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Abstract 

We study properties of equational characterisations of congruences defined over 

process algebras. The languages on which we concentrate are based on CCS, 

and our equivalences are generally restricted to observational congruences. We 

start by defining and investigating the notion of extensionality or w-completeness 

of an axiomatisation with respect to some semantic equivalence, as an extension 

of simple completeness, and show that, whereas in some cases the ability to w-

completely axiomatise a system is straightforward, there are sometimes difficulties 

in doing this when our algebra contains the symmetric full merge operator. 

We then consider the problem of decomposing a process into the parallel com-

position of simpler processes. Here we present several example systems where we 

can prove that any process term can be expressed uniquely as the parallel composi-

tion of prime process terms, those processes which cannot themselves be expressed 

as a parallel composition of at least two nontrivial processes. 

We next consider the possibility of the nonexistence of finite axiomatisations 

for certain systems. In particular, we show that strong observational congruence 

over a subset of the usual CCS algebra with the full merge operator cannot be 

completely characterised by any finite set of equational axioms, thus requiring the 

power of the Expansion Theorem to present an infinite set of axioms within a 

single axiom schema. We then go on to prove that no reasonable stronger notion 

of congruence can be finitely axiomatised, thus explaining the difficulty presented 

in searching for complete laws for noninterleaving semantic congruences where the 

Expansion Theorem fails. 

Finally we consider the same problems in an algebra containing . a sequencing 

operator rather than the usual CCS action prefixing operator. 
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Chapter 1 

Introduction 

The need to be able to reason about computer programs in a rigorous formal 

way is self evident. This applies even more so to programs involving parallel con-

structs than to those written in a purely sequential programming language. This 

is due to the inherent intuitive difficulties discovered by experience posed by the 

nondeterministic behaviour of such programs. These methods for reasoning must 

furthermore be formal to allow verification proofs to be at least partly mechanised, 

as systems for which we desire to prove properties grow in size. Indeed there now 

exist several automated systems for reasoning about concurrent processes, just 

one example being the Concurrency Workbench', a prototype automated tool for 

reasoning about CCS agents, processes defined using Milner's Calculus of Com-

municating Systems [MIL80]. 

The motivation for this thesis is to add to the understanding of reasoning about 

concurrent processes using strictly equational logic. Rewrite rule based systems 

founded on equational theories are ideal for implementing in an automated tool, 

so a clear understanding of the equational theory of concurrent processes forms 

the basis of a rigorous proof technique amenable to automation. In this thesis 

we consider three basic problems of equational reasoning within process algebras. 

Concurrency Workbench is currently under development in a joint SERC-funded 
project between the Laboratory for the Foundations of Computer Science at the Univer-
sity of Edinburgh and the University of Sussex. 
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Firstly, we analyse the possibility of reasoning about open terms (terms with free 

variables) in our process algebras. Such terms represent underspecified processes 

in which the indeterminates are placemarkers for unknown subprocesses which 

may for example be implemented by someone else, or may be irrelevant with re-

spect to the property of processes which we are currently considering. Secondly, 

we consider the problem of decomposing processes into parallel components, and 

analyse when this can be done completely (that is, decomposed into nondecom-

posable components) in exactly one way. This would allow us to reason about 

the components of a system, and also allow us to find possibly the most optimal 

implementation of a specification with respect to the amount of parallelism which 

can be exploited in the implementation. Finally, we consider problems regarding 

the finite axiomatisability of certain systems. This study would lead us to deduce 

some finite presentation of a complete equational theory of a system, or more 

interestingly, to deduce when such a finite system cannot exist. 

1.1 Extensional Completeness 

A complete axiornatisation for reasoning about open terms of some process alge-

bra with respect to some semantic congruence would amount to what is referred 

to for example in the lambda calculus as a complete extensional theory, or an w-

complete axiomatisation. Such an extensional theory for CCS would allow us to 

reason about underspecified concurrent systems without having to resort to tactics 

other than pure equational reasoning, such as some form of induction. This would 

almost certainly give much simpler proofs to many valid open statements in CCS 

than can be derived within a simply complete axiornatisation. For example, using 

the usual complete axiornatisation for finite CCS terms, the proofs of the associa-

tivity and commutativity of the parallel operator are less than straightforward to 

prove, involving lengthy proofs by induction (see, e.g., [MIL80], Theorem 5.5). 

An automated system for reasoning about CCS processes based on an exten-

sional axiornatisation would neither need to restrict itself to agents (closed term 

processes), nor need to resort to any tactic other than pure equational reasoning. 
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1.2 Unique Decompositions 

If it were the case that in some system for reasoning about concurrent processes 

we could prove the validity of a unique decomposition theorem, then this would 

provide two points of interest. Firstly, it would gives us a start towards a normal 

form for processes, leading towards the ability to prove certain completeness re-

sults. More importantly, it would allow us to reason about the maximal degree of 

parallelism which exists within a system. 

For example, consider a language over the signature E = to,., +, 11 1, consisting 

of the usual CCS operators representing the null process, action prefix, nondeter-

ministic choice and full merge. A normal form for process terms in this language 

could be defined to be 

II P 	(n>O), 
1<i<n 

where each P represented a prime process and as such is in some form of prime 

normal form. A prime process over this language would be one which could not be 

expressed as the parallel composition of two or more nontrivial processes. Upon 

performing some transition, the term may evolve into a nonprime process, but it 

must move from its state in order to express any global concurrency. As such, 

prime normal forms could be defined to be 

a.p, 	(n>O), 
1<i<n 

where each pi  was in normal form. Such prime normal forms would of course 

be restricted to prime processes; for instance, a.b.O + b.a.O would not be a prime 

normal form term as it is not prime, being equal to the composite term a.O 11 b.O. 

Given that our congruence over this signature allows for a unique decomposi-

tion theorem to hold, any term could be expressed uniquely as a normal form as 

defined above. Moreover, we could define the maximum amount of parallelism of 

an agent as follows: Given a process P expressed in normal form by 
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= H ( 1: ai5.p3), 
1:5i<m 1<j<n 

the maximum amount of parallelism which inherently exists within P would be 
given by 

maxpar(P) = >2 	max maxpar(pij)), 
1<i<m " '' 

where here we let >2 i = 1. Such a definition could have implications on the 
iEØ 

implementation of a process specified by a CCS agent; it would reveal to the 

implementor how much parallelism he could attain in implementing the abstract 

process, telling him how many actual control processes he could use to maximise 

efficiency. 

It is not in general the case that such a decomposition result is possible. For 

instance, if the operational semantics of the full merge operator obeys the following 

CSP rule (cf. [BR084], [H0A85]) 

P — -P,, Q - -Q' 

OQ - P'IIQ' 

then we can see that the possibility of a unique decomposition fails immediately, 

as 

a.O = a.O a.O 

= a.O a.O 	a. 0. 

Also, as pointed out by R. van Glabbeek ([KL087]), a unique factorisation result 

could not hold for certain failure or readiness semantics, where we have the law 

a.(b.x + b.y) = a.b.x + a.b.y, 

for in this case the process term a.a.O + a.a.a.O + a.a.a.a.O would have two distinct 

decompositions, namely 

a.a.O + a.a.a.O + a.a.a.a.O 

= (a.O + a.a.0) H (a.O + a.a.0) 

a.O 11 (a.O + a.a.O + a.a.a.0). 
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However, in this thesis we show that the result does hold for the above subset 

of CCS under the usual operational laws for the operators (with or without com-

munication via synchronisation of complementary actions allowed with the parallel 

operator), -with respect to strong and weak observational congruence. 

1.3 Finite Axiomatisability 

One of the major problems which this thesis addresses is that of the nonexistence of 

finite equational axiomatisations for concurrent systems. In particular, we show 

that the above subset of CCS is not finitely axiomatisable under the semantic 

equivalence of strong observational congruence. The implications of such a result 

are straightforward: in order to completely axiomatise the congruence within the 

system, we need to find some (hopefully elegant) valid axiom schemata in order to 

represent an infinite set of axioms. In the case of strong congruence, the Expansion 

Theorem of CCS provides just what is needed. 

We however manage to extend our result to apply over the same language 

under any reasonable congruence stronger than strong observational congruence. 

Thus we show that if we had some reasonable (defined in a strict, formal sense) 

noninterleaving semantic congruence, we would need to find some alternative ax-

iom schemata to replace the Expansion Theorem, which would no longer hold in 

our stronger equivalence. 

An interesting point about our nonexistence proofs is that they necessarily em-

ploy a method unlike that usually used for such results. The typical style of proof 

for this type of result is of a model-theoretic nature, using the following technique: 

suppose we have some infinite set T of axioms which completely characterises our 

notion of congruence, and that this theory can be expressed as T = U>o Ti, where 

To  c 7 c T2  C ... is an increasing chain of theories approximating T. Suppose 

further that for each k > 0 there is a statement Sk  such that T F Sk, but 7j V Sk. 

Then there cannot exist a finite axiomatisation for our congruence. For suppose 

that J is a finite set of valid axioms which also characterises our congruence. 
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Then we would have that F F Sk for each k > 0. From the validity of the axioms 

in F, we could deduce that T F A F, and so (from the compactness theorem) that 

T' F AF for some finite T' c  T. But then there would be a k such that T' C 7k,, 

and so we would have that 7j, F T' F A F F 8k,  so by monotonicity we would have 

that 7 	5,,, contradicting Tk  1/ 8k 

Using the above technique, we must be careful about one point in particular. 

In order for our complete theory T to imply each of the axioms in F, we must 

be sure that our theory T is not simply complete with respect to our congruence, 

but in fact complete for the extensional theory. In view of the fact that such a 

complete set of laws is not discovered in this thesis for the language in which we are 

interested, we could not apply the above model-theoretic argument. Hence all of 

our nonexistence of finite axiomatisation results are proven using a proof-theoretic 

strategy, rather than the usual model-theoretic method outlined above. 

1.4 	Layout of the Thesis 

In the remainder of this introduction, we summarise the work presented in the 

thesis. 

In Chapter 2, we present the necessary background material to our study. In 

particular, we describe the framework for the process algebras in which we shall 

be interested, as well as the equivalences between processes with which we shall 

work. Finally we fix some fundamental notions about equational proof systems in 

order to prove results about equational provability. 

In Chapter 3, we investigate the extensional theories for strong observational 

congruence for different subsets of CCS. In particular, we derive a complete set of 

equations for extensional reasoning about a simple language of nondeterministic 

agents, followed by a complete extensional axiomatisation for a language con-

taining the full and left merge operators, thus allowing concurrent computations. 

Finally, we present the difficulties involved in trying to do the same for the subset 



Chapter 1. Introduction 	 13 

of CCS containing the full merge operator in the absence of the simplifying left 

merge operator, and leave the problem of its extensional axiomatisation unsolved. 

In Chapter 4, we investigate the unique decomposability of CCS agents. 

We first prove that the unique decomposition theorem is valid for a small subset 

of CCS with respect to strong observational congruence when communication 

is prohibited. We actually present two proofs of this result, the first originally 

presented by Milner and used as a model for the more difficult cases to follow, and• 

the second a much simpler proof which works only in this basic framework. We 

then proceed on to show that the factorisation result remains valid when we allow 

communication, and also when we abstract away from internal communications 

by considering weak observational congruence. 

In Chapter 5, we present two major results on the nonexistence of finite 

equational axiomatisations for process algebras. The first result shows that strong 

observational congruence over the above subset of CCS cannot be finitely axioma-

tised, thus showing the necessity of some axiom schemata such as that presented 

by the Expansion Theorem. Before going on to the second major result, we com-

ment on the applicability of the proof to the same language when communication 

is allowed by the parallel operator. We then extend the result to show that no rea-

sonable congruence which is stronger than strong observational congruence can be 

finitely axiomatised, thus posing the problem of finding applicable axiom schemata 

when trying to characterisea noninterleaving semantic congruence where the Ex-

pansion Theorem is no longer valid. 

In Chapter 6, we consider the same problems for a different process alge-

bra, a subset of ACP, which utilises a sequential composition operator in place 

of the CCS action prefix operator. We first introduce the 0 process into this 

framework in a manner different from, and seemingly more natural with respect 

to observational behavioural semantics than that of the researchers in the Dutch 

school who are the innovators and main proponents of this type of process alge-

bra. We do however define their congruence over this language with the 0 process 

and characterise it as an observational congruence. We then proceed to examine 

our semantic congruence, presenting a finite equational axiomatisation for closed 
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term reasoning for the nondeterministic language, and present problems with its 

extensional axiomatisability. Finally, we extend the proof of the previous chapter 

to show that this language with the full merge operator added cannot be finitely 

axiomatised. 

In Chapter 7, we present a short summary of our results, and outline some 

of the problems which we could not solve but whose solutions would find their 

rightful place in the main body of this thesis. 



Chapter 2 

Background 

In this chapter, we lay the groundwork for our study. We present the languages 

in which we shall be interested, as well as the behavioural equivalences which we 

shall be studying. We also present relevant definitions and known results concern-

ing our languages and equivalences. Finally, we present properties of equational 

characterisations which we shall be studying. 

2.1 Process Algebras 

Almost all of the languages which we shall consider will be sublanguages of that 

defined by the signature given in Figure 2-1, presented as a two-sorted algebra in 

the style of [EHR85]. We first presuppose a rionempty set of atomic action symbols 

Act, as well as a set of process variables Var. Then the languages which we shall 

consider will be defined to be the least sets of terms containing the variables Var, 

and closed under different subsets of the term-building operators given in the 

signature of Figure 2-1. 

This set of operators is derived from a subset of those in the pure CCS. How-

ever, the usual parallel operator has been split into two separate operators, rep-

resenting whether or not communication can occur between concurrent processes. 

As a way of introduction to the operators in the full signature, we give here some 

remarks on each of them. 

15 
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Sorts 	P 	 (processes) 

	

Act 	 (atomic actions) 

Operators 	0 	P 

ActxP —P 

+ PxP—*7 

PxP—*P 

PxP—P 

IL 	(P—P)—*P  

(null program) 

(action prefix) 

(nondeterministic choice) 

(full merge) 

(left merge) 

(parallel) 

(recursive definition) 

Figure 2-1: CCS-like operators 

0 is a nullary operator representing the null process, one which can perform. 

no observable action, but simply terminates. 

. is a binary operator which given an action symbol a E Act and a process 

p, returns the process which can perform the action a and evolve into the 

process p upon so doing. 

+ is a binary operator which given two processes, returns the process which 

is capable of choosing between the two and observably behaving exactly as 

the chosen process. 

11 is a binary operator which given two processes, returns the process which is 

capable of performing the actions of each of the processes, in the order which 

the two processes would have performed them, in an arbitrary interleaved 

fashion. 

IL is a binary operator which given two processes, returns the process which 

is capable of performing the actions of the two processes concurrently as 

with the interleaving operator 11 above, but with the stipulation that the first 

process (the left operand) must contribute the first action. 
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1 is the usual CCS binary parallel operator which given two processes, returns 

the process which is capable of performing the actions of the interleaved 

processes as defined for the full merge operator 11 above, but also at any time 

performing an action r representing the synchronisation of complementary 

actions, each being offered at once by the two processes involved, and then 

evolving into the same concurrent composition of the resulting processes. 

p is a unary operator which given a function from processes to processes rep-

resented by a pair (x.t(x)), consisting of a variable x and a process term t(x) 

with x (possibly) appearing free (i.e., not within the scope of another p op-

erator involving the same variable x), returns the process P which represents 

a particular solution to the equation P = t(P). 

When writing out terms from some subset of this signature, we shall use paren-

theses to allow for unambiguous parsing. However, we shall minimise their use by 

allowing the action prefix operator to take precedence over all of the concurrency 

operators, which in turn will take precedence over the recursion operator, which 

finally in turn will take precedence over the summation operator. Furthermore, 

for the sake of economy in writing, we shall usually omit occurrences of the action 

prefix operator, and occurrences of 0 at the ends of action-prefixed subterms, thus 

for example rendering a.b.0 I.c.0 as ab I c. 

Notice that we have not included either of renaming or restriction from pure 

CCS in our languages. This was simply because the problems of axiomatisations 

which we wish to address in this thesis arise without these operators, and adding 

them is usually not a problem with respect to axiomatisability; these operators 

are generally easily dealt with via their distributivity properties. Furthermore, we 

shall make little use of the recursion operator p. The sole purpose of including it 

in the above signature is so that we can relate a particular result of Milner's on 

regular (finite-state) behaviours to our work. For the rest of the thesis, we shall 

work solely with finite CCS terms. This is as we are interested firstly in complete 

axiomatisations for our languages, which is not possible in general in the case of 

recursive terms using the parallel construct, and secondly in finite axiomatisations, 
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which seems likely not to be the case with regular behaviours (due to the results 

of e.g., [CON71]). 

More importantly, we allow the set Act to be a parameter in the definition of 

our languages, and consider our systems to be defined as two-sorted signatures. 

This is in contrast to the usual approach in CCS, where we only deal with a single 

sort P, that consisting of our process terms. In that case, action prefix is considered 

as defining a set of unary operators {a. I a E Act}, one for each available action 

symbol. This adds complications to axiomatisations which we want to avoid. 

For instance, in what follows we shall wish to prove some results regarding the 

nonexistence of finite equational axiomatisations of certain congruences over our 

languages. In particular, we shall want to show that over a simple subset of 

finite CCS terms, the Expansion Theorem is not replaceable by any finite set of 

equational axioms. If We took the usual view of CCS, with an infinite action 

set Act this result would be almost immediate, as in order to express all that is 

expressed by the Expansion Theorem, each of the infinite number of unary action 

prefix operators would have to be explicitly mentioned. For instance, consider the 

following instance of the Expansion Theorem: 

all/3 = cx/3 + /9cx. 

This is actually an axiom schema representing an infinite number of axioms (when 

Act is infinite), where cx and /3 are metavariables ranging over the set Act. In 

our formulation, cx and /3 above are simply variables of sort Act, and the above 

represents a single axiom containing cx and /3 as variables. More strongly than 

this though, our result will say that the Expansion Theorem cannot be replaced 

by a finite set of axioms even if the action set Act is finite, indeed even if it is a 

singleton set. Thus our proof will say that the Expansion Theorem is somehow 

inherently not finitely axiomatisable. 

For a given process language 2, we shall distinguish the sublanguage 20  C P 

consisting of the closed terms in 2, or what Milner calls agents. These are the 

terms which have no free process variables, where the set of free process variables 

of a term is specified by the following definition. 
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Definition 2.1.1 The set of free process variables of a term t, denoted by fv(t), 

is defined structurally as follows: 

Fv(x) = 
MO) = 0, 
fv(at) = fv(t), 

fv(t+u) = fv(t)Ufv(u), 

fv(tjlu) = fv(t)Ufv(u), 

fv(tILu) = fv(t)Ufv(u), 

fv(tlu) = fv(t)Ufv(u), 

fv(,ux.t) = fv(t) \ {x}. 

Thus we have the set of agents of P defined by: 

20 = {tEPIfv(t)=O}. 

Any process variable which occurs free in a term t E 'P (i.e., not bound by the 

t operator) represents some unspecified process which can be replaced by some. 

agent in the language at any time. We shall thus define the substitution of terms 

for variables accordingly by the following definition. 

Definition 2.1.2 (Substitution) Given a term t and a substitution o which 

is simply a mapping from some finite subset V of Var to 1', specified as a set 

f
Px/x  I X E v}, we define to to be the term i with the occurrences of the free 

variables appearing in V replaced by the terms to which they are mapped by o. 

