sat-

isfying the theory 70 U {(C1), (C2), (C3)} but contradicting (Abs), demonstrating

that 70 U {(C1), (C2), (c3)1 V (Abs).

In actual fact, there are seemingly arbitrarily-complex equational axioms which

are independent and which therefore must be included in any w-complete set of

axioms. For instance consider the following reduction laws which can all be seen

to be valid '-'-equivalence laws, but which cannot be proven within 'T°.

Chapter 3. w - Complete Axiomatisations 	 61

ax H (y + z) + a(x 11 y) + a(x I z)

= a(xlI(y+z)) + ax 11 y + axfjz;

(x+v)i(y+z) + xjiy + xIiz + vily + viiz

= xII(y+z) + vli(y+z) + (x+v)Oy + (x+v)llz;

(ax + v) H (i3 + z) + a(x II z) + /9(v ii) + V H z

= a(xil(fly+z)) + fl((ax+v)Ily)

+vII (fly +z) + (ax +v)iiz;

(ax + v) Ii (+ z + u) + a(x H) + a(x II z) + a(x H u)

+ V y + V Z + V U

= a(xiI(y+z+u))+vii(y+z+u)

+ (ax + v) H y + (ax + v) liz + (ax + v) u;

etc.

Each law in this series demonstrates how to express one term which contains a

single "largest" parallel composition as a summand (the first summand on the

left hand side of each equation) as a sum of terms containing only smaller par-

allel combinations. In each case, in some sense only the minimum amount of

"excess baggage" is included in the law in order to reduce the large composition.

For instance, the third law above demonstrates the least (information-theoretic)

valid statement expressing the parallel composition (ax + v) Ii (fly + z) added to

terms involving only smaller parallel compositions as a sum of strictly smaller

compositions. That is to say, any valid statement which does express the paral-

lel composition (ax + v) ii (fly + z) added to terms involving only smaller parallel

compositions as a sum of strictly smaller compositions must contain on each side of

the equation at least as much single-step behaviour as specified by the law above;

the left and right hand sides of the equation must have at least the abilities to

proceed as those of the minimal law above.

Chapter 3. w-Complete Axiomatisations 	 62

Each different pair of sumforms taken as operands to the parallel operator

produces a new law independent of those given by less complicated sumform terms

placed in parallel. For instance, the third law in the above list is not simply an

instance of the second law, by replacing x by ax and y by 113y. This is so as more

information about an indeterminate process gives rise to a more specific law.

Notice that when one of the factors in the term wanting to be reduced out is a

simple variable, then the reduction cannot be successful. We cannot express such

a parallel composition, added to only simpler parallel compositions, as a sum of

strictly smaller compositions. The large compositiQ1 will in fact have to appear

on both sides of the equality sign. The simplest such case of this phenomena was

already encountered with the Absorption Law (Abs) above.

The degenerate case, when all of the summands in the two terms to be combined

in parallel are action-prefixed terms, reduces to the Expansion Theorem: no terms

have to be added to the composition, which is equated to its expanded version.

In fact, the complete sequence of laws can be generalised into an axiom schema

similar to that for the Expansion Theorem in the following way.

m 	 r
For = >cru + >x3

i=1 	3=1

and = flivi+

P 	+ Ec(uIIy3) + 	E/3(vj Ox) + ExjOya
1=1 3=1 	 1=1 j=1 	 i=1 3=1

= 	(Ui 11 	+ 	,@(PHVi)

+ >xaIJQ + ~:Ph,3.

Notice that this schema includes the Expansion Theorem axioms (EXpmn), the

degenerate case of this sequence (by setting r = s = 0 in the definition of P and

Q), but it does not include the Absorption Law (Abs). This is because the law

(Abs) is an absorption law and not a reduction law; both sides of the law contain

the largest parallel composition. As remarked above, since one of the factors in the

Chapter 3. w-Complete Axiomatisations 	 63

largest composition in the law (Abs) is a simple variable, both sides of the equality

must contain the composition. Since this sequence of laws only attempts to present

the least amount of smaller compositions to use to express a term containing the

large composition as a term not containing the composition, nothing is implied by

this sequence when this is not possible. In fact, the closest we can get to (Abs)

using this sequence is the following reflexive identity (by setting m = n = r = 1
and s = 0 in the definitions of P and Q in the axioms schema).

(ax +y)ffz + (xffz) + Y

(ax +y)fjz + a(xflz) + yIlz.

The above axiom schema only deals with the case when two terms are combined

in parallel. There are analogous axioms which are independent of the above dealing

with three processes combined in parallel. For example, we have the following

three-factor reduction laws.

axfj(y+z)ff(u+v) + (xlIyIf(u+v)) + a(xJJzlI(u+v))

+a(xll(y+z)llu) + a(xfl(y+z)lIv)

+oxjjyffu + axffyfjv + axffz ffu + axllzffv

= 	(xfl(y+z)fI(u+v)) + a(xffyflu) + a(xflyflv)

+a(xffzffu) + a(xffzflv)

+xffyjf(u+v) + axflzfj(u+v)

+cxff(y+z)ffu + axff(y+z)fjv;

ax (/?y + z) (u + v) + a(x z (u + v)) + a(x (9 + z) H

+ axIJzIIu + axIIzIIv

+/3(axffyffu) + fl(axIfylfv)

= 	II A + z) 11 (u + v)) + # (ax 0 y 11 (u + v))

+a(xffzffu) + a(xIIzftv)

Chapter 3. w-Complete Axiomatisations 	 64

+oxIIzJI(u+v) + axjI(Oy+z)Iju

+c*xH (fly +z)Ov;

etc.

Again these axioms give the minimum laws for reducing large parallel com-

positions, and as such are not direct consequences of the two-factor laws. These

axioms for three terms combined in parallel can be generalised into an axiom

schema similarly to the above in the following way.

.rnp

For P = 	cru1 +
ap

i=1
mq

and 	= >2131v1 +
5=1
flq

i=1
Mr

and 	 +
7=1
nr

>Z5,
1=1

mp fig 	 m1, flr

P Q 1 R + EEai(ui II y5 I R) + E E ai(ui II Q ii z)
i=1 j=1 	 i=1 j=1

mq np 	 mq flr

+ 	 +
i=1 j=1 	 i=1 j=1

mr fip 	 M. fig

+ E E o(x3OQIIw1) + >2>cii(POy5IIwi)
i=1 5=1 	 i=1 3=1
1q 	 i' flr 	 np fl q

+ >PflyiIIzi + EExi llQOz j + E E xIIy5IIR
i=1 j=1 	 i=1 j=1 	 i=1 j=1

fl2 	 mq

= 	11 Q 11 R) ± >/3(P 11 vi 11 R) + >crj(P 11 Q 11 w)

+ >2x3(JQIIR + LPOys IIR + 	POQIIzs
5=1 	 5=1 	 5=1
mp fig flr 	 mq p r

+ >I 	Cei(Ui H Yj H Zk) + 	 /3(x II Vi II zk)
i=1 j=1 k=1 	 i=1 5=1 k=1

_r np fig 	 lp fig fir

+ E E E cr(x H Yk H w) + 	0
i=1 5=1 k=1 	 i=1 j=1 k=1

Similarly, there are axioms like these for n processes combined in parallel, for

each n > 1, none of which are instances of the others, and characterised by greatly

Chapter 3. w-Complete Axiomatisations 	 65

increasingly complex axiom schemata as n increases. However, all of these laws

can be collected together into one terse (albeit totally unreadable) axiom schema

as follows:

(Redt,mi ,nl ,m,n2mt,nt).

For Pi = >2 c j1u1 + >x21

(flx.IIHPi)
Ic{1,2,...,t} o:I-4c 	jET 	jI

III even 	:5i~fli

(fori =

+ 	 ajj (u II H Xk k II H 8)

	

I_C{1,2,...,t} jET 1-<j:5m o:I\{i}-w 	 kEI\{i} 	SJU
Vl even 	 l<uk:5nk

= 	 (HxJLHP)
Ic{1,2,...,t} 47:I-w 	iEI 	jI

Ill odd 1<o<n

+ 	E 	E E 	E ajj (ui, II H Xkcrk 0 II 18).

	

IC{1,2,...,t) jET 1<j<- o:I\{i}-w 	 kEI\{i} 	aT
III odd 	 1<k:5flk

Notice here that EXPmn = (Red2,m,o,n,o).

Thus we have an abundance of valid equations which we cannot prove within

our theory T20 and which are all seemingly mutually independent. Hence these

would all need to be added to our theory 70 to approximate an w-complete theory

T2 for strong observational congruence over P2. However, this is still not enough.

In all of the above reduction laws, we show how to reduce a term containing

a large parallel composition into one not containing the composition, by using

only strictly smaller compositions. There is also an abundd i of laws which show

under what conditions one (open) term can be absorbed into another (possibly

more complicated) term. That is, when terms P and Q are such that P + Q =

whence we say that P is absorbed into Q. These arise when the capabilities of

some term to proceed are matched completely by a subset of the capabilities of

another term; in this case, the former term can be absorbed into the latter. For

instance we have the following law.

Chapter 3. w-Complete Axiomatisations 	 66

X1 11 (Yi + Y2) + (a;1 + a;2) II Yi + a;i II Yi

= x11(y1+y2) + (x1 +x2) 1y1.

Here, the a;i II Yi term is absorbed by the two terms to which it is added. The

motivation for suspecting this to be a valid law comes from the following rea-

soning: the possibility of the absorbed term a;1 11 y j on the left hand side of the

equation proceeding via the process represented by the subterm a;1 is matched

on the right hand side of the equation by the possibility of proceeding with the

(a;1 + a;2) 11 y1 term via the same indeterminate process a;1. Similarly, the possibil-

ity of the absorbed terrriproceeding via the pro'cess represented by the subterm Yi

is matched in the a;1 JI (y1 + 112) term by the possibility of proceeding via the same

indeterminate process y.

Another similar absorption phenomena is given by the following equation.

X1 II (ay +112) + a;2 H (cy+y2) + (x1 +x2) 11112

+ (a;1 + a;2) II (ay1 + Y2)

= a;1I(ay1+y2) + x211(ay1+y2)

+ 	((a;1 + a;2) II Yi) + (a;1 + a;2) 0 Y2

Here one of the summands on the right hand side of the equation, c ((a;1 + a;2) II Yi),

is missing on the left hand side. However, the summand is implicitly there, as

the absorbed term, (a;1 ± a;2) jJ (ay1 + y2), can be expanded using the Absorption

Law (Abs) to include the missing summand. Hence we indeed in effect have an

absorption law. As before, the summand (a;1 + a;2) II (oy, + 112) is absorbed into

the other summands by almost identically the same reasoning as in the previous

example.

Indeed these two laws are valid --equivalences, as can be verified by a struc-

tural induction argument, or by translating them into the left merge language of

the previous section, where we have an w-complete axiomatisation. These two

laws do not in themselves suggest any new complexity in our search for an w-

complete axiomatisation for our equivalence. However, as was the case with the

Chapter 3. w-Complete Axiomatisations 	 67

above sequences of reduction laws, these absorption laws come in a whole se-

ries of increasingly complex, yet seemingly independent varieties. In fact, we

can generate such an absorption law to treat specifically the absorption of any

parallel composition of indeterminate processes. For example, consider the term

X1 11 cy 11 (/3z1 + z2 + z3). The corresponding absorption law tailor-made to absorb

this term is given as follows.

II 'Yi 11 (/3z1 + z2 + z)

+ (x1+x2)1Icyi 11(z1+z2 +z3)

+ Xi II aYl H z2 + xi H aYl 11 Z3

= (x1 + x2) H ciy1 (/3z1 + z2 + z3)

+ a(xi H Yi (z1 + z2 + z3))

+ /3(x1 ay, z1) + x1 11 aYi z2 + x1 11 CeY j H

Again, as was the case with the reduction laws, these absorption equations can

be presented as a single complex axiom schema as follows.

(Abm,n,p,si ,ti

Mn

4 Xi
	ft (zij +

i=1 	i=1 	i=1 :1=1 	1=1

+ 	+ x) H [I Xi I ft cy H ft (z + f i3,vi.)]
k=1 	 i=1 	i=1 	i=1 j=1 	j=i

ii4k

P ti ,,n 	n

+ 	(II x H fl ay
k=1 1=1 i=1 	i=1

M

m a 	 p a 	t

= > 	+ x) H fj x fl a1y fl (z jj +
k=1 	i=1 j=1 	2=1

i?6k

r m 	a 	 p 	 ti
+ >:: a { [J x2 H II cy H II (> z jj +

k=1 	i=1 	i=1 	i=1 2=1 	2=1
i~k

P 4rn 11 a
+ > 	([I X H ay II Z

k=1 1=1 i=1 	i=1

+ >>/ikz(fiIXIH ftaiYillzkz)
k=l 1=1 	i=1 	i=1

Chapter 3. w- Complete Axiomatisations 	 M.

These sequences of reduction and absorption laws are not completely mutually

independent. For instance, given the reduction law

(x+v)jI(y+z) + xIy + xHz + vHy + vOz

= xIj(y+z) + vI(y+z) + (x+v)IIy + (x+v)IIz,

we could easily deduce the absorption law

(x+v)Il(y+z) + X 1 (y+z) + vii (y+z) + (x+v)lly + (x+v)liz

= xil(y+z) + vlJ(y+z) + (x+v)ijy + (x+v)Hz,

using the idempotence of +. This situation is not surprising, as the reduction laws

did set out to provide the least terms to add to a composition in order to eliminate

the composition; the corresponding absorption law would necessarily contain at

least as much observable behaviour on each side of the equation. On the other

hand, we already know that the absorption schema allows us to eliminate paral-

lel composition with simple variable factors in the presence of more complicated

terms, which we were not capable of doing with the reduction laws. Hence it.

appears certain that the absorption laws do add power with which to reason.

There is one important point to note about these sequences. To prove the above

laws are valid, we need to invoke structural induction and the Expansion Theorem

laws (EXpmn). However, in the above we gave arguments as to why they should

be expected to hold valid; namely, every possible single-step behaviour exhibitable

by one side of the equation is matched by some single-step behaviour on the other.

In the laws which incorporate action symbols explicitly, the Expansion Theorem

laws (EXpmn) and the Absorption Law (Abs) are used to simplify the axiom.

However, when no action symbols appear explicitly in the axiom, then it is valid

by our informal reasoning regardless of the validity of the interleaving Expansion

Theorem. That is to say, we can reason that the actionless laws are so basic as

to be considered reasonable in any notion of equivalence based on behavioural

properties of processes. Indeed, some of the above absorption laws were noted in

[CAS87] and [CAS88] as valid axioms in their noninterleaving theory of distributed

Chapter 3. w-Complete Axiomatisations' 	 69

bisimulation. In fact, not only the action-free absorption laws, but also the action-

free reduction laws are valid in their theory. We shall exploit the independence of

these laws with respect to the nature of any particular behavioural equivalence in

Section 5.3 where we discuss the axiomatisability of any reasonable equivalence.

Hence we now find ourselves at a standstill. In searching for an w-complete

set of laws for our semantic congruence over this simple process algebra
P21 we

have uncovered a wide range of problems. Starting with the well-known complete

theory 70 for closed terms, we discovered we needed to include the following:

three straightforward laws for the parallel combinator, (Cl), (C2) and (C3), ex-

pressing the associativity, commutativity and 0-absorption of JJ; an Absorption

Law (Abs) motivated by the Expansion Theorem laws (Expmn); a whole series of
reduction laws, (Redt,mi,n,,m2n2mt,nt), describing when a sum of terms involving

a large parallel composition could be expressed as a sum of smaller parallel com-

positions; and finally a whole series of absorption laws, (Ab8m,n,p 81t132t28t),

describing when a particular parallel composition could be absorbed into another

term. Neither of the latter two classes of laws were obvious to discover. Nor is

it obvious that no other laws exist which are independent from the above collec-

tion. However, defining a normal form for the above theory in order to attempt to

prove w-completeness of this grandiose set of axioms with respect to our semantic

congruence is indeed far from trivial.

Chapter 4. Unique Decomposition Results 	 71

4.1 Full Merge Language

The language of terms we consider here is the language PO, the set of closed terms
over the language P2 given by the signature E2 = 10,-,+,11 }. The semantic
equivalence which we consider here will once again be the strong observational

equivalence . We rely on the well-known theory developed for this language

and equivalence which tells us. that the equivalence is completely characterised

by isomorphism between derivation trees, finite unordered trees whose arcs are

labelled by elements of Act, in which no two identically-labelled arcs lead from

the same node to two isomorphic subtrees.

The proof that follows will proceed by induction on the depth 	I of terms.

Equality throughout this section will represent semantic equality (strong observa-

tional equivalence). Thus in our proof, P = Q will mean P Q, not necessarily
syntactic identity.

The important properties which we shall use are as follows, and are immediate

results of the definitions:

P = Q implies IPI = IQI;
P 	0 implies IP H QI> IQI;

P = Q and 	a, P' implies Q -- Q'
for some Q' = F';

P --+ F' implies lVI> IP'l.

Definition 4.1.1 A term P is irreducible if whenever P = Q ff R, we have that

either Q=0 orR=0.

Definition 4.1.2 A term P is prime if P is irreducible and P 0.

Theorem 4.1.3 (Milner) Any term P e P 0 can be expressed uniquely (up to c")
as a product (parallel composition) of primes.

Chapter 4. Unique Decomposition Results

Proof- roof:

That That any P can be expressed as a product of primes is straightforward:

if P = 0, it is equal to the empty product; if P is prime, it is equal

to the singleton product, namely itself; otherwise P = Q 11 R where

Q, R 0, so by induction on depth, each of Q and R can be expressed

as a product of primes:

Q = Q1 II Q2 II 	1 Qm, 	R = R1 11 R2 11 ... H

Then P can be expressed as a product of primes itself by:

P = QORQilIQ2II11Qm11RiOR2IHR

The proof presented here that this factorisation is unique proceeds by

induction on JP.

Suppose that P = Q, but that P and Q have distinct factorisations into

products of primes given as follows:

P = A k,
 11 A •.. J An,

QAOA 12
II...41n II

where the Ai s are distinct primes (that is, i 54 j == Ai 54 A1), and

that k1,l>O.

Assume that all terms R with.IRI < jPI = !QI have a unique factori-

sation into a product of primes, and let exp(A, R) be the exponent of

prime A (the number of times A appears) in the unique factorisation

of R.

Let m be chosen such that km 54 im, and that JAj I > JAm J implies that

k j = l; that is, Am is a maximal-sized (wrt depth) prime appearing

in the factorisation of P or Q in which the exponents differ. Without

loss of generality, we can assume that km > 	(otherwise exchange

the roles of and Q).

Chapter 4. Unique Decomposition Results 	 73

The proof proceeds now by cases on the possible form of the factorisa-

tion of P:

1) Suppose P is a power of a prime: P = Akm

Firstly, if P is prime (that is, km = 1), then from P = Q, we

have that Q is prime, and since km > im) we have that Q = A3

for some j 54 m; but then Am = A5, contradicting the distinctness

assumption on the A 's.

Hence assume that km > 1;

We can do P -- F' for some a, F', and whenever p . 	pi, p

has a unique factorisation with exp(A, F') = km - 1.

This is true since

Am 5O

Am *R for some a,R

=

and IPI > IP'I> IRI = R and F' have unique factori-

sations given by:

R=A'jIAII...IpA,,

F' = Am1 1 A'1 A'2 . . Jj A'8 ,

and I4I < JR < I4mI 	Am A' for each i,

so exp(A, P') = km 1.

Suppose that im > 0;

Then similar to the above, we can do Q -- Q' for some

a, Q', and have a unique factorisation for Q' in which

exp(Am, Q') = im - 1;

But from the above,

F --+ F' == exp(Arn,PI) = km 1> im 1,

so F' =A Q';

Therefore ,P' = Q' St P --- P', contradicting P = Q.

Hence assume that 1m= 0.

Chapter 4. Unique Decomposition Results 	 74

Then from the maximality constraint in the definition of m,

Ii >0 == IAI :5 111m1;

Hence whenever Q --+ Q', Q' has a unique factorisation in which

exp(Am, Q') = 0;

This is true since

Q - -+Q'
== A3 --+ R for some j,R st 13 >0 where

= A'
. . II A' II 	Al- H R

and R, Q' have unique factorisations given by:

R = A' II A' H 	II A'

Q' = A' JJ... 0 A 	JJ... H A JJ A J...
and IAI :!~, IRI < 1A51 	IAmI (as l,.>0) for each i,

so A L Am for each i, so exp(Am, Q') = im 0;

But from the above, we can do P -- F' for some a, F', and F'

has a unique factorisation in which exp(Am, F') = km - 1 > 0;

Therefore ,Q' = F' st Q --* Q', contradicting F = Q.