All of the equivalences which we define shall be defined initially for closed 

terms only. However, we shall extend these equivalences to apply to open terms 

as well by defining t ' u if for all closed substitutions o defined over the set 

fv(t) U fv(u), we have that tor 'S.'  uo-. It is clear that the resulting relation is con-

servative (the new relation restricted to 'P0  is precisely the equivalence with which 

we started), that it is an equivalence relation on all of 2, and that if the original 

equivalence was in fact a congruence on 'P0  (i.e., was a substitutive equivalence 

relation), then the new relation itself will be a congruence on the whole of P. 
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2.2 Equivalences Between Processes 

2.2.1 Transition Systems 

The equivalences in which we shall be interested for our languages will be obser-

vational equivalences as defined by Milner and Park (see e.g., [MIL80], [PAR81]) 

via the notion of bisimulations. These equivalences are defined with respect to 

a labelled transition system, a general model of computation • 	described in 

[KEL76] and used extensively in the study of CCS-like languages for defining the 

operational behaviour of processes. For a given process algebra P parameterised 

by an action set Act, a labelled transition system is a relation -p  P x Act x P 

which formally defines what atomic actions a term in our language P is capable 

of performing, and what new processes will evolve upon performing particular ac-

tions: P --* P' means that the process P may perform the action a and evolve 

into the process F' upon so doing. 

For a particular language 7', the transition system which we define will satisfy 

the subset of rules laid out in Figure 2-2 which pertain to the operators used 

in the algebra of P. These rules give a structural operational semantics to our 

process languages, a natural method of presenting such semantics first proposed in 

[PLO81]. The rules are specified in an inferential style; if the sentence(s) mentioned 

above a line hold(s), then the sentence below the line must also hold. For instance, 

if the signature of our language includes the operators ., + and 11, then from rule 

(1) we would have that b ---* 0, so by rule (3b) we would have that a 11 b -- all 0. 

We in fact want to allow a transition to be valid when and only when it can 

actually be derived from the rules laid out in Figure 2-2. Hence for a particular 

language P defined by a subset of the complete signature of Figure 2-1, we define 

our transition system to be the least relation -) c P x Act x P satisfying the 

subset of rules which are relevant (that is, those rules involving the operators in 

the signature of 2). This defines the operational behaviour of our processes. 
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(1) 
at 	t 

a 41 

(2a) 
t + U --* t' 

a ti 
(3a) tjjU _!_ t' H u 

(4a) 
tILu -- V H u 

t--*tl  
(5a) a 

(5c) 
' t I U 	'r )t I jU I  

t{,Lxt'} 	
a  

(6) 
px.t --+ t' 

a U —* u1  
(2b) 

t + U —4 u' 

U a -4 U 
(3b) 

t II U ---* 
t11 

U' 

a 

(4b) 
t IIu --+ t' I U 

U a -4 U 1  
(5b) 

t I U --4 t I U' 

Figure 2-2: Operational rules for CCS operators. 

We can extend this definition to apply to sequences of atomic actions easily 

enough as follows: for a sequence s = a1a2 •- an  E Act*,  we say p --- p' if for 

some 

	

a 	an_i 	an 	
'. P 	Po - Pi -- 	- Pa-i 	Pn = P 

We shall often use this extension as a shorthand form of writing sequences of 

transitions. 

Given any language P defined over a signature taken as a subset of that given 

in Figure 2-1 but not including the recursion operator p, any agent p e P° will 

have associated with it a derivation tree, a finite unordered tree whose nodes are 

labelled by terms of PO, and whose arcs are labelled by atomic actions from the 
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set Act. The root of the tree is labelled by the agent p itself, and each node has 

emitting from it an arc corresponding to each of the possible transitions which 

the agent can make, with the arc labelled by the action labelling the transition, 

and leading to a node labelled by the agent into which the I
source node agent 

would evolve under that transition. Thus the derivation tree of an agent specifies 

the possible transition sequences which a term can undergo. For example, the 

derivation tree of the agent a I b + c is given in Figure 2-3. 

aib + C 

bj 

Olb 	a 1 	0 

	

b 	
41 

0 1 0 	OJO 

Figure 2-3: Derivation tree for a I b + c. 

Motivated by the above definition of derivation trees, we can define some useful 

operations on agents, to specify the lengths of the longest and shortest possible 

transition sequences which an agent is capable of performing. Firstly, the former 

notion is given by the depth of the derivation tree, which is the longest path from 

the root of the tree to any of its leaves. 

Definition 2.2.1 The depth of a (finite) agent 	is given by 

lapI = I+ Jp; 

Ip+qI = max (IpI,l qI) ;  

IIII = Ipl+IqI; 

	

Ip qI 	
lpI+IqI, ifJ

1

p>0, 
=  

0, 	otherwise; 

IrIl = IpI+IqI. 
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Secondly, the latter notion can be defined by defining the shortest path from the 

root of the tree to any of its leaves. 

Definition 2.2.2 The shortest transition length of a (finite) agent f(.) is given 

by 

= 0; 

Il(ap) = l+Il(p); 

ifq=0, 

Il(p+q) = 	Il(q), 	 ifpj=O, 

mm (11(p), 11(q)), otherwise; 

11(pIlq) = 

I 
11(pILq) 	

11(p)+1l(q), if IpI>O, 

1. 0, 	otherwise; 

11(plq) = min (to 

U{1+Il(p'q) I astp--p'} 

U{1+11(plq') I asiq--*q'} 

U{1+11(p'jq') I 3astPpIAq__*q}). 

We shall often want to extend these two measures to open terms, which we do as 

follows: for t = fv(t), 

and 

With these definitions, we can state the following simple propositions. 

Proposition 2.2.3 IpI = max In I 3s e Act', 3PI st p -- p'}. 

Proof: 

By structural induction on p. 	 U 
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Corollary 2.2.4 p --+ p' ===> II > Jp'I. 

Proof: 

Jp'I = n == 38 E Acts, 2p"  st p' 	p" 
as  

p 	" 

= 

Proposition 2.2.5 l(p) = mm {n I 3s e Act's, 3p' st p 	p' 

and Vp",Va E Act, p'  

Proof. 

By structural induction on p. 

2.2.2 Strong Observational Congruence 

The first and main congruence in which we shall be interested is known as strong 

observational congruence, or simply strong congruence. The basic idea behind this 

equivalence is as follows: given a process language 7', two agents taken from the 

sublanguage 7'O of closed terms are deemed to be equivalent exactly when they 

share the same possibilities of acting (that is, they can perform exactly the same 

atomic actions according to the transition system defined as above), and can also 

evolve into equivalent processes upon doing identical actions. Formally, this notion 

is defined using the notion of a strong bisimulation relation (cf., e.g., [MIL80], or 

[PAR81]). 

Definition 2.2.6 A binary relation 7?. C 7'0  x 2° is a strong bisimu1a6ki if 

whenever p'Rq, then for all a e Act, 

p --- p' implies aq' such that q -— q' A p'flq'; and 

q -—* q' implies 2p' such that p -—* p' A p'J?.q'. 
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synchronisation, and should be unobservable to any observer of the system - the 

composite system is not communicating with the outside environment, but rather 

communicating internally. Thus we would like to abstract away from this internal 

silent or unobservable action r. 

The equivalence we shall define for this purpose is going to be a straightforward 

refinement of the strong observational equivalence defined above. However, instead 

of matching actions exactly, we shall only require observable actions to be matched, 

modulo the occurrence of any finite number of invisible r actions before and after 

the observable action. 

For this case, we make some assumptions about the action set Act, which are 

usual in the presentation of CCS. These are made to define what complementary 

actions are, to allow for two processes to synchronise or communicate. Firstly we 

split the silent action r E Act away from the set A C Act of visible action, and 

express the set Act as Act = A U {r} (where r 0 A). Then we assume that we 

can further partition the set A of visible actions into two equinumerous disjoint 

sets A = A U& where A = {a a E Al. The mapping a i—* a defines a bijection 

from A to A, and is extended to all of A by defining a= = a. Then two actions a 
and a are deemed to be complementary actions, and are the actions which can be 

used by two processes to synchronise, as specified by rule (5c) of Figure 2-2. 

For ,t E Act (either a visible action or r), we shall say that p = p' if p 	p' 
for some rn, n > 0. We can again extend this definition to apply to sequences of 

atomic actions as follows: for a sequence S = /11z2 .. fL, E Act*, we say p = p' 
if for some Po, Pi, 

P = Po 	Pi 	 pn__1 	pn = p'. 

We also allow for the case where n = 0 above in writing p =4  p' (or also written 

simply as p = p') whenever p a p' for some m > 0. With this new transition 

system, we can now define our refined equivalence which will abstract away from 

internal silent 'r actions. This we do using the notion of a weak bisimulation 

relation (cf., e.g., [MIL80], [M1L85]). 
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Definition 2.2.8 A relation 7?.. C PO  x 'P° is a weak bisimulatiori zff whenever 

p7?q, then for all s E A*, 

p = p' implies q' such that q =. q' A p'7?q'; and 

q 	q' implies 3p' such that p 	p' A pi?.q'. 

Then with this definition, we say that two agents p, q E P0  are weakly obser-

vationally equivalent (or simply observationally equivalent), or weakly bisimilar, 

written p q, if there is a weak bisimulation R containing the pair (p, q). Again 

the relation defined here is the largest weak bisimulation, and is easily seen to be 

an equivalence relation. However, it is well known not to be a congruence relation. 

This is revealed by the following counterexample: we can easily show that a Ta, 

but a+aa ra+aa (as ra+aa==a, but for no p,  a does a+aa==. p). We 

would dearly like our equivalence to be a congruence relation though - if two 

process terms are to be deemed equivalent, we would like them to be interchange-

able as subterms in some bigger expression. That is, given any context C[.] (i.e., 

a term with a "hole" in it), we would like to be assured that whenever p 	q 

we have that C[p] C[q]. Such a property would assure us that we could safely 

interchange equivalent programs as subprograms of a larger system. Thus we shall 

refine our equivalence by defining c  to be the largest congruence contained in . 

This congruence is known as (weak) observational congruence, and gives us exactly 

the relation we are looking for: p 	q if for all contexts C[.], C[p] C[q]. 

We can actually define this congruence directly using the following proposition. 

Proposition 2.2.9 p 	q if for all ji E Act, 

p --+ p' implies q' such that q = q' A p' q'; and 

q -- q' implies 2p'  such that p =. p' A p' q'. 

Proof: 

See e.g., [M1L85], Proposition 2.6. 	 11 
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We shall freely use this alternate characterisation when dealing with observational 

congruence in the sequel. 

One last concept which we shall find useful when dealing with action sequences 

involving silent r actions is as follows. 

Definition 2.2.10 The 7--free projection i of a string s E Act* is defined to be 

the string s with all occurrences of r removed. Formally, we have the following: 

a = a; (aEA) 

= 

= 

2.3 Equational Characterisations 

Once we have defined a particular observational congruence as above using the 

notion of bisimulations, we would like to have some method of determining when 

two processes are equivalent. The general technique is to try to construct a bisim-

ulation relating the two processes in question. Techniques for doing this can be 

found in e.g., [MIL80] and [SAN82]. However as we have pointed out, it is not 

always sufficient simply to show that two processes are related in some bisimula-

tion, as the congruence we are actually interested in is not always identical to the 

equivalence defined by the bisimulation notion. Also, constructing bisimulations 

(and proving that the relation constructed is a bisimulation) is often not such 

a straightforward task. Fortunately, much effort has been expended on deriving 

alternate characterisations of observational congruences. In particular, equational 

axiomatisations for different process algebras abound. Quite clearly, equational 

proofs are bound to be much simpler than bisimulation constructions. Further-

more equational systems, involving the laws of equivalences (reflexivity, symmetry 

and transitivity) as well as the law of substitutivity, naturally define congruences. 

Thus we have no problems of mismatch between our semantic congruence and the 

notion defining the basis of our proof technique. 
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2.3.1 An Equational Proof System 

Given a process language defined over a signature, and a set of equational axioms 

over that language, we can generate equivalences between terms in the language 

by using axioms or applying the rules of equational logic: reflexivity, symmetry, 

transitivity and substitutivity. There are several different equivalent approaches 

for defining a formal system for doing these syntactic manipulations. As we would 

like to prove some results on the limitations of proving statements in our algebras 

using equational logic, we would like now to fix a particular system about which to 

argue. Thus in this section we shall present a natural deduction style proof system 

following [PRA65] parameterised by a set T of equational axioms. 

Our proof system will allow proofs of equivalences in the forms of proof trees, 

where the trees are put together by inferences. The inferences will be of the 

- 

following form: 

..., ti =ui, 

t = u 
(rile). 

	

This inference is meant to state that from the set of premises { •", t j  = u, 	} 
we can assume the conclusion t = u. A valid proof of a statement will then be a 

finite proof tree built up from such inferences, where the statement being proven 

is the lone statement at the root of the tree (at the bottom), and there are no 

premises at the leaves of the tree (that is, all topmost inferences have empty sets 

of premises). 

The inferences which are allowed are as expected: firstly, every axiom of Y can 

be instantiated with an empty premise: 

to-  = 
uo- (t = u). 	(where t' = U E T, and o,  is some substitution). 

An axiom is intended to state a universally true fact. Then we need to allow 

inferences based on the laws of equational reasoning. The first three, corresponding 

to reflexivity, symmetry and transitivity, are as follows: 

t  
(refi), 	 (symm), 

t 	 u  

t=u, U=V 

t=v 
(trans). 
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The final set of inferences correspond to substitutivity, and are taken from the 

subset of the following inferences involving the operators in the signature of the 

language which we happen to be considering. 

t  

at = au 
(sub.) 

tI = U15  t2  = U 2  
(sub) 

tl  + t2  = Ui + U 2  

tI = U11  t2  = U 2  
(sub) 

t111t2 = uiiI.u2 

tl  = Ul, t2  = U 2  
(sub 

tl 11 t2 = U1 11  U2 

il  = Ui, t2  = U 2  
(sub) 

tl i2 = U1  U2 

t=u 

4ux.t = 4

ux.0 (sub,) 

Thus for a given set of axioms T, our fixed proof system will be the above 

natural deduction style system. Whenever we can produce a proof of a statement 

t = u in this system, we shall denote this fact either by T I- t = u or equivalently 

by t =T  u. Having fixed a firm formal system, we can do rigorous proofs on certain 

properties of equational logic for our process algebras. For instance, this formal-

ism will figure prominently in our proofs of the nonexistence of finite equational 

axiomatisations in what follows. 

We shall sometimes want to discuss a certain extension to the above proof sys-

tem, and allow not just ordinary axioms in the set T, but also include conditional 

axioms of the form 

ti = Ui (1<i<n) 

t=u 

These new inferences fit well into our framework, and will be included as valid 

inferences in a proof tree whenever they appear in the set T of axioms. 

2.3.2 Soundness, Completeness, and w- Completeness 

The purpose of defining our proof system above was so that we could use equational 

logic to syntactically reason about processes instead of having to give semantic 
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justifications for relating processes. Thus if we intend on using our equational 

system, we would like to be sure that any equivalences which we can possibly 

generate are going to be valid semantic equivalences, and that if two agents are 

semantically equivalent, then we can prove them to be so in our syntactic formal 

system. These two important notions are respectively referred to as soundness 
and completeness of a system, and are formally defined as follows. 

(Soundness:) For a given congruence over a process language 

2, an axiom system T is sound if for all terms t, u E P we have 

that T H t = u == t u. 

(Completeness:) For a given congruence over a process lan-

guage 2, an axiom system T is complete if for all (closed) terms 

p,qEP°we have that pq = TF- p=q. 

Equational systems satisfying the above for different process algebras are abun-

dant, and many shall be referred to in the following chapters of this thesis. How-

ever, one of the motivations of this thesis is the axiomatisability of the theory of 

open term reasoning. In the above definition of completeness, we are only guaran-

teed to prove valid equivalences between closed terms in our language. We shall 

indeed see that in general there are valid equations relating open terms which are 

not derivable in a system which is "complete" by the above definition. Thus we 

could not rely just on equational logic to prove valid equivalences between under-

defined processes (those expressed by terms containing free process variables). In 

general, we would need to invoke extra techniques (such as structural induction) 

to prove such equivalences. 

This deficiency leads us to define the following stronger notion of completeness, 

w-completeness, which captures more closely the dual property of soundness.. 

(w-Completeness:) For a given congruence 	over a process 

language 2, an axiom system T is w-complete if for all terms 

t,uEPwe have that tu == YHt=u. 
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The term and the concept of w-completeness are used in [HEE86] in studying al-

gebraic specifications. However, this definition originally arises from the definition 

of the infinitary w-rule of the )-calculus (cf., e.g., [BAR84], [H1N86]): 

MZ=NZ VZ 

M=N 
	(w-rule). 

We could get the power of this definition in our equational system easily enough 

by simply allowing such a conditional axiom into our system; that is, allowing into 

our axiom set the following law: 

to— U0,  Vo 

t=u 

However, we do not wish to allow this for two reasons. Firstly, we shall usually be 

concerned with systems parameterised by a set T of unconditional axioms, so we 

would not want to allow such a conditional law. More importantly though, we wish 

to stay completely within equational reasoning. In order to use such an infinitary 

law in a finite proof, we would need to invoke some extra powerful proof strategy 

such as some form of induction just to generate the infinite set of premises. 
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w-Complete Axiomatisations 

Complete equational axiomatisations for process algebras exist in abundance. For 

example, almost any standard reference on CCS (e.g., [MIL80], [M1L85]), CSP 

(e.g.)  [H0A85], [BR084]), or ACP (e.g., [BER84], [BER85]) will list several ax-

iomatisations for different languages, along with proofs of soundness and complete-

ness of the axiomatisations with respect to some semantic congruence. Indeed, we 

shall meet several such axiomatisations for algebras based on CCS in this chapter. 

However, rarely do these references deal with anything but closed-term rea-

soning, with the exception of [M1L84] and [M1L86], which (necessarily) deal with 

the problem of relating open terms over the language of regular (finite-state) be-

haviours. In these latter studies, the equational theories for closed-term and open-

term reasoning coincide, so that the theory of closed-term reasoning is in itself 

sufficiently powerful to prove true any valid open-term statement. Such is the 

simplicity of the algebra that the w-completeness of the axiom set comes along 

with the proof of simple completeness. However, this is not in general the case 

when considering more complicated process algebras. Often it is the case that, 

though a complete set of laws for some congruence over a process algebra is cer-

tainly sound for open-term reasoning, it need not be sufficient to prove all possible 

valid open statements. 

In this chapter, we investigate the axiomatisations of open theories for various 

subsets of CCS. We shall see the mismatch occurring in the closed-term and open-

term equational theories, and discover that though it is often a simple matter 

33 
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deriving a complete set of axioms for a given process algebra, this is by no means 

the case when looking for an w-complete set of axioms. 

3.1 A Simple Nondeterministic Language 

We begin our study of Lo-complete axiomatisations with a consideration of a simple 

algebra containing no operators for concurrent computation. The results presented 

in this section are precisely a subset of those presented in [M1L84]. However, we 

prove our results here without Miler's (implicit) assumption that we have an 

infinite (non-exhaustive) action set'. 

3.1.1 Finite Terms 

The first language PO  which we shall consider is a simple language of finite nonde-

terministic terms given by the signature E0  = {O, ., +}. The semantic equivalence 

which we consider here will be the strong observational congruence defined in 

Section 2.2.2. 

The equational theory which we shall prove to be identical to the semantic 

equivalence is the theory To  consisting of the following four axioms: 

(x + y) + z = x + (y + z); 	(A3) x + x = 

x+y = y+x; 	 (A4) x+O = x. 