2) Suppose P is not a power of a prime: 2j =A m st k1 > 0;

Let b,T be such that P ---+ T, and whenever P --) P', we have

that (since IFI ;, IP'I, JT, and hence F',T have unique factorisa-

tions) exp(A, F') :5- exp(A, T).

Then exp(A,T) ~! k,

This is true since

A0

== A3 --*R for some a,R

P -- F' = A'A' ... Akn H R,

and IPI >Jp'I> IRI => R and F' have unique factori-

sations given by:

R=AjAll ... 11 A:,
= Al A -1 Akn II A II.• 0 A,

so exp(Am, F') ~! km (since Tn j).

Chapter 4. Unique Decomposition Results

Let Q --* Q';

Then t,Rstl>çj and At -P_.R,

where Q1 = AflJ... OA t _h O...IIAin hIR,.
Since JQJ > IQ'I ~: IRI, R and Q' have unique factorisations given
by:

R=AAII...11A',

QlA1 IIAtI...O Ain fIAIJAII...IIA,,.
Suppose that exp(A, Q') = exp(Am, T) ~: k> im;

Then lstA' — A j

Thus lAI > I11 ~: JAf = lAmi, so by the maximality constraint

in the definition of in, we have that kt
= it, and t in,

soexp(Am,Q') = im+exp(Am,R);

However now, since kt = It > 0, we also have that

= A 1 H...IIA h I..!pAIR,

and

exp(Am,P') = km +exp(Am,R)

> i, + exp(A, R) = exp(Am, Q');
Hence exp(A, T) ~! exp(A, F') > exp(A, Q'), so Q'
Therefore ,Q' = T st Q --- Q', contradicting P = Q. 	0

We state one important corollary of this result here.

Corollary 4.1.4 (Simplification Lemma) For P, Q and R E

FOR = QOR implies P=Q.

Proof.

Let F, Q and R have unique factorisations given by

' 1iJL1'2IIlI1m

Q=Q1JJQ2FHIQ

R=R1 JjR2 fj... 11 R

75

Chapter 4. Unique Decomposition Results 	 76

Then clearly the unique factorisations for P 11 R and Q 11 R must be

given by

FuR = PiuIP2H ... uIPmuIRiR2II ... HRt

QIIR = QiIIQ2II ... IIQORiIIR2JI ... JJR

But since P 0 R = Q 0 1?, these factorisations must be identical.

Hence P and Q must themselves have identical prime factors, and so

P=Q. 	 0

4.2 A Simpler Proof

In this section we present a much simplified proof of the above factorisation theo-

rem. The proof derives from the above simplification lemma, which is first proven

independent of the unique factorisation theorem.

Lemma 4.2.1 (Simplification Lemma) For F, Q and R e

PHR=QHR implies P=Q.

Proof:

We actually prove the following two results by simultaneous induction

on JPJ+IQI+IRI:

(i)PIIR=QHR implies P=Q;

(ii) R — -R' and PIjR=QOR'

implies Q -- Q' for some Q' = P.

(i) Let PIIR=QIIR, and P---+P';

ThenPJIR--+P'IJR, so S=P'IIRstQIIR — H 8;

Hence either

(a) 	Q'
St

 Q --- Q' and Q' IJ R = F' 11 R, or

Chapter 4. Unique Decomposition Results 	 77

(b) 	 and QIIR'=P'IJR,

For (a), by induction hypothesis (i), Q' = P';

For (b), by induction hypothesis (ii), 3Q' = F' st Q --* Q'.

Similarly, PjR=QJJR andQ — --)Q'

implies 3P, = Q' st P ---* F'.

Hence PtlR=QllR implies p=Q

(ii) Let R---RI, and PIIR=QIIR',.

ThenPIIR_— *PII R', so]S=POR' stQII R'

Hence either

3Q'stQ--.Q' and Q' 11 R'=P 11 RI; or

2R" st R' -- R" and Q II R" = P J R',

For (a), by induction hypothesis (i), Q' = P;

For (b), by induction hypothesis (ii), 3QI = P st Q --* Q'.

Hence in any case, 3Q' = P st Q --- Q'. 	 0

Our result now follows quite simply.

Theorem 4.2.2 (Unique Factorisation of Processes) Any term P E PO can

be expressed uniquely (up to r..') as a product of primes.

Proof:

We shall not repeat the argument that the prime decomposition exists,

but rather just argue uniqueness. This we shall do by induction on I PI.

Thus suppose first that P = Q, and that P and Q have prime factori-

sations given by

C 1 A1 II A2 F ... II Ak ,

Q = CIIB1(JB211 ... IIB1)

That is, the two factorisations have a common prime factor.

Then by the Simplification Lemma 4.2.1, we have

Chapter 4. Unique Decomposition Results

	

A1 H A2 H A, = B1 B2 	H B1;

By the inductive hypothesis, A1 11 A2 	Il A,, and B1 ll 	B2 H •. B1 must

be identical prime factor decompositions;

Thus the prime factor decompositions for,P and Q above are identical.

Hence suppose that P=Ai II A2 iI .. . Ak andQ=B111B211...IIB1 are
prime factor decompositions such that for all i and j, A2 :A B3;

Ifk= 1 orl= 1, then P=Q is prime, so k=l= 1, and A1 =B1 ,

contradicting the distinctness of the A2 s and B '

Hence assume that k, 1 > 2;

Assume further that for all i and j, 1A11 (Ad, B3 (;

Let a, R be such that A1 --+ R, and let R have a unique factorisation

(as (RI < (A1(:5 (Fl) given by

11 =Ri ll R2 H••• II

Then F --+ F' with unique prime factorisation

	

F' = Ri II R2 (I • H R H A2 	• II A,,

Thus Q --+ Q'= F', so some B3 -- T with

=

Assume that j = 1, and that T has a unique prime factorisation given

by

TTi IIT2 Ij ... OT;

Then Q' = F' have unique factorisations given by

11 R,. 11 A2 ll • • . 11 Ak = T1 	• 11 T 11 B2 	B1;

Chapter 4. Unique Decomposition Results 	 79

Now these are identical prime factorisations;

But for all i and j, A 	B2 ,

and for all and j, IRl :5 IRI < IA,I :5 1B11,

so R B3 ;

Thus no term B1 appears in the factorisation

R1 H • H Rr H A2 H • • II Ak ,

so 1 < 2, contradicting the assumption that k, 1 > 2. 	 0

4.3 Adding Communication

The theorem of the previous section is valid when we use the merge with commu-

nication operator I instead of the merge-only interleaving operator H. The proof

is similar to the original proof of the previous result, but we must be careful to

recognise the possibility of two processes communicating to allow a r transition.

The setup to the theorem is identical to the last section, except for the language

which we consider. Here we are taking the language P, the set of closed terms over

the language 7'3 given by the signature 	{O, ., +, I }. The semantic equivalence

remains as the strong observational congruence '-i, and we can still characterise the

equivalence using derivation trees. Once again, equality throughout will represent

semantic equality (strong observational equivalence). The definitions of irreducible
and prime are the same as before.

We shall use a, b,... E A C Act to range over the non-7 actions (that is,
r 0 A), and i, ii,... € Act = A U {r} to range over all atomic action.

Theorem 4.3.1 (Unique Factorisation of Processes) Any term P E 0 can

be expressed uniquely (up to i-') as a product (parallel composition) of primes.

Proof:

Chapter 4. Unique Decomposition Results

Again, that any P can be expressed as a product of primes is straight-

forward. The proof that this factorisation is unique again proceeds by

induction on IPI, and the cases we consider are the same, only more

care must be taken in each.

Suppose that P = Q, but that P and Q have distinct factorisations into

products of primes given as follows:

P=AhIA 2 I...IAkn n

Q=A'lA 12 I...IA,

where the A s are distinct primes (that is, 10 j == A2 A1), and

that ki, li > 0.

Assume that all terms R with IRI < fF1 = IQI have a unique factorisa-

tion into a product of primes, and again let exp(A, R) be the exponent

of prime A (the number of times A appears as a factor) in the unique

factorisation of R.

Let rn be chosen such that km =h im, and that I1tI > lAm I implies that

k5 = l; that is, Am is a maximal-sized (wrt depth) prime appearing

in the factorisation of P or Q in which the exponents differ. Without

loss of generality, we can assume that km > I n (otherwise exchange

the roles of and Q).

The proof proceeds now by cases on the possible form of the factorisa-

tion of F:

1) Suppose P is a power of a prime: P = Akm. In,

Firstly, if P is prime (that is, km = 1), then from P = Q, we

have that Q is prime, and since k > im, we have that Q = A.

for some j m; but then A = A1, contradicting the distinctness

assumption on the A2 's.

Hence assume that k> 1;

Suppose that im > 0

Chapter 4. Unique Decomposition Results 	 81

IfAm*A for some a€A,

	

then Q 	Q' with exp(Am,Q') = im

ButP — -+P'

	

== 	exp(Arn,P') = km 1 > Im 1;

Hence 1 P' = Q' st P -— F',

contradicting P = Q.

IfAmA'

	

then P 	F' z= exp(Am, F') = km — 1 still;

and still Q -1-+ Q'

with exp(Am, Q') = l — 1 <km — 1;

So again ,P' = Q' st P .L Fl,

contradicting P = Q.

Hence assume that 1m = 0.

Then from the maximality constraint in the definition of m,

is > 0 = 4j1 < IAmI;

Hence Q 	Q' == Q' has a unique factorisation in which

exp(Am, Q') = 0;

But we can do P -— F' for some y, F'

such that CXP(Am, F') = km 1 > 0

Therefore ,Q' = F' st Q -—* Q', contradicting F = Q.
.) Suppose 2j m st k1 > 0;

Let ,u,T be such that P --) T, JPj = ITI + 1, and whenever
P --- F', with IP! = IP'I + 1, we have that (since Ip, < IP'I, ITI,
and hence F', T have unique factorisations)

exp(Am,P') exp(A,T).

Then clearly exp(Am,T) ~! km.

Suppose Q ±* Q' =

Then we have one of three cases:

i) 	s, R st 18 > 0 and A3 -- R,

where Q, = A' J 	jA's 1 ...IAL IR;

Chapter 4. Unique Decomposition Results

Hence IA,I = IRI + 1;

If 1A81 :5 IAmI,

then exp(Am, Q') < l, < km < exp(A, T),

(contradicting Q' = T).

If IA81> lAm I,

then exp(Am, Q') = l, + exp(A, R),

and sm, and k3 =18 >O;

SoP_'_+Pl__A1 lHA 1 IlA I

with exp(Am, P) = km + exp(Arn, R);

and IPI = JP'J + 1;

Thus exp(Am,Q') <exp(Am,PI) < exp(A,.,,T);

(contradicting Q' = T).

ii) it = r and 	 st l,l>O

and A3 --+ R and At --) R,

where Q1 	All I...IA1s'I...

Aln

But then JQ11,5JQJ..-.2= P1- 2 < IT!
(contradicting Q' = T).

'r and as,R,R',a st l> 1

and A3 --* R and A. --+ R',

where Q' = A'I A;2 I

"lAlRlR;
But then again !Q'I < IQI-2—_IPI-2<ITI

(contradicting Q' = T).

Therefore ,Q' = T st Q --* Q, contradicting P = Q. 	0

Again we close this section by stating the same important corollary.

Corollary 4.3.2 (Simplification Lemma) For P, Q and R E

P I R = Q I R implies P = Q.

Chapter 4. Unique Decomposition Results 	 83

Proof-roof:

As As in Corollary 4.1.4. 	 o

Notice that the Prime Decomposition Theorem is again a rather simple corol-

lary of the Simplification Lemma. However in this case we would find it quite

difficult to prove the Simplification Lemma without recourse to the Prime Decom-

position Theorem.

4.4 Adding Silent r's

In this section, we shall once again prove a unique factorisation theorem for our

language P30, but this time under (weak) observational congruence c. In this

case, we face problems with the definitions we have been using. We cannot proceed

blindly, as the theorem fails immediately. For instance, consider the term r.O; this

is not prime, as

r.O R:c r.O I r.O.

But there is no decomposition of the term r.0 into prime factors.

The above problem arises everywhere in which a i--prefix appears, due to the

following proposition.

Proposition 4.4.1 r.P 	r.O 1 F.

Proof:

By structural induction on F,. using the alternate definition ofc given

by Proposition 2.2.9.

Hence it would appear that no process term of the (semantic) form r.P can be

expressed as a product of prime factors. To remedy the situation here, we work

only with what Milner calls proper normal form terms, and we rely on the the

accompanying theory from e.g., [M1L85].

Chapter 4. Unique Decomposition Results 	 84

Definition 4.4.2 A term E ltiPi is in proper normal form (pg) if

It does not take the form T.P;

Each P1 is in proper normal form;

For k =A j, no p k-derivative of 1u5.P5 is sumcongruent

to Pk .

In this definition, a ,u-derivative of a term P is defined to be any term P' such that
IL P == F; and two terms are said to be sumcongruent precisely when they can be

proven to be equal using only axioms (A1) and (A2) from the previous chapter,

the associativity and commutativity of the nondeterministic choice operator +,

along with the usual laws of equational reasoning. An important property of

sumcongruence with respect to proper normal form terms is given by the following

proposition.

Proposition 4.4.3 For proper normal form terms P and Q, P Q implies P

and Q are sumcongruent, and so in particular, P 	Q.

Proof- roof:

See See Case 1 of the proof to Theorem 3.1 of [M1L85]. 	 0

What we shall show is that any proper normal form term has a unique factori-

sation into a parallel product of primes. With this we shall be as close as possible

to a complete decomposition theorem as we could possibly get, using the following

propositions.

Proposition 4.4.4 If = >J1L2.p1 is in pnf, then P 6c T.P' for any F'.

Proof:

Firstly, if P c r.P', then P c 7% P, as

P 	C r.P' C r.r.P' ---r.P.

Chapter 4. Unique Decomposition Results

Thus suppose P c r.P;

Then P = p' for some p' F;

Hence for some j with 1 < j n, yj =7- and p 	p';

By part (ii) of Definition 4.4.21 p' must itself be in pnf;

Hence from Proposition 4.4.3, P C p1;

If n = 1, then P r.p1, contradicting part (i) of Definition 4.4.2;

Hence n> 1, and there exists k 54 j with 1 < k <n;

Now P -ilk)- ph, so p' 	p" Ph, and again p" and p, are in fact

sumcongruent;

But then p" is a ILk -derivative of ji.p1 which is sumcongruent to ph,

contradicting part (iii) of Definition 4.4.2. 	 0

Proposition 4.4.5 (Normal Form Lemma) Any term P E P30 is congruent to

either a proper normal form term or a term 7-.P', where F' is in proper normal
form.

Proof- roof:

See See [M1L85], Section 3.3.

Proposition 4.4.6 (Hennessy) For terms F, Q E P°, P Q if either:

P c Q; or

P C r.Q; or

r.P c Q

Proof:

(4==) Straightforward, using P r.P;

Chapter 4. Unique Decomposition Results

(.) 	By Proposition 4.4.5, there are pnf terms F' and Q' such that

either P c F' or P c r.P', and Q 	Q' or Q c

In any case, P Q implies F' Q', so by Proposition 4.4.3,
PlcQ;

Then depending on the cases above, one of the the three conclu-

sions in the proposition must hold. 	 FE-

Thus given any term F, either P 	r.P, in which case we will be able to

express it as a proper normal form term, and hence by the result to follow as

a unique parallel composition of primes; or else P 	r.P, in which case by
Proposition 4.4.5, we can express P as F 	'r.P' for some F' in proper normal

form, so by Proposition 4.4.1, P 	r.O I F', and so we will be able to express

P uniquely as a parallel composition of primes (corresponding to the factorisation

of F'), composed in parallel with the term r.O.

When restricting our attention to proper normal form terms, we do not run up

against the difficulty in the mismatch between equivalence and congruence

in derivations of congruent terms as given in the alternate definition of 	given
by Proposition 2.2.9. This is due to Proposition 4.4.3, which tells us that

and 	coincide on the subset of proper normal form terms. Hence for proper

normal form terms, the definition of our congruence is exactly the largest (weak)

bisimulation relation defined over the set of proper normal form terms as given

in Definition 2.2.8. More importantly for us in what follows, the mismatch is

equally remedied in the alternate definition of observational congruence given by

Proposition 2.2.9.

Furthermore, syntactic depth of terms is preserved by congruence over proper

normal form terms, as congruent pnf terms are sumcongruent, and laws (A1)
and (A2), as well as the laws of equational logic, respect syntactic depth. Also,

proper normal form terms are closed under transition derivations, by part (ii) of
Definition 4.4.2. Finally, any factors of a pnf term are themselves expressible as

pnf terms, as

Fr.P 	PIQr.(FIQ).

Chapter 4. Unique Decomposition Results

This result is equally valid in the reverse direction, that is, if all factors of a

parallel composition are expressible as pnf terms, then the composition itself is

expressible as a pnf term. This reverse result is demonstrated by the following

propositions.

Proposition 4.4.7 For pnf terms P, Q andR, if P Q I then IPI =

Proof- roof:

By By induction on IQI + IRI.

Firstly, ifPOQIR,

then Q,R 0, so IPI = IQI = IRI = O,

(as P, Q, R and 0 are sumcongruent)

Hence IPI = IQI + IRI.

Also, zfQ0,

then IQI=O and PR, so IPI =IRl=IQI+JRl.

(as P and R are sumcongruent)

Therefore, assume P, Q 0 0;

Let p and F' be such that P 	F' and IPI = 1 + IF'I;

Then QlR= ,Q1 IR1 p I for some sE Act* st.jj;

Ifs — c, then p=r and P'QlRP;

But then since P and F' are sumcongruent, IPI = IF'I

(contradiction)

Hence se, so JQ'J+IR'I < IQI+IRI;

Thus by the inductive hypothesis, IP'J = IQ'I + IR'I < IQI + JRJ;

S0IPI<IQI+IJ1I;

Now let p and Q' be such that Q -- Q' and JQJ = 1 + Q'J;

Chapter 4. Unique Decomposition Results

Then P = F' Q' I R, so by the inductive hypothesis,

IF'I=IQ'J+IRI=IQI+JRI_l

Thus IPI,',~! 1 +IF'I~! IQI+IRI;

Therefore we have that IQI + JRI :5 IPI :5 IQI + IRI,

soIPI=IQI+IRI. 	 I.

Proposition 4.4.8 For pnf terms F, Q and II, if P Q I R then P 	Q I R.
Therefore in particular, if Q and R can be expressed as pnf terms, then Q I R can
be expressed as a pnf term as well.

Pro of:

POcT.(QIR),. 	 (by Proposition 4.4.4)

Suppose r.P c Q J 1?;

Then QlR=Q'IR'P,

soIPI=IQ'I+IR'j<IQI+IRHIpI,.

(by Proposition 4.4.7)

(contradiction);

Hence by Proposition 4.4.6, P c Q I R. 	 U

These propositions then easily generalise giving the following proposition.

Proposition 4.4.9 For pnf terms P and P (for 1 < i < n), if 	P, then

IPI=IPI, and PFc
	

A.

Proof:

By induction on n, using the previous two propositions. 	 0

Thus we can easily check that we indeed have the following desired properties

for our proof (where F, Q and R are parallel compositions of pnf's):

Chapter 4. Unique Decomposition Results 	 89

c Q implies Ill = IQI;

P 961 0 implies IP I QI> IQI;

P c Q and P --* P' implies 3Q, c p

such that Q 	Q';

P 	F' implies IFI> Ip'I.

The proof of the unique factorisation theorem that follows will proceed by

induction on the depth 1 I of terms. Again, equality throughout the proof will

represent semantic equality (observational congruence). Thus in our proof, P = Q
will mean P c Q, not necessarily syntactic identity.

Theorem 4.4.10 (Unique Factorisation of Processes) Any term P E 230 in

proper normal form can be expressed uniquely (up to) as a product (parallel

composition) of primes (in proper normal form).

Proof- roof:

Again, Again, that any pnf term P can be expressed as a product of primes

is straightforward. If P = 0 or P is prime, then P is equal to the

empty product or singleton product, respectively. If P = Q I R where

Q,R 54 0, then we can assume Q and R to be pnf terms with depths

strictly less than that of F, so by induction, Q and R can be expressed

as products of primes; taking the product of these products expresses P

itself as a product of primes.

The proof that this factorisation is unique again proceeds by induction

on jP, and the cases we consider are the same as before, only again

much more care must be taken in each.

Suppose that P = Q, but that P and Q have distinct factorisations into

products of primes given as follows:

P=A hIA 2 J...IA1 n

Q= All IAI...JAin

Chapter 4. Unique Decomposition Results

where the A1 's are distinct primes (that is, i 54 j implies Ai 54 A3), and
that ki, li > 0.

Assume that every pnf term R with IRI < IPI = IQI has a unique fac-

torisation into a product of primes, and let exp(A, R) be the exponent

of prime A (the number of times A appears) in the unique factorisation

of R.

Let m be such that 'm im, and that whenever IAII > J Aml we have

that k3 = l; that is, Am is a maximal-sized (wrt depth) prime appearing

in the factorisation of P or Q in which the exponents differ. Without

loss of generality, we can assume that km > 1m (otherwise exchange

the roles of and Q).

The proof proceeds now by cases on the possible form of the factorisa-

tion of F:

1) Suppose P is a power of a prime: P = A'm' Tm,

Firstly, if P is prime (that is, km = 1), then from P = Q, we

have that Q is prime, and since km > lm, we have that Q = A3
for some j 54 in; but then Am = A3, contradicting the distinctness

assumption on the A 's.

Hence assume that km > 1,

Suppose that im = 0;

Then from the maximality constraint in the definition of m,

i> 0 implies IAI :5 IAI,

Hence Q = Q' implies exp(A) Q') = 0;

But for some t, R, Am 	R,

so P 	F' with exp(A, F') = km - 1 > 0;

Therefore ,Q' = F' st Q = Q', contradicting P = Q.

Hence assume that im > 0;

Let jz,T be such that Am --* T, and IAmI = ITI + 1;

Chapter 4. Unique Decomposition Results 	 91

Then Q
-- Q' with exp(A,Q')l 	1, and IQ'J= IQI-1;

Suppose that P = F' =

Then IP'I = IP - 1, so clearly F' Am1 I A

for some A st Am + A;

Hence exp(Am, F') = km - 1 > im - 1 = exp(Am, Q'),
so J1 Q;

Therefore ,P' = Q' st P = F') contradicting F = Q.

2) Suppose 3i 54 m st k5 > 0;

Let ,i,T be such that P -- T, IPI = ITI + 1, and whenever

P 	F' with IFI = IP'I+l, we have (since IF! < IF'!, ITI,
and hence F', T have unique factorisations)

exp(Am, P') :5 exp(Am, T).

Then clearly exp(A, T) ~! km.

Suppose Q = Q' = T;

Then IQ'I = IQI - 1, so clearly 3t, R silt > 0 and A 	R,

where Q, = Alfl...IAt_hI...J Ain IR,.

and IAI = IRI + 1;

If IAI :5 IAmI,

then exp(Am, Q') :5 l, < km :5 exp(Am, T),

(contradicting Q' = T).

If 1k!> lAm!,

then exp(Am, Q') = l + exp(A, R),

and t 54 m, and k = lt > 0;

SOP _±_)pFA1 l.lAt_hl... IA I

with exp(Am, F') km + exp(Am, R);

and lI = JP'J + 1;

Thus exp(Am, Q') <exp(Am) F') exp(Am, T);

(contradicting Q' = T).

Therefore Q' = T st Q
-- Q', contradicting F = Q. 	0

Chapter 4. Unique Decomposition Results 	 92

Corollary 4.4.11 Any term P E P.0 can be expressed uniquely either as the par-

allel product of primes, or as the parallel product of primes in parallel with the
process T.O.

Proof- roof:

By By the remarks preceding the proof of the above theorem, any term P

such that P =h r.P can be expressed uniquely as the parallel composi-

tion of primes which are proper normal form terms. Clearly these are

primes over the whole language P30, and conversely, primes in P30 have

proper normal forms. Hence any P such that P 54 'r.P can be expressed

uniquely as a parallel product of primes.

For any term P such that P = r.P, we can find a proper normal form

term F' such that P = T.P' = r.O 1 P'. Thus we can express P uniquely

as the process 'r.O parallelly-composed with the parallel composition of
primes. 	 0

Finally we again state the same important corollary.

Corollary 4.4.12 (Simplification Lemma) For F, Q and R E P3 ,

P I R Q R implies P--Q.

Proof:

Similar to Corollary 4.1.4. 	 U

Notice that because of the problems introduced by the silent 'r action, we

cannot state this corollary any stronger. For instance, a 1 'r = ra 1 r, but a:A7-a;
we can only infer here that a --Ta, not a 	Ta.

However, if we restricted the terms P, Q and R in the Simplification Lemma

to be parallel compositions of pnf terms, then the lemma would be stated as usual,

with equality (semantic congruence) rather than equivalence in the premise and

conclusion.

Chapter 5

Nonexistence of Finite Axiomatisations

In this chapter we deal with problems of proving the nonexistence of finite ax-

iomatisations in various process algebras involving a symmetric parallel combi-

nator. Initially, we demonstrate the non-finite-axiomatisability of the Expansion

Theorem in the sublanguage PO of closed terms of the language containing the full

merge operator in its signature, with respect to strong observational congruence.

That is to say, we show that no finite set of axioms will suffice for an equational

theory to completely characterise strong observational congruence of our full merge

language. The proof will make no further assumptions on the set Act of atomic

actions other than it being non-empty; we simply assume that there exists some

a E Act. Thus the proof will hold even for the most restrictive case where there

is only one distinguishable atomic action. We then note how the proof extends

easily to the case where we allow communication as well as merge.

Next we extend the first result to problems in the axiomatisation of stricter

noninterleaving semantic congruences. We shall show in fact that any reasonable

congruence defined over our full merge language P20 cannot be finitely axiomatised,

where we define a congruence to be reasonable in a rigorous manner. The proof

presented in this final section will in fact cover the case of strong observational

congruence, and so subsume the result in the first section. However, the former

proof is included in the text as a stepping stone towards the more complicated

proof of the latter result.

93

Chapter 5. Nonexistence of Finite Axiomatisations 	 94

The proofs to follow will be very much proof-theoretic (as opposed to model-

theoretic) in nature. We shall be considering the possible natural deduction style

proof trees of certain valid statements, and shall often be making observations

about the forms of terms appearing in the trees. For this purpose, we shall find

ourselves making heavy use of the unique decomposition properties of the previous

chapter in order to restrict the possible syntactic forms which may appear in the

trees.

5.1 Saturated Axiomatjsatjons

The equivalences to which we shall restrict ourselves will all respect 0-absorption

through both the + and II operators, and in the sequel we shall want to deal

exclusively with terms which do not contain any unnecessary 0 summands or

factors. With this in mind, we define Ito be the term t with all 0 summands and

factors removed. Formally we have the following definition:

I 	if Jul =OAfv(u)Ø

- 	 t+u
0 	

ü 	if(tI=OAfv(t)=Ø
0= 	

1+ + ü otherwise

—
at
- 	 t 	If Jul =OAfv(u)0 at=

thu = 	ü 	ifltl=OAfv(t)0

III ü otherwise

We shall also restrict the type of axiom set which we shall allow in our proof

system, to exploit the above 0 absorption properties in our proofs. The special

class of axiomatisations will allow us to prove statements without invoking unnec-

essary 0 factors and summands. However, as we shall see, the restricted class will

not be a real restriction with respect to the properties of axiomatisability which

we are analysing. That is, given any arbitrary finite, sound and complete axioma-

tisatiori, we can produce another finite, sound and complete axiomatisation which

is in our special class of axiom sets.

Chapter 5. Nonexistence of Finite Axiomatisations 	 95

The axiom sets to which we shall restrict ourselves will be saturated, as defined
as follows.

Definition 5.1.1 Let T be an arbitrary set of equational axioms. The saturation
of T is defined to be

Sat(T) = TuT,

where

= {10=u0 I t,u,Cfv(t)Ufv(u)stt=u E T,

and

Proposition 5.1.2 Sat(T) = Sat(Sat(T)).

Proof- roof:

Immediate Immediate from the definition of Sat(T). 	 El

Proposition 5.1.3 TI- t = u if and only if Sat(T) F t = u.

Proof:

Again immediate from the definition of Sat(T). 	 El

Proposition 5.1.4 T is finite if and only if Sat(T) is finite.

Proof- roof:

Again Again immediate from the definition of Sat(T). 	 0

Thus from now on, we shall restrict ourselves to considering only saturated

axiom sets, that is, axiom sets T such that T = Sat(T). As we pointed out earlier,

the above results show that this assumption is not a restriction if we are interested

in finite, sound and complete axioms sets. However, an important simplification

of proofs is given as follows.

Chapter 5. Nonexistence of Finite A xi orri atisat ions 	 96

Proposition 5.1.5 If we have a proof of a statement P = Q in our natural deduc-

tion style proof system parameterised by a saturated axiom set 7, then replacing

p 	q throughout the proof tree by j3 = gives us a valid proof of the statement
P = Q.

Thus using a saturated axiom set, a (shortest) proof of a result containing

no occurrences of 0 as a summand or as a factor need not contain any occurrence

of 0 as a summand or factor in any of its intermediate terms.

Proof- roof:

It It is not hard to see that any inference:

"p1 =q...
(rule)

p

can be changed to a valid inference:

- 	-. 	(rule').
p=-q

The only nontrivial case is in dealing with axioms; here we have:

(t=u)
p = q

where p = q is axiom t = u instantiated by some substitution 0. This
inference can be replaced by:

(10 =u0)
pq

where

to = 	and u0

	

where 	{x J o =

Clearly, j3 = 4 is axiom io = z10 instantiated with substitution &

(i.e.,o-=r ==

Thus we restrict our proof system to be as described in Section 2.3.1, param-
eterised by saturated axiom sets.

Chapter 5. Nonexistence of Finite Axiomatisations 	 97

5.2 Strong Congruence

The process language we are considering here is the language 1', which is the

set of closed terms in the language P2 given by the signature E2 = {O,

The semantic equivalence we are considering is again the strong observational

congruence .d• As we saw, this congruence is completely characterised by the

theory 70 consisting of the following (infinite) set of laws:

(x+y)+z = x+(y+z) 	(A3) x+x =

x+y = y+x 	 (A4) x+O =

(Expmn) For P = jcxP and Q =

m 	 n

P H Q = 	a(P; OQ) + 	°1(PIIQ)
i=1 	 2=1

In the sequel, we shall use = to represent (semantic equality), and to represent

syntactic identity modulo associativity and commutativity of the operators + and

. For ease of presentation, we shall also extend the transition system -p to allow

P -- R whenever a' = R such that P -- P'.

We proceed first to present several technical results which we shall rely on in our

proof of the nonexistence of a finite equational axiomatisation of our equivalence.

Proposition 5.2.1 P = Q =#- IPI = IQI and 11(P) = 11(Q).

Proof.-roof:

This This follows easily from invariance through the laws of equational logic,

and through our axioms. 	 o

Proposition 5.2.2

Chapter .5. Nonexistence of Finite Axiomatisations 	 98

	

(i)P=O 	1 P1= 0 == l(P)=0;

(ii) P=a for some a€Act 4= IPI=1.

Proof-roof:

These These follow by structural induction on P. 	 0

Proposition 5.2.3 If P is reducible, then fl(P) > 1.

Proof:

IfP=QOR where Q,R5?O,

then 1(Q), 1(R) > 1,

so1l(P)=c(Q)+c(R)>2.

Definition 5.2.4 Let a E Act be fixed (note that this only requires that Act 0,
which we have said would be our only assumption on Act). Then let A and p

(n > 0) be defined as follows:

A0 Lg o,

def = aA (n > 0);

	

ço 	A (n>0).

The proof of our main result in this section will rely heavily on special prop-

erties of these sequences of process terms. These important properties are as

presented in the following sequence of propositions.

Proposition 5.2.5 For all m, n > 0 with rn 54 n we have that A n A, and for

all rn,n>1 we have that Am

Proof:

Chapter 5. Nonexistence of Finite Axiomatisations 	 99

mn = I4mI=in12= jAn j

== Am A.

= 1 	n = 1W.1 (for n> 1),

but IAm I = m =

so for all m,n> 1, Am 54 (pn, 	 Cl

Proposition 5.2.6 çc is prime for each n > 0.

Proof- roof:

This This is easily seen to be true, as (cp) = 1. 	 0

Proposition 5.2.7 P 11 Q = An if 3i,jstP=A, Q=A3, andi+j — n.

Proof:

(==) Ai II A1 = A +1 by induction on i + j;

(==) a is prime (as I(a) = 1), so the unique factorisation of Am into

primes is given by

Am = a Ha IIH a.
m

Thus if P 11 Q = A n, and P and Q have unique factorisations

given by

P = 'P1 H T21 	It T j and Q = 'P1 H 	II 	H

then each Ii = a, and so P = Ai and Q = 	and n = in.

I El

5.2.1 Preliminary Results

In this section we state and prove the technical lemmata which we need to derive

our main result in the following section. Firstly however, we define a few proposi-

tions on pairs of sets of terms which will designate properties of equations which

we want to analyse in our proof system.

Chapter 5. Nonexistence of Finite Axiomatisations 	 100

Definition 5.2.8 For n> 1 and U, V C PO being two sets of terms, let ®(U, V)

be the proposition which states the following:

PEUuV = P=—P, and Po,P'+p",

and ajjç = EU=

and 3PcUstP =all ço,

and AQEVstQ = ajIco.

Thus O(U, V) states (among other things) that the equation E U = V expresses

a (valid) equality between terms equal to a 11p7 in which the term all p7, is already

captured by a single summand on the left hand side of the equality, but not by any

single summand on the right hand side.

Then let e(U, V) eL(un. , V) V O(V, U).

Proposition 5.2.9 Let n> 1 and U, V C P20 be such that ®(U, V), and let

P E U U V be the term satisfying P = a 11 'p,; Then P A 11 P,, where

A = a and P, = çc'.

Proof:

aIIco --*co and aJlco fl —_*Ak for each k:1<J.<fl;

Hence P 0 aP' as aP' --) F' only,

but ço, Ak (1 < k < n) are all distinct;

Thus P P'IIP" where PI, P" 0;

Suppose the unique prime factorisations of F' and F" are given by

= F1' H P H 	H P, and F" = p1" 	; I ... 11.

PI,,;

Then since a and ço, are prime, we have that for some primes A = a

and P, = ço,,

P 'IIP" =

Chapter 5. Nonexistence of Finite Axiomatisations 	 101

sok=l=1,P'= Pit and Pit =p" 1'

and either F1' = a and P' = p, or = ço and F1" = a;

Hence either F' = a and F" = cp,, or F' =Wn and F" = a;

Thus PEAIP, where A=a and F=p. 	 0

The following proposition is the main technical result on which the nonexistence

of a finite axiomatisation proof rests, and has a correspondingly lengthy proof.

Proposition 5.2.10 Let F be a finite saturated set of sound (with respect to

strong observational congruence "-') axioms, and let n be bigger than the num-

ber of operators in any axiom of -T. Then no axiom t = u in F can be instantiated

to a statement p = q where p E U and q 	V such that ®(U, V).

Proof- roof:

Let Let n be as above, and suppose t = u is an axiom in F such that under

substitution a, t = u instantiates to p = q where p 	U and q > V
such that e(u,v).

Without loss of generality, assume that O(U, V);

Clearly, fv(t) = fv(ü), as t = u is assumed to be a valid axiom,

and if x E fv(t) \fv(u), then choosing M> Jul and defining

substitution a by

01 	ifxefv(u),
a(x)) =

AM, otherwise,

we would have that

hal ~: M> lual,

so that tor 96 ua, and hence that t 96 u.

t 	t1 +t2 + 	+ tk and u u1 +U2+ 	+ uki for some Ic, k'> 0,

where each t, u2 0 v + v';

Chapter 5. Nonexistence of Finite Axiomatisations 	 102

®(U, V) == for some i, either to A 11 P, or to- A 11 P, + Q,

where A=a and P=ço;

Consider the structure of t:

0 == to 0 (contradiction);

x == o-2, tcr and efv(u1) for some

== 	u1 	0, au', u' + u", u' 11 u"

== ujx and AIIpEV

(contradicting O(U, V));

	

t2 	at' 	tcT 	a(i'o) (contradiction),

t' + t" == (contradiction),

	

Thus t 	ii lit" and tic 	t'cr H t"ci = a fi ço,;

Hence t2 t' 11 I!' with tbor A = a and t"o- Pn = s0n;

Now tit vl+v2 +...vj where l<n and each vhv+vl;

so some VhO' = Ar, + J1r2 + + A1 for some m> 1 and

0<rl<r2 <...<rm;

Thus clearly v ft 0 0, av, v + V I , v 11 v', so Vh x for some

variable x where O= A, +Ar, + + Ar ;

Clearly x V fv(t'), as It Ioj = 1 <rm =

Let o' = a{aWnlx I;
Then t'o' 	t'o, and tcr' --* t'o-' 11 ço, = a

Therefore for some j, u1cr' --) all Wn;

Now uo' > n + 1 = luoi, so clearly x E fv(u5);

Consider the structure of u:

Chapter 5. Nonexistence of Finite Axiomatisations 	 103

u5 	0 = x V fv(u) (contradiction);

u5 	x == Ufi' ap 	a 11 ço (contradiction);

U1 au' = u ju' a(u'u')

== u'cT' = all p. and Efv(u')

== u'w +W2+"+ w1 for some 1 with each

Loh 0 w + w', and x E fV(Wm) for some m;

Consider the structure of the Wm with x E fv(wm):

Wm 0 == xgfv(w)

(contradiction);

==' xEfv(w)

== n +1 < lW0'l <lm0'l

:5 (u'a=n--1

(contradiction);

Wm 	w + w' = (contradiction);

WmEWIIW' == xEfv(w)orxEfv(w')

==

	

	n +1 < lwo'l ± Jw'r'l = l"ml

:5lu'ol<n+l

(contradiction);

Thus x E fV(Wm) = W 	x and wmc7' = ap;

But u'cr' E wo-' = a I cp

So 	Wm0 + ap = a 0 ço,,

afv(wm)

or 	Wm =

xfv(m)
Thus n + 1 < Iu'oi < luoi = n + 1 (contradiction);

u1 = u' + u" ===>. (contradiction);

Hence u3 U' 11 U" with x E Mu');

Now since u"o --) p for some p, we have ua ---* u'cr 0 p;

Thus u'cr 0 = ço oru'a 11P = Ar for some r:1 <r < n;

Chapter 5. Nonexistence of Finite Axiomatisations 	 104

II p = (p ==> p = 0 and u'u =

(since u'cr 0, and W,, is prime)

== 	uy u'cr 11 u"o' = a

(contradicting O(U, V))

Ulu P=Ar 	u'cTA,j for some r'<r;

But Efv(u'), and or. =A, +A 2 + + Arm ;

Hence clearly u'o An for any r' (contradiction)

Therefore no axiom t = u in 9: can be instantiated to a statement p = q

where p >JU and 	>V such that e(u,v). 	 0

Hence we have that the axioms alone cannot generate arbitrarily complex valid

equations of the form we are analysing. The following proposition further restricts

the possible ways of generating these statements as resulting leaves of proof trees.

With these results, our main non-finite-axiomatisability result will follow quite

immediately.

Proposition 5.2.11 Suppose in a soundproof, we have an inference:

p=r r = q
(trans)

p = q

where pU,qE>V,rw

and R E W 	R R, and R 0 0, R' + R";

Then

e(u, V) == e(U, W) V e(w, V).

Similarly for the (sub+) rule; corresponding to the inference:

p = q p' = ql

p+p' = q+q'
(sub)

where p >U, q >V, p' EU', and q' >V', we have the result that

Chapter 5. Nonexistence of Finite Axiomatisations 	 105

e(u U U', vu v') = e(u, V) v e(u', v').

Therefore, a statement p = q where p E U and q E V for some U and V

satisfying ®(u, V) cannot be initially introduced into a proof tree as the result of
the application of either the (trans) rule nor the (sub) rule.