The first point to notice about these axioms is that they characterise the usual 

theory of strong observational congruence between closed terms, as shown in the 

following proposition: 

Proposition 3.1.1 The strong observational congruence over P°, the subset of 

closed terms of the language P0  is exactly the congruence induced by the four 

axioms of To  given above. 

'See the remark in Section 5.2 of [MIL80] 
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Proof: 

See, e.g., [HEN85], Theorem 3.1. Alternately, the result follows from 

the proofs in this section of the soundness and completeness of To  for 

arbitrary open terms (and thus for closed terms as well). 	0 

Thus it turns out that we need not add any new axioms to deal with open terms 

of the language. The proof of the fact that these four axioms exactly characterise 

the congruence in the open theory is similar to the proof given in [HEN85] for the 

above Proposition 3.1.1. It is broken down into two parts, proving soundness 

and completeness of the axioms separately. 

Proposition 3.1.2 (Soundness) To  I- t = u = t '- u. 

Proof: 

It simply requires to show that for all terms t, u, and v: 

(t+u)+v.-.it+(u+v); 	3. t + t 	t; 

t+u ' u+t; 	 4. t+O " t. 

But all ground instances of these hold (in each case, denoting left and 

right sides by p and q, one can show from the definition of --) that 

p --* p' if q 	p'), so the four laws follow immediately from the 

w-completess rule for the semantic equivalence of open terms. 	0 

The proof of completeness does not come so quickly, and will be treated in 

depth, to set the stage for the more complicated languages which we shall be 

considering later. The proof comes out of a sequence of propositions which define 

and manipulate normal forms for terms of the language. The normal forms are 

defined using a denotation function wh-ieh distinguishes between non-equivalent 

process terms. The domain of values to which the denotation maps terms is given 

by the least fixed point solution V0  to the set equation 

Do = FIN (Var U Act x 
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where PFIN(S) represents the set of finite subsets of S. 

Definition 3.1.3 The denotation of terms [• 	P0  —p V0  is given by: 

101 = 0 	 j{atl = {(a, ItD} 

= {x} 	It + U1 = [tJJ U u]J 

Thus informally, the denotation of a term is a set containing all unguarded occur-

rences of variables in the term (those variables which appear but not as a subterm 

in an action-prefixed term), as well as tuples representing the immediate actions 

which the term can perform, together with the denotations of the resulting terms 

into which the original term evolves. Being a set, idempotence is accounted for 

(capturing axiom (A3)), the 0 process is absorbed (capturing axiom (A4)), and 

order is ignored between summands (capturing axioms (A1) and (A2)). 

The important properties which we shall use about the denotations of terms 

are the following. 

Proposition 3.1.4 (a,  T) 	if t' such that t' = T with t --) V. 

Proof: 

By structural induction on t. 	 .. 	 0 

Proposition 3.1.5 t 	--* p if either 

(i) 3t, : t ---* V such that p = 	or 

(ii) 3x E It] such that 	a 

Proof-roof: 

By By structural induction on t. 	 0 

This proposition easily generalises to a sequence of actions as follows. 
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Corollary 3.1.6 t{P/} —I

N  
-* p if either 

(i) t' : t ---* V such that p = t'{P/}; or 

3s1,s2,V,x with s= s1s2  such that t 	t', x € t'], and 

p2, —* P. 

Proof- roof: 

By By induction on the length of s. 

The denotation function is used to define the normal form of a term, which 

will be an equivalent term which is expressed as a sum of action-prefixed normal 

form terms added to a sum of variables. The normal form of a term is extracted 

from its denotation as follows. 

Definition 3.1.7 The normal form of terms nf() is given by: 

nf(t) = 

where 

a(T) = > a.o(S) + 	x. 
(a,S)ET 	 xET 

By convention, we let .r(0) = 0. 

Proposition 3.1.8 To. I- t = nf(t). 

Proof: 

By structural induction on t. 

. 0 = o(0) = cr(j[0]) = nf(0); 

x = 	= o(frI) = nf(x); 

37 
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ToHt=nf(t)cr(t}1) 

== at 
=0 

a(o([t])) 

=o({(a,I[i)}) 

=o[at)=nf(at); 

• To  I- t = nf(t) = o([t]I) and To  I- u = nf(u) = 

= t+u=TO  o(I{tD+a(N) 

=TO 
tJUu}) 

	

o(j[t+u])=nf(t+u). 	0 

Corollary 3.1.9 N = H ==> To  I- t = u. 

Proof: 

t =T  nf(t) = cr([tI) = o(Iu) = nf(u) =, u. 

The next proposition is the main part of our completeness proof. It shows 

that if two terms have distinct denotations, then there will be instantiations for 

the variables in the terms which give rise to non-observationally congruent terms. 

Hence the two terms will themselves be noncongruent according to our extensional 

definition for observational congruence. The interesting point about the proposi-

tion is that it places no unnecessary restrictions on the action set Act; it merely 

assumes that the set is nonempty - that there exists some a € Act. Clearly if 

this were not the case, then there would be no observable difference between any 

agents, and any observational congruence would collapse into the trivial congru-

ence equating all terms. 

	

Proposition 3.1.10 Suppose that [t]1 0 [u; let fv (t) Ufv(u) 	= {x1 ,. . 

m > max(ItI, Jul), a E Act, and j5 = { Am, .A2m,... , 4nm}, where A0  = 0 and 

= aAk; then t{i5/} 

Pro of: 
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By induction on JtJ + Jul. Suppose 	and let m,,p be given 

as above; there are four cases to consider: x E 	\ 	x E Jul \ 
(b, T) E 	\ 	(b, U) E Jul \ j[t]j. 

Suppose Xk E it], but Xk 0 

then by Corollary 3.1.6, t{P/} 
hm 

0; 
thus t{3/} u{l5I} == p 0 st u{l3/}  

km 
!- p; 

lcm 
however, if u{P/} 	p 0, 

then again from Corollary 3.1.6, either: 

(i) 	u' : u 
km 

u' st p = u'{/} (which is impossible, 

as lul<m<km, so by Proposition 2.2.3, u
an .t); 

or 

('ii) 2i:O<i< lul<m, u',jstu a' —*u' with 

x5 E lull sip5 akm  
-~ p; 

but p3 —f p'O 

== i=(k.—j)m 

== j= k, i=O, and u'=u (as i<m); 

but then Xk E lull = Jul] (contradiction); 

thus 	p " 0, so 	91 u{iö/}; 

Similarly, Xk E hull and Xk V j[t]j ==. 	91 

Suppose (b, T) E 	but (b, T) V Jul; 

by Proposition 3.1.4, 3tl st t' = T with t -L t'; 

so by Proposition 3.1.5, t{P/',} 

thus t{i} u{P/} 

== 3q v{i3/} st u{i/} -L q, 

hence by Proposition 3.1.5, either: 

(i) 3ul : u 	u' st q = u'{/} rI 

thus by Proposition 3.1.4, (b, j{u'}j) E ![ull, 
so since (b, T) 0 hull, Jul] V= T = 

hence by the induction hypothesis (as from Prop osi-

tion 2.2.4, jill + lull < jtj + Jul), 

39 
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v{i,i} 7L u'{i} (contradiction); 

or 

	

(ii) lx E Jul st P 	q; 

that is, b = a, and ak> 0 st 

xk E Jul and q = Akm_l; 
km—I 

hence q O 	0, so p 's-'0 st 	-_ p; 

thus by Corollary 3.1.6, either: 
Im— k 

st" : t' a 	
t" st p 	'-i  0 (which is 

impossible, as It'I :5 Itl - 1 < m - 1 < km - 1, so 

ii  

or 

3i: 0 <i<it'i<m_ 1, 	 with 
akm 1_ 

	

E t" st 	—* P-0; 
akm 1 - 

but p5  —+ pO 

= i=(k—j)m-1>O; 

(contradiction, as i < m - 1) 

thus t{i} 71u{/},. 

Similarly, (b, U) E Jul and (b, U)  

D 

Corollary 3.1.11 t u = 	I[t]j = Jul. 

Proof: 

Suppose [t]J 	f[u; let .;v-, j5 be as in Proposition 3.1.10; 

then t{i} 9t u{P/}; hence by the w-completeness definition of the 

semantic equivalence of open terms, t 7t  u. 	 0 

all 

Corollary 3.1.12 (w-Completeness) t u ==> To  F- t = u. 

Proof. 
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Follows from Corollary 3.1.11 and Corollary 3.1.9. 	 0 

As one last note to make about this sublanguage of nondeterministic terms, 

the results presented here are basically as presented in [M1L84] and [M1L86] with 

respect to regular behaviours. There Milner dealt with open terms of his language 

in a different but equivalent manner. He firstly defined what it meant for a variable 

to appear unguarded in a term as follows. 

Definition 3.1.13 The set of unguarded variables of a term, U(.), is given by: 

U(0)=Ø 	U(at)=Ø 

U(x) = {x} 	U(t + u) = U(t) U U(u) 

He then incorporated the effect of unguarded variables on terms into his definition 

of bisimulation as follows. 

Definition 3.1.14 t u if for all a E Act: 

(i) t 	V implies Bu' such that u 	u' and t' 	u'; 

(ii) u ---* u' implies 3t,  such that t -- t' and t' 	U'; 

(iii) U(t) = U(u). 

Then the proposition which he states in [M1L86] without proof (as we do here) is 

as follows: 

Proposition 3.1.15 1 u ifft u. 

Using similar notions as found in this section, Proposition 3.1.15 can be proven 

assuming only a singleton action set. However, as we pointed out at the start of 

this section, Milner's idea with his statement of the proposition was to allow a 

potentially infinite action set. 
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3.1.2 Regular Behaviours 

The regular behaviours defined in [M1L84] and [M1L86] also allow for recursive 

definitions of terms, and Proposition 3.1.15 above relating and still holds 

valid (where our definitions are suitablyextended to recursive terms where neces-

sary). However in order to prove this under the assumption of a singleton action 

set, we must utilise a more clever trick than that employed in the previous section. 

We must encode not the depths of the terms in the processes replacing the vari-

ables, but rather the number of states of the processes; being regular behaviours, 

all of the terms represent finite-state agents, so finite terms all of the form Am  as 

above can be instantiated for the variables of non-congruent terms to get closed 

instances of the processes which are not congruent. 

3.2 Concurrency With The Left Merge 

Operator 

The next language P1  which we shall consider is a language which incorporates 

nondeterministic choice as before, along with two operators for concurrent com-

putation, the full merge operator 11,  and the left merge operator ([, introduced by 

Hennessy and analysed extensively by Bergstra and Kiop et at. The language is 

thus defined by the signature El  = {O, ., +, IL}. 

Notice here that our signature does not include the full merge operator 11. This 

is because in fact as defined operationally in Figure 2-1, we need not introduce 

the full merge operator into our signature at all, as we could define it simply 

enough in terms of the left merge and choice operators as follows. 

tHu 'E4 	tI[u + uJ[t. 

Defined in this way, the operator behaves operationally precisely as expected: 

the actions of the two process terms represented by its operands are interleaved 

nondeterministically, with the choice of whether the first action deriving from the 



Chapter 3. w-Complete Axiomatisations 	 43 

first operand or the second operand itself being made nondeterministically. Thus 

we shall only treat this operator as a form of syntactic sugar, allowing us to all 

but ignore its existence in our analysis, forever reading t I  u as t [u + u 

The semantic equivalence which we consider here will again be the strong 

observational congruence ".' defined above. The equational theory which we shall 

prove to be identical to the semantic equivalence is the theory T1  consisting of the 

following nine axioms. 

(x+y)+z=x+(y+z) 

x+y=y+x 

x+x=x 

x+O=x 

Ol[x=O 

cxIjy=c(xIIy) 

(x + y)I[z = xl[z+ yz 

(xII.y)11z = xI[(Y II z) 

40=x 

If our signature had included the full merge operator , then we would simply need 

to add to the above list of axioms the defining law x 11 y = x[y + y[x. 

The first thing to notice here is that we now have a richer axiom system than 

that usually defined for dealing with closed expressions of this language. The final 
(Li) o-nt 

axiom(L5) can be omitted - which is what is always done - when considering 
Ix 

closed terms, as all closed instances of theeaxiomcan be proven by structural 

induction using the other se,le -i axioms. Thus we have the following result. 

Proposition 3.2.1 The observational congruence over P°, the sublanguage of 

closed terms of the language P, is exactly characterised by the theory TO  con-

sisting of the eight axioms (A1) - (A4), (L1) - (L4) given above. 

Proof- roof: 

All All closed instances of (L5) can be proven by structural induction using 

the axioms of TO; so combining this with the results to follow on the 

soundness and completeness of T1  for arbitrary open terms (and thus 

closed terms as well), we arrive at our result. 	 0 
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However, the system TO itself is not enough to completely reason about open 

terms over P. In particular, we shall show that TO 1/ (L5), which by the 

Soundness Proposition 3.2.4 below is a valid law. 

Proposition 3.2.2 Let: 

V(0) =false; 

V(x) = true; 

V(at) = false; 

V(t + u) = V(t) V V(u); 

V(qu) = V(t); 

F(0) = false; 

F(x) = false; 

F(at) —false; 

F(t + u) = F(t) V F(u); 

F(tI[u) = V(t). 

(Thus intuitively, V(t) = true if the first action oft can be taken from a variable 

process, and F(t) = true if the first action oft forced by a "IL" can be taken from 

a variable). Then 

O - = u = F(t) = F(u) A V(t) = V(u). 

Proof: 

We need to show that this property is preserved by reflexivity, sym-

metry, transitivity, and substitutivity, as well as by all the axioms of 

(refi): F(t) = F(t) A V(t) = V(t) 

(symm): 

'(trans) 

(suba) 

F(t) = F(u) A V(t) = V(u) 

F(u) = F(t) A V(u) = V(t) 

F(t) = F(u) A V(t) = V(u), 
F(u)= F(v) A V(u) = V(v) 

F(t) = F(v) A V(t) = V(v) 

F(t) = F(u) A V(t) = V(u) 

F(at) = F(au) A V(at) = V(au) 
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F(t0) = F(u0) A V(t0) = V(u0), 

(sub) 	
F(t1) = F(u1) A V(t1) = V(u1) 

F(to+ti)=F(uo+ui) A V(10+t1)=V(u0+u1) 

F(t0) = F(u0) A V(t0) = 

(sub) 
	F(t1) = F(u j) A V(t1) = V(u1) 

F(t0 t1) = F(uo ui) A V(t0 t1) = V(no u1) 

(Al) : F((t + u) + v) = F(t + (u + v)) 

A V((t + u) + v) = V(t + (u + v)); 

(A2): F(t + u) = F(u + t) A V(t + u) = V(u + t); 

(A3) : F(t + t) = F(t) A V(t + i) = V(t); 

(A4): F(t + 0) = F(t) A V(t + 0) = V(t); 

(Li): F(O[t) = F(0) A V(0([t) = V(0); 

(L2) : F(at[u) = F(a(t 1 u)) A V(atl[u) = V(a(t 11 u)); 

F((t + u)v) = F(t [v + uIlv) 

A V((t+u)I[v) = V(t fv+ul[v); 

F((tu)[v) = F(t(uv)) 

A V((tu)I!.v) = V(4(uj[v)). 

These are all easily seen to hold. 	 L. 

Corollary 3.2.3 TO /40 = X. 

Proof: 

F(40) = true 	false 

45 

Hence by Proposition 3.2.2, TO 1/40 = x. 	 0 
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We may now continue on to demonstrate that the theory T1  completely char-

acterises the extensional strong observational congruence over the language P. 

Again we shall break our proof into two sections, a proof of soundness and a proof 

of completeness of the axioms of T1. Firstly, the easy half is soundness: 

Proposition 3.2.4 (Soundness) 7 F-  t = u == t u. 

Proof: 

We only need to show that for all ground terms p, q, and r: 

(p+q)+r 	p+(q+r) 	5. 	
0  ILP 	

0 

p+q 	q + p 	6. 	ap[q 'S-' a(p 11 q) 

p+p 	p 	 7. (p+q)[r 	p[r+qfr 

p+O '- p 	 8. 	(pq)r 	p[(q 11 r) 

9. 	PLO 'p 

For cases 1 through 7, denoting left and right sides by P and Q, one 

can show from the definition of --+ that P --- F' if Q --* P'; case 8 

requires to be proven by induction on II + IqJ  + Irl simultaneously with 

(p H  q)  H r '' i II (q jJ r), using the easily-proven p II q i'.'  q II p (or see, 

e.g., [MIL80], Theorem 5.5 for a proof of the associativity of It); case 

9 requires a structural induction proof. 	 0 

For the proof of completeness, we again define a normal form for expressions, 

and manipulate these to secure our result. However, its definition and some proofs 

in this section require a nontrivial complexity measure on the structure of terms, 

to justify that our inductively-defined concepts are well-defined, and--that our 

inductive proofs are well-founded. The conditions which our complexity measure 

C must satisfy, as will become clear later, are as follows. 

 C(at) > 	C(t); 

 C(t +u) > 	C(t); 

 C(t +u) > 	C(u); 

 C(xI[t) > 	C(t); 

 C(atl[u) > 	C(tHu); 

 C((t + u)11v) > 	C(tI[v); 

 C((t+u)Ij.v) > 	C(ul[v); 

 C((tJLu)I[v) > 	C(t[(u 	v)). 
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With this in mind, let width(.) be defined as follows. 

	

width (0) = 1; 	width(at) = 1 + width(t); 

	

width(x) = 1; 	width(t + u) = width(t) + width(u); 

width(tlLu) = width(t) + width(u). 

Thus informally width(t) defines a certain size for the term t, namely, the number 

of 10, x, a} symbols appearing in t. 

	

Next let the two norms 	and 	be defined as follows. 

110110 	= 	1; 	IlatIl.= 	1+11 t  ll; 

	

lixilo = 1; 	lIt + u 	= max (lIt ho, II u  IL ); 

lit [u  110 = lIt IL + II u  IL 

- f width(t), if t is not of the form toI[ti
iti

, 
1 	

j width(to), if t is of the form t0 t1. 

That is, 11 t 11, gives the width of the term appearing to the left of the outermost 

IL operator, if the outermost operator is IL; otherwise, I It 1  gives the width of the 

whole term t. Then our complexity measure will be 

C(t) = 	(lit Ito, 11  Ill ), 

a tuple ordered lexicographically. It is straightforward to check that this complex-

ity measure C actually does satisfy the above inequalities. 

Again we shall attack the problem of completeness by defining a denotation 

function for distinguishing between non-equivalent process terms, thus defining a 

unique normal form for any term. In this case though, the domain Of values to 

which the denotation function maps terms of P1  is somewhat more complicated 

than before. However, it can be specified in the same way, as the least fixed point 

solution V1  to the set equation 

V1 = FIN (Var x V1  U Act x v1), 
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where again PFIN(S) represents the set of finite subsets of S. 

Definition 3.2.5 The denotation of terms H 	P1  -* V1  is defined inductively 

by case analysis of terms as follows. 

101  
= 	{(x,O)} 

ftat = 	{(a,IJt)} 

+ u = 	U 

DIOILtIl = 0 

XVI = 	{(x,IJt)} 

atuI = 	{(a, lEt II u]J)} 

lE(t + u)Jjv1 = 	lEt 1v1 U lEuI[v 

= K(U 1101  

This is a valid inductive definition, due to our complexity measure defined above. 

Furthermore, we shall be justified in using the same case analysis in our inductive 

proofs to follow. 

Informally; the denotation of a term is a set containing tuples which either 

represent the immediate actions which the term can perform along with the deno-

tations of the resulting terms which the original term evolves into, or the unguarded 

variables appearing to the left of a IL operator together with the denotations of the 

terms appearing on the right side of the L. 