Proof- roof:

Consider Consider the (trans) rule case:

Assume ®(U, V); We know immediately that

FE UUVUW

	

P 	P and P#0, F' + F",

and (from O(U, V), and the soundness of the proof in which

the inference appears) that

aIIWn = EU = EV =

Now if ,R € W st R = a 11 ço, then clearly e(U, W);

And if 3R E W st R = a 11 ço,1, then clearly EJ(W, V);

Similarly, O(V, U) ===> ®(W, U) V e(v, W);

Hence ®(U, V) ==> ®(U; W) V O(W, V).

The (sub+) rule case is similarly straightforward:

Assume e(UUU', VuV'); Again we know immediately that

FE UUU'uVuV'

	

= P 	P and P 0 0, F' + F",

and that

P E UUU' stP =a o;

Suppose this P E U; then (from ®(U U U', V U V'), and

the soundness of the proof in which the inference appears)

we have that

Chapter 5. Nonexistence of Finite Axiomatisations 	 106

aOco = >2U = >2V,

so clearly ®(U, V);

And similarly, if this P E U', then O(U', V').

Similarly, ®(V U V', U U U') == ®(V, U) V ®'(V', U');

Hence O(UUU',VuV') == e(U,V)ve(U',Vl).

5.2.2 Main Result

Here we state and prove our main theorem, the nonexistence of a finite axiomati-

sation for our congruence.

Theorem 5.2.12 Let F be a finite saturated set of sound (with respect to strong

observational congruence r.') axioms, and let n be large enough (as allowed by

Proposition 5.2.10) so that no axiom in F can be instantiated to express any

truth p = q where

p 	>U and q >V such that ®(U, V).

Then our system cannot prove the valid statement

a I Wn = ao+A2 +A3 +...+A +1

Hence no finite complete axiom system can exist for strong congruence '-'.

Proof:

Suppose we have a (shortest) proof of the statement

aJJço = aço+A2 +A3 + --- 4 +1

which involves no terms containing 0 as a summand or a factor. The

proof takes the following form:

Do 	
(rule),

p= q

Chapter 5. Nonexistence of Finite Axiomatisations 	 107

where p>U0 and q> V0 for

Uo = {a II ca} and V0 = {ap, .2, A3, 	,

so clearly ®(U0, V0) holds.

Since this must be a finite proof, somewhere in the proof tree is an

inference

V
(rule) where e(u,v),

such that the premise V of the inference contains no equality

V' where e(u',v'),•

By Proposition 5.2.11, (rule) can be neither of (trans) nor (.sub+);

Furthermore, by Proposition 5.2.10, we know that (rule) cannot be

(t = u) for any axiom t = u E ;

Also clearly (rule) cannot be (symrn), as O(U, V) 	O(V, U);

Finally, (rule) cannot be any of (ref 1), (suba), or (sub), as this would

contradict ®(U, V);

Hence we have shown that the original statement cannot be proven.

5.2.3 Adding Communication

We could repeat the above proof for the nonexistence of a finite axiomatisation

for strong congruence over the language P3 which contains the parallel combinator

which allows communication (synchronisation of complimentary actions) as well

as merging of actions. The proof would be identical under the assumption that

our atomic action a was not its own complimentary action (that is, a 54 a). The

reason that the proof would remain unchanged is that a is the only action symbol

which appears in any term used throughout the proof, so no communication could

Chapter 5. Nonexistence of Finite Axiomatisations 	 108

occur, and the communicating case would degenerate to the non-communicating

full merge case. Hence we do not bother repeating the argument here.

5.3 Noninterleaving Semantic Congruences

In this section, we shall in one fell swoop prove that any "reasonable" congru-

ence which is at least as discriminating as observational congruence is not finitely

axiomatisable over the language ?° whose signature contains the symmetric full

merge operator but not the left merge operator. In particular, we shall show that

any attempt at axiomatising such a "reasonable" notion of noninterleaving seman-

tic equivalence is doomed to suffer the pitfalls of non-finite-axiomatisability. The

only hope for such systems is either to go outside of the system to introduce new

operators, for example, to incorporate the left merge operator l[or else to find

some "nice" axiom schemata in the spirit of the Expansion Theorem.

The observations on which we build here are those made in Section 3.3 while

working with the language P2, looking for an w-complete axiom set. There we

discovered an abundance of unexpected arbitrarily-complex independent axioms

which had to be included in a complete set of axioms. Some of the same ob-

servations in a different line of study - that of axiomatising a certain noninter-

leaving semantic equivalence, distributed bisimulation equivalence— were made in

[CAS87]. Using the insight gained from those observations, we shall here modify

the proof of this chapter to apply not just to observational congruence, but to any

reasonable congruence which is at least as discriminating.

We must state precisely what we mean for a congruence over PO to be "rea-

sonable". Much thought has gone into the problem of settling the question of

exactly what identities should hold in a good semantic equivalence. Firstly, as

stated already, the equivalence should definitely be a congruence, thus allowing

the validity of substitutivity of program parts. Secondly, there are very strong

arguments that any terms which are identified should at least be observation-

ally congruent; the arguments which distinguish observationally distinct processes

Chapter 5. Nonexistence of Finite Axiomatisations 	 109

should hold valid for our hypothetical "reasonable" equivalence. Notice here how-

ever that we are not abstracting away from internal events which should not be

observable to the environment.

Outside of this, there is little agreement as to how fine a congruence should

be. The greatest arguments stem from the Petri net community and other propo-

nents of noninterleaving semantics. The objections to the grossity of observational

congruence arise due to its property, introduced by the Expansion Theorem, of

identifying terms involving distinct causal dependencies on their actions. For in-

stance, a simple application of the Expansion Theorem would quickly lead us to

conclude that

a 11 b = ab + ba.

However, whereas on the left hand side of this statement, there is no causal depen-

dencies expressed between the two actions a and b - the two actions are simply

performed independently - the summands of the term on the right hand side each

express a definite causal relationship between the actions; in the first summand,

action a must occur before action b, whereas this situation is reversed in the second

summand. Such an interleaving semantic understanding of processes reduces par-

allelism to a nonprimitive operation definable in terms of nondeterministic choice

and causal dependency. Objections arising against this viewpoint stem from the

belief that parallelism should not be expressed as above, but rather that it has

properties which should guarantee it a place among the set of primitive concepts.

Thus we contend that the reasonable congruence which we are seeking is strictly

finer than observational congruence. But how far must we cut down on this equiv-

alence in order to reach a "reasonable" congruence? We want to cut down on

it far enough to avoid all possible objections to the treatment of concurrency.

For instance, we would not want to allow the following partial application of the

Expansion Theorem:

a 11 b = a 11 b + ab.

Chapter 5. Nonexistence of Finite Axiomatisations 	 110

This could possibly be considered a valid law in some noninterleaving semantic

theory, as the concurrent nature of the atomic processes are still present on both

sides of the equation. However, it still allows the introduction of causal dependency

where it had not previously existed, and as such is faced with the same arguments

faced originally by the Expansion Theorem.

However, we do not want to allow our "reasonable" congruence to be too fine.

For instance, Winskel's event structure semantics ({W1N83]), as well as the original

event structure semantics of Boudol and Castellani (Section 3 of [B0U86]) only

allow process terms to be identified if they are identical modulo the associativity,

commutativity and 0-absorption of the + and 11 combinators, as well as the asso-

ciativity of a sequential combinator in the latter case. Clearly these approaches

are too strict, as they do not allow for any non-trivial identities, not even the

well-accepted idempotence of +.

What we in fact argue here is that some of the reduction laws introduced in

Section 3.3 are acceptable identities to make in any reasonable congruence. For

instance we want to allow the following identity:

(x+v)ll(y+z) + xy + zz + vHy + vIIz

= xtI(y+z) + vii (+z) + (x+v)1iy + (x+v)iiz.

As argued in Section 3.3, this reduction law can be informally justified as follows:

every possible single-step behaviour which one side of the equation can exhibit is

matched by an identical single step behaviour on the other side of the equation

within an identical parallel context. For example, the possibility of the indeter-

minate process x proceeding in the second summand x J y on the left hand side

of the equation is matched by the possibility of the same indeterminate process x

proceeding in the third summand (x + v) ii y on the right hand side of the equa-

tion: both allow the indeterminate process x to proceed in the context where it is

running in parallel with the indeterminate process y. This reduction law, as with

many of the other reduction and absorption laws introduced in Section 3.3, does

not introduce causal dependency where it did not previously exist. Indeed, it does

Chapter 5. Nonexistence of Finite Axiomatisations 	 111

not mention any action terms explicitly. Thus it is not open to the objections

faced by the Expansion Theorem.

Hence, to summarise, we want our "reasonable" congruence to be at least as

fine as observational congruence, and to satisfy reduction phenomena of the above

form. That is, we would like any congruence to satisfy the following sequence of

reduction laws.

+ >E(xIfy)
i=1 j=1

	

M n 	 n m

	

[Xi II (>)]+ 	yj].

Notice that this is just a small subset of the laws from Section 3.3 which we

could argue to be reasonable. However, we only need to consider this sequence

to prove our result. Thus by taking m = 2 in the above schema, and allowing

the substitutions x, y := .A, we want to consider it to be reasonable that our

congruence satisfy the following sequence of reduction laws (one for each n > 0):

(Reds) 	2Hn + 	EAIjA1 = 	 + EW2I1A1.
i=1 j=1 	 i=1 	 1=1

For instance, for n = 3 we have the law (Red3) given as follows:

(a + aa) 11 (a + aa + aaa)

+aIIa + ajjaa + ajlaaa

+aalja + aaOaa + aallaaa

= a H (a + aa + aaa) + aa II (a + aa + aaa)

+ (a + aa) Ila + (a + aa) II aa + (a + aa) Ilaaa.

Recall now that our proof of the nonexistence of a finite axiomatisation for

strong observational congruence '-' proceeded as follows: We demonstrated a cer-

tain set of equivalences {s 	ti I i >_ 01 such that given any finite set F of --valid

axioms, we could choose n big enough so that F 1/ 	tn.

Chapter 5. Nonexistence of Finite Axiomatisations 	 112

Suppose we consider now a new congruence which is stronger (finer) than

observational congruence 's. Suppose we also have that Vi > 0 s2 t2. Then as a

corollary of the above result, we would have that was not finitely axiomatisable,

for if it were (say some set F finitely axiomatised), then we would have that

F I- s, 	t Vn > 0. As 	F would be a finite set of -valid laws, so our

property that F 1/ s = tn for some n would contradict the completeness of F for

the congruence .

Thus to extend this proof to our wider class of equivalences, we need to replace

the set Isi = ti I i ~! 01 of "-equivalences with one containing -equivalences.

We will in fact use the sequence of reduction laws Reds mentioned above for this

purpose, thus allowing our proof to apply to any "reasonable" equivalence.

5.3.1 Preliminary Results

In this section we make some technical definitions and state and prove the tech-

nical lemmata which we need to derive our main result in the following section.

We shall continue in this section to use = to represent strong congruence and

to represent syntactic identity modulo associativity and commutativity of the

operators + and 11.

Firstly, we want to restrict our attention to a certain subset of process terms

as defined as follows.

Definition 5.3.1 For any arbitrary integer n > 2, we define S to be the deriva-

tion and a-prefix of derivation closure of the set {c02 II co}. That is, S, is the

smallest set satisfying:

2OcflEfl;

P E S, P -- p1 ==:>.
P',aP' E S.

We can express this set explicitly as follows.

Proposition 5.3.2

Chapter 5. Nonexistence of Finite Axiomatisations 	 113

{cIkfl} u fA j I Aj I O<i<2, O<j<n}

u{AII w. 1 0<i<21 u {co2IIA1 Jo <j <n}

U{a(AlI) 1 0<i<21 u {a(2IIA5) I Oj<n}

U{a(Aj IIA5) 1 O<i <2, 0<j <n, i+j :5n+i}.

Proof:

Straightforward. 	 1!

Proposition 5.3.3 If P + Q = S for some S C 9n, then P = E T for some

Tc&.

Proof- roof:

Let p a
)
 p, ; LetP*P';

Then >JS — -P" = P,,

soPo --3P" for some P0 ESc;

But then by Definition 5.3.1, aP" E S;

Thus letting T = {aP" E S I 3P, = F" st P -- F')

we have P = T.

Corollary 5.3.4 If = >S for some S C, and P -al - F' for some j > 0,

then there is some R E 	such that R = F'.

Pro of:

Suppose P --* P" 	F';

Then by Definition 5.3.1, ES ---* P0 = F" for some P0 E

Hence by Definition 5.3.1, P0 	R = F' for some R E S. 	0

Chapter 5. Nonexistence of Finite Axiomatisat ions 	 114

Another technical property which this set satisfies in which we shall be inter-

ested is given by the following proposition.

Proposition 5.3.5 Let in > 2, and 0 < r1 < r2 < •.. < r. If there is some
FE Sn such that for some Q, A, +A 2 +"•+A +Q = F, with IPI n, then

P = A, + Ar2 ± + Arm +Q = ço.

Pro of:

Straightforward check through all of the possibilities for P E S, given

by the alternate definition of 	of Proposition 5.3.2. 	 0

We now again make a definition of a property of equations in which we shall

be interested, similar to that in the previous section.

Definition 5.3.6 For U, V C P° being two sets of terms, let us define O(U, V)

to be the proposition which states the following:

PE U U V =: 	P, and PO-0, F' + F",

and EU= EV= >.S for some

and 3PEUstP = co2fIcafl,

and 4Q€VstQ =co2llcofl.

Thus eL(U, V) states (among other things) that the equation F U = > V expresses

a (valid) equality between terms in which the term W2 0 'p, is captured by a single

summand on the left hand side of the equality, but not by any single summand on

the right hand side.

Then let O(U, V) = O(U, V) V ®(V, U).

Proposition 5.3.7 Let n> 1 and U, V C P20 be such that e(U, V), and let
P E U U V be the term satisfying P = 	; Then P P2 JJ P,, where

= c°2 and 1?,, = ço.

Chapter 5. Nonexistence of Finite Axiomatisations 	 115

Proof- roof:

W2 11 W. 'P2H'Pflco

Hence P aP' as aP' ---* F' only.

Thus P P, 11 P" where F', F" 0;

Since c2 and ço are prime, we must have that F' and F" are precisely

'P2 and ço.

Hence F P2 11 P where '2 = 'P2 and P = 	 0

Proposition 5.3.8 Let t be an open term in P2, and let o be a substitution such

that to 1, and such that for some x e fv(t),

a. = a'P, + aaço1 ;

Then ta =A W2 II Wn-

Proof-

Let t, o and x be as above;

t is of the form

tl+t2++tm,

where each t j # t' + t";

Let k be such that x e fv(tk);

Thus tk # 0;

If 	bt', then x E fv(t'), so Itoi > It'OI ~! IoI = n + 2;

But 1c02 I1 WnI = n+2, so tcT 	'P2 H

If 	t' 11 t", then x e fv(t') or x E fv(t"),

so Ital = t'oi + It"o-J ~: 	= n + 2;

so again to- 	'P2 1 'Pa;

Chapter 5. Nonexistence of Finite Axiomatisations 	 116

Finally, if tk x then to- --* app;

but 	2 H ip 	acp, so again to- 	2 II 	 LI

Proposition 5.3.9 Let I be a finite saturated set of sound axioms, and let n be

bigger than twice the number of operators in any axiom in F. Then no axiom

t = u in I can be instantiated to a statement p = q where p > U and q 	V
such that O(U,V).

Proof.

Let n be as above, and suppose t = u is an axiom in I such that under

substitution o, t = u instantiates to p = q where p > U and q 	V

such that e(u,v)..

Without loss of generality, assume that ®(U, V);

Clearly, fv(t) = fv(u), as t = u is assumed to be a valid axiom.

t 	t1 + t2 +•• + tk andu u1 + u2 + 	+ uki for some k, k' > 0

where each 	v + v';

e(U, V) == for some i, either to- P2 I P1, or to- P2 H P, + Q,

where P2 = W2 and P

Consider the structure of t:

0 =='- to- 0 (contradiction);

x == o 	to- and x e fv(u) for some j

==, U1 # 0, au',. u' + U", u' u"

u1x and P2 IIpEV

(contradicting O(U, V));

at' == t10 	a(t1 o) (contradiction),

V + t" = (contradiction),

Thus I. =- I, if
4! Iijll and tao- 	t'o t"cT = P2

Chapter 5. Nonexistence of Finite Axiomatisations 	 117

Hence t 	V 11t" with t'u 	= (P2 and t"o P = ço;

Now t" v1 + v2 + VI where 1 < 11 and each Vh 0 v + v';

E v1u + v20" + v10- = = A1 + A2 + + A,

so some Vh0 = An + A 2 + ... + Ar for some rn> 2 and

	

Thus clearly Vh 0 0, av, V + v', V 11 	50 Vh x for some

variable x where o = A + A 2 +• + A;

Clearly x V fv(t'), as (t'uI = 2 <rm = 10z1,

Let a' = u{ac n + aaWnIX 1;

Then Vu' Vu, and tu' --+ Vu'11go, = (P2 Ii

Therefore for some j, u5cr' --* ç02 II

Now Iu1u'l > n + 2 = luuI, so clearly x E fv(u1);

Consider the structure of u j:

U. 	0 = x g fv(u) (contradiction);

u 	x == uju' a(P. + aaço 	W2 II ço,

(contradiction);

u5 au' 	u1u' a(u'u')

== 	u'u' = (P2 	and x € fv(u')

(contradiction) 	 (by Proposition 5.3.8)

u5 	u' + u" ===> (contradiction);

Hence u 	u' 11 u" with u"o-' --- p
St

u'u'11p = (P2 ii

If Efv(u'),

then n+2= iu'u'i+ipl ~! lo•,I+Ipi~!n+2+ipi,

so p = 0 and u'u' = (P2 II

(contradicting Proposition 5.3.8)

Chapter 5. Nonexistence of Finite Axiomatisations 	 118

Hence x fv(u'), and so x e fv(u");

Now u'cr11p = W2 11 (pa, and u'cr 0,

SO U17 = V 2 or u'o = p, or u'o 	Il

But Iu'oi = Iu1oi - u"t7I :5 1U01 - 10a,I < (n + 2) - 2 = n;

Therefore u'o- = P2;

Thus also Iu" < n;

Now, x E fv(u") ==*U,,Or
--- o + Q for some Q, j > 0;

Hence uo- 	+ Q;

Thus by Proposition 5.3.4, 3P E S St o + Q = F;

But o = Ar, + A, + . . + Arm for some m> 2

with

Hence by Proposition 5.3.5, o 2, + Q =

Thus u"cr

Now n>Iu"o>j+n, soj=0;

Therefore u"o- =

But then u'o- I u"o P2 11 P, E V for some P2 = W2 and P =

(contradicting 	V));

Therefore no axiom t = u in 2F can be instantiated to a statement p = q

where p >U and q >V such that e(u, V). 	 0

Proposition 5.3.10 Suppose in a sound proof, we have an inference:

p=r r = q (trans)

p = q

where p>U, 	r>W,

and REW = R=— , and RO,R'-j-R",

Then

Chapter 5. Nonexistence of Finite Axiomatisations 	 1 119

0.(U, V) = ®(U,W)vo(W,v).

Similarly for the (sub+) rule; corresponding to the inference:

p = q p' = q' (sub)

p+p' = q+q'

where p >U, q >V, p' >U', and q' >V', we have the result that

O(u u U', V u v') ==> e(U, V) v ®(u', v').

Proof- roof:

Consider Consider the (trans) rule case:

Assume ®(U, V); We know immediately that

PEUUVUW

:= pP and PO,P' H F",

and (from ®(U, V), and the soundness of the proof in which

the inference appears) that for some S c Sn,

EU = EV = EW =

Now if 4R E W st R = a ço then clearly ®(U, W);

And if 2R E W st R = a H Wn, then clearly O(W, V);

Similarly, ()(V, U) 	 U) V 	W);

Hence On(UV) ==> ®(U, W) V O(W, V).