We have a problem in our analysis to follow which derives from the confusion 

between the terms (tILu)I[v and  tlL(u II v). These two terms, although being de-

fined to be semantically equivalent, give us trouble in our syntactic analysis. In 

particular, 

(at [u) I1v -- (t II u)  II 

whereas 

at[L(uIIv)—.-*tll(uIIv) 	(tu) 1v. 

The problem arises as we have not enough power yet to express the fact that 

II u)  II v = t (u 11 v)]1. Also, we confuse in our analysis the two semantically 

equivalent terms x and 40. Problems arise in our analysis here when we have 
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x{i5/} —4 p, 

whereas 

Again, we cannot yet prove that it 	= it]. 

To deal with these problems in our analysis in the remainder of this section, 

we shall continue to use = to represent syntactic identity, and introduce 	to 

represent syntactic identity modulo the following laws: 

(xIIy)j!z = xII(yIIz); 

xJy = ylix; 

X 11 = X. 

Notice that these are semantically sound laws, as they are all derivable from the 

sound set of laws T1, sotu =#- tu. 

The important properties which we shall use about the denotation of terms are 

the following. 

Proposition 3.2.6 

(i) (a, T) E 	implies st', t" such that t ---* t', T = I[t"I, and t' 

(ii) t 	t' implies st" 	t' such that (a, t"1J) E 

Proof-roof: 

By By case analysis on the structure oft, using induction on the structural 

complexity of t. We only demonstrate here the most difficult case of 

t = (uJv)LW. 

(i) (a, T) E i(u [v) Lwj = uJj(v I] w) 

== 	t' ,t st uL(v  11 w) 	T=[[tg 	 JJ, and t  

(by the inductive hypothesis) 
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== u---u'stt=u'II(vIIw) 

== t---(u'jv)Iw = Vt" 
— 0 0 

== 	letting t' = (u' 11 v) 11 w and t" = t" 0' 

we have t ---* i', T = [t"JI, and t' =— 

(ii) (uv)jjw ---) t i 

= 	u--+ 
U, St 

t'=(u' 11 V) 11w 

== 	u[(v II 	u'11(v II w) 	V 

== 	2t" 	u' 11 (v 11 w) 	V st (a, t") E u[(v 11 w) 

(by the inductive hypothesis) 

But since (ul[v)iLw = ul[(v II w), 

(ajJt"1j) E (u[v)[w). 	0 

Proposition 3.2.7 

t 	t' implies t{i±} -- 

(x ) T) e 	and p -- p implies 3t', p' such that 	-- p', 

T= 	and 	p 1 V{.P/}. 

By structural induction on 

By case analysis on the structure of t, using induction on the 

structural complexity of t. Again we only demonstrate here the 

most difficult case oft = (uI[v)w; 

(XI T) E (ut[v)[w] = [u [(v J] w)I and P., 
--* r 

== 	t0,p0 st u{i/}ll(v{15/} II w{/}) 	Po, 

T = Jtoj, and Po p ii to I~ihl; 
(by the inductive hypothesis) 

= 

st Po = Po, (v{i} II 
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t{l5/} -- (p II v{7}) II w{P/} 	Po, 

Let p' = 1 w{7} and t' = 

Then t{P/} ---* p', T = 	and p' 	p 

0 

Proposition 3.2.8 t{P/} -- p implies either 

3tI such that t --* t' and p 	 or 

t', p' such that (x, I[t']l) E tJJ, p, 	p', and 

pp'Ht'{13/}. 

Proof: 

By case analysis on the structure oft, using induction on the structural 

complexity oft. Again we only demonstrate here the most difficult case 

oft = (uJlv)[w. 

((ullv)ILw)){15/} = (u{/}[v{/}) [w{/} -- i 

u{/} -- q st p = (q H v{i5i})  II w{I5/}; 

= u{/}[(v{l/} II 

q 11 (v{ii} 0  w{fi/}) 

Thus by the inductive hypothesis, either 

(i) 3tI St  u (v H w) --* t 

and q I (v{ii} H 

= 	u---+ u' St t'=u'Ij (v 11 W) 

t--*(u'!Iv)lIwto,  

= 	2t' St t --+ t' and p 

or 

(ii), Ix,t',p' St (xjt') E I[u11(v11w),  p -- p', 

51 
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and q II (v{i}  II 	P' IIti  

(X, [VI) € j[t, p 

and p = p' H t'{I}. 	 D 

Proposition 3.2.9 Assume that jActi = 00; let fv (t) ç = {x1,x2, ... ,x}, and 

fi = {a.O, a2.0, ---,a n'o}y ..,a.O}, where a1, a2, ..., a, E Act are distinct action symbols not 

appearing in t; then 

(xk,T) E {t] implies 3p,i'  such that t{P/} .-.) p, T = 

and p  

t{P/} --+ p implies t' such that (Xk, [t']) E j[t] and 

Proof- roof: 

By By case analysis on the structure oft, using induction on the structural 

complexity of t. Again we only demonstrate the most difficult case of 

t = (ujjv)j[w). 

(xk)T) e (uj[v)j[w = [u, [(v j 

= p, t,  st u{i5/} j[(v{J5/} II  w{/}) -- p, 

T = 	and p 

(by the inductive hypothesis) 

==. 	- 	p' st p = p, 11 (v{P,I} jJ 

==- 	(p' II 	0 

((uv) LW) {i5/} ak  
-.4p 

== 	 - p' st p = (' v{i}) 
Wf PQ 

== u{/}j[(v{I5/} jj w{151± }) 

ak 	/ 1— •i 	1 —  \ -* p' II vP/j  II wP/) p 

=== 	t' st (Xk, t[t'I) E j[u[(v II 

and p,  11 (v{i5/411w{P/}) 	t'{P/} 

(by the inductive hypothesis) 



Chapter 3. w-Complete Axiomatisations 	 53 

	

=. (xkjt')Et and pt'{/}. 	 0 

The denotations of terms are again used to define the normal form of a term, 

which in this case will be an equivalent term which is expressed as a sum of 

action-prefixed normal form terms added to a sum of left merge terms whose left 

operands are variables. The normal form of a term is extracted from its denotation 

as follows. 

Definition 3.2.10 The normal form of terms nf(.) is given by: 

nf(i) = o,  (it]), 

where 

o(T) = 	a.o(S) + E xfr(S). 
(a,S)ET 	 (z,S)ET 

Once again, by convention we let o(0) = 0. 

Proposition 3.2.11 T1  I- t = nf(t). 

Proof- roof: 

By By induction on the complexity of the structure of t, using the axioms 

Of T, and the definitions of {.]J and orQ. 

00=o(0)=o(10]I)=nf(0); 

x 
= TI xI[0 = o({(x,ø}) = cr(xI) = nf(x); 

T1 Ft=nf(t)=oflIt]1) 

== 	at 
=T, a(u(I[tJI)) 

= o({(a, VIM 

=oflatI)=nf(at); 

2jHt= nf(t)=ci(t]I), T1Fu=nf(u)=cr(E{ufl 
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t+U=T 	t]I)+o(juJI) 

Ti °(lIi U {u) 

=o(jJt+u)= nf(t -I- u); 

O[[t 	0 = 	= 	OIIt) = nf(0); 

I F t 	= nf(t[u) = cr(I[tt[u), 

J F uIJt = nf(uLt) = 	uILtJJ) 

atu =. a(tI[u + u[fi) 

=, a(o(f{tI[u) + o(I[uft.tU) 

=T a(cr([ttu U 

= a(o(I[t[u + u[t)) 

= a(oflIt II ZL]J)) 

=cr({(a,l[t II u)}) 
= o(IatuI) = nf (at l[u); 

7 Ft=nf(t)=oflIt]1) 

== x[t= x(t) 

= o({x, WD 
= cT (Ix ([t) = nf(xl[t); 

F tv = nf(tI[v) = 

T1  F uy = nf(4v) = o([utv]I) 

= (t+u)y= tI[v+uI[v 

=r 	t[v]) + a(ul[v]) 

T otI[vI U utJv) 

= o((t + u)[vI) = nf((t + u)J[v); 

7 F tl[(u II v) = nf(t[(u H v)) = 	11 v)) 

=. (t[u)y 
=Ti IL(t v) 

T  a(tJ(u H v)) 

= o((tJ[u)[vJJ) = nf((iIIy)lv). 

Corollary 3.2.12 [t_—u == 7Ft=u. 
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Pro of: 

	

T  nf(t) cT(I[t]j) = 	u) = nf(u) =T  U. 	 0 

For the proof of the following proposition, we need to invoke an inductive 

argument on the sizes of the denotation sets, where the size is basically the rank 

of the set. For this we make the following definition. 

Definition 3.2.13 For S E V1,, 

ifS=O, rank(S) 

= 	1 +max{rank(T) I (a, T) E S V (x, T) E S}, otherwise. 

Proposition 3.2.14 Suppose thatJul; assume further that lActi = 00; 

let fv(t) Ufv(u) 9 = {x1,x2, ... ,x}, and p = {a1.0,a2.0,...,a.0}, where 

a1, %,..., a, E Act are distinct action symbols not appearing in u or v; then 

t{P/} 71 u{P/2 }. 

Proof- roof: 

By By induction on rank( 11th). Suppose  11th 71 Jul, and let ±, be as given 

in the proposition; there are four cases to consider: (x, T) € t] \ Jul, 

(X, T) E Jul \ 11th, (a, T) E 11th \ Jul, (a, T) E Jul \ 11th: 

Suppose (xk,T) E 11t, but (xk,T) 0 

then by Proposition 3.2.9(i), 3p, t' st 	-- , 

T = 11t'h, and p 

Suppose t{i3/} 

Then 3q " 	st u{Pi} !i q; 

so by Proposition 3.2.9(u), 3u' st (Xk, E{u']) E Jul 

	

and q 	'.-' 
ttfp/t I; 

but (Xk, l[t'I) 0 {u] == l[t'h 71  lull 

so by the induction hypothesis, t'{P/} 21  u'{P/4 

(contradiction); 

thus 	96 u{P/}; 
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Similarly, (xk,T) E Jul and (xk,T) g 	== t{i}96u{ 3/}; 

• 	Suppose (a, T) E 	but (a, T) V Jul; 

then by Proposition 3.2.6(i), 3t,,t" st t --* t', 

T = l[t"], and V 

thus by Proposition 3.2.7(i), t{i} --* 

Suppose t{I} u{i5/};  

Then 3p t'{i5/.} s  u{17} --) p, 

hence by Proposition 3.2.8, either: 

(i) au' .st u ---* u' and p u'{P/} 

hence by Proposition 3.2.6(u), 

u' st (a, u1) E Jul; 

thus since (a, t') 0 Jul, !{t']I 

so by the inductive hypothesis, 

t'{i3/} /-' u"{P/} 	u'{i7},. 

	

(contradiction); 	or 

3 x,u',p' st (X, u') E Jul,
p -- p', 

and p p' H 
i.e., 3j, u' st (x5, Iu') E Jul , a = a5, 

and  

but by assumption, a5  does not appear in t; 

hence (a5, T) V It] for any T (contradiction); 

thus t{i} 9L u{P/}; 

Similarly, (a, T) E Jul and (a, T) g It] == t{i} 7, u{i5i}. 

U 

Corollary 3.2.15 t - u == 	= 

Pro of: 

Suppose it 	u; let , ji be as in Proposition 3.2.14; 
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then t{i} 71.. u{f/±}; hence by the w-completeness definition of con- 

gruence of open terms, t 71. u. 	 0 

Corollary 3.2.16 (w-Completeness) t - u == T1  F- t = u. 

Proof. 

Follows from Corollary 3.2.15 and Corollary 3.2.12. 	0 

As one last note about this sublanguage P1, we can come up with an alterna-

tive characterisation for the extensional observational congruence similar to that 

presented in Proposition 3.1.15, by incorporating the effect of unguarded vari-

ables in terms into the definition of the bisimulation underlying the congruence. 

However in this case, we must be more careful in our approach. With the sublan-

guage P0  of nondeterministic terms, once a variable process was started, all other 

subterms were ignored. However with the terms in this sublanguage P1, we must 

account for the subterms representing processes which run concurrently with vari-

able processes which may be started. Thus we redefine the notion of unguarded 

variables in this case to account for the extra required information as follows: 

Definition 3.2.17 The extended unguarded variable occurrences Ü(.) of terms 

are defined inductively on the complexity of the structure of terms as follows: 

Ü(o) = 0; 

12(x) = {(x,0)}; 

U(at) = 0; 

Ü(t+u) = 12(t)U12(u); 

12(O [v) = 0; 

ti(xv) = {(x,v)};. 

Ü (at j[v) = 0; 

ü((t+u)ILv) = Ü(tOv)Ut?(u[v); 

= Ü(tI1(uIv)). 

Our alternate characterisation of our semantic congruence of open terms will 

then be given by the following definition. 

Definition 3.2.18 1 u if for all a e Act: 



Chapter 3. w-Complete Axiomatisations 	 58 

(i) 	 3u'stu--+u' and t'u'; 

(ii,) u -- u' 	t' st t --+ V and V u'; 

'iii) (x, t') E ü(t) 	', 3u' st (x, u') E 12(u) and t' 

(iv) (x, u') E U(u) == 	t' st (x, t') € 12(i) and V u'. 

That this definition gives us our required congruence comes as a corollary of 

the following technical propositions. 

Proposition 3.2.19 	= {(a, t') t --) 	u {(x, t') I (x, I') E 12(t)}. 

Proof: 

By induction on the structural complexity oft, using the definitions of 

--* and l2. 	 0 

Proposition 3.2.20 t] =H if I U. 

Proof. 

Using Proposition 3.2.19, by induction on the structural complexity 

oft. 	 0 

Corollary 3.2.21 t u if t u. 

Proof. 

(==) Follows from Proposition 3.2.20, Corollary 3.2.12 and the 

Soundness Proposition 3.2.4. 

(4=) Follows from Corollary 3.2.15 and Proposition 3.2.20. 	11 
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3.3 Concurrency With The Full Merge 

Operator 

The next language P2  we consider is a language which does not contain the left 

merge operator L in its signature, but rather only the full merge operator 11, which 

was a derived operator in the language P. The language is defined by the sig-

nature E2 = {O, ., +, 1 }. This is the most basic language of nondeterminism and 

concurrency used in CCS, but as we shall see, the difficult problems which this 

thesis is addressing are confronted in this most simple language. Namely, we shall 

demonstrate the difficulty in finding an u-complete set of equational axioms for 

this language under strong observational congruence (and will in fact leave this 

problem open), and will in a later chapter actually show that any complete (not 

simply just w-complete) axiomatisation must be infinite. 

Again the semantic equivalence which we consider here is the strong observa-

tional congruence defined above. This theory is completely characterised by the 

following (infinite) set of axioms. 

(x+y)+z = x+(y+z); 	(A3) x+x = 

x+y = y+x; 	 (A4) x+O 

m 	 n 
(Expmn) For u = 	aixi  and v 

i=1 	 j=1 

uiIv = 	a(xIlv) + E /3(uJIy). 

Proposition 3.3.1 The strong observational congruence over closed terms of the 

language P2  is exactly the congruence induced by the infinite axiom set 

= {(A1),(A2),(A3),(A4)} u {(EXpmn) I rn,n > o}. 

Proof: 
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For a full proof, see, e.g., [HEN85], Theorem 4.1. Otherwise note 

that to prove p 	q, we need simply eliminate all occurrences of the 

full merge operator 11 from each of p and q using the (valid) Expansion 

Theorem axioms (EXpmn ), and prove the remaining terms (from the 

sublanguage °) to be equal using the sum laws (A1 )-( A4), which we 

proved in Section 3.1 to be complete for reasoning about P0  terms. 

However, these axioms do not suffice as an w-complete set of equational axioms 

for our congruence. For example, as pointed out in [HEN85], these axioms cannot 

prove the following valid laws. 

(C1 ) ( xfy) Iz = xI(yIIz); 

(CO x j  y = yllx; 

(C3 ) X 11 = 

in order to prove these using the theory T20, we would need to invoke a structural 

induction argument However, we could easily produce a (counter-) model for the 

equational theory 70  which would contradict each of these statements. 

Another simple law which cannot be proven within 720  , even with the above 

three laws (C1), (C2) and (C3 ) is the following Absorption Law expressing the 

partial application of the Expansion Theorem axioms (Expmn). 

(Abs) (ax +y)IIz = (crx+y)llz + cr(xlIz). 

That this law is sound can again be proven by structural induction using the theory 

it is a straightforward corollary of the Expansion Theorem laws (EXpmn) and 

the +-idempotence law (A3 ). However again we could produce a countermodel sat-

isfying the theory 70 U {(C1), (C2), (C3)} but contradicting (Abs), demonstrating 

that 70  U {(C1), (C2), (c3 )1 V (Abs). 

In actual fact, there are seemingly arbitrarily-complex equational axioms which 

are independent and which therefore must be included in any w-complete set of 

axioms. For instance consider the following reduction laws which can all be seen 

to be valid '-'-equivalence laws, but which cannot be proven within 'T°. 
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ax H (y + z) + a(x 11 y) + a(x I z) 

= a(xlI(y+z)) + ax 11 y + axfjz; 

(x+v)i(y+z) + xjiy + xIiz + vily + viiz 

= xII(y+z) + vli(y+z) + (x+v)Oy + (x+v)llz; 

(ax + v) H (i3  + z) + a(x II z) + /9(v ii ) + V H z 

= a(xil(fly+z)) + fl((ax+v)Ily) 

+vII (fly +z) + (ax +v)iiz; 

(ax + v) Ii ( + z + u) + a(x H ) + a(x II z) + a(x H u) 

+ V y + V Z + V U 

= a(xiI(y+z+u))+vii(y+z+u) 

+ (ax + v) H y + (ax + v) liz + (ax + v) u; 

etc. 

Each law in this series demonstrates how to express one term which contains a 

single "largest" parallel composition as a summand (the first summand on the 

left hand side of each equation) as a sum of terms containing only smaller par-

allel combinations. In each case, in some sense only the minimum amount of 

"excess baggage" is included in the law in order to reduce the large composition. 

For instance, the third law above demonstrates the least (information-theoretic) 

valid statement expressing the parallel composition (ax + v) Ii (fly + z) added to 

terms involving only smaller parallel compositions as a sum of strictly smaller 

compositions. That is to say, any valid statement which does express the paral-

lel composition (ax + v) ii (fly + z) added to terms involving only smaller parallel 

compositions as a sum of strictly smaller compositions must contain on each side of 

the equation at least as much single-step behaviour as specified by the law above; 

the left and right hand sides of the equation must have at least the abilities to 

proceed as those of the minimal law above. 
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Each different pair of sumforms taken as operands to the parallel operator 

produces a new law independent of those given by less complicated sumform terms 

placed in parallel. For instance, the third law in the above list is not simply an 

instance of the second law, by replacing x by ax and y by 113y. This is so as more 

information about an indeterminate process gives rise to a more specific law. 

Notice that when one of the factors in the term wanting to be reduced out is a 

simple variable, then the reduction cannot be successful. We cannot express such 

a parallel composition, added to only simpler parallel compositions, as a sum of 

strictly smaller compositions. The large compositiQ1 will in fact have to appear 

on both sides of the equality sign. The simplest such case of this phenomena was 

already encountered with the Absorption Law (Abs) above. 

The degenerate case, when all of the summands in the two terms to be combined 

in parallel are action-prefixed terms, reduces to the Expansion Theorem: no terms 

have to be added to the composition, which is equated to its expanded version. 

In fact, the complete sequence of laws can be generalised into an axiom schema 

similar to that for the Expansion Theorem in the following way. 

m 	 r 
For  = >cru + >x3 

i=1 	3=1 

and  = flivi+ 

P 	+ Ec(uIIy3) + 	E/3(vj Ox) + ExjOya 
1=1 3=1 	 1=1 j=1 	 i=1 3=1 

= 	(Ui 11 	+ 	,@(PHVi) 

+ >xaIJQ + ~:Ph,3. 

Notice that this schema includes the Expansion Theorem axioms (EXpmn ), the 

degenerate case of this sequence (by setting r = s = 0 in the definition of P and 

Q), but it does not include the Absorption Law (Abs). This is because the law 

(Abs) is an absorption law and not a reduction law; both sides of the law contain 

the largest parallel composition. As remarked above, since one of the factors in the 
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largest composition in the law (Abs) is a simple variable, both sides of the equality 

must contain the composition. Since this sequence of laws only attempts to present 

the least amount of smaller compositions to use to express a term containing the 

large composition as a term not containing the composition, nothing is implied by 

this sequence when this is not possible. In fact, the closest we can get to (Abs) 

using this sequence is the following reflexive identity (by setting m = n = r = 1 
and s = 0 in the definitions of P and Q in the axioms schema). 

(ax +y)ffz + (xffz) + Y  

(ax +y)fjz + a(xflz) + yIlz. 

The above axiom schema only deals with the case when two terms are combined 

in parallel. There are analogous axioms which are independent of the above dealing 

with three processes combined in parallel. For example, we have the following 

three-factor reduction laws. 

axfj(y+z)ff(u+v) + (xlIyIf(u+v)) + a(xJJzlI(u+v)) 

+a(xll(y+z)llu) + a(xfl(y+z)lIv) 

+oxjjyffu + axffyfjv + axffz ffu + axllzffv 

= 	(xfl(y+z)fI(u+v)) + a(xffyflu) + a(xflyflv) 

+a(xffzffu) + a(xffzflv) 

+xffyjf(u+v) + axflzfj(u+v) 

+cxff(y+z)ffu + axff(y+z)fjv; 

ax (/?y  + z) (u + v) + a(x z (u + v)) + a(x (9 + z) H 

+ axIJzIIu + axIIzIIv 

+/3(axffyffu) + fl(axIfylfv) 

= 	II A + z) 11  (u + v)) + # (ax 0 y  11  (u + v)) 

+a(xffzffu) + a(xIIzftv) 



Chapter 3. w-Complete Axiomatisations 	 64 

+oxIIzJI(u+v) + axjI(Oy+z)Iju 

+c*xH (fly +z)Ov; 

etc. 

Again these axioms give the minimum laws for reducing large parallel com-

positions, and as such are not direct consequences of the two-factor laws. These 

axioms for three terms combined in parallel can be generalised into an axiom 

schema similarly to the above in the following way. 

.rnp 

For P = 	cru1  + 
ap 

i=1 
mq  

and 	= >2131v1 + 
5=1 
flq  

i=1 
Mr 

and 	 + 
7=1 
nr 

>Z5, 
1=1 

mp fig 	 m1, flr 

P Q 1 R + EEai(ui  II y5  I R) + E E ai(ui II Q ii z) 
i=1 j=1 	 i=1 j=1 

mq  np 	 mq flr 

+ 	 + 
i=1 j=1 	 i=1 j=1 

mr fip 	 M. fig  

+ E E o(x3OQIIw1) + >2>cii(POy5IIwi) 
i=1 5=1 	 i=1 3=1 
1q 	 i' flr 	 np fl q  

+ >PflyiIIzi + EExi llQOz j  + E E xIIy5IIR 
i=1 j=1 	 i=1 j=1 	 i=1 j=1 

fl2 	 mq  

= 	11 Q 11 R) ± >/3(P 11 vi  11 R) + >crj(P 11 Q 11 w) 

+ >2x3(JQIIR  + LPOys IIR + 	POQIIzs 
5=1 	 5=1 	 5=1 
mp fig flr 	 mq  p r 

+ >I 	Cei(Ui H Yj H Zk) + 	 /3(x II Vi II zk ) 
i=1 j=1 k=1 	 i=1 5=1 k=1 

_r  np fig 	 lp fig fir 

+ E E E cr(x H Yk H w) + 	0 
i=1 5=1 k=1 	 i=1 j=1 k=1 

Similarly, there are axioms like these for n processes combined in parallel, for 

each n > 1, none of which are instances of the others, and characterised by greatly 
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increasingly complex axiom schemata as n increases. However, all of these laws 

can be collected together into one terse (albeit totally unreadable) axiom schema 

as follows: 

(Redt,mi ,nl ,m,n2 .....mt,nt). 

For Pi = >2 c j1u1 + >x21 

(flx.IIHPi) 
Ic{1,2,...,t} o:I-4c 	jET 	jI 

III even 	:5i~fli 

(fori = 

+ 	 ajj (u II H Xk k II H 8) 

	

I_C{1,2,...,t} jET 1-<j:5m o:I\{i}-w 	 kEI\{i} 	SJU 
Vl even 	 l<uk:5nk 

= 	 (HxJLHP) 
Ic{1,2,...,t} 47:I-w 	iEI 	jI 

Ill odd 1<o<n 

+ 	E 	E E 	E ajj (ui, II H Xkcrk 0 II 18). 

	

IC{1,2,...,t) jET 1<j<- o:I\{i}-w 	 kEI\{i} 	aT 
III odd 	 1<k:5flk 

Notice here that EXPmn = (Red2,m,o,n,o). 

Thus we have an abundance of valid equations which we cannot prove within 

our theory T20 and which are all seemingly mutually independent. Hence these 

would all need to be added to our theory 70 to approximate an w-complete theory 

T2 for strong observational congruence over P2. However, this is still not enough. 

In all of the above reduction laws, we show how to reduce a term containing 

a large parallel composition into one not containing the composition, by using 

only strictly smaller compositions. There is also an abundd i of laws which show 

under what conditions one (open) term can be absorbed into another (possibly 

more complicated) term. That is, when terms P and Q are such that P + Q = 

whence we say that P is absorbed into Q. These arise when the capabilities of 

some term to proceed are matched completely by a subset of the capabilities of 

another term; in this case, the former term can be absorbed into the latter. For 

instance we have the following law. 
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X1 11 (Yi + Y2) + (a;1  + a;2) II Yi + a;i II Yi 

= x11(y1+y2) + (x1  +x2) 1y1. 

Here, the a;i II Yi term is absorbed by the two terms to which it is added. The 

motivation for suspecting this to be a valid law comes from the following rea-

soning: the possibility of the absorbed term a;1  11 y j  on the left hand side of the 

equation proceeding via the process represented by the subterm a;1  is matched 

on the right hand side of the equation by the possibility of proceeding with the 

(a;1  + a;2) 11 y1  term via the same indeterminate process a;1. Similarly, the possibil-

ity of the absorbed terrriproceeding via the pro'cess represented by the subterm Yi 

is matched in the a;1 JI (y1 + 112) term by the possibility of proceeding via the same 

indeterminate process y. 

Another similar absorption phenomena is given by the following equation. 

X1 II (ay +112) + a;2 H (cy+y2) + (x1 +x2) 11112 

+ (a;1  + a;2) II (ay1  + Y2) 

= a;1I(ay1+y2) + x211(ay1+y2) 

+ 	((a;1  + a;2) II Yi) + (a;1  + a;2) 0 Y2 

Here one of the summands on the right hand side of the equation, c ((a;1  + a;2) II Yi), 

is missing on the left hand side. However, the summand is implicitly there, as 

the absorbed term, (a;1  ± a;2) jJ (ay1  + y2), can be expanded using the Absorption 

Law (Abs) to include the missing summand. Hence we indeed in effect have an 

absorption law. As before, the summand (a;1  + a;2) II (oy, + 112) is absorbed into 

the other summands by almost identically the same reasoning as in the previous 

example. 

Indeed these two laws are valid --equivalences, as can be verified by a struc-

tural induction argument, or by translating them into the left merge language of 

the previous section, where we have an w-complete axiomatisation. These two 

laws do not in themselves suggest any new complexity in our search for an w-

complete axiomatisation for our equivalence. However, as was the case with the 
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above sequences of reduction laws, these absorption laws come in a whole se-

ries of increasingly complex, yet seemingly independent varieties. In fact, we 

can generate such an absorption law to treat specifically the absorption of any 

parallel composition of indeterminate processes. For example, consider the term 

X1 11 cy 11 (/3z1 + z2 + z3). The corresponding absorption law tailor-made to absorb 

this term is given as follows. 

II 'Yi 11 (/3z1 + z2 + z) 

+ (x1+x2)1Icyi 11(z1+z2 +z3) 

+ Xi II aYl H z2 + xi H aYl 11 Z3 

= (x1 + x2) H ciy1 (/3z1 + z2 + z3) 

+ a(xi H Yi (z1 + z2 + z3)) 

+ /3(x1 ay, z1) + x1 11 aYi z2 + x1 11 CeY j H 

Again, as was the case with the reduction laws, these absorption equations can 

be presented as a single complex axiom schema as follows. 

(Abm,n,p,si ,ti 

Mn 
 

4 Xi 
	ft (zij + 

i=1 	i=1 	i=1 :1=1 	1=1 

+ 	+ x) H [I Xi I ft cy H ft ( z + f i3,vi.)] 
k=1 	 i=1 	i=1 	i=1 j=1 	j=i 

ii4k 

P ti ,,n 	n 

+ 	( II x H fl ay 
k=1 1=1 i=1 	i=1 

M 

m a 	 p a 	t 

= > 	+ x) H fj x fl a1y fl ( z jj + 
k=1 	i=1 j=1 	2=1 

i?6k 

r m 	a 	 p 	 ti 
+ >:: a { [J x2 H II cy H II (> z jj + 

k=1 	i=1 	i=1 	i=1 2=1 	2=1 
i~k 

P 4rn 11 a 
+ > 	([I X H ay II Z 

k=1 1=1 i=1 	i=1 

+ >>/ikz( fiIXIH ftaiYillzkz) 
k=l 1=1 	i=1 	i=1 
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These sequences of reduction and absorption laws are not completely mutually 

independent. For instance, given the reduction law 

(x+v)jI(y+z) + xIy + xHz + vHy + vOz 

= xIj(y+z) + vI(y+z) + (x+v)IIy + (x+v)IIz, 

we could easily deduce the absorption law 

(x+v)Il(y+z) + X 1 (y+z) + vii (y+z) + (x+v)lly + (x+v)liz 

= xil(y+z) + vlJ(y+z) + (x+v)ijy + (x+v)Hz, 

using the idempotence of +. This situation is not surprising, as the reduction laws 

did set out to provide the least terms to add to a composition in order to eliminate 

the composition; the corresponding absorption law would necessarily contain at 

least as much observable behaviour on each side of the equation. On the other 

hand, we already know that the absorption schema allows us to eliminate paral-

lel composition with simple variable factors in the presence of more complicated 

terms, which we were not capable of doing with the reduction laws. Hence it. 

appears certain that the absorption laws do add power with which to reason. 

There is one important point to note about these sequences. To prove the above 

laws are valid, we need to invoke structural induction and the Expansion Theorem 

laws (EXpmn). However, in the above we gave arguments as to why they should 

be expected to hold valid; namely, every possible single-step behaviour exhibitable 

by one side of the equation is matched by some single-step behaviour on the other. 

In the laws which incorporate action symbols explicitly, the Expansion Theorem 

laws (EXpmn) and the Absorption Law (Abs) are used to simplify the axiom. 

However, when no action symbols appear explicitly in the axiom, then it is valid 

by our informal reasoning regardless of the validity of the interleaving Expansion 

Theorem. That is to say, we can reason that the actionless laws are so basic as 

to be considered reasonable in any notion of equivalence based on behavioural 

properties of processes. Indeed, some of the above absorption laws were noted in 

[CAS87] and [CAS88] as valid axioms in their noninterleaving theory of distributed 
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bisimulation. In fact, not only the action-free absorption laws, but also the action-

free reduction laws are valid in their theory. We shall exploit the independence of 

these laws with respect to the nature of any particular behavioural equivalence in 

Section 5.3 where we discuss the axiomatisability of any reasonable equivalence. 

Hence we now find ourselves at a standstill. In searching for an w-complete 

set of laws for our semantic congruence over this simple process algebra 
P21 we 

have uncovered a wide range of problems. Starting with the well-known complete 

theory 70  for closed terms, we discovered we needed to include the following: 

three straightforward laws for the parallel combinator, (Cl), (C2) and (C3), ex-

pressing the associativity, commutativity and 0-absorption of JJ; an Absorption 

Law (Abs) motivated by the Expansion Theorem laws (Expmn); a whole series of 
reduction laws, (Redt,mi,n,,m2n2mt,nt), describing when a sum of terms involving 

a large parallel composition could be expressed as a sum of smaller parallel com-

positions; and finally a whole series of absorption laws, (Ab8m,n,p 81t132t28t ), 

describing when a particular parallel composition could be absorbed into another 

term. Neither of the latter two classes of laws were obvious to discover. Nor is 

it obvious that no other laws exist which are independent from the above collec-

tion. However, defining a normal form for the above theory in order to attempt to 

prove w-completeness of this grandiose set of axioms with respect to our semantic 

congruence is indeed far from trivial. 
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4.1 Full Merge Language 

The language of terms we consider here is the language PO, the set of closed terms 
over the language P2  given by the signature E2  = 10,-,+,11 }. The semantic 
equivalence which we consider here will once again be the strong observational 

equivalence . We rely on the well-known theory developed for this language 

and equivalence which tells us. that the equivalence is completely characterised 

by isomorphism between derivation trees, finite unordered trees whose arcs are 

labelled by elements of Act, in which no two identically-labelled arcs lead from 

the same node to two isomorphic subtrees. 

The proof that follows will proceed by induction on the depth 	I of terms. 

Equality throughout this section will represent semantic equality (strong observa-

tional equivalence). Thus in our proof, P = Q will mean P Q, not necessarily 
syntactic identity. 

The important properties which we shall use are as follows, and are immediate 

results of the definitions: 

P = Q implies IPI = IQI; 
P 	0 implies IP H QI> IQI; 

P = Q and 	a, P' implies Q -- Q' 
for some Q' = F'; 

P --+ F' implies lVI> IP'l. 

Definition 4.1.1 A term P is irreducible if whenever P = Q ff R, we have that 

either Q=0 orR=0. 

Definition 4.1.2 A term P is prime if P is irreducible and P 0. 

Theorem 4.1.3 (Milner) Any term P e P 0  can be expressed uniquely (up to c") 
as a product (parallel composition) of primes. 
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Proof- roof: 

That That any P can be expressed as a product of primes is straightforward: 

if P = 0, it is equal to the empty product; if P is prime, it is equal 

to the singleton product, namely itself; otherwise P = Q 11 R where 

Q, R 0, so by induction on depth, each of Q and R can be expressed 

as a product of primes: 

Q = Q1 II Q2 II 	1 Qm, 	R = R1  11 R2  11 ... H 

Then P can be expressed as a product of primes itself by: 

P = QORQilIQ2II11Qm11RiOR2IHR 

The proof presented here that this factorisation is unique proceeds by 

induction on JP. 

Suppose that P = Q, but that P and Q have distinct factorisations into 

products of primes given as follows: 

P = A k, 
 11 A •..  J An, 

QAOA 12  
II...41n II 

where the Ai s are distinct primes (that is, i 54 j == Ai  54 A1), and 

that k1,l>O. 

Assume that all terms R with.IRI < jPI = !QI have a unique factori- 

sation into a product of primes, and let exp(A, R) be the exponent of 

prime A (the number of times A appears) in the unique factorisation 

of R. 

Let m be chosen such that km 54 im, and that JAj I > JAm J implies that 

k j  = l; that is, Am  is a maximal-sized (wrt depth) prime appearing 

in the factorisation of P or Q in which the exponents differ. Without 

loss of generality, we can assume that km  > 	(otherwise exchange 

the roles of  and Q). 
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The proof proceeds now by cases on the possible form of the factorisa-

tion of P: 

1) Suppose P is a power of a prime: P = Akm 

Firstly, if P is prime (that is, km  = 1), then from P = Q, we 

have that Q is prime, and since km  > im)  we have that Q = A3  

for some j 54 m; but then Am  = A5, contradicting the distinctness 

assumption on the A 's. 

Hence assume that km  > 1; 

We can do P -- F' for some a, F', and whenever p . 	pi,  p 

has a unique factorisation with exp(A, F') = km - 1. 

This is true since 

Am 5O 

Am *R for some a,R 

= 

and IPI > IP'I> IRI = R and F' have unique factori-

sations given by: 

R=A'jIAII...IpA,, 

F' = Am1 1 A'1  A'2  . . Jj A'8 , 

and I4I < JR < I4mI 	Am  A' for each i, 

so exp(A, P') = km  1. 

Suppose that im  > 0; 

Then similar to the above, we can do Q -- Q' for some 

a, Q', and have a unique factorisation for Q' in which 

exp(Am, Q') = im - 1; 

But from the above, 

F --+ F' == exp(Arn,PI) = km  1> im  1, 

so F' =A Q'; 

Therefore ,P' = Q' St P --- P', contradicting P = Q. 

Hence assume that 1m= 0. 
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Then from the maximality constraint in the definition of m, 

Ii >0 == IAI :5 111m1; 

Hence whenever Q --+ Q', Q' has a unique factorisation in which 

exp(Am, Q') = 0; 

This is true since 

Q - -+Q' 
== A3 --+ R for some j,R st 13 >0 where 

= A'
. . II A' II 	Al- H R 

and R, Q' have unique factorisations given by: 

R = A' II A' H 	II A' 

Q' = A' JJ... 0 A 	JJ... H A JJ A J... 
and IAI :!~, IRI < 1A51 	IAmI (as l,.>0) for each i, 

so A L Am for each i, so exp(Am, Q') = im 0; 

But from the above, we can do P -- F' for some a, F', and F' 

has a unique factorisation in which exp(Am, F') = km - 1 > 0; 

Therefore ,Q' = F' st Q --* Q', contradicting F = Q. 

2) Suppose P is not a power of a prime: 2j =A m st k1 > 0; 

Let b,T be such that P ---+ T, and whenever P --) P', we have 

that (since IFI ;, IP'I, JT, and hence F',T have unique factorisa- 

tions) exp(A, F') :5- exp(A, T). 

Then exp(A,T) ~! k, 

This is true since 

A0 

== A3 --*R for some a,R 

P -- F' = A'A' ... Akn H R, 

and IPI >Jp'I> IRI => R and F' have unique factori- 

sations given by: 

R=AjAll ... 11 A:, 
= Al A -1 Akn II A II.• 0 A, 

so exp(Am, F') ~! km (since Tn j). 
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Let Q --* Q'; 

Then t,Rstl>çj and At -P_.R, 

where Q1 = AflJ... OA t _h O...IIAin hIR,. 
Since JQJ > IQ'I ~: IRI, R and Q' have unique factorisations given 
by: 

R=AAII...11A', 

QlA1 IIAtI...O  Ain fIAIJAII...IIA,,. 
Suppose that exp(A, Q') = exp(Am, T) ~: k> im; 

Then lstA' — A j 

Thus lAI > I11 ~: JAf = lAmi, so by the maximality constraint 

in the definition of in, we have that kt 
= it, and t in, 

soexp(Am,Q') = im+exp(Am,R); 

However now, since kt = It > 0, we also have that 

= A 1 H...IIA h I..!pAIR, 

and 

exp(Am,P') = km +exp(Am,R) 

> i, + exp(A, R) = exp(Am, Q'); 
Hence exp(A, T) ~! exp(A, F') > exp(A, Q'), so Q' 
Therefore ,Q' = T st Q --- Q', contradicting P = Q. 	0 

We state one important corollary of this result here. 