The (sub+) rule case is similarly straightforward:

Assume ®L(UuUl,Vu VI); Again we know immediately that

P E UUU'UVUV'

PEEl5 and PO,P'+P",

and that for some S c S,

>(UuU') = (VuV')

Chapter 5. Nonexistence of Finite Axiomatisations 	 120

and

2P E U U U' such that P = a] p,

Suppose this P E U; then from ®(U U U', V U V'), and the

soundness of the proof in which the inference appears, and

from Proposition 5.3.3, we have for some S' C Sn ,

so clearly ®(U, V);

And similarly, if this P E U', then O(U', V').

Similarly, O(V U V', U U U') == O(V, U) V O(V', U');

Hence EJn(U U U', V U V') = e(U, V) V e(U', V'). D

5.3.2 Main Result

Here we state and prove our main theorem, the nonexistence of a finite axiomati-

sation of any "reasonable" equivalence.

Theorem 5.3.11 Let 2r be a finite saturated set of sound (with respect to any

fixed reasonable congruence) axioms, and let n be large enough (as allowed by

Proposition 5.3.9) 80 that no axiom in .7 can be instantiated to express any

truth p = q where

p 	>U and q >V such that e(u,V).

Then our system cannot prove the statement

W211 n +j:EAj jjA j = EA j I Wn + E211A1.
i=1 j=1 	 i=1 	 3=1

Hence no finite complete axiom system can exist for any reasonable congruence

which is at least as strong as strong congruence.

Proof-

Chapter 5. Nonexistence of Finite Axiomatisations 	 1 121

Suppose we have a (shortest) proof of the statement

W2 11 (Pn + 	EAoA5 = 	+ E W2OA5
i=1 j=1 	 i=1 	 5=1

which involves no terms containing 0 as a summand or a factor. The

proof takes the following form:

Do
(rule),

p = q

where p>U0 and qEV0 for

U0 = 	u {A A5 Ii < i < 2,1 < j :5 n}

and

V0 = {aii,aaiia} u {2 HA5 I i<j<n}

so clearly 0(U0 , V0) holds.

Since this must be a finite proof, somewhere in the proof tree is an

inference

V
(rule) 	where 	e(U, V),

such that the premise V of the inference contains no equality

= >V' where ®(U',V');

By Proposition 5.3.10, (rule) can be neither of (trans) nor (sub);

Furthermore, by Proposition 5.3.9, we know that (rule) cannot be

(t = u) for any axiom t = u E .1;

Also clearly (rule) cannot be (symm), as O(U, V) 	O(V, U);

Finally, (rule) cannot be any of (ref 1), (suba), or (sub j), as this would

contradict &(U, V);

Hence we have shown that the original statement cannot be proven.

FM-

Chapter 6

Sequencing with the 0 Process

Up until this point, we have been interested solely in CCS-based process algebras.

In this chapter, we shall consider a slightly different range of process algebras, those

containing not CCS action prefixing, but rather sequential composition in the form

of a binary operator which takes two process terms and produces the new process

which performs the actions of the first term, followed by those of the second.

Such process algebras include for instance those based on ACP, the Algebra of

Communicating Processes of Bergstra and Kiop (e.g., [BER84], [BER85]), as well

as that of Boudol and Castellani's partial order semantics ([B0U86]).

The major proponents of equational studies of process algebras are certainly

by far the Dutch researchers developing the ACP-based algebras. Much has been

developed and published within this framework so a study of equational axioma-

tisations for process algebras would certainly be lacking if due attention were not

awarded this family of languages.

Throughout the development of the ACP algebras, the basic components of

a process were atomic actions, given by a set Act as in CCS. The major differ-

ence from CCS, apart from using sequencing rather than action prefixing, was the

lack of a 0 process term in their algebras. For the basic algebra of terms, these

were really the only variations from the CCS-type algebras and equivalences; by

defining a form of sequencing within the CCS framework, and imposing (strong

and weak) observational congruences on the resulting algebras, we would arrive

at exactly the ACP notions of congruences, which initially are defined by axiom

122

Chapter 6. Sequencing with the 0 Process 	 123

systems without a previous operational model-based intuition built into the equa-

tional axioms. Thus we see presentations of ACP-type languages defined as the

initial models of equational theories which in the CCS framework are precisely

the complete axiomatisations of the operationally-based congruences.

Recently, a 0 process has been incorporated into the ACP algebras, in the form

of an empty process term e ([VRA86]). At this point, the CCS and ACP notions

diverge greatly. The equivalence defined in [VRA86] for the ACP algebras with

the e term is no longer immediately recognisable as an observational congruence;

the operational intuitions on which the CCS notion of equivalence is based is not

explicitly present.

In this chapter, we quickly review the relevant portions of the ACP algebras

for our investigation - namely, the Basic Process Algebra BPA, before and after

the addition of the 0-type process c. From this brief exposé, we motivate a small

change in the semantics of terms in order to bring the equivalence more in line

with the usual CCS-based observational equivalences. We thus define a new

semantic equivalence on terms, and examine questions regarding axiomatisations

for our modified system. We then compare our system with BPA, first defining

the BPA' congruence as an observational congruence, and then considering the

relative ease which we have in adding merge and communication to our system, a

state which as we shall see is not so true with BPA. Finally, we finish off this

chapter with a modified proof of the previous chapter on the nonexistence of a finite

axiomatisation for the BPA congruence when the full merge operator is added to

the signature. To do this, we point out first that the unique decomposition result

of Chapter 4 holds in this algebra.

6.1 Introduction

In this section, we introduce the process algebra BPA (Basic Process Algebra),

and the modified language BPA involving the empty process E introduced by

[VRA86]. After the definitions of these algebras and the equivalences defined

Chapter 6. Sequencing with the 0 Process 	 124

for them are presented, we make some observations and arguments for modifying

the equational system BPA' from where it stands to something mimicking more

closely the concepts and intuitions of CCS.

For a long time, researchers working on the ACP family of process algebras

have dealt with languages not involving a 0-like process. Their basic process

algebra BPA is similar to a subset of CCS, with action prefixing replaced by

atomic action processes and sequential composition, without the 0 process. They

give a set of axioms, and define the equivalence within the process system as

given by the initial model for these axioms. They present this system by means

of an algebraic specification BPA = (EBPA, EBPA) in the style of [E11R85], as

presented in Figure 6-1. Notice by convention that the sequential composition

EBPA
Sort 	P 	 (processes)

Functions + P x P - P (choice)

P x P - P 	(sequential execution)

Constants a E Act 	(atomic actions)

EBPA
x+y=y+x

(x+y)+zx+(y+z)

X+x=X

(x + y)z = xz + yz

(xy)z = x(yz)

Figure 6-1: Specification of BPA = (EBPA) EBPA)

operator . will often be dropped from terms, thus being represented simply by the

juxtaposition of terms. The congruence generated by these axioms corresponds

precisely to strong observational congruence, as it would intuitively be defined in

this context, and as we shall define it in the next section.

Chapter 6. Sequencing with the 0 Process 	 125

In [VRA86], this algebra is extended by the addition of a 0-like process, the

empty process c. When the empty process e is added to the signature, the modified

system BPA = (EBPAe,EBPAC) is defined as presented in Figure 6-2.

En -DA C

Sort 	P 	 (processes)

Functions + P x P -p P (choice)

P x P -p P 	(sequential execution)

Constants e 	 (empty process)

a E Act_ - 	(atomic actions)

EBPAC

x±y=y+x

(x +y) + z = X+ (y + Z)

(x + y)z = xz + yz

(xy)z = x(yz)

6+6 =6

ex =X

Xe = X

Figure 6-2: Specification of BPAt = (EBPAC,EBPAC)

In going from BPA to BPA, a few points immediately arise. Firstly, we

appear to lose the idempotence axiom,

X + X = X.

However, in fact, this law is derivable in the system EBPAC, using distributivity

and the c-laws. Secondly, if we expected the c process to be intuitively analogous

to the CCS 0 process, we quickly discover that there is no 0-absorptive law of the

form

Chapter 6. Sequencing with the 0 Process 	 126

X+6 =X.

This law cannot in fact be proven, and in the system BPA is not valid, for if it

were, we could for example prove (using the distributivity of - over + on the right)

that

ab = (a + e)b = ab + eb = ab + b,

which we clearly would not desire. In the system BPA, the option of doing

nothing (performing the e process, allowing termination) is considered to be a

valid choice. In CCS, such a process is liken to the process r.0. Hence the

approach taken by BPA is motivated more by the work done on CSP ([110A85]),

where a 0-like process exists representing termination, allowing an unobservable

termination, or "tick", action V. In this case, one might expect that the process

a + 6 might be allowed to terminate silently in the context

(a + 6) 11 b,

allowing the term to evolve silently into the process term b. However if this were

to be the case, we could argue that in the BPA framework we would arrive

at a nonassociative parallel composition operator J. Indeed, in [VRA86] we find

remarks giving evidence that an earlier attempt at introducing the empty process

6 into the process algebras of ACP ran up-'against this very problem.

Thus the equivalence given by BPAC (or the empty process &) neither resem-

bles much that of CSP nor that of CCS's strong observational congruence (i.e.,

the distributivity law fails here, whereas the absorptive law is valid). A new notion

of e- bisimilarit,, is introduced in [VRA86] to mimic the BPAC equivalence given

by EBPAC using a modified notion of bisimulation. However, we are interested

here in giving an axiom system for true observational congruence of their system,

with the understanding that e can perform no observable actions, thus restor-

ing the operational intuition given by CCS. Indeed, we find that we need the

operationally-based semantic understanding in order to proceed with the proofs of

Chapter 6. Sequencing with the 0 Process 	 127

our results on the unique decomposability and the nonexistence of finite axioma-

tisations for the original language of BPA with the full merge operator added to

its signature, as shall be presented later in this chapter.

6.2 CCS With Sequencing

The first step towards our goal is to define our language and its operational seman-

tics as a labelled transition system in the usual fashion so that we can define our

congruence using the usual notion of bisimulation. This much is almost straight-

forward.

The terms in our language are exactly as given by the signature EBPA in

Figure 6-2. The process e will represent the usual 0 process of CCS. Hence the

only new notion here is the sequential composition operator.

The operational semantics for this languages will be given as usual by a transi-

tion system —ç 2 x Act x 2 defined to be the least relation satisfying a certain

collection of laws. In this case, we would intuitively like the transition system to

satisfy the following laws:

a (a E Act);
a -* E

a 	 a
p—,.p1 - 	q—*q

p + q
a

-f p'

a
P -p p

pq
a - p'•q

Vb,p':p/Lp', q--#q'

pq
a

- q

However, in light of the negative information in the premise of the last law, we

cannot define our transition system to be the least relation satisfying these laws.

For instance, if we added another law to the above, namely for some a E Act,

Chapter 6. Sequencing with the 0 Process 	 128

then the subprocess q in the process eq would never proceed, as we would have

e. q 	e• q. A relation which satisfied this extended set of laws would of course

satisfy our original set of laws, but would in fact be incomparable to the relation

which we are defining. For instance, we would not want e•b --+ Eb, but we would

want e b --+ e. Hence it would not make sense to require the existence of the

least relation satisfying the original set of laws, as we have just exhibited two

incomparable relations which each satisfy them, for neither of which is it the case

that there exist a subset satisfying the laws. So we are forced to proceed in another

way.

Our solution results from the fact that we can easily tell purely syntactically

if a process is equivalent to the empty process &. Thus we need simply to define

syntactically when a term is equivalent to the e process, and then to use this

definition in the place of the negative information in the premise of the definition

of our transition system above.

Proceeding in this way, we define the function isempty as follows:

isempty(e) = true;

isempty(a) = false 	(a E Act);

isempty(p + q) = isempty(p.q) = isempty(p) A isempty(q).

Intuitively, we would like it to be the case that p & if isempty(p), where '-i is the

strong observational equivalence which we are trying to define. Then our transition

system can be validly defined as the least relation satisfying the following laws:

a

isempty(p), q --* q'
a 1. 	 a

p•q—pq

a 	(a E Act);
a -f €

a

p + q a
-p

a
p -.pl

With the above transition system defined, our strong observational congruence

is defined in the usual way via the notion of strong bisimulation using this

Chapter 6. Sequencing with the 0 Process 	 129

transition system. That is, 	is the largest relation such that whenever P

we have that for all a E Act,

(i) P --) F' implies 3Q' P' such that Q --* Q'; and

(ii) Q -- Q' implies 3PI Q' such that P -- P'.

We can now check that our definition of isempty indeed satisfies our desired

requirement.

Proposition 6.2.1 p e if and only if isempty(p).

Proof:

Straightforward.

With the problems faced in defining the transition system above, it is worth

checking that this definition does in fact yield a congruence relation. This is in

fact not too difficult, as is outlined in the following proposition.

Proposition 6.2.2 	is a congruence.

Proof- roof:

That That is an equivalence relation is straightforward, as it is defined via

the notion of a bisimulation.

To check that it is substitutive, we need to confirm that the following

inferences are valid:

p0 r.i q0, p1 '-'q1
(sub),

Po+Pi 	q0 +q1

p0 rs q0, p1 'q1
(sub.).

PoPi "-i q0•q1

The (sub) case is straightforward;

Assume that Po ' q0 and p '' q1;

Suppose that Po + P1

Chapter 6. Sequencing with the 0 Process 	 130

Then either p0 --+p orp1

Hence for some q
'S-'

either q0 --+ q or q1 --+ q;

	

Therefore q0 + q1 	q;

Similarly, q0 + q1 	q implies Po +Pi ---* p for some p

Hence Po±Pi q0 +q1.

The (sub.) case is more involved, relying on a proof by induction on

the depths of terms;

Assume that Po q0 and Pi .-' q1, and that for all p, p'1, q, q

such that p 	q, p'1 	q, and jpj + II < fp0 j + IpI, we

have that p•p'1 r'... q•q;

Suppose that p0•p1

If p0 -- p' such that p = P'Pi,

then q0 --+ q' for some q' - p',

so q0-q1 ---* q'-q 	p'-p1 =

(by the inductive hypothesis)

Ifp0 — e and Pi

then q0 ' e and q1 	q for some q '

soq0.q1 L-. q r...i p;

Similarly, q0•q1 --+ q implies PoP1 	p for some p - q;

Hence PoPi 'S-' q0•q1. 	 10

Having succeeded in defining our observational congruence in the fashion which

we desired, we can now proceed to its equational characterisation and properties.

6.2.1 Equational Axiomatisation

A complete axiomatjsatjon for our congruence r'.I would naturally contain the ax-

ioms characterising the usual language of nondeterministic terms, that is:

	

Chapter 6. Sequencing with the 0 Process 	 131

(x+y)+z = x+(y+z) 	(A3) x+x =

x+y = y+x 	 (A4) x+c =

But we now need other axioms to deal with properties of sequencing (which never

arose with action prefixing). In particular we need the three axioms

(S1) (xy)z = x(yz) 	(S2) x•e = x 	(S3) ex = x

as well as the axiom schema

M 	 m

	

(Dm) (>ajxj).y = >cxy 	(for m>O, a2 EAct)

The motivation for introducing this axiom schema is that it mimics the distributiv-

	

ity law (x + y)z = xz + yz of EBPAe. This law holds as long as x, 	e, and this

is certainly true if x and y are both prefixed by atomic action terms. In this case

though we must account for an arbitrary number of action-prefixed summands in

the first term.

We shall refer to the above set of laws collectively by T; that is, we let

T = {(A1),(A2),(A3),(A4),(s1),(s2),(s3)} U {(Dm) I m> o}.

That these laws are all valid is a straightforward thing to prove, and we shall take

this fact to be granted. However, there are problems about the completeness of

these axioms which we would now like to address, namely:

Are these laws complete for reasoning about closed terms?

Are these laws u-complete, that is, complete for reasoning about

open terms?

In view of the axiom schema (Dm) introduced, is the equivalence

in this signature finitely axiomatisable for reasoning about closed

terms, using some other axioms to replace the axiom schema

above? If so, is it also finitely axiomatisable for open term rea-

soning?

Chapter 6. Sequencing with the 0 Process 	 1 132

The next section will answer the first question in the affirmative, giving a com-

pleteness proof for reasoning about closed terms. The following section will then

answer the first part of the third question also in the affirmative, giving a finite ax-

iomatisation for this system. After that, we shall investigate the axiomatisability

of the extensional theory in this system, presenting some open statements which

cannot be proven in the closed theories we develop.

6.2.2 Completeness for Closed Term Reasoning

The proof that the above laws T completely characterise the theory of closed

terms over the language in question relies on a normal form for terms defined as

usual by derivation trees. To get at the normal form, we shall again employ a

denotation function which gives a set theoretic representation of the derivation

tree corresponding to a given term.

A derivation tree again is simply a finite unordered tree whose arcs are labelled

by elements of the action set Act, in which no two identically-labelled arcs lead

out of the same node to two isomorphic subtrees. Such a model is well-known to be

a complete characterisation of closed finite CCS terms, including the terms in our

present framework. The domain of derivation trees can be represented formally as

the least fixed point solution V to the set equation

V = P j (Act x V)

where PFIN(S) again represents the set of finite subsets of S.

Some of our proofs will depend on induction on the depth of the derivation trees

of terms, which as usual in our set-theoretical formulation corresponds basically

to the rank of a set. With this in mind, we define the rank of a derivation tree as

follows.

Definition 6.2.3 The rank of an element P E V is defined inductively by

rank(P) = max ({o} U {1 + rank(PI) I 3a st (a, PI) E P})

Chapter 6. Sequencing with the 0 Process 	 133

In particular, rank (P) = 0 if P = 0, and for any F, P' where there is some a such

that (a, P') E F, we have that rank (P) > rank (PI).

Our denotation defined for a term will simply be the set representation of the

derivation tree representing the term. The definition of the denotation is straight-

forward, except in the case of sequential composition. Before giving the definition

of the denotation on terms, we must state what the sequential composition of two

derivation trees is. Intuitively, it is simply the first derivation tree with a copy

of the second derivation tree tacked onto each of its leaves. More formally, for

F, Q e V, we define P.Q inductively as follows:

O•Q=Q,

P.Q 	{(a,F'.Q) J (a, P') E P1 (P 0).

With this we can now define the denotation H : P -p V by cases on the structure
of terms as follows:

= 0; [P + q] = 	l[pJJ U [q];
lIaj = {(a,0)} 	(aEAct); [p•q 	= [pq.

An important property of this denotation, which is reflected in the derivation

trees which the denotations represent, is given by the following proposition.

Proposition 6.2.4 	{(a, 1{p'I) I r'

Proof- roof:

By By structural induction on p.

• =0= {(a,JJp') I E ---.p'}; 	(as e-3p' for any a,p')

= {(b, 0)} = {(a, fp'JJ) b -- p'}; 	(as b —L e only)

I[p+qJl = l[p}l U jq]J

= {(ajp'I) I p--*p'}U{(ajp') I q --)p'}
= (a, VD I P+q---P'},.

(as p+q—_)p' iffp--4p' orq — --p')

Chapter 6. Sequencing with the 0 Process 	 134

If b'I = 0, then by the inductive hypothesis,

p 71 + p' for any a,p', so isempty(p);

thus

D qII = l[F I[qI = 0 [qJj =

= {(a,[p') q--)p'}

(by the inductive hypothesis)

= {(a,l{p'])

(by definition of —_))

If 11 	0, then by the inductive hypothesis,

p -- p' for some a, p', and hence -iisempty(p);

thus

l[pqJl =

= {(ajp'.q)

(by the inductive hypothesis)

= {(a,fr.q)

= {(a,p'])

(by definition of _---).)

D

A unique (modulo associativity and commutativity of +) normal form can be

extracted from the denotation of a term in the following fashion:

nf(p) =

where

o, (P) =
(a,P')EP

As usual, by convention, we let u(0) = e. That a term can be equated to its normal

form relies on the following proposition.

Proposition 6.2.5 For F, Q E 72', we have

Chapter 6. Sequencing with the 0 Process

7- I- o(P)-o(Q) = o(P.Q).

Proof:

By induction on rank(P).

If rank(P) = 0, that is P = 0, then the result is immediate, as

0T(0).0(Q) = e.a(Q)
=T o(Q) = UN- 0-

For P 0 0, we have that

=
 (

a.u(P1)).5(Q)
(a,P')EP

=T 	 a.(ci(P').o.(Q)) 	(using (D))
(a,P')EP

> a.(o(P'.Q))
(a,P')EP

(by the inductive hypothesis)

= 	({(a,P1.Q)
I (a) P') E P})

= o(P.Q).

Proposition 6.2.6 7- F p = nf(p).

Proof.

By structural induction on p.