Corollary 4.1.4 (Simplification Lemma) For P, Q and R E 

FOR = QOR implies P=Q. 

Proof. 

Let F, Q and R have unique factorisations given by 

' 1iJL1'2IIlI1m 

Q=Q1JJQ2FHIQ 

R=R1 JjR2 fj... 11 R 

75 
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Then clearly the unique factorisations for P 11 R and Q 11 R must be 

given by 

FuR = PiuIP2H ... uIPmuIRiR2II ... HRt 

QIIR = QiIIQ2II ... IIQORiIIR2JI ... JJR 

But since P 0 R = Q 0 1?, these factorisations must be identical. 

Hence P and Q must themselves have identical prime factors, and so 

P=Q. 	 0 

4.2 A Simpler Proof 

In this section we present a much simplified proof of the above factorisation theo-

rem. The proof derives from the above simplification lemma, which is first proven 

independent of the unique factorisation theorem. 

Lemma 4.2.1 (Simplification Lemma) For F, Q and R e 

PHR=QHR implies P=Q. 

Proof: 

We actually prove the following two results by simultaneous induction 

on JPJ+IQI+IRI: 

(i)PIIR=QHR implies P=Q; 

(ii) R — -R' and PIjR=QOR' 

implies Q -- Q' for some Q' = P. 

(i) Let PIIR=QIIR, and P---+P'; 

ThenPJIR--+P'IJR, so S=P'IIRstQIIR — H 8; 

Hence either 

(a) 	Q' 
St 

 Q --- Q' and  Q' IJ R = F' 11 R, or 



Chapter 4. Unique Decomposition Results 	 77 

(b) 	 and QIIR'=P'IJR, 

For (a), by induction hypothesis (i), Q' = P'; 

For (b), by induction hypothesis (ii), 3Q' = F' st Q --* Q'. 

Similarly, PjR=QJJR andQ — --)Q' 

implies 3P, = Q' st P ---* F'. 

Hence PtlR=QllR implies p=Q 

(ii) Let R---RI, and PIIR=QIIR',. 

ThenPIIR_— *PII R', so ]S=POR' stQII R' 

Hence either 

3Q'stQ--.Q' and Q' 11 R'=P 11 RI; or 

2R" st R' -- R" and Q II R" = P J R', 

For (a), by induction hypothesis (i), Q' = P; 

For (b), by induction hypothesis (ii), 3QI = P st Q --* Q'. 

Hence in any case, 3Q' = P st Q --- Q'. 	 0 

Our result now follows quite simply. 

Theorem 4.2.2 (Unique Factorisation of Processes) Any term P E PO can 

be expressed uniquely (up to r..')  as a product of primes. 

Proof: 

We shall not repeat the argument that the prime decomposition exists, 

but rather just argue uniqueness. This we shall do by induction on I PI. 

Thus suppose first that P = Q, and that P and Q have prime factori-

sations given by 

C 1 A1  II A2  F ... II Ak , 

Q = CIIB1(JB211 ... IIB1) 

That is, the two factorisations have a common prime factor. 

Then by the Simplification Lemma 4.2.1, we have 
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A1 H A2  H A, = B1  B2 	H B1; 

By the inductive hypothesis, A1  11 A2 	Il A,, and B1  ll 	B2 H •. B1  must 

be identical prime factor decompositions; 

Thus the prime factor decompositions for,P and Q above are identical. 

Hence suppose that P=Ai II A2  iI .. . Ak andQ=B111B211...IIB1 are 
prime factor decompositions such that for all i and j, A2  :A B3; 

Ifk= 1 orl= 1, then P=Q is prime, so k=l= 1, and A1  =B1 , 

contradicting the distinctness of the A2  s and B ' 

Hence assume that k, 1 > 2; 

Assume further that for all i and j, 1A11 (Ad, B3 (; 

Let a, R be such that A1  --+ R, and let R have a unique factorisation 

(as (RI < (A1( :5 (Fl) given by 

11 =Ri ll R2  H••• II 

Then F --+ F' with unique prime factorisation 

	

F' = Ri II R2  (I • H R H A2 	• II A,, 

Thus Q --+ Q'= F', so some B3  -- T with 

= 

Assume that j = 1, and that T has a unique prime factorisation given 

by 

TTi IIT2 Ij ... OT; 

Then Q' = F' have unique factorisations given by 

11 R,. 11 A2  ll • • . 11 Ak   = T1 	• 11 T 11 B2 	B1; 
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Now these are identical prime factorisations; 

But for all i and j, A 	B2 , 

and for all  and j, IRl :5 IRI < IA,I :5 1B11, 

so R B3 ; 

Thus no term B1  appears in the factorisation 

R1 H • H Rr  H A2  H • • II Ak , 

so 1 < 2, contradicting the assumption that k, 1 > 2. 	 0 

4.3 Adding Communication 

The theorem of the previous section is valid when we use the merge with commu-

nication operator I instead of the merge-only interleaving operator H. The proof 

is similar to the original proof of the previous result, but we must be careful to 

recognise the possibility of two processes communicating to allow a r transition. 

The setup to the theorem is identical to the last section, except for the language 

which we consider. Here we are taking the language P, the set of closed terms over 

the language 7'3  given by the signature 	{O, ., +, I }. The semantic equivalence 

remains as the strong observational congruence '-i, and we can still characterise the 

equivalence using derivation trees. Once again, equality throughout will represent 

semantic equality (strong observational equivalence). The definitions of irreducible 
and prime are the same as before. 

We shall use a, b,... E A C Act to range over the non-7 actions (that is, 
r 0 A), and i, ii,... € Act = A U {r} to range over all atomic action. 

Theorem 4.3.1 (Unique Factorisation of Processes) Any term P E 0  can 

be expressed uniquely (up to i-')  as a product (parallel composition) of primes. 

Proof: 
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Again, that any P can be expressed as a product of primes is straight-

forward. The proof that this factorisation is unique again proceeds by 

induction on IPI, and the cases we consider are the same, only more 

care must be taken in each. 

Suppose that P = Q, but that P and Q have distinct factorisations into 

products of primes given as follows: 

P=AhIA 2 I...IAkn n 

Q=A'lA 12 I...IA, 

where the A s are distinct primes (that is, 10 j == A2  A1), and 

that ki, li  > 0. 

Assume that all terms R with IRI < fF1 = IQI have a unique factorisa-

tion into a product of primes, and again let exp(A, R) be the exponent 

of prime A (the number of times A appears as a factor) in the unique 

factorisation of R. 

Let rn be chosen such that km  =h im, and that I1tI > lAm I implies that 

k5  = l; that is, Am  is a maximal-sized (wrt depth) prime appearing 

in the factorisation of P or Q in which the exponents differ. Without 

loss of generality, we can assume that km  > I n  (otherwise exchange 

the roles of  and Q). 

The proof proceeds now by cases on the possible form of the factorisa-

tion of F: 

1) Suppose P is a power of a prime: P = Akm. In, 

Firstly, if P is prime (that is, km  = 1), then from P = Q, we 

have that Q is prime, and since k > im, we have that Q = A. 

for some j m; but then A = A1, contradicting the distinctness 

assumption on the A2  's. 

Hence assume that k> 1; 

Suppose that im > 0 
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IfAm*A for some a€A, 

	

then Q 	Q' with exp(Am,Q') = im 

ButP — -+P' 

	

== 	exp(Arn,P') = km 1 > Im 1; 

Hence 1 P' = Q' st P -— F', 

contradicting P = Q. 

IfAmA' 

	

then P 	F' z= exp(Am, F') = km — 1 still; 

and still Q -1-+ Q' 

with exp(Am, Q') = l — 1 <km — 1; 

So again ,P' = Q' st P .L Fl, 

contradicting P = Q. 

Hence assume that 1m = 0. 

Then from the maximality constraint in the definition of m, 

is > 0 = 4j1 < IAmI; 

Hence Q 	Q' == Q' has a unique factorisation in which 

exp(Am, Q') = 0; 

But we can do P -— F' for some y, F' 

such that CXP(Am, F') = km 1 > 0 

Therefore ,Q' = F' st Q -—* Q', contradicting F = Q. 
.) Suppose 2j m st k1 > 0; 

Let ,u,T be such that P --) T, JPj = ITI + 1, and whenever 
P --- F', with IP! = IP'I + 1, we have that (since Ip, < IP'I, ITI, 
and hence F', T have unique factorisations) 

exp(Am,P') exp(A,T). 

Then clearly exp(Am,T) ~! km. 

Suppose Q ±* Q' = 

Then we have one of three cases: 

i) 	s, R st 18 > 0 and A3 -- R, 

where Q, = A' J 	jA's 1 ...IAL IR; 
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Hence IA,I = IRI + 1; 

If 1A81 :5 IAmI, 

then exp(Am, Q') < l, < km  < exp(A, T), 

(contradicting Q' = T). 

If IA81> lAm I, 

then exp(Am, Q') = l, + exp(A, R), 

and sm, and k3 =18 >O; 

SoP_'_+Pl__A1 lHA 1  IlA I  

with exp(Am, P) = km  + exp(Arn, R); 

and IPI = JP'J + 1; 

Thus exp(Am,Q') <exp(Am,PI) < exp(A,.,,T); 

(contradicting Q' = T). 

ii) it = r and 	 st l,l>O 

and A3  --+ R and At --) R, 

where Q1 	All I...IA1s'I... 

Aln 

But then JQ11,5JQJ..-.2= P1- 2 < IT! 
(contradicting Q' = T). 

'r and as,R,R',a st l> 1 

and A3  --* R and A. --+ R', 

where Q' = A'I A;2 I 

"lAlRlR; 
But then again !Q'I < IQI-2—_IPI-2<ITI 

(contradicting Q' = T). 

Therefore ,Q' = T st Q --* Q, contradicting P = Q. 	0 

Again we close this section by stating the same important corollary. 

Corollary 4.3.2 (Simplification Lemma) For P, Q and R E 

P I R = Q I R implies P = Q. 
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Proof-roof: 

As As in Corollary 4.1.4. 	 o 

Notice that the Prime Decomposition Theorem is again a rather simple corol-

lary of the Simplification Lemma. However in this case we would find it quite 

difficult to prove the Simplification Lemma without recourse to the Prime Decom-

position Theorem. 

4.4 Adding Silent r's 

In this section, we shall once again prove a unique factorisation theorem for our 

language P30, but this time under (weak) observational congruence c. In this 

case, we face problems with the definitions we have been using. We cannot proceed 

blindly, as the theorem fails immediately. For instance, consider the term r.O; this 

is not prime, as 

r.O R:c  r.O I r.O. 

But there is no decomposition of the term r.0 into prime factors. 

The above problem arises everywhere in which a i--prefix appears, due to the 

following proposition. 

Proposition 4.4.1 r.P 	r.O 1 F. 

Proof: 

By structural induction on F,. using the alternate definition ofc  given 

by Proposition 2.2.9. 

Hence it would appear that no process term of the (semantic) form r.P can be 

expressed as a product of prime factors. To remedy the situation here, we work 

only with what Milner calls proper normal form terms, and we rely on the the 

accompanying theory from e.g., [M1L85]. 
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Definition 4.4.2 A term E ltiPi  is in proper normal form (pg) if 

It does not take the form T.P; 

Each P1  is in proper normal form; 

For k =A j, no p k-derivative of 1u5.P5  is sumcongruent 

to Pk . 

In this definition, a ,u-derivative of a term P is defined to be any term P' such that 
IL P == F; and two terms are said to be sumcongruent precisely when they can be 

proven to be equal using only axioms (A1) and (A2) from the previous chapter, 

the associativity and commutativity of the nondeterministic choice operator +, 

along with the usual laws of equational reasoning. An important property of 

sumcongruence with respect to proper normal form terms is given by the following 

proposition. 

Proposition 4.4.3 For proper normal form terms P and Q, P  Q implies P 

and Q are sumcongruent, and so in particular, P 	Q. 

Proof- roof: 

See See Case 1 of the proof to Theorem 3.1 of [M1L85]. 	 0 

What we shall show is that any proper normal form term has a unique factori-

sation into a parallel product of primes. With this we shall be as close as possible 

to a complete decomposition theorem as we could possibly get, using the following 

propositions. 

Proposition 4.4.4 If  = >J1L2.p1  is in pnf, then P 6c T.P' for any F'. 

Proof: 

Firstly, if P c  r.P', then P c  7% P, as 

P 	C r.P' C r.r.P' ---r.P. 
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Thus suppose P c  r.P; 

Then P = p' for some p' F; 

Hence for some j with 1 < j n, yj =7-  and p 	p'; 

By part (ii) of Definition 4.4.21  p' must itself be in pnf; 

Hence from Proposition 4.4.3, P C p1; 

If n = 1, then P r.p1, contradicting part (i) of Definition 4.4.2; 

Hence n> 1, and there exists k 54 j with 1 < k <n; 

Now P -ilk)-  ph, so  p' 	p" Ph, and again p" and p, are in fact 

sumcongruent; 

But then p" is a ILk -derivative of ji.p1  which is sumcongruent to ph, 

contradicting part (iii) of Definition 4.4.2. 	 0 

Proposition 4.4.5 (Normal Form Lemma) Any term P E P30  is congruent to 

either a proper normal form term or a term 7-.P', where F' is in proper normal 
form. 

Proof- roof: 

See See [M1L85], Section 3.3. 

Proposition 4.4.6 (Hennessy) For terms F, Q E P°, P Q if either: 

P c Q; or 

P C  r.Q; or 

r.P c Q 

Proof: 

(4==) Straightforward, using P r.P; 
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(.) 	By Proposition 4.4.5, there are pnf terms F' and Q' such that 

either P c  F' or P c  r.P', and Q 	Q' or  Q c  

In any case, P Q implies F' Q', so by Proposition 4.4.3, 
PlcQ; 

Then depending on the cases above, one of the the three conclu- 

sions in the proposition must hold. 	 FE- 

Thus given any term F, either P 	r.P, in which case we will be able to 

express it as a proper normal form term, and hence by the result to follow as 

a unique parallel composition of primes; or else P 	r.P, in which case by 
Proposition 4.4.5, we can express P as F 	'r.P' for some F' in proper normal 

form, so by Proposition 4.4.1, P 	r.O I F', and so we will be able to express 

P uniquely as a parallel composition of primes (corresponding to the factorisation 

of F'), composed in parallel with the term r.O. 

When restricting our attention to proper normal form terms, we do not run up 

against the difficulty in the mismatch between equivalence and congruence 

in derivations of congruent terms as given in the alternate definition of 	given 
by Proposition 2.2.9. This is due to Proposition 4.4.3, which tells us that 

and 	coincide on the subset of proper normal form terms. Hence for proper 

normal form terms, the definition of our congruence is exactly the largest (weak) 

bisimulation relation defined over the set of proper normal form terms as given 

in Definition 2.2.8. More importantly for us in what follows, the mismatch is 

equally remedied in the alternate definition of observational congruence given by 

Proposition 2.2.9. 

Furthermore, syntactic depth of terms is preserved by congruence over proper 

normal form terms, as congruent pnf terms are sumcongruent, and laws (A1) 
and (A2), as well as the laws of equational logic, respect syntactic depth. Also, 

proper normal form terms are closed under transition derivations, by part (ii) of 
Definition 4.4.2. Finally, any factors of a pnf term are themselves expressible as 

pnf terms, as 

Fr.P 	PIQr.(FIQ). 
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This result is equally valid in the reverse direction, that is, if all factors of a 

parallel composition are expressible as pnf terms, then the composition itself is 

expressible as a pnf term. This reverse result is demonstrated by the following 

propositions. 

Proposition 4.4.7 For pnf terms P, Q andR, if P Q I  then IPI = 

Proof- roof: 

By By induction on IQI + IRI. 

Firstly, ifPOQIR, 

then Q,R 0, so IPI = IQI = IRI = O, 

(as P, Q, R and 0 are sumcongruent) 

Hence IPI = IQI + IRI. 

Also, zfQ0, 

then IQI=O and PR, so IPI =IRl=IQI+JRl. 

(as P and R are sumcongruent) 

Therefore, assume P, Q 0 0; 

Let p and F' be such that P 	F' and IPI = 1 + IF'I; 

Then QlR= ,Q1 IR1 p I  for some sE Act* st.jj; 

Ifs — c, then p=r and P'QlRP; 

But then since P and F' are sumcongruent, IPI = IF'I 

(contradiction) 

Hence se, so JQ'J+IR'I < IQI+IRI; 

Thus by the inductive hypothesis, IP'J = IQ'I + IR'I < IQI + JRJ; 

S0IPI<IQI+IJ1I; 

Now let p and Q' be such that Q -- Q' and JQJ = 1 + Q'J; 
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Then P = F' Q' I R, so by the inductive hypothesis, 

IF'I=IQ'J+IRI=IQI+JRI_l 

Thus IPI,',~! 1 +IF'I~! IQI+IRI; 

Therefore we have that IQI + JRI :5 IPI :5 IQI + IRI, 

soIPI=IQI+IRI. 	 I. 

Proposition 4.4.8 For pnf terms F, Q and II, if P Q I R then P 	Q I R. 
Therefore in particular, if Q and R can be expressed as pnf terms, then Q I R can 
be expressed as a pnf term as well. 

Pro of: 

POcT.(QIR),. 	 (by Proposition 4.4.4) 

Suppose r.P c Q J 1?; 

Then QlR=Q'IR'P, 

soIPI=IQ'I+IR'j<IQI+IRHIpI,. 

(by Proposition 4.4.7) 

(contradiction); 

Hence by Proposition 4.4.6, P c Q I R. 	 U 

These propositions then easily generalise giving the following proposition. 

Proposition 4.4.9 For pnf terms P and P (for 1 < i < n), if 	P, then 

IPI=IPI, and PFc 
	

A. 

Proof: 

By induction on n, using the previous two propositions. 	 0 

Thus we can easily check that we indeed have the following desired properties 

for our proof (where F, Q and R are parallel compositions of pnf's): 
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c  Q implies Ill = IQI; 

P 961  0 implies IP I QI> IQI; 

P c Q and P --* P' implies 3Q, c p 

such that Q 	Q'; 

P 	F' implies IFI> Ip'I. 

The proof of the unique factorisation theorem that follows will proceed by 

induction on the depth 1 I of terms. Again, equality throughout the proof will 

represent semantic equality (observational congruence). Thus in our proof, P = Q 
will mean P c Q, not necessarily syntactic identity. 

Theorem 4.4.10 (Unique Factorisation of Processes) Any term P E 230  in 

proper normal form can be expressed uniquely (up to ) as a product (parallel 

composition) of primes (in proper normal form). 

Proof- roof: 

Again, Again, that any pnf term P can be expressed as a product of primes 

is straightforward. If P = 0 or P is prime, then P is equal to the 

empty product or singleton product, respectively. If P = Q I R where 

Q,R 54 0, then we can assume Q and R to be pnf terms with depths 

strictly less than that of F, so by induction, Q and R can be expressed 

as products of primes; taking the product of these products expresses P 

itself as a product of primes. 

The proof that this factorisation is unique again proceeds by induction 

on jP, and the cases we consider are the same as before, only again 

much more care must be taken in each. 

Suppose that P = Q, but that P and Q have distinct factorisations into 

products of primes given as follows: 

P=A hIA 2 J...IA1 n 

Q= All IAI...JAin 
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where the A1  's are distinct primes (that is, i 54 j implies Ai  54 A3), and 
that ki, li  > 0. 

Assume that every pnf term R with IRI < IPI = IQI has a unique fac-

torisation into a product of primes, and let exp(A, R) be the exponent 

of prime A (the number of times A appears) in the unique factorisation 

of R. 

Let m be such that 'm im, and that whenever IAII > J Aml we have 

that k3  = l; that is, Am  is a maximal-sized (wrt depth) prime appearing 

in the factorisation of P or Q in which the exponents differ. Without 

loss of generality, we can assume that km  > 1m (otherwise exchange 

the roles of  and Q). 

The proof proceeds now by cases on the possible form of the factorisa-

tion of F: 

1) Suppose P is a power of a prime: P = A'm' Tm, 

Firstly, if P is prime (that is, km  = 1), then from P = Q, we 

have that Q is prime, and since km  > lm, we have that Q = A3  
for some j 54 in; but then Am  = A3, contradicting the distinctness 

assumption on the A 's. 

Hence assume that km > 1, 

Suppose that im  = 0; 

Then from the maximality constraint in the definition of m, 

i> 0 implies IAI :5 IAI, 

Hence Q = Q' implies exp(A) Q') = 0; 

But for some t, R, Am 	R, 

so P 	F' with exp(A, F') = km  - 1 > 0; 

Therefore ,Q' = F' st Q = Q', contradicting P = Q. 

Hence assume that im > 0; 

Let jz,T be such that Am  --* T, and IAmI = ITI + 1; 
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Then Q 
-- Q' with exp(A,Q')l 	1, and IQ'J= IQI-1; 

Suppose that P = F' = 

Then IP'I = IP - 1, so clearly F' Am1 I A 

for some A st Am + A; 

Hence exp(Am, F') = km - 1 > im - 1 = exp(Am, Q'), 
so J1 Q; 

Therefore ,P' = Q' st P = F' ) contradicting F = Q. 

2) Suppose 3i 54 m st k5 > 0; 

Let ,i,T be such that P -- T, IPI = ITI + 1, and whenever 

P 	F' with IFI = IP'I+l, we have (since IF! < IF'!, ITI, 
and hence F', T have unique factorisations) 

exp(Am, P') :5 exp(Am, T). 

Then clearly exp(A, T) ~! km. 

Suppose Q = Q' = T; 

Then IQ'I = IQI - 1, so clearly 3t, R silt > 0 and A 	R, 

where Q, = Alfl...IAt_hI...J  Ain IR,. 

and IAI = IRI + 1; 

If IAI :5 IAmI, 

then exp(Am, Q') :5 l, < km :5 exp(Am, T), 

(contradicting Q' = T). 

If 1k!> lAm!, 

then exp(Am, Q') = l + exp(A, R), 

and t 54 m, and k = lt > 0; 

SOP _±_)pFA1 l.lAt_hl... IA I  

with exp(Am, F') km + exp(Am, R); 

and lI = JP'J + 1; 

Thus exp(Am, Q') <exp(Am) F') exp(Am, T); 

(contradicting Q' = T). 

Therefore Q' = T st Q 
-- Q', contradicting F = Q. 	0 
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Corollary 4.4.11 Any term P E P.0  can be expressed uniquely either as the par- 

allel product of primes, or as the parallel product of primes in parallel with the 
process T.O. 

Proof- roof: 

By By the remarks preceding the proof of the above theorem, any term P 

such that P =h r.P can be expressed uniquely as the parallel composi- 

tion of primes which are proper normal form terms. Clearly these are 

primes over the whole language P30, and conversely, primes in P30  have 

proper normal forms. Hence any P such that P 54 'r.P can be expressed 

uniquely as a parallel product of primes. 

For any term P such that P = r.P, we can find a proper normal form 

term F' such that P = T.P' = r.O 1 P'. Thus we can express P uniquely 

as the process 'r.O parallelly-composed with the parallel composition of 
primes. 	 0 

Finally we again state the same important corollary. 

Corollary 4.4.12 (Simplification Lemma) For F, Q and R E P3 , 

P I R  Q R implies P--Q. 

Proof: 

Similar to Corollary 4.1.4. 	 U 

Notice that because of the problems introduced by the silent 'r action, we 

cannot state this corollary any stronger. For instance, a 1 'r = ra 1 r, but a:A7-a; 
we can only infer here that a --Ta, not a 	Ta. 

However, if we restricted the terms P, Q and R in the Simplification Lemma 

to be parallel compositions of pnf terms, then the lemma would be stated as usual, 

with equality (semantic congruence) rather than equivalence in the premise and 

conclusion. 



Chapter 5 

Nonexistence of Finite Axiomatisations 

In this chapter we deal with problems of proving the nonexistence of finite ax-

iomatisations in various process algebras involving a symmetric parallel combi-

nator. Initially, we demonstrate the non-finite-axiomatisability of the Expansion 

Theorem in the sublanguage PO of closed terms of the language containing the full 

merge operator in its signature, with respect to strong observational congruence. 

That is to say, we show that no finite set of axioms will suffice for an equational 

theory to completely characterise strong observational congruence of our full merge 

language. The proof will make no further assumptions on the set Act of atomic 

actions other than it being non-empty; we simply assume that there exists some 

a E Act. Thus the proof will hold even for the most restrictive case where there 

is only one distinguishable atomic action. We then note how the proof extends 

easily to the case where we allow communication as well as merge. 

Next we extend the first result to problems in the axiomatisation of stricter 

noninterleaving semantic congruences. We shall show in fact that any reasonable 

congruence defined over our full merge language P20  cannot be finitely axiomatised, 

where we define a congruence to be reasonable in a rigorous manner. The proof 

presented in this final section will in fact cover the case of strong observational 

congruence, and so subsume the result in the first section. However, the former 

proof is included in the text as a stepping stone towards the more complicated 

proof of the latter result. 

93 
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The proofs to follow will be very much proof-theoretic (as opposed to model-

theoretic) in nature. We shall be considering the possible natural deduction style 

proof trees of certain valid statements, and shall often be making observations 

about the forms of terms appearing in the trees. For this purpose, we shall find 

ourselves making heavy use of the unique decomposition properties of the previous 

chapter in order to restrict the possible syntactic forms which may appear in the 

trees. 

5.1 Saturated Axiomatjsatjons 

The equivalences to which we shall restrict ourselves will all respect 0-absorption 

through both the + and II operators, and in the sequel we shall want to deal 

exclusively with terms which do not contain any unnecessary 0 summands or 

factors. With this in mind, we define Ito be the term t with all 0 summands and 

factors removed. Formally we have the following definition: 

I 	if Jul =OAfv(u)Ø 

- 	 t+u 
0 	

ü 	if(tI=OAfv(t)=Ø 
0= 	

1+ + ü otherwise 

— 
at 
- 	 t 	If Jul =OAfv(u)0 at= 

thu = 	ü 	ifltl=OAfv(t)0 

III ü otherwise 

We shall also restrict the type of axiom set which we shall allow in our proof 

system, to exploit the above 0 absorption properties in our proofs. The special 

class of axiomatisations will allow us to prove statements without invoking unnec- 

essary 0 factors and summands. However, as we shall see, the restricted class will 

not be a real restriction with respect to the properties of axiomatisability which 

we are analysing. That is, given any arbitrary finite, sound and complete axioma-

tisatiori, we can produce another finite, sound and complete axiomatisation which 

is in our special class of axiom sets. 
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The axiom sets to which we shall restrict ourselves will be saturated, as defined 
as follows. 

Definition 5.1.1 Let T be an arbitrary set of equational axioms. The saturation 
of T is defined to be 

Sat(T) = TuT, 

where 

= {10=u0 I t,u,Cfv(t)Ufv(u)stt=u E T, 

and 

Proposition 5.1.2 Sat(T) = Sat(Sat(T)). 

Proof- roof: 

Immediate Immediate from the definition of Sat(T). 	 El 

Proposition 5.1.3 TI- t = u if and only if Sat(T) F t = u. 

Proof: 

Again immediate from the definition of Sat(T). 	 El 

Proposition 5.1.4 T is finite if and only if Sat(T) is finite. 

Proof- roof: 

Again Again immediate from the definition of Sat(T). 	 0 

Thus from now on, we shall restrict ourselves to considering only saturated 

axiom sets, that is, axiom sets T such that T = Sat(T). As we pointed out earlier, 

the above results show that this assumption is not a restriction if we are interested 

in finite, sound and complete axioms sets. However, an important simplification 

of proofs is given as follows. 
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Proposition 5.1.5 If we have a proof of a statement P = Q in our natural deduc-

tion style proof system parameterised by a saturated axiom set 7, then replacing 

p 	q throughout the proof tree by j3 = gives us a valid proof of the statement 
P = Q. 

Thus using a saturated axiom set, a (shortest) proof of a result containing 

no occurrences of 0 as a summand or as a factor need not contain any occurrence 

of 0 as a summand or factor in any of its intermediate terms. 

Proof- roof: 

It It is not hard to see that any inference: 

"p1 =q... 
(rule) 

p  

can be changed to a valid inference: 

- 	-. 	(rule'). 
p=-q 

The only nontrivial case is in dealing with axioms; here we have: 

(t=u) 
p = q 

where p = q is axiom t = u instantiated by some substitution 0. This 
inference can be replaced by: 

(10 =u0 ) 
pq 

where 

to  = 	and u0  

	

where 	{x J o = 

Clearly, j3 = 4 is axiom io  = z10  instantiated with substitution & 

(i.e.,o-=r == 

Thus we restrict our proof system to be as described in Section 2.3.1, param-
eterised by saturated axiom sets. 
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5.2 Strong Congruence 

The process language we are considering here is the language 1', which is the 

set of closed terms in the language P2  given by the signature E2  = {O, 

The semantic equivalence we are considering is again the strong observational 

congruence .d• As we saw, this congruence is completely characterised by the 

theory 70 consisting of the following (infinite) set of laws: 

(x+y)+z = x+(y+z) 	(A3) x+x = 

x+y = y+x 	 (A4) x+O = 

(Expmn) For P = jcxP and Q = 

m 	 n 

P H Q = 	a(P; OQ) + 	°1(PIIQ) 
i=1 	 2=1 

In the sequel, we shall use = to represent (semantic equality), and to represent 

syntactic identity modulo associativity and commutativity of the operators + and 

. For ease of presentation, we shall also extend the transition system -p to allow 

P -- R whenever a' = R such that P -- P'. 

We proceed first to present several technical results which we shall rely on in our 

proof of the nonexistence of a finite equational axiomatisation of our equivalence. 

Proposition 5.2.1 P = Q =#- IPI = IQI and 11(P) = 11(Q). 

Proof.-roof: 

This This follows easily from invariance through the laws of equational logic, 

and through our axioms. 	 o 

Proposition 5.2.2 
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(i)P=O 	1 P1= 0  == l(P)=0; 

(ii) P=a for some a€Act 4= IPI=1. 

Proof-roof: 

These These follow by structural induction on P. 	 0 

Proposition 5.2.3 If P is reducible, then fl(P) > 1. 

Proof: 

IfP=QOR where Q,R5?O, 

then 1(Q), 1(R) > 1, 

so1l(P)=c(Q)+c(R)>2. 

Definition 5.2.4 Let a E Act be fixed (note that this only requires that Act 0, 
which we have said would be our only assumption on Act). Then let A and p 

(n > 0) be defined as follows: 

A0  Lg o, 

def = aA (n > 0); 

	

ço 	A (n>0). 

The proof of our main result in this section will rely heavily on special prop-

erties of these sequences of process terms. These important properties are as 

presented in the following sequence of propositions. 

Proposition 5.2.5 For all m, n > 0 with rn 54 n we have that A n  A, and for 

all rn,n>1 we have that Am  

Proof: 
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mn = I4mI=in12= jAn j 

== Am  A. 

= 1 	n = 1W.1 (for n> 1), 

but IAm I = m = 

so for all m,n> 1, Am  54 (pn, 	 Cl 

Proposition 5.2.6 çc is prime for each n > 0. 

Proof- roof: 

This This is easily seen to be true, as (cp) = 1. 	 0 

Proposition 5.2.7 P 11 Q = An  if 3i,jstP=A, Q=A3, andi+j — n. 

Proof: 

(==) Ai  II A1  = A +1  by induction on i + j; 

(==) a is prime (as I(a) = 1), so the unique factorisation of Am  into 

primes is given by 

Am  = a Ha IIH a. 
m 

Thus if P 11 Q = A n, and P and Q have unique factorisations 

given by 

P = 'P1  H T21 	It T j  and Q = 'P1 H 	II 	H 

then each Ii = a, and so P = Ai  and Q = 	and n = in. 

I  El 

5.2.1 Preliminary Results 

In this section we state and prove the technical lemmata which we need to derive 

our main result in the following section. Firstly however, we define a few proposi-

tions on pairs of sets of terms which will designate properties of equations which 

we want to analyse in our proof system. 
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Definition 5.2.8 For n> 1 and U, V C PO being two sets of terms, let ®(U, V) 

be the proposition which states the following: 

PEUuV = P=—P, and Po,P'+p", 

and ajjç = EU= 

and 3PcUstP =all ço, 

and AQEVstQ = ajIco. 

Thus O(U, V) states (among other things) that the equation E U = V expresses 

a (valid) equality between terms equal to a 11p7  in which the term all p7, is already 

captured by a single summand on the left hand side of the equality, but not by any 

single summand on the right hand side. 

Then let e(U, V) eL(un. , V) V O(V, U). 

Proposition 5.2.9 Let n> 1 and U, V C P20  be such that ®(U, V), and let 

P E U U V be the term satisfying P = a 11 'p,; Then P A 11 P,, where 

A = a and P, = çc'. 

Proof: 

aIIco --*co and aJlco fl —_*Ak  for each k:1<J.<fl; 

Hence P 0 aP' as aP' --) F' only, 

but ço, Ak  (1 < k < n) are all distinct; 

Thus P P'IIP" where PI, P" 0; 

Suppose the unique prime factorisations of F' and F" are given by 

= F1' H P  H 	H P, and F" = p1" 	; I ... 11. 
 

PI,,;  

Then since a and ço, are prime, we have that for some primes A = a 

and P, = ço,, 

P 'IIP" = 
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sok=l=1,P'= Pit and Pit =p" 1' 

and either F1' = a and P' = p, or = ço and F1" = a; 

Hence either F' = a and F" = cp,, or F' =Wn and F" = a; 

Thus PEAIP, where A=a and F=p. 	 0 

The following proposition is the main technical result on which the nonexistence 

of a finite axiomatisation proof rests, and has a correspondingly lengthy proof. 

Proposition 5.2.10 Let F be a finite saturated set of sound (with respect to 

strong observational congruence "-') axioms, and let n be bigger than the num-

ber of operators in any axiom of -T. Then no axiom t = u in F can be instantiated 

to a statement p = q where p E U and q 	V such that ®(U, V). 

Proof- roof: 

Let Let n be as above, and suppose t = u is an axiom in F such that under 

substitution a, t = u instantiates to p = q where p 	U and q > V 
such that e(u,v). 

Without loss of generality, assume that O(U, V); 

Clearly, fv(t) = fv(ü), as t = u is assumed to be a valid axiom, 

and if x E fv(t) \fv(u), then choosing M> Jul and defining 

substitution a by 

01 	ifxefv(u), 
a(x) ) =  

AM, otherwise, 

we would have that 

hal ~: M> lual, 

so that tor 96 ua, and hence that t 96 u. 

t 	t1 +t2 + 	+ tk and u u1 +U2+ 	+ uki for some Ic, k'> 0, 

where each t, u2 0 v + v'; 
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®(U, V) == for some i, either to A 11 P, or to-  A 11 P, + Q, 

where A=a and P=ço; 

Consider the structure of t: 

0 == to 0 (contradiction); 

x == o-2, tcr and  efv(u1) for some  

== 	u1 	0, au', u' + u", u' 11 u" 

== ujx and AIIpEV 

(contradicting O(U, V)); 

	

t2 	at' 	tcT 	a(i'o) (contradiction), 

t' + t" == (contradiction), 

	

Thus t 	ii lit" and tic 	t'cr H t"ci = a fi ço,; 

Hence t2  t' 11 I!' with tbor A = a and t"o- Pn = s0n; 

Now tit vl+v2 +...vj where l<n and each vhv+vl; 

so some VhO' = Ar, + J1r2  + + A1  for some m> 1 and 

0<rl<r2 <...<rm; 

Thus clearly v ft  0 0, av, v + V I , v 11 v', so Vh x for some 

variable x where O= A, +Ar, + + Ar ; 

Clearly x V fv(t'), as It Ioj = 1 <rm  = 

Let o' = a{aWnlx I; 
Then t'o' 	t'o, and tcr' --* t'o-' 11  ço, = a 

Therefore for some j, u1cr' --) all Wn;  

Now uo' > n + 1 = luoi, so clearly x E fv(u5); 

Consider the structure of u: 
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u5 	0 = x V fv(u) (contradiction); 

u5 	x == Ufi' ap 	a 11 ço (contradiction); 

U1 au' = u ju' a(u'u') 

== u'cT' = all p. and  Efv(u') 

== u'w +W2+"+ w1  for some 1 with each 

Loh 0 w + w', and x E fV(Wm) for some m; 

Consider the structure of the Wm  with x E fv(wm): 

Wm 0 == xgfv(w) 

(contradiction); 

==' xEfv(w) 

== n +1 < lW0'l <lm0'l 

:5 (u'a=n--1 

(contradiction); 

Wm 	w + w' = (contradiction); 

WmEWIIW' == xEfv(w)orxEfv(w') 

== 

	

	n +1 < lwo'l ± Jw'r'l = l"ml 

:5lu'ol<n+l 

(contradiction); 

Thus x E fV(Wm) = W 	x and wmc7' = ap; 

But u'cr' E wo-' = a I  cp 

So 	Wm0 + ap = a 0 ço,, 

afv(wm) 

or 	Wm  = 

xfv( m) 
Thus n + 1 < Iu'oi < luoi = n + 1 (contradiction); 

u1  = u' + u" ===>. (contradiction); 

Hence u3  U' 11 U" with x E Mu'); 

Now since u"o --) p for some p, we have ua ---* u'cr 0 p; 

Thus u'cr 0 = ço oru'a 11P = Ar  for some r:1 <r < n; 
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II p = (p ==> p = 0 and u'u = 

(since u'cr 0, and W,, is prime) 

== 	uy u'cr 11  u"o' = a 

(contradicting O(U, V)) 

Ulu P=Ar 	u'cTA,j for some r'<r; 

But  Efv(u'), and or. =A, +A 2  + + Arm ; 

Hence clearly u'o An  for any r' (contradiction) 

Therefore no axiom t = u in 9: can be instantiated to a statement p = q 

where p >JU and 	>V such that e(u,v). 	 0 

Hence we have that the axioms alone cannot generate arbitrarily complex valid 

equations of the form we are analysing. The following proposition further restricts 

the possible ways of generating these statements as resulting leaves of proof trees. 

With these results, our main non-finite-axiomatisability result will follow quite 

immediately. 

Proposition 5.2.11 Suppose in a soundproof, we have an inference: 

p=r r = q 
(trans) 

p = q  

where pU,qE>V,rw 

and R E W 	R R, and R 0 0, R' + R"; 

Then 

e(u, V) == e(U, W) V e(w, V). 

Similarly for the (sub+) rule; corresponding to the inference: 

p = q p' = ql 

p+p' = q+q' 
(sub) 

where p >U, q >V, p' EU', and q' >V', we have the result that 



Chapter 5. Nonexistence of Finite Axiomatisations 	 105 

e(u U U', vu v') = e(u, V) v e(u', v'). 