• 	E = or(0) = °(frO) = nf(e);

• 	a=a. = o({(a,0)}) = oa) = nf(a);

•P _ 	nf(p) = cT(jfp]J) and q 	nf(q) = a[q])

== p+q T pI)+ o ([q]J)

=T pJU[q])

= a(p+q) = nf(p+q);

135

Chapter 6. Sequencing with the 0 Process 	 136

p =, nf(p) = o(J[p) and =T nf(q) =

== pq 	UpI)°(IIq11)

= 2 	(p]H[qJI) 	(by Proposition 6.2.5)
= o(ffp.q]J) = nf(p.q). 	 0

Corollary 6.2.7 p] = 	= Y H p = q.

Proof:

p = nf(p) = o(E{pJI) = 	= nf(q) =T q. 	 U

Finally, the proof of completeness of the axioms relies on the following propo-

sition.

Proposition 6.2.8 p q == 	= [q].

Proof:

We shall actually show by induction on rank(J[pJj) that

Epl[q1I == p9q.

Thus suppose that 	[q, and that (without loss of generality)
(a, F) e p] but (a, F)

Then by Proposition 6.2.4, p' st P = [p' and -- p';

Suppose that q --* q';

Then again by Proposition 6.2.4, (a, [q') E q;

Hence since (a, P) 0 Eqll, q' 	P =

Therefore by the inductive hypothesis, p' 9t q';

Thus Bqf'-.'p'stq----9.q', soprlq. 	 0

Corollary 6.2.9 (Completeness) p .' q == T H p = q.

Proof:

Follows from Proposition 6.2.8 and Corollary 6.2.7. 	0

Chapter 6. Sequencing with the 0 Process 	 137

6.2.3 A Finite Axiomatisation

In tUf section we shall present a finite axiomatisation for closed terms of our

language. What we shall do is present two new rules which will together subsume

the power of the axiom schema (Dm). That is, we shall show that given the other

sum and sequencing laws, together with these two new laws, we can prove any

instance of the schema (Dm).

The two laws which we need are as follows. Firstly we have an absorption law

(Abs) (ax + y)z = (ax + y)z + axz,

which is very similar to the absorption law of CCS

(ax + !/) H z = (ax + y) H z + a(x 11 z),

introduced in Section 3.3. Secondly we have a reduction law

(Red) (x + y ± z)w + yw + zw = (x + y)w + yw + zw.

Again these two new laws are easily seen to be valid. Notice here that if we let

x = &, we get the derived reduction law

(Red') (y + z)w + yw + zw = yw + zw,

which we shall use in the proof of the following proposition.

Proposition 6.2.10 Let

F = {(A1), (A2), (A3), (A4), (S1), (S2), (S3), (Abs), (Red));

then for any m>O, F H (Dm).

Proof:

By induction on m.

Chapter 6. Sequencing with the 0 Process 	 138

For m = 1, the result follows from (Si) (associativity of.);

For m = 2, we have

(1x1 + a2x2)y F (aj x1 + a2x2)y + a1x1y + a2x2 '

(using (Abs) twice)

=F 01x1y + cx2x2y;

(using the derived law (Red'))

• 	For m>2, we have

rn
(aixi)y

M-2

F (ax1 + arn_l xrn_i + arnxm)y

+ rn_1Xrn_1Y + a.x.y

(using (Abs) twice)
(rni 	

+ am_ixm_1y + amxrny

(using (Red))

= 	axy + arn_l xm_iy + arnxrny

(by the inductive hypothesis)

=F axy. 	 0

Thus since by the previous section, J U {(D) j m > O} is a complete theory

for reasoning about closed terms over this language, we have shown that the finite

theory Y is itself complete for closed term reasoning, as every instance of (Dm) is
derivable from Y.

6.2.4 Reasoning About Open Terms

The question which we wish to address now is that of the axiomatisability of the

theory of open terms over this language. In particular we wish to know if we can

w-completely axiomatjse the theory, and if so if we can do it with a finite number
of axioms.

Chapter 6. Sequencing with the 0 Process 	 139

Our original system for closed term reasoning, involving the axiom schema

(Dm) was clearly not complete for reasoning about open terms, as it could not

prove the validity of the two laws we introduced in the previous section, namely

(Abs) (ax + y)z = (ax + y)z + axz;

(Red) (x + y + z)w + ,w + zw = (x + y)w + y 	+ zw.

The form of the law (Red) makes analysis of the system for open terms compli-

cated, as it is not immediately clear where to look for a normal form for this

system in light of this law.

If we consider the forms of the (Abs) law and the derived law,

(Red') (x + y)w + xw + yw = xw + yw

we see that we can introduce some notion of saturation to attempt to get a grasp on

a normal form. That is, a normal form can be assumed to contain every instance

of axz as a summand whenever it contains (ax + y)z as a summand (from the

(Abs) law), and to contain every instance of (x + y)w as a summand whenever it

contains xw and yw as summands (from the (Red') law). But saturation using the

(Red) law does not fall out so easily.

However, let us consider the form of the derived law (Red') more closely. It

very much resembles the classic testing equivalence law from [DEN84],

a(x+y)+elx+ciy=ax+ay.

If we consider the analogous law corresponding to the second of the two classic

testing equivalence laws, namely

a(x+y+z) + ax = a(x+y+z) + a(x+y) + ax,

then we get the following new law

(Red") (x + y + z)w + xw = (x + y + z)w + (x + y)w + xw,

Chapter 6. Sequencing with the 0 Process 	 140

which again is easily confirmed to be a valid law. However, it appears not to be

derivable from the previous laws including (Red); but along with the law (Red'),

it is indeed as strong as (Red), as shown by the following proposition.

Proposition 6.2.11 {(A1), (A2), (A3), (A4), (Red'), (Red")} I- (Red).

Proof- roof:

(X + y + Z)W (x+y+z)w + 11W + zw

= (x + y + z)w + (x + y)w + yw + zw 	(by (Red"))

= ((x+y)+z)w + (x+y)w + zw + yw

= (x + y)w + zw + yw 	 (by (Red'))

= (x+y)w + yw + zw. 	 LE

Thus we can (and do) replace the original law (Red) by the two laws (Red')

and (Red") to get a more powerful system. Furthermore, the newest law (Red")

also fits nicely into our scheme of saturating terms to derive a normal form'; that

is, now saturation will include the condition that a term contain every instance of

(x + y)w as a summand whenever it contains xw and (x + y + z)w as summands.

The question now is whether these laws completely characterise the open the-

ory. If this were so, then our saturation technique could perhaps be used to define

a canonical form for expressions to facilitate a completeness proof. Alas though,

we can show that we still do not have a complete system. For instance, we cannot

prove the following valid open statements:

(xax' + y)z = (xax' + y)z + xax'z

((ax + x')y + 	= ((ax + x')y + 	+ (ax + x')yw

In the general case, we want our absorption law to extend to cover the pseudo-
inference law:

Sort(t) 	0 (i.e., t{/} L e)

(t+u)v = (t+u)v + tv

Chapter 6. Sequencing with the 0 Process 	 141

To accomplish this, it would appear that we need an infinite set of new axioms.

However, we can accomplish the same result using the three conditional axioms:

(CO 	
(t + u)w = (1+ u)w + tw

(t + V + u)w = (t + t' + u)w + (i + t')w

(t+u)w 	(t+u)w + tw

(St + u)w = (st + u)w + stw

(t+u)w = (t+u)w + tw

(ts + u)w = (ts + u)w + tsw

Proposition 6.2.12 (Cl), (C2) and (C3) above are sound conditional laws.

Proof:

We shall only deal with case (C3), as the other two cases are identical.

We just need show that for closed terms p, p', q, r and P,

if (p+p')q - (p+p')q + pq, and prq --- F,

then (pr + p')q --* Q for some Q r P.

If -'isempty(pr),

then pr 	po st P = p0q;

hence (pr + p')q --- p0q = P.

If isempty(pr),

then q --- P and isempty(p);

thus pq --* P, so (p + p')q --+ Q for some Q P;

hence either p' -- Po St
 Q = p0q,

whence (pr + p')q -- Q;

or isempty(p') and q ---+ Q,

whence isempty(pr+p') and so (pr+p')q --* Q. D

Chapter 6. Sequencing with the 0 Process -14-2- 42

These These three conditional laws are in fact enough to give us our desired result,

as shown by the following proposition.

Proposition 6.2.13 {(A2),(C1),(C2),(C3)} F-
	Sort(t)O

(t + u)v = (t + u)v + tv

Proof:

By structural induction on t.

t 	or 	x = Sort(t) = 0;

t 	t1 + t2 and Sort(t) 0 ==t Sort(t1) 	0 or Sort(t2) 0;

Sort(t1) 0 == (t1 + u)v = (t1 + u)v + t1v

(by the inductive hypothesis)

== (t + u)v = (+ u)v + Iv; 	(using C1)

Sort(t2) 54 0 == (t+u)v=(t+u)v+iv.

(Similarly, using A2)

I 	tt2 and Sort(t) 0 == Sort(t1) 0 orSort(12) 0;

Sort(t1) 0 = (t + u)v = (t + u)v + t1v

(by the inductive hypothesis)

== (t+u)v=(t+u)v+tv; 	(using C3)

Sort(I2)0 	(t+u)vz(t+u)v+tv;

(Similarly, using C2)

FEK

Thus we find ourselves using unconditional axioms to cover all of the possible

cases implied by the above conditional rule. Having done this, we are still left

with a nontrivial task of finding a canonical form for terms to show that we now

have an w-complete axiomatisatjon, which we leave here as a still open problem.

Chapter 6. Sequencing with the 0 Process 	 143

6.3 Comparison with BPA

We have now redefined the semantics of the process algebra BPAC to define the

equivalence between terms as an observational congruence. Unlike the original

theory for BPA presented as a simple equational theory in Figure 6-2, the
distributivity law (x + y)z = xz + yz is not valid in our semantic model. However,

we have discovered a simple finite set 17 of equational laws characterising the new

congruence, so the original theory for BPA does not much benefit over this new

framework in ease of equational presentation.

In [VRA86], a graph model is presented which characterises the BPAC congru-

ence which uses a modified notion of bisimulation, called e-bisimulation. What we

shall show in this section is a method of characterising the BPAC congruence as a

true observational congruence, by defining a natural labelled transition system on

terms of the algebra which when used as the basis for a bisimulation equivalence

will not exactly be the congruence of BPA, but will contain this congruence as

the largest congruence within it. However the ctiaracterisation is difficult to prove,

as the defined bisimulation equivalence is not a congruence, and several alternate

characterisations of the congruence will need to be invoked in the proof.

We shall then consider including the merge operators, first without and then

with communication, into the signature, and compare how our new semantic model

and the original BPAC model of [VRA86] fare in this experiment.

6.3.1 The BPA Equivalence as an Observational

Congruence

In this section, we shall present a bisimulation characterisation of the BPA equiv-

alence described in Section 6.1. That is, we shall present a transition system

defined on our process algebra such that the largest congruence contained in the

bisimulation equivalence defined by the transition system will be precisely the

congruence generated by the axioms of EBPAe.

Chapter 6. Sequencing with the 0 Process 	 144

Similar to the definition isempty of the previous section, we can define a

"hasempty" predicate on terms specifying when a term contains the empty process

(or anything equivalent to it) as a summand, as follow.

hasempty(e) = true;

hasempty(a) = false 	(a E Act);

hasempty(p + q) = hasempty(p) V hasempty(q);

hasempty(p.q) = hasempty(p) A has empty(q).

With this predicate, we can define a transition system -+ as the least relation

satisfying the following laws.

a — -+e (aEAct), and

== P+Q --P', Q+P — -+ F', P.Q --P'.Q,and

hasempty(Q) = Q.ppi

From here we could define an equivalence in the usual fashion via bisimu-

lations by letting be the largest binary relation such that whenever P Q we

have that for all a e Act,

P --* F' implies 3Q' F' such that Q -- Q'; and

Q -- Q' implies 3PI Q' such that P -- P'.

However this equivalence relation is not a congruence. This is because we would

have for instance a + e a but (a +)a 0 aa. Hence we define the relation which

we are interested in to be the largest congruence 	contained in .

This congruence relation, as we shall show, is precisely that of the BPA sys-

tem. Unfortunately, it is not a straightforward task to prove that this congruence

coincides with that defined by the axioms of EBPAe. To do this, we use yet another

characterisation, which we now describe.

Let 	be the largest binary relation such that whenever P Q, we have that
for all a E Act,

(i) P -- F' implies 3Q, P' such that Q 	QI;

Chapter 6. Sequencing with the 0 Process 	 145

Q a) Qt implies 3P"—` Q' such that P a, P'; and

hasempty(P) = hasempty(Q).

We can easily show that this relation, defined by a modified bisimulation, is a

congruence relation. Also, it is clearly contained in the equivalence relation (as

it satisfies the definition of , being defined by a more restrictive definition). We

shall continue from here to show that is in fact precisely the congruence defined

by EBPAC. Upon doing that, we shall show that 	is contained in . From this it
shall follow (since c is the largest congruence contained in) that 	coincides

precisely with , and so also with the congruence generated by EBPAe.

That the equations of EBPAC are valid -equivalences is a straightforward

matter to verify. The proof that these laws completely characterise the equivalence

. relies on a normal form for terms defined by flagged derivation trees, where the

flags are used to specify when a process has the empty process as a summand. To

get at the normal form, we shall once again employ a denotation function which

gives a set theoretic representation of the flagged derivation tree corresponding to

a given term.

A flagged derivation tree is simply a finite unordered tree whose arcs are la-

belled by elements of the action set Act, and whose nodes are labelled by the
set { true, false}, in which no two identically-labelled arcs lead out of the same

node to two isomorphic subtrees. As usual, the arcs eminating from the root of

a flagged derivation tree represent the possible actions which the corresponding

process can perform, namely, those which label the arcs. The flag associated with

the derivation tree specifies whether or not the empty process is a summand in

the process term represented by the tree.

The domain of flagged derivation trees can be represented formally as the least

fixed point solution V to the set equation

V = PFIN(Act x V) x {true,false}

where PFIN(S) again represents the set of finite subsets of S. For an element

D = (T,tt) G V, let

Chapter 6. Sequencing with the 0 Process 	 146

tree(D) = T, 	and 	flag(D) = tt.

Again, some of our proofs will depend on induction on the depth of the flagged

derivation trees of terms, which in our set-theoretical framework corresponds ba-

sically to the rank of a set. With this in mind, we make the following definition.

Definition 6.3.1 The rank of an element D E V is defined inductively by

rank(D) = max ({o} U I + rank(D') I 3a st (a, D') E tree(D)})

Thus in particular, rank(D) = 0 if D = (0, tt), and for any D, D' where there

exists some a such that (a, D') e tree(D), we have that rank(D) > rank(D').

Our denotation defined for a term will simply be the set representation of

the flagged derivation tree representing the term. Before giving the definition

we must state what the sequential composition of two flagged derivation trees is.

Intuitively, it is simply the first flagged derivation tree with a copy of the second

flagged derivation tree tacked onto each node which is labelled by true, with the

flag of that node reset to equal the flag of the second tree. More formally, for

P, Q E D, we define P.Q inductively as follows:

tree (P.Q) = {(a,P'.Q) I (a, P') E tree(P)}

U {(a,Q') (a, Q') E tree(Q) A flag(P) = true};

flag (P.Q) = flag (P) A flag (Q).

With this we can now define the denotation [.]J : P -+ V by cases on the structure
of terms as follows:

= (0, true);

= ({(a, (0, true))},false), (a E Act);

f[p + qj = (tree(jfp) U tree(qfl, flag(I[J) V flag([q]);

IJ1pq = [p] - [q.

An important property of this denotation, which is reflected in the flagged

derivation trees which the denotations represent, is given by the following propo-

sition.

Chapter 6. Sequencing with the 0 Process 	 147

Proposition 6.3.2 f[pJ = ({(a, I[p') I p -- p'}, hasempty(p)).

Proof:

By structural induction on p;

I[eI = (0, true) = ({(ajp'I) 1 e _0_p1},hasempty(e));

(as e 71_ p' for any a, p' and hasempty(e) = true)

= ({(b,(ø,true))},false)

= ({(ajp') I b---*p'},hasempty(b));

(as b ---. e only, and hasempty(b) =false)

= (tree&j) U tree([q]), flag(jp]) V flag(~qj))

= ({(ajp') I p-?--)pl} U {(ajq') I q—q'},

hasempty(p) V has empty(q))

(by the inductive hypothesis)

= ({(a, r') I p + q --) r'}, hasempty(p + q));

I[p.qJJ=IIpH[q

= ({(a,P'.[q) I (a, P') E tree(J[pI)}

U{(a,Q') (a, Q') E tree({q})

Aflag(p) = true},

fiag([p1j) A ilag(I[q}J))

= ({(a,fr]1.[q]) J p--'p'}

U{(a, q'JJ) J q --) q' A hasempty(p) = true},

hasempty(p) A hasempty(q))

(by the inductive hypothesis)

= ({(a,fr.q) I

U{(a, {q'JJ) q ---* q' A hasempty(p) = true},

hasempty(p.q))

= ({(ajjij) I

(by definition of --)

Chapter 6. Sequencing with the 0 Process 	 148

A unique (modulo associativity and commutativity of + and associativity of

normal form can be extracted from the denotation of a term in the following

fashion:

nf(p) = G[p]1)

where

(Ia-o,(DI) I (a, D') E tree(D)}

U {e I flag(D) = true}).

That a term can be equated to its normal form relies on the following proposition.

Proposition 6.3.3 For F, Q E D, we have

Proof:

By induction on rank(P).

= (
({a.(PI) I (a, P') E tree(P)}

U {E I flag(P) = true})) . (Q)

(a, PI) e tree(F)}

U {c(Q) I flag(P) = true})

(using distributivity)

= 	(ja-o,(PI-Q) I (a, PI) E tree(P)}

Chapter 6. Sequencing with the 0 Process 	 149

U {a.o(Q') I flag(P) = true A (a, Q') Etree(Q)}

U { 	flag(P) = flag(Q) = true})

(by the inductive hypothesis)

= (fa.o,(R) (a, R) E tree(P-Q)

U fe I flag(P-Q) = true})

= cr(P.Q). 	 U

Proposition 6.3.4 p = nf(p).

Proof- roof:

By By structural induction on p.

e = cr((O, true)) = o(fr) =

a = ac = o(({(a,(Ø,true))},false))

= cr(aI) = nf(a);

p = nf(p) = a(I[p]j) and = nf(q) = ci(j{q)

== p + q 	p}J)+a(j[q])

= r(tree([p]) U tree(j[q]),

flag([p]J) V flag({qfl)

= o([p+qJJ) = nf(p+q),

p = nf(p) = u([p) and = nf(q)

= p•q = cTp]J).crq]J)

= a(jpqJ)

(by Proposition 6.3.3)

= cr[p.q]) = nf(p.q). 	 0

Chapter 6. Sequencing with the 0 Process 	 150

Corollary 6.3.5 DI = 1i == p = q.

Proof:

P = nf(p) = °([pJ) = cr([qJj) = nf(q) = q. 	 U

Finally, the proof of completeness of the axioms relies on the following propo-

sition.

Proposition 6.3.6 p q = 1i = 1q10.

Proof- roof:

We We shall actually show by induction on ranlc(l[pi) that

1q10 implies p 	q.

Thus suppose that 110 54 1q10.

If fiag(I[p) 0 flag(q) , then by Proposition 6.3.2 we would have that

hasempty(p) =A hasempty(q), so clearly p q.

Hence we just need show that if tree(lpI) 54 tree(q) then p q.

Suppose then that tree(I[pI) tree(J[q), and that (without loss of gen-

erality) (a, P) E tree(I[pi) but (a, P). 0 tree(I[q);

Then by Proposition 6.3.2, 3p, st P = fri and p -- p';

Suppose that q --* q';

Then again by Proposition 6.3.2, (a, lq'11) E tree(q);

Hence since (a, P) 0 tree(q), lq'i P =

Therefore by the inductive hypothesis, p'

Thus ,q' p' such that q --- q', so p q. 	 0

Corollary 6.3.7 (Completeness) p q == p = q.

Chapter 6. Sequencing with the 0 Process 	 151

Proof.

	

Follows from Proposition 6.3.6 and Corollary 6.3.5. 	 El

It now remains to show that 	In order to do this, we shall show that
c satisfies the definition of , and as such, since 	is defined to be the largest

relation satisfying its definition, our result will follow.

Firstly it is straightforward to show that 	satisfies the final clause in the
definition of ; namely, that P 	Q ==. hasempty(P) = hasempty(Q). This is
true as

hasempty(p) = false implies Va, r st p•b --* r, p' st r = p'.b, but

hasempty(p) = true implies p•b --- 6 P -b.

Hence it remains to show that

p 	c q and p -- p' implies q' 	p' such that q ---* q'

and vice versa. This follows from the following final characterisation of .

Proposition 6.3.8 p q implies Yr : r.p r.q.

Hence Yr : p•rq•r 	pq.

Proof.

By induction on depth(r). Let p 	q. r•p --* p' if either of the
following:

7.' 	0
(2) r —+ r' A p' r'.p or

(ii) hasempty(r) A p ---* p';

For (i), r --* r' A p' = r'p == r.q --* r'.q r'.p = p';

(by the inductive hypothesis)

For (ii), hasempty(r) A p --+ p' == 	q' p' st q --- q'

== r.q--+q'p'. 	0

Chapter 6. Sequencing with the 0 Process 	 152

Proposition 6.3.9 p 	q A p --- p' implies q' 	p' such that q --+ q'.

Pro of:

Let p 	q and p -- p'.

Furthermore, let r be any arbitrary process.

By Proposition 6.3.8, we need only show that

2q'stq..?._*q1 A p'•rq'•r.

But we know that p.r q•r and p.r --) p'-r;

(by Proposition 6.3.8)

Hence q.r --* r' p'•r;

Therefore 3q' st q --) q' and q'•r p'•r. 	 0

Thus we have managed to characterise the BPA congruence as an observa-

tional congruence. However, the approach ran upon difficult points which were

not be met by the more natural congruence defined in the previous section. Fur-

thermore, as we shall see in the next section, the original congruence does not

fit as well into the theory as our new observational congruence when the parallel

combinator is added to the signature of the language.

6.3.2 Adding Merge and Communication

In this section, we increase our language by adding the full merge 11 and left merge IL
operators, as is done in [VRA86]. The full merge operator is in fact the interesting

new concept, whereas the left merge operator is added as usual simply to facilitate

the easy (finite) axiomatisation of the resulting system.

The terms in our new language are thus given by the extended signature

E = Act U {e, +,il j, I[} with the labelled transition system operational behaviour

of the operators defined as usual. When we define the new bisimulation equiva-

lence based on this extended transition system, we get the theory which is well

Chapter 6. Sequencing with the 0 Process 	 153

known to be characterised by the theory F given for the sequential language above,

along with the new merge laws

xh, = xll.y + yIlx 	(M4) (x+y)z = xILz + yllz

6 L = 6 	 (M5) (xJ[y)[z = a4(y 11z)

oxI[y = o(xIIy)

That these laws are valid is again straightforward to prove. That they along

with the previous laws suffice to characterise the closed theory follows from the

conservativity of the extension (the true statements in the original signature will

be the same as before), and the fact that using the merge laws, you can express

any term as a term in the original signature.

Hence in the case of ,.we are done. However, the congruence defined in

[VRA86], which admits the distributivity law, simplifying the axiomatisation of

the sequential language, suffers with the addition of the merge operators. For

instance, if we added the above set of merge laws as is, due to the axiom M2 we

would be able to derive

(a II b)c = a(bc-i-c) + b(ac+c),

which is clearly undesirable. Thus we cannot reduce c I[x to e. The situation is

remedied in [VRA86] by the introduction into the signature of another constant

8, a symbol used in the full ACP language to represent deadlock. Along with this

new constant, we have the following axioms:

(D1) o+x = x, 	(D2) ox = 8.

With this, we can bypass the problem with the occurrences of e in expanding out

merged terms by letting 6 11x = 8. However, if we were to use this law universally,

we would run into an equally disasterous situation, as then we would be able to

derive

(a 11 b)c = abO + baS.

Chapter 6. Sequencing with the 0 Process 	 154

Thus care had to be taken in [VRA86]. There we find that the single law (M2)

above is replaced by the following list of laws:

(421) eO€ = 	(Mn) 4ax = 5;

(M22) eO.o = 5; 	(M24) e11(x + y) = &0x + 4y;

(M25) S[x = 5.

Thus we can see that whereas in our new semantic model for this process algebra

with sequencing we had no problems in introducing the new operators for merging

processes, the approach in [VRA86] had to take care in how these new operators

are dealt with in its model.

From here we can add communication in the usual ACP fashion. First we

define a communication function -y : Act x Act -p Act satisfying y(a, b) = 7(b, a)

and 7('y(a,b),c) = y(a,'y(b,c)). Then we add a communication operator t to our

signature, and add to our labelled transition system operational semantics the

following rules:

p--3p' q±qF

i(a,b)
P q -p r' H q'

a
p__*pl q ± qi

7(a,b)
p 1 q -p p' II q'

Again it is straightforward for us to axiomatise this extended system; we simply

replace (M1) above by

(Mi) xOy=x[y+y[x+xy

and add the usual communication laws

(CO a/3 = 	 (C4) e4x = e

xy = yx
	

(C5) axy = (cxy)I[x

(xy)z —x(yz)
	

(C6) (x+y)z = xz + yz

Again, the approach taken in [VRA86] had to take care in how it handled its

equivalence. Its axiomatisation again required the use of the deadlock constant 8,

and the replacement of law (C4) above with the following laws:

(Ci) ex 	5, 	(C') 6x = 5.

Chapter 6. Sequencing with the 0 Process 	 155

In conclusion, though the approach to adding the empty process to BPA taken

in [VRA86] allowing the right distributivity of. over + eases the axiomatisation of

the sequential language, problems arise with the addition of the merge operators.

The study must resort to going outside of the signature to introduce a constant

6 representing deadlock to be able to axiomatise the system. In our case, we re-

tained the well-respected observational equivalence, and tackled the problem of

replacing the distributivity law with valid laws which would completely charac-

terise the equivalence; in the end we indeed succeeded in finding two simple axioms

which would do just that. From there we had no problem with adding the merge

operators and axiomatising the resulting equivalence within the signature.

GA The Non-Finite-Axiomatisability of BPAfl

In this section, we consider the theory BPA1 of the algebra BPA extended with

the full merge operator 11 but not the left merge operator L. The congruence

defined for this language by the ACP community and as presented above as an

observational congruence coincide in the absence of the empty process E. This

theory is given by the equational theory

T =

U {(EXPm,M,n,N) 1 0 < m _< M, 0 < n < N, M, N > 0

as specified as follows.

(x+y)+z = x+(y+z)

x+y = y-1-x

x+x =

(EXPm,M,n,N)

Fort =aixi + E a2
i=1 	im+1

(Si) (xy)z = x(yz)

(D) (x+y)z = xz+yz

Chapter 6. Sequencing with the 0 Process 	 156

	

n 	 N
and u = Eflo.' + :

3=1 	j=n+1
rn

	

tJJu = 	a (Xi u) +

(M,N >0),

M 	 n 	 N
cu + E ,8j(t11y3) +

im+1 	3=1

We shall show in this section that this infinite equational axiomatisatjon cannot

be replaced by any finite axiomatisation. Our proof method will be similar to that

of Section 5.2, except we shall have to use a more subtle argument. In particular,

the proof in Section 5.2 relied on the fact that in the algebra in question (that

using action prefixing), we could not express the process term

a 11 (a + aa + ... + an)

as a sum of fewer than n+ 1 terms without one of those terms itself being equivalent

to 'the whole term. In this case, this result is no longer valid, as

a 11 (a + aa + .. + an)

= a(a+aa+...+an) + (a+aa+...+an)a.

Thus we must be careful in how closely we mimic the proof of Section 5.2.

6.4.1 Preliminary Results

Before we tackle our problem, we must address a few formalities. Firstly, we are

going to view BPAJ as a CCS-like algebra, and work with our defined transition

system over it, as well as exploit the properties of bisimulations. To do this we

must augment the language with the empty process e, to allow the transitions
a 	e. Then our equivalence over this augmented language will be defined as

in Section 6.2. This equivalence, when restricted to process terms not involving

the e term yields precisely the BPA-congruence 7 from above.

Our proofs are often going to use induction on the depths I I of terms as
defined as follows.

Definition 6.4.1

Chapter 6. Sequencing with the 0 Process 	 157

lal = 1; 	 IpqI = IpI+IqI;

Ip+qI = max(IpJ,IqI) ; 	IOI = IpI+IqI.

We also extend the definition of depth to include depth(e) = 0. Some important
properties of depth which we shall exploit in our inductive proofs are given by the

following proposition.

Proposition 6.4.2 For all p, q E BPA,

II > 0,• 	 (iv) IPI = 1 if p = a for some a E Act;

IpqI > IpI,IqI;
	

(v) 	p --* p' implies IpI > Ip'I;
Illl > IpI,IqI.

Proof:

Straightforward. 	 LRI

Next, we can define a couple special semantic classes of prime terms which shall

be useful in our analysis. As before, they will give us a handle on syntactically

classifying terms.

Definition 6.4.3 A term p e BPA1 is seq-prime zff it cannot be expressed as
p = qr for any q, r e BPA1. A term p E BPA1 is prime if it cannot be expressed

as p = qllrfor any q, r E BPA1.

Simple tests for primality (seq-primality) are given by the following proposition.

Proposition 6.4.4

If p --* &, then p is both prime and seq-prime.

If p -- p' and p -- p", where p' and p" are distinct seq-primes, then p itself

must be a seq-prime.

(iii) If p --* p' and p 	p", where p' and p" are distinct primes such that

p' 11 p", then p itself must be a prime.

Chapter 6. Sequencing with the 0 Process 	 158

(iv) If p --* p', p 	p" and p --+ p", where p', p" and p" are distinct primes,
then p itself must be a prime.

Proof- roof:

Straightforward.Straightforward.
IMI

The useful result about these prime (seq-prime) terms is given by the following

proposition regarding the decomposition of terms.

Proposition 6.4.5 (Unique Factorisation Theorems) Any term p e BPA
can be expressed uniquely as a sequential composition of seq-primes, and uniquely

as a parallel composition of primes.

Proof:

As in Section 4.1 or Section 4.2.

Generally, we shall work with processes defined using only a single atomic

action symbol a E Act. As we explained above, this is the only assumption we

shall make on the action set Act, that such an action exists, and this assumption

is valid and necessary. Two important sequences of terms which we shall make

extensive use of are given in the following definition.

Definition 6.4.6

n_a+aa++an;

= aço1 + aç02 + ... + app.

Example primes and seq-primes which will be useful to us are given by the

following propositions.

Proposition 6.4.7 For n> 1,

Chapter 6. Sequencing with the 0 Process

(i) ep0 is seq-prime; a 	W. is seq-prime

is seq-prime; a 	EJ 	is seq-prime;

(iii) 	is prime; 	(vi) a 0 1D. + Q is seq-prime VQ.

Proof:

Straightforward, using Proposition 6.4.4.

Proposition 6.4.8 For h> 1 and 0 <r1 <r2 <.- - -

acori + acc' 2 + .. + acp,.,

is prime and seq-prime.

Proof:

Straightforward, using Proposition 6.4.4 and Proposition 6.4.7.

U

The utility of these propositions will become evident in the proofs to follow. By

saying that a term is prime (seq-prime), we are restricting the possible syntactic

form of the term.

6.4.2 Technical Lemmata

In this section we state and prove the technical lemmata which we need to derive

our main result in the final section. Firstly however, we define a proposition on

pairs of sets of terms which will designate a property of equations which we want

to analyse in our proof system.

159

EN

Definition 6.4.9 For n > 1 and U, V c BPA1 being two sets of terms, let

eL(U, V) be the proposition which states the following:

Chapter 6. Sequencing with the 0 Process 	 160

P E U U V

and >2U = >2V =

and 3P E U st P = a

and aQEVstQ = aII.

Thus ®(U, V) states that the equation >2 U = >2 V expresses a (valid) equality
between terms equal to all 	in which the term all 4Dn is already captured by

a single summand on the left hand side of the equality, but not by any single

summand on the right hand side of the equality.

Then let O(U, V) = ®(U, V) V 0(V, U).

Proposition 6.4.10 Let n> 1 and U, V C BPA be such that e(U, V), and let

P E U U V be the term satisfying P = a 	; Then P A 11 P1 , where A = a and
P=tf;.

Pro of:

P 0 P'•P", as P = a J "I is seq-prime. 	(by Proposition 6.4.7(v))

Also, P # a, F' + F"

Hence P F' 11 Pit.

Now a 	---* , which is prime; 	(by Proposition 6.4.7(u))

Without loss of generality, assume that F' --) Q where Q 11 F" =

Then Q = E, F" 	, and P = F'

Hence F' = a;

(by Proposition 6.4.2(iv), as IP'I = la II Dn l - IP"I = 1)

Thus F A 11 P, where A = a and P, = 	 El

Proposition 6.4.11 Let .T be a finite set of (valid) equational axioms, and let n

be bigger than twice the number of operators in any axiom in the set T. Then no

axiom t = u in .1 can be instantiated to a statement >2U = >2V where O(U,V).

Chapter 6. Sequencing with the 0 Process 	 161

Proof:

Let n be as above, and suppose t = u is an axiom in F such that under

substitution o, t = u instantiates to >2U = >2V where O(U,V).

Without loss of generality, assume that O(U, V);

Clearly, fv(t) = fv(u), as t = u is assumed to be a valid axiom.

t1 +t2+- +tk and u u1 + u2 + .. + 	for some k, k' > 0,

where each t, ui # v + v';

O(U, V) == for some i, either to- A P, or tcr A II P. + Q,

where A=a and P=;

(by Proposition 6.4.10)

Thus tr is seq-prime; 	 (by Proposition 6.4.7)

Consider the structure oft,:

I, a == tcY a (contradiction);

	

ti 	tit" === to- 	(t'o)(t"o-)

(contradiction, as t j is seq-prime)

	

tj 	t' + V' == (contradiction);

x = o 	tior and x e fv(u1) for some j

==ua 	 (as xgfv(a))

and u 	u' + u" 	(by assumption on u5 's)

and u j 	u'-u", u' jJ

(as otherwise n + 2 = Iuoi < ju jorl < Jo = n + 2)

= ujxandANPEV

(contradicting O(U, V))

	

Thus t, 	t' lit" and tcT 	t'o 11 t"a = a JJ 'I;

	

Hence t 	t' 11 t" with t'o- A = a and t"o- P =

(by Proposition 6.4.7(iii) and Proposition 6.4.5)

Chapter 6. Sequencing with the 0 Process 	 162

Now t"vi+v2 +...v1 wherel< 	and each vh v+v';

t"t7 V10 + V20• + V10• = 	= ap1 + ap2 + 	+ aço,

so some Vh0 = aWrl + ap 2 + + ap,. for some a > 2, and

some rl,r2,••,ra stO<rl<r2< ... <ra;

Thus clearly Vh 0 a, v + v', vv', v 11 v',

(by primality/seq-primality of vo, from Proposition 6.4.8)

so Vh x for some variable x

with or, = aco + aco 2 + ... + a;

Clearly x Øfv(V), as lVoi = la = 1 < ra =

Let o•' =

Then t' 	Vc, and to,, --) Vo 	= a

Therefore for some j, u5cr' -- a II

Now ju jo,1 1 > n + 2 =luo,rl,so clearly x E fv(u1);

Consider the structure of u5:

u5 	x == u1 	a 	f-p a 11 ço (contradiction);

u5 a 	' xfv(u5) (contradiction);

u1 	u' -u" ==> u10- 	(u' or) (u"o) ---* a II

which is prime;

== 	u'o' -- e and u"a' = all (Dn

with x E fv(u");

(as Ju"oj < Ju"o')

U'1 	w1 + w2 + + w1 for some 1

with each Wh 0 W + w,

and x E fV(Wm) for some m;

Consider the structure of the Wm with x E fv(wm):

Wm 	a == x 0 fv(w) (contradiction);

Chapter 6. Sequencing with the 0 Process

W m 	w + w' == (contradiction);

WmEWW' orwmwOw'

x E fv(w) or x E fv(w')

n +2 = Ju"oI ~! I'm0'I

= wol + Iw'oI

> I =n+2

(contradiction);

Thus x E fV(Wm) 	 x and wma' = a;

Now u"cr' = a H 4 	a 11 Wn,

SO wo' -- a ço for some rn;

Clearly o 74-* a II

Hence 	--+ a 11 (O for some m

such that x

But then w 	--* a 11 Wn;

Thus n+2 < IWmO! < jullorl

<Iu3ai Iuoi = n +2

(contradiction)

UI = u' + u" ===> (contradiction);

Hence u5 u' I u" with x E fv(u');

Now since u"cr --- p for some p, we have uo a
-p u'cr H

Thus u'oIp= 	or u'o- JIp=allcok for some k: 1 < k< n;

If u'o Jl P = , then p = E and u'o = , and so also u"o- = a,

(Since 'I is prime, by Proposition 6.4.7(iii))

so u5o 	tLO H ullor = a 11 '' (contradicting e(U, V));

Hence u'o- p = a c°k for some k: 1 < k

Since x E fv(u') and o 2, = aco 1 + ap2 + 	+

we have that for some 1> 0 and for some q E 7,

a1 u'o -p (p2q for each s: 1 < s < a;

163

Chapter 6. Sequencing with the 0 Process 	 164

L I
Now for l'>l, u'oIIp= aII ,k ---)p' implies p' = a8

for some s : 0 <s < k;

But u'o11p a1
+11 	

al l

- 	raq, where p -- 6,

and rq a8 = aa• • a, 	 (By Proposition 6.4.5)

so 1 + It < 2, which means I'= 0 and thus p =

Hence u'o = a 11

But then u'a = a II Wk -- (p 8 q implies r8 = 1 or r3 = k;

(contradicting a > 2 where u'u ----)

for each s:1<s<a, and 0<ri <r2 < ... <r0)

Therefore no axiom t = u E 	can be instantiated to a statement

= 	V where e(u,v). 	 0

Proposition 6.4.12 Suppose in a sound proof, we have an inference:

>u=>w >w=>v
y.rans)

where REW = RR'+R"; Then

®(U, V) = ®(U,W) V ®,(W, V).

Similarly for the (sub) rule; corresponding to the inference:

EU=V u,=>v,
>:uuu' = VUV' 	

(sub),

we have the result that

O(U U U', Vu V') = e(U, V) V ®(u', V').

Pro of:

Consider the (trans) rule case:

	

Chapter 6. Sequencing with the 0 Process 	 165

Assume O(U, V);

We know immediately that

PEUUVUW 	PP'+P";

And (from 	V), and the soundness of the proof in which

the inference appears) that

aIl 	= 	= E V =

Now if ARE W st R a 	, then clearly 	W);

And if 3R E W si R = a 	, then clearly O(W, V);

Similarly, EJL(V, U) == e(W, U) V O(V, W);

Hence O(U, V) = O(U, W) V ®(W, V).

The (sub+) rule case is similarly straightforward:

Assume ®(U U U', V U V');

Again we know immediately that

PEUUU'uVUV' = PP'+P",

and

PEUUU'stP=aO;

Suppose this P E U; then (from E(U U U', V U V'), and

the soundness of the proof in which the inference appears)

we have that

EU = >V =

so clearly e(U, V);

And similarly, if this P e U', then ®(U', V').

	

Similarly, O(V U V', U U U') == 	U) V O(V', U');

Hence O(U U U', V U V') == e(u, V) V e(U', V').

U

Chapter 6. Sequencing with the 0 Process 	 166

6.4.3 Main Result

Here we state and prove our main theorem, the non-finite-axiomatisability of our

equivalence.

Theorem 6.4.13 Suppose that F is a finite set of (valid) equational axioms. Let

n be large enough (as allowed by Proposition 6.4.11 so that no axiom in F can

be instantiated to express any truth > ,U = E V where O(U, V). Then our natural

deduction style equational proof system cannot prove the true statement

a 1 	= a+ a(a JIwi)+ a(a co2)+ ... + a(a JJ).

Therefore no finite complete axiom system can exist for BPAV.

Proof:

Suppose we have a (shortest) proof of the statement

a IIDn = a+ a(a ço1)-j- a(a jço2)+ ... + a(a ça).

The proof takes the following form:

Do
(rule),

uo=>vo
where

and

V0 = {a, a(a II 	a(a W2), •., a(a 0 c)},

so clearly 0(U0 , V0) holds.

Since this must be a finite proof, there is somewhere in the proof tree

an inference

V
(rule) 	where 	O(U, V);

Chapter 6. Sequencing with the 0 Process 	 167

such that the premise V of the inference contains no equality

EUI = EV, 	where 0.(U,, V');

By Proposition 6.4.12, (rule) can be neither of (trans) nor (sub).

Furthermore, by Proposition 6.4.11, we know that (rule) cannot be

(t = u) for any axiom t = u E .T;

Also clearly (rule) cannot be (symm), as EJ(U, V) @= ®,(V, U);

Finally, (rule) cannot be any of (ref 1), (subs), or (sub), as this would

contradict O(U, V);

Hence we have shown that the original statement cannot be proven.

Chapter 7

Conclusions and Open Problems

We present here a brief summary of what was accomplished, and what was not

accomplished, in the main body of the thesis.

In Chapter 3, we investigated axiomatisations of the extensional theories for

several languages for nondeterministic and concurrent processes. In that chapter,

we were able to present finite w-complete axiomatisations for a simple language

for nondeterminism, and a language with concurrency in the form of the full and

left merge operators. However, we failed to find such an axiomatisation, finite or

otherwise, for a language with full merge in the absence of the simplifying left

merge operator. We do know in fact from a result proven in Chapter 5 that such

an axiomatisation would have to at least be infinite.

In Chapter 4, we proved several results on the decomposability of processes

into parallel components. In particular, we showed unique factorisation results for

our simple concurrent language with and without communication with respect to

strong and weak observational congruence. However, in the case of weak observa-

tional congruence, the results had to be taken modulo the existence of a r-factor

in the decomposition.

In Chapter 5, we proved the nonexistence of a finite axiomatisation for any

reasonable congruence for our concurrent language which is at least as strong as

strong observational congruence. This result gives us some indication as to where

the difficulty arose in Chapter 3 in trying to w-completely axiomatise our system,

Chapter 7. Conclusions and Open Problems 	 169

and furthermore explains the origins of the difficulty faced in trying to completely

axiomatise some noninterleaving semantic congruence over this language, when

the simple axiom schema given by the Expansion Theorem of CCS is not valid.

In Chapter 6, we investigated the above questions in the framework of process

algebras using sequential composition as opposed to action prefixing. Starting with

a model defined by [VRA86], we refined the semantic interpretation and presented

a model based on operational semantic methods as in CCS. We found a finite

complete axiomatisation for the nondeterministic language, but failed to find an w-

complete axiomatisation. With our operational approach, we were able to extend

our results on the unique decomposability of processes to this new framework, and

prove the nonexistence of a finite axiomatisation for the language with the full

merge operator in the absence of the left merge operator.

In the rest of this chapter, we shall outline some of the problems which were

not solved in this thesis, but whose solutions would have been included.

7.1 w-Complete Axiomatisation for the Full

Merge Language

In Chapter 3, we investigated extensional axiomatisations for several process

algebras. We managed to find a relatively easy w-complete axiomatisation for our

language containing both full merge and left merge operators, but we ran upon

severe difficulties with the language containing just the full merge operator, in

the absence of the simplifying left merge operator. We discovered sequences of

independent and arbitrarily-complex Reduction and Absorption Laws which must

be accounted for in an w-complete axiomatisation.

There is very little difference in the above two languages for concurrency. The

left merge operator is a slightly restricted version of the full merge operator, which

in turn is easily definable in terms of the left merge operator and nondeterministic

choice by

Chapter 7. Conclusions and Open Problems 	 170

xlly = x[y+y[x.

The complicated axioms discovered in Section 3.3 are in fact derived from this

close relationship between the two algebras. For instance, to derive the Reduction

Law

ax 11 (fly + z) + a(x 11 z) = a(x II (fly + z)) + fl(ax H) + ax H z,

we take the largest parallel composition, ax 11 (fly + z), which is the term being

reduced, and translate it into the left merge language, and then simplify the result

using the left merge laws from Section 3.2 to get

ax 11 (fly + z) = ax J[(fly + z) + (fly + z) Lax

= 	a(xH (fly +z)) + fl (ax Oy) + 4ax.

Adding to both sides of the equation the reverse of the nonsimplifying left merge

term z Lax, namely ax ILz = a(x H z), and then again simplifying in the obvious

way, we arrive at our desired axiom.

Every Reduction Law introduced in Section 3.3 can be viewed, and indeed

was first conceived of, in the above manner. By translating a term into the left

merge language and then distributing the left merge operator through the non-

deterministic choice from the right, we can express all of the possible first-step

behaviours of the process term separately. This gives us the minimal amount of

first-step behavioural properties which must exist in a process term which repre-

sents an expression containing our reduced-out term as a summand. This is the

sense in which we argued in Section 3.3 that our axioms were minimal. Further-

more, whenever some term x t appears as a summand in this minimal first-step

behaviour expression, we know that the process represented by the term must have

the capability of proceeding via the indeterminate process x in the context where

it is running in parallel with the term t. Thus we know that the behaviour t Itx
must be present in the minimal first-step behaviour expression. The Absorption

Laws were originally conceived of in an identical fashion.

Chapter 7. Conclusions and Open Problems 	 171

Using this as a guide, we can attempt to prove the w-completeness of the infinite

set of axioms presented in Section 3.3 including the sequences of Reduction and

Absorption Laws. That is, we can perhaps utilise the left merge language, for

which we have complete knowledge of the extensional theory, as a metalanguage

for defining a normal form, and use properties derived from considerations of the

special properties of full merge to arrive at our completeness result. For instance,

we can start by using the left merge denotation function to distinguish terms.

That is, we have the denotation function H from Definition 3.2.5 restricted to

terms in the sublanguage 22 of 2 where the left merge operator does not appear.

Recall that this denotation maps elements of 21 (and hence elements of 22 as

well) to the domain V1 given as the least fixed-point solution to the set-theoretic

equation

V1 	= PFIN(Var x V1 U Act x V1),

where PFIN(S) represents the set of finite subsets of S. The denotation of a

term gives the set of action—derivative pairs specifying what initial actions are

possible along with the resulting derived terms which the process would evolve into,

and the variable—process pairs specifying what indeterminate processes appear

unguarded in the term along with the processes representing the parallel context

within which the variable processes appear. For instance, the term a + b 11 x would

have a denotation representing the normal form a + bx + x Lb.

We know immediately that this denotation function is consistent with respect

to our equational theory. That is, due to the soundness of the axioms, we know

that whenever the axioms can prove t = u, we have that 	= Jul. The problem

here is to show the reverse implication. The difficulty lies in that not every element

of the domain V1 is the image of a term in P2. For instance, the domain element

{ (x, a)} represents the left merge term 4a which has no equivalent form in the

subalgebra P2. Thus we need to place restrictions on the possible forms of domain

elements which can be the images of P2 terms. With the motivation forming the

basis of our axiom construction above, we can immediately come up with the

Chapter 7. Conclusions and Open Problems 	 172

following conjecture on a restriction for the denotations of terms from the full

merge language.

Conjecture 7.1.1 For terms t, t' E 22, (x, [t'J) E i]J implies t'[(x +

for some t" E P2

What this conjecture is telling us is that whenever within a term t, we can

proceed with an indeterminate process x within the parallel context (x + t") lit',

then we must also be able to proceed in that context with any initial transition of-

fered by t'. This is reflected in our (minimal) Reduction Law construction method

above, where we add the term t' Lx to both sides of our equation when one side

has the nonsimplifying term x I[' as a summand.

We can then proceed to define the normal form of a term t e 2 by

nf(t) = a([t]),

where o would be defined somehow like the following:

o, (T) = E a.o(S) + E xjo(S).
(a,S)ET 	 (z,S)ET

The only difference between this definition and the one of Definition 3.2.10 is

that here we have x 11 t instead of x [• This is not a correct definition, as it fails

to take account of the extra V' term from Conjecture 7.1.1. How to define that

extra term is where we find the first problem to this approach. However, given

that we could repair the definition, with the help of Conjecture 7.1.1, we would

next like to prove the following conjecture.

Conjecture 7.1.2 With our axioms, we can prove the statement t = nf(t).

This would be where our greatest problems would lie, as it is where we must

make our axioms work for us. The difficulty would arise in a large part due to the

indeterminate nature of the t" in Conjecture 7.1.1. However, assuming it to be

Chapter 7. Conclusions and Open Problems 	 173

true, we would have as an immediate corollary that we could prove the statement

t = u with our axiom set whenever [t =

From here it would just remain to show that the denotation is sound with

respect to our congruence, that is, that []I = hull whenever t u. However, we

get this result almost for free from Proposition 3.2.14 and Corollary 3.2.15.

Hence, this approach to the solution to our w-completeness problem looks very

promising. However, we have not been able yet to follow out the details to a

successful end.

7.2 The Non-Finite-Axiomatisability of

Observational Congruence

In Chapter 5, we managed to prove the nonexistence of any finite axiomatisation

first for strong congruence, and then for any reasonable congruence at least as

strong as strong congruence, over the languages 9 and 'P30, the languages con-

taining full merge and merge with synchronisation respectively in their signatures.

As we recall, the usual complete axiomatisation for strong congruence over

is given by Tt, consisting of the following axioms.

(x+y)+z = 	 (A3) x+x =

x+y = y+x; 	 (A4) x+O =

	

m 	 n
(Expma) For u = 	pixi and v =

	

i=1 	 j=1

	

m 	 n

ulv = 	,t(xlv) + E v(uIy) + 	r(x j y).

	

1=1 	 j1

What we did not do, and which is sorely lacking in the chapter, is prove an

analogous result for the weaker observational congruence over these languages.

Recall that the usual complete axiomatisation for observational congruence

over P30 is given by 7b, consisting of the axioms of Tt, above, along with the

following 7- laws.

Chapter 7. Conclusions and Open Problems 	 174

jATX =

X+TX = TX;

ji(x + ry) + #Y = (x + ry)

Though the conjecture is that these systems are equally not finitely axiomatisable,

the proof technique used for the previous results falls through in the presence of

silent r actions.

One immediate problem is that we no longer have the property that congruence

respects yntactic depth. For instance,

a.r.t 	C a.t,

whereas

Ja.r.tI = 2 + V! L 1 + Itl = Ia.tI.

However, this particular problem can be easily remedied by redefining the depth

function I I to allow it to ignorer actions. We can then show that observational

congruence, as indeed -observational equivalence, respects this new definition.

Our bigger problem arises with actually arguing about terms derived from

congruent terms, which can be assumed to be observationally equivalent, but

not necessarily congruent. Furthermore, we cannot easily manipulate syntactic 	- -

terms which derive under an indeterminate number of silent r actions into some

term equivalent to a behaviour in which we are interested. In relation to our

proof in Chapter 4 on the unique decomposition of agents in P30 with respect to

observational congruence, we cannot assume given a proof tree of a statement that

all subterms which appear in the tree are going to be expressible as proper normal

forms, even when the statement which is being proven by the proof tree expresses

a relationship between proper normal form terms. In particular, we would still

like to prove that all statements of the form

aI(a + aa + .. + an)

= a(a+aa+... ±a") + aa + aaa + ... + a'+'

Chapter 7. Conclusions and Open Problems 	 175

cannot be proven using any finite set of valid equational axioms.

Ideally, we would like to show some relationship between strong congruence

and observational congruence which would allow us to infer that given a finite

axiomatisation for the latter, we could deduce a finite axiomatisation for the for-

mer. Given this, our problem would be solved, as we have already shown the

non-finite-axiomatisability of strong congruence. Notice that the reverse direction

can be seen to hold: given a (finite) axiomatisation for strong congruence, we

would simply need to add to this axiomatisation the three r laws {(T1), (T2), (T3)1

from above in order to get a (finite) axiomatisation for observational congruence.

Unfortunately, such a relationship is not obvious. One may think it sufficient to

remove any and all laws which manipulate silent r actions from an axiomatisation

for observational congruence in order to derive a (smaller) set of axioms for strong

congruence. However, we can see that such an approach fails immediately, by

noting that TQb,\{(A3)} is a complete axiomatisation for observational congruence,

all ground instances of the idempotence of + being derivable using the other laws.

For example,

a+a = arT + ar

= a(r+rr) + ar

= a(r+rr)

= arr

= a.

(using (T1) three times)

(using (T2))

(using (T3))

(using (T2))

(using (T1) twice)

However, by removing the r laws from 7 ,b,\{(A3)}, we would arrive at Jtr\{(A3)},
in which we could not prove that a + a = a.

An equally ideal situation would be to reason that given a finite complete

axiomatisation for , we could add a finite number of sound laws in order to derive

a modified axiomatisation in which we could prove any statement p = q in which

p and q only contain the action a in their sorts (Sort(p) = Sort(q) = {a}) without

using any term possessing a sort different from {a}. With this, our analysis could

mimic the strong congruence case (we would no longer need to worry about silent 7

Chapter 7. Conclusions and Open Problems 	 176

transitions, as no r actions would appear explicitly, nor could any communications

occur, given the further assumption that a 0 a).

An analogous trick was used in Section 5.1 to eliminate any unnecessary U's

appearing as subterms in proofs. We started with a (supposedly) finite, complete

and sound set of equational axioms for '-', and added to these a finite number of

additional axioms which allowed us to prove any valid statement not containing

any 0 summands or factors in either agent using only similar agents in the proof

tree. In this case, we would like to assume given a finite set F of sound and

complete laws for , and extend this to some superset F of sound laws by adding

a finite collection of new laws, so that we can guarantee that there will be proof

trees for the valid statements

aI(a + aa + ..• + a')

= a(a + aa + ••. + an) + aa + aaa + ... + a+1,

in which every term P appearing in the proof trees satisfy Sort(P) = {a}.

Following the technique employed in Section 5. 1, what we would like to deduce

is that any proof of a statement P = Q in a system parameterised by a finite and

complete set of axioms F, where P and Q each have sort {a}, could be replaced by

a valid proof of the same statement over the extended set F of laws by replacing

each inference

by an inference

(rule)
p

p=q

where j is p with all r actions removed. Formally,

0=0; 	 pTq =±;

ttA if1tr,
9P 	

A
pJq=pq.

ZfIL=r;

Bibliography

[AUS84] Austry, D., G. Boudol, "Algbre de Processus et Synchronisation", Theoret-

ical Computer Science, Vol 30, No 1, 1984.

[BAR84] Barendregt, H.P., The Lambda Calculus - Its Syntax and Semantics, Stud-

ies In Logic and The Foundations of Mathematics, Vol 103, North-Holland,

1984.

[BER84] Bergstra, J.A., J.W. Klop, "Process Algebra for Synchronous Communica-

tion", Information and Computation, Volume 60, Number 1/3, 1984.

[BER85] Bergstra, J.A., J.W. Klop, "Algebra of Communicating Processes with Ab-

straction", Theoretical Computer Science, Vol 37, No 1, 1985.

[B0U85] Boudol, G., "Notes on Algebraic Calculi of Processes", Logics and Models

of Concurrent Systems, NATO ASI Series F13, Springer—Verlag, 1985.

[BOU86] Boudol, G., I. Castellani, "On rthe Semantics of Concurrency: Partial Orders

and Transition Systems", Proceedings of TAPSOFT '87, Vol I, Lecture Notes

in Computer Science 249, Springer—Verlag, 1987.

[BR084] Brookes, S.D., C.A.R. bare, A.W. Roscoe, "A Theory of Communicating

Sequential Processes", Journal of the ACM, Vol 31, No 3, 1984.

[CAS87] Castellani, I., M. Hennessy, "Distributed Bisimulation", University of Sussex

Computer Science Report No. 5/87, July 1987.

C-

178

Bibliography 	 179

[CAS88] Castellani, I., "Bisimulations for Concurrency", Ph.D. Thesis, Department

of Computer Science, University of Edinburgh, Report Number CST-51-88,

1988.

[CON71] Conway, J.H., Regular Algebra and Finite Machines, Chapman and Hall,

London, 1971.

[CRA58] Craig, W., R. Vaught, "Finite Axiomatisability Using Additional Predicates"

Journal of Symbolic Logic, Vol 23, No 3, 1958.

[DEN84] De Nicola, R., M.C.B. Hennessy, "Testing Equivalence for Processes", The-

oretical Computer Science, Vol 34, No 1/2, 1984.

[EHR85] Ehrig, H., B. Mahr, Fundamentals of Algebraic Specification 1 - Equations

and Initial Semantics, Springer—Verlag, 1985.

[G1S84] Gischer, J.L., "Partial Orders and the Axiomatic Theory of Shuffle", Ph.D.

Thesis, Stanford University, Report No. STAN-CS-84-1033, December 1984.

[HEE86] Heering, J., "Partial Evaluation and w-completeness of Algebraic Specifica-

tions", Theoretical Computer Science, Vol 43, 1986.

[HEN85] Hennessy, M., R. Milner, "Algebraic Laws for Nondeterminism and Concur-

rency", Journal of the ACM, Vol 32, No 1, 1985.

[11EN87] Hennessy, M., "Axiomatising Finite Concurrent Processes", University of

Sussex Computer Science Report No. 4/87, July 1987.

[H1N86] Hindley, J.R., J.P. Seldin, Introduction to Combinators and A-Calculus,

Cambridge University Press, 1986.

[H0A78] bare, C.A.R., "Communicating Sequential Processes", Communications of

the ACM, Vol 21, No 8, 1978.

[H0A85] bare, C.A.R., Communicating Sequential Processes, Prentice-Hall-Interna-

tional, 1985.

Bibliography 	 180

[KEL76] Keller, R., "Formal Verification of Parallel Programs", Communications of

the ACM, Vol 19, No 7, 1976.

[KLE52] Kleene, S.C., "Theories in the Predicate Calculus Using Additional Predicate

Symbols", Memoirs of the American Mathematical Society, 1952.

[KL087] Klop, J.W., Personal Communication, October, 1987.

[MIL80] Milner, R., A Calculus of Communicating Systems, Lecture Notes in Com-

puter Science 92, Springer—Verlag, 1980.

[M1L84] Milner, R., "A Complete Inference System for a Class of Regular Behaviours",

Journal of Computer and System Sciences, Vol 28, No 3, 1984.

[M1L85] Milner, R., "Lectures on a Calculus for Communicating Systems", Lecture

Notes in Computer Science 197, Springer—Verlag, 1985.

[M1L86] Milner, R., "A Complete Axiomatisation for Observational Congruence of

Finite-state Behaviours", Laboratory for the Foundations of Computer Sci-

ence, Department of Computer Science, University of Edinburgh Research

Report ECS-LFCS-86-8, 1986.

{NIE81] Nielson, M., G. Plotkin, G. Winskel, "Petri Nets, Event Structures and Do-

mains, Part I", Theoretical Computer Science, Vol 13, No 1, 1981.

[PAR81] Park, D.M.R., "Concurrency and Automata on Infinite Sequences", Pro-

ceedings of the 5' G.I. Conference, Lecture Notes in Computer Science 104,

Springer—Verlag, 1981.

[PL081] Plotkin, G., "A Structured Approach to Operational Semantics", DAIMI FN-

19, Computer Science Department, Aarhus University, 1981.

{PRA65} Prawitz, D., Natural Deduction, Almqvist and Wiksefl, Stockholm, 1965.

[PRA86] Pratt, V., "Modeling Concurrency with Partial Orders", International-Jour-

nal of Parallel Programming, Vol 15, No 1, 1986.

Bibliography 	 181

[SAN82] Sanderson, M.T., "Proof Techniques for CCS ", Ph.D. Thesis, Department

of Computer Science, University of Edinburgh, Report Number CST-19-82,

1982.

[SH067] Shoenfeld, J.R., Mathematical Logic, Addison—Wesley, 1967.

[VRA86] Vrancken, J.L.M., "The Algebra of Communicating Processes with Empty

Process", Department of Computer Science Report FVI 86-01, University of

Amsterdam, 1986.

[WIN80] Winskel, G., "Events in Computation", Ph.D. Thesis, Department of Com-

puter Science, University of Edinburgh, Report Number CST-10-80, 1980.

[W1N83] Winskel, G., "Event Structure Semantics for CCS and Related Languages",

Department of Computer Science Report DAIMI PB-159, Aarhus University,

1983.

4