Therefore, a statement p = q where p E U and q E V for some U and V 

satisfying ®(u, V) cannot be initially introduced into a proof tree as the result of 
the application of either the (trans) rule nor the (sub) rule. 

Proof- roof: 

Consider Consider the (trans) rule case: 

Assume ®(U, V); We know immediately that 

FE UUVUW 

	

P 	P and P#0, F' + F", 

and (from O(U, V), and the soundness of the proof in which 

the inference appears) that 

aIIWn = EU = EV = 

Now if ,R € W st R = a 11  ço, then clearly e(U, W); 

And if 3R E W st R = a 11  ço,1, then clearly EJ(W, V); 

Similarly, O(V, U) ===> ®(W, U) V e(v, W); 

Hence ®(U, V) ==> ®(U; W) V O(W, V). 

The (sub+) rule case is similarly straightforward: 

Assume e(UUU', VuV'); Again we know immediately that 

FE UUU'uVuV' 

	

= P 	P and P 0 0, F' + F", 

and that 

P E UUU' stP =a o; 

Suppose this P E U; then (from ®(U U U', V U V'), and 

the soundness of the proof in which the inference appears) 

we have that 
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aOco = >2U = >2V, 

so clearly ®(U, V); 

And similarly, if this P E U', then O(U', V'). 

Similarly, ®(V U V', U U U') == ®(V, U) V ®'(V', U'); 

Hence O(UUU',VuV') == e(U,V)ve(U',Vl). 

5.2.2 Main Result 

Here we state and prove our main theorem, the nonexistence of a finite axiomati-

sation for our congruence. 

Theorem 5.2.12 Let F be a finite saturated set of sound (with respect to strong 

observational congruence r.') axioms, and let n be large enough (as allowed by 

Proposition 5.2.10) so that no axiom in F can be instantiated to express any 

truth p = q where 

p 	>U and q >V such that ®(U, V). 

Then our system cannot prove the valid statement 

a I Wn = ao+A2 +A3 +...+A +1  

Hence no finite complete axiom system can exist for strong congruence '-'. 

Proof: 

Suppose we have a (shortest) proof of the statement 

aJJço = aço+A2 +A3 + --- 4 +1  

which involves no terms containing 0 as a summand or a factor. The 

proof takes the following form: 

Do 	
(rule), 

p= q 
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where p>U0  and q> V0  for 

Uo  = {a II ca} and V0  = {ap, .2, A3, 	, 

so clearly ®(U0, V0) holds. 

Since this must be a finite proof, somewhere in the proof tree is an 

inference 

V 
(rule) where e(u,v), 

such that the premise V of the inference contains no equality 

V' where e(u',v'),• 

By Proposition 5.2.11, (rule) can be neither of (trans) nor (.sub+); 

Furthermore, by Proposition 5.2.10, we know that (rule) cannot be 

(t = u) for any axiom t = u E ; 

Also clearly (rule) cannot be (symrn), as O(U, V) 	O(V, U); 

Finally, (rule) cannot be any of (ref 1), (suba), or (sub), as this would 

contradict ®(U, V); 

Hence we have shown that the original statement cannot be proven. 

5.2.3 Adding Communication 

We could repeat the above proof for the nonexistence of a finite axiomatisation 

for strong congruence over the language P3  which contains the parallel combinator 

which allows communication (synchronisation of complimentary actions) as well 

as merging of actions. The proof would be identical under the assumption that 

our atomic action a was not its own complimentary action (that is, a 54 a). The 

reason that the proof would remain unchanged is that a is the only action symbol 

which appears in any term used throughout the proof, so no communication could 
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occur, and the communicating case would degenerate to the non-communicating 

full merge case. Hence we do not bother repeating the argument here. 

5.3 Noninterleaving Semantic Congruences 

In this section, we shall in one fell swoop prove that any "reasonable" congru-

ence which is at least as discriminating as observational congruence is not finitely 

axiomatisable over the language ?° whose signature contains the symmetric full 

merge operator but not the left merge operator. In particular, we shall show that 

any attempt at axiomatising such a "reasonable" notion of noninterleaving seman-

tic equivalence is doomed to suffer the pitfalls of non-finite-axiomatisability. The 

only hope for such systems is either to go outside of the system to introduce new 

operators, for example, to incorporate the left merge operator l[ or else to find 

some "nice" axiom schemata in the spirit of the Expansion Theorem. 

The observations on which we build here are those made in Section 3.3 while 

working with the language P2, looking for an w-complete axiom set. There we 

discovered an abundance of unexpected arbitrarily-complex independent axioms 

which had to be included in a complete set of axioms. Some of the same ob-

servations in a different line of study - that of axiomatising a certain noninter-

leaving semantic equivalence, distributed bisimulation equivalence— were made in 

[CAS87]. Using the insight gained from those observations, we shall here modify 

the proof of this chapter to apply not just to observational congruence, but to any 

reasonable congruence which is at least as discriminating. 

We must state precisely what we mean for a congruence over PO to be "rea-

sonable". Much thought has gone into the problem of settling the question of 

exactly what identities should hold in a good semantic equivalence. Firstly, as 

stated already, the equivalence should definitely be a congruence, thus allowing 

the validity of substitutivity of program parts. Secondly, there are very strong 

arguments that any terms which are identified should at least be observation-

ally congruent; the arguments which distinguish observationally distinct processes 
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should hold valid for our hypothetical "reasonable" equivalence. Notice here how-

ever that we are not abstracting away from internal events which should not be 

observable to the environment. 

Outside of this, there is little agreement as to how fine a congruence should 

be. The greatest arguments stem from the Petri net community and other propo-

nents of noninterleaving semantics. The objections to the grossity of observational 

congruence arise due to its property, introduced by the Expansion Theorem, of 

identifying terms involving distinct causal dependencies on their actions. For in-

stance, a simple application of the Expansion Theorem would quickly lead us to 

conclude that 

a 11 b = ab + ba. 

However, whereas on the left hand side of this statement, there is no causal depen-

dencies expressed between the two actions a and b - the two actions are simply 

performed independently - the summands of the term on the right hand side each 

express a definite causal relationship between the actions; in the first summand, 

action a must occur before action b, whereas this situation is reversed in the second 

summand. Such an interleaving semantic understanding of processes reduces par-

allelism to a nonprimitive operation definable in terms of nondeterministic choice 

and causal dependency. Objections arising against this viewpoint stem from the 

belief that parallelism should not be expressed as above, but rather that it has 

properties which should guarantee it a place among the set of primitive concepts. 

Thus we contend that the reasonable congruence which we are seeking is strictly 

finer than observational congruence. But how far must we cut down on this equiv-

alence in order to reach a "reasonable" congruence? We want to cut down on 

it far enough to avoid all possible objections to the treatment of concurrency. 

For instance, we would not want to allow the following partial application of the 

Expansion Theorem: 

a 11 b = a 11 b + ab. 
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This could possibly be considered a valid law in some noninterleaving semantic 

theory, as the concurrent nature of the atomic processes are still present on both 

sides of the equation. However, it still allows the introduction of causal dependency 

where it had not previously existed, and as such is faced with the same arguments 

faced originally by the Expansion Theorem. 

However, we do not want to allow our "reasonable" congruence to be too fine. 

For instance, Winskel's event structure semantics ({W1N83]), as well as the original 

event structure semantics of Boudol and Castellani (Section 3 of [B0U86]) only 

allow process terms to be identified if they are identical modulo the associativity, 

commutativity and 0-absorption of the + and 11 combinators, as well as the asso-

ciativity of a sequential combinator in the latter case. Clearly these approaches 

are too strict, as they do not allow for any non-trivial identities, not even the 

well-accepted idempotence of +. 

What we in fact argue here is that some of the reduction laws introduced in 

Section 3.3 are acceptable identities to make in any reasonable congruence. For 

instance we want to allow the following identity: 

(x+v)ll(y+z) + xy + zz + vHy + vIIz 

= xtI(y+z) + vii (+z) + (x+v)1iy + (x+v)iiz. 

As argued in Section 3.3, this reduction law can be informally justified as follows: 

every possible single-step behaviour which one side of the equation can exhibit is 

matched by an identical single step behaviour on the other side of the equation 

within an identical parallel context. For example, the possibility of the indeter-

minate process x proceeding in the second summand x J y on the left hand side 

of the equation is matched by the possibility of the same indeterminate process x 

proceeding in the third summand (x + v) ii y on the right hand side of the equa-

tion: both allow the indeterminate process x to proceed in the context where it is 

running in parallel with the indeterminate process y. This reduction law, as with 

many of the other reduction and absorption laws introduced in Section 3.3, does 

not introduce causal dependency where it did not previously exist. Indeed, it does 
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not mention any action terms explicitly. Thus it is not open to the objections 

faced by the Expansion Theorem. 

Hence, to summarise, we want our "reasonable" congruence to be at least as 

fine as observational congruence, and to satisfy reduction phenomena of the above 

form. That is, we would like any congruence to satisfy the following sequence of 

reduction laws. 

 

+ >E(xIfy) 
i=1 j=1 

	

M n 	 n m 

	

[Xi II (> 	)]+ 	yj]. 

Notice that this is just a small subset of the laws from Section 3.3 which we 

could argue to be reasonable. However, we only need to consider this sequence 

to prove our result. Thus by taking m = 2 in the above schema, and allowing 

the substitutions x, y := .A, we want to consider it to be reasonable that our 

congruence satisfy the following sequence of reduction laws (one for each n > 0): 

(Reds) 	2Hn + 	EAIjA1 = 	 + EW2I1A1. 
i=1 j=1 	 i=1 	 1=1 

For instance, for n = 3 we have the law (Red3) given as follows: 

(a + aa) 11 (a + aa + aaa) 

+aIIa + ajjaa + ajlaaa 

+aalja + aaOaa + aallaaa 

= a H  (a + aa + aaa) + aa II (a + aa + aaa) 

+ (a + aa) Ila + (a + aa) II aa + (a + aa) Ilaaa. 

Recall now that our proof of the nonexistence of a finite axiomatisation for 

strong observational congruence '-' proceeded as follows: We demonstrated a cer- 

tain set of equivalences {s 	ti I i >_ 01 such that given any finite set F of --valid 

axioms, we could choose n big enough so that F 1/ 	tn. 
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Suppose we consider now a new congruence which is stronger (finer) than 

observational congruence 's. Suppose we also have that Vi > 0 s2 t2. Then as a 

corollary of the above result, we would have that was not finitely axiomatisable, 

for if it were (say some set F finitely axiomatised ), then we would have that 

F I- s, 	t Vn > 0. As 	F would be a finite set of -valid laws, so our 

property that F 1/ s = tn for some n would contradict the completeness of F for 

the congruence . 

Thus to extend this proof to our wider class of equivalences, we need to replace 

the set Isi = ti I i ~! 01 of "-equivalences with one containing -equivalences. 

We will in fact use the sequence of reduction laws Reds mentioned above for this 

purpose, thus allowing our proof to apply to any "reasonable" equivalence. 

5.3.1 Preliminary Results 

In this section we make some technical definitions and state and prove the tech-

nical lemmata which we need to derive our main result in the following section. 

We shall continue in this section to use = to represent strong congruence and 

to represent syntactic identity modulo associativity and commutativity of the 

operators + and 11. 

Firstly, we want to restrict our attention to a certain subset of process terms 

as defined as follows. 

Definition 5.3.1 For any arbitrary integer n > 2, we define S to be the deriva-

tion and a-prefix of derivation closure of the set {c02 II co}. That is, S, is the 

smallest set satisfying: 

2OcflEfl; 

P E S, P -- p1 ==:>.
P',aP' E S. 

We can express this set explicitly as follows. 

Proposition 5.3.2 
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{cIkfl} u fA j  I Aj I O<i<2, O<j<n} 

u{AII w. 1 0<i<21 u {co2IIA1  Jo <j <n} 

U{a(AlI) 1 0<i<21 u {a(2IIA5) I Oj<n} 

U{a(Aj IIA5 ) 1 O<i <2, 0<j <n, i+j :5n+i}. 

Proof: 

Straightforward. 	 1! 

Proposition 5.3.3 If P + Q = S for some S C 9n, then P = E T for some 

Tc&. 

Proof- roof: 

Let p  a
) 
 p, ; LetP*P'; 

Then >JS — -P" = P,, 

soPo --3P" for some P0 ESc; 

But then by Definition 5.3.1, aP" E S; 

Thus letting T = {aP" E S I 3P,  = F" st P -- F') 

we have P = T. 

Corollary 5.3.4 If  = >S for some S C, and P -al - F' for some j > 0, 

then there is some R E 	such that R = F'. 

Pro of: 

Suppose P --* P" 	F'; 

Then by Definition 5.3.1, ES ---* P0  = F" for some P0  E 

Hence by Definition 5.3.1, P0 	R = F' for some R E S. 	0 
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Another technical property which this set satisfies in which we shall be inter-

ested is given by the following proposition. 

Proposition 5.3.5 Let in > 2, and 0 < r1  < r2  < •.. < r. If there is some 
FE Sn  such that for some Q, A, +A 2  +"•+A +Q = F, with IPI n, then 

P = A, + Ar2  ± + Arm  +Q = ço. 

Pro of: 

Straightforward check through all of the possibilities for P E S, given 

by the alternate definition of 	of Proposition 5.3.2. 	 0 

We now again make a definition of a property of equations in which we shall 

be interested, similar to that in the previous section. 

Definition 5.3.6 For U, V C P° being two sets of terms, let us define O(U, V) 

to be the proposition which states the following: 

PE U U V =: 	P, and PO-0, F' + F", 

and EU= EV= >.S for some 

and 3PEUstP = co2fIcafl, 

and 4Q€VstQ =co2llcofl. 

Thus eL(U, V) states (among other things) that the equation F U = > V expresses 

a (valid) equality between terms in which the term W2 0 'p, is captured by a single 

summand on the left hand side of the equality, but not by any single summand on 

the right hand side. 

Then let O(U, V) = O(U, V) V ®(V, U). 

Proposition 5.3.7 Let n> 1 and U, V C P20  be such that e(U, V), and let 
P E U U V be the term satisfying P = 	; Then P P2 JJ P,, where 

= c°2 and 1?,, = ço. 
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Proof- roof: 

W2 11 W. 'P2H'Pflco 

Hence P aP' as aP' ---* F' only. 

Thus P P, 11 P" where F', F" 0; 

Since c2 and ço are prime, we must have that F' and F" are precisely 

'P2 and ço. 

Hence F P2 11 P where '2 = 'P2 and P = 	 0 

Proposition 5.3.8 Let t be an open term in P2, and let o be a substitution such 

that to 1, and such that for some x e fv(t), 

a. = a'P, + aaço1 ; 

Then ta =A W2 II Wn- 

Proof- 

Let t, o and x be as above; 

t is of the form 

tl+t2++tm, 

where each t j # t' + t"; 

Let k be such that x e fv(tk); 

Thus tk # 0; 

If 	bt', then x E fv(t'), so Itoi > It'OI ~! IoI = n + 2; 

But 1c02 I1 WnI = n+2,  so tcT 	'P2 H 

If 	t' 11 t", then x e fv(t') or x E fv(t"), 

so Ital = t'oi + It"o-J ~: 	= n + 2; 

so again to- 	'P2 1 'Pa; 
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Finally, if tk x then to-  --* app; 

but 	2 H ip 	acp, so again to- 	2 II 	 LI 

Proposition 5.3.9 Let I be a finite saturated set of sound axioms, and let n be 

bigger than twice the number of operators in any axiom in F. Then no axiom 

t = u in I can be instantiated to a statement p = q where p > U and q 	V 
such that O(U,V). 

Proof. 

Let n be as above, and suppose t = u is an axiom in I such that under 

substitution o, t = u instantiates to p = q where p > U and q 	V 

such that e(u,v).. 

Without loss of generality, assume that ®(U, V); 

Clearly, fv(t) = fv(u), as t = u is assumed to be a valid axiom. 

t 	t1  + t2  +•• + tk  andu u1  + u2  + 	+ uki for some k, k' > 0 

where each 	v + v'; 

e(U, V) == for some i, either to- P2  I P1, or to- P2 H P, + Q, 

where P2 = W2 and P 

Consider the structure of t: 

0 =='- to- 0 (contradiction); 

x == o 	to-  and x e fv(u) for some j 

==, U1 # 0, au',. u' + U", u' u" 

u1x and P2 IIpEV 

(contradicting O(U, V)); 

at' == t10 	a(t1 o) (contradiction), 

V + t" = (contradiction), 

Thus I. =- I, if 
4! Iijll and tao- 	t'o t"cT =  P2 
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Hence t 	V 11t" with t'u 	= (P2 and t"o P = ço; 

Now t" v1 + v2 + VI where 1 < 11 and each Vh 0 v + v'; 

E v1u + v20" + v10- = = A1 + A2 + + A, 

so some Vh0 = An + A 2 + ... + Ar for some rn> 2 and 

	

Thus clearly Vh 0 0, av, V + v', V 11 	50 Vh x for some 

variable x where o = A + A 2 +• + A; 

Clearly x V fv(t'), as (t'uI = 2 <rm = 10z1, 

Let a' = u{ac n + aaWnIX 1; 

Then Vu' Vu, and tu' --+ Vu'11go, = (P2 Ii 

Therefore for some j, u5cr' --* ç02 II 

Now Iu1u'l > n + 2 = luuI, so clearly x E fv(u1); 

Consider the structure of u j: 

U. 	0 = x g fv(u) (contradiction); 

u 	x == uju' a(P. + aaço 	W2 II ço, 

(contradiction); 

u5 au' 	u1u' a(u'u') 

== 	u'u' = (P2 	and x € fv(u') 

(contradiction) 	 (by Proposition 5.3.8) 

u5 	u' + u" ===> (contradiction); 

Hence u 	u' 11 u" with u"o-' --- p 
St 

u'u'11p = (P2 ii 

If  Efv(u'), 

then n+2= iu'u'i+ipl ~! lo•,I+Ipi~!n+2+ipi, 

so p = 0 and u'u' = (P2 II 

(contradicting Proposition 5.3.8) 
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Hence x fv(u'), and so x e fv(u"); 

Now u'cr11p = W2 11 (pa, and u'cr 0, 

SO U17 = V 2 or u'o = p, or u'o 	Il 

But Iu'oi = Iu1oi - u"t7I :5  1U01 - 10a,I < ( n + 2) - 2 = n; 

Therefore u'o- = P2; 

Thus also Iu" < n; 

Now, x E fv(u") ==*U,,Or 
--- o + Q for some Q, j > 0; 

Hence uo- 	+ Q; 

Thus by Proposition 5.3.4, 3P E S St  o + Q = F; 

But o = Ar, + A, + . . + Arm  for some m> 2 

with 

Hence by Proposition 5.3.5, o 2, + Q = 

Thus u"cr 

Now n>Iu"o>j+n, soj=0; 

Therefore u"o-  = 

But then u'o-  I u"o P2  11 P, E V for some P2  = W2 and P = 

(contradicting 	V)); 

Therefore no axiom t = u in 2F can be instantiated to a statement p = q 

where p >U and q >V such that e(u, V). 	 0 

Proposition 5.3.10 Suppose in a sound proof, we have an inference: 

p=r r = q (trans) 

p = q 

where p>U, 	r>W, 

and REW = R=— , and RO,R'-j-R", 

Then 
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0.(U, V) = ®(U,W)vo(W,v). 

Similarly for the (sub+) rule; corresponding to the inference: 

p = q p' = q' (sub) 

p+p' = q+q' 

where p >U, q >V, p' >U', and q' >V', we have the result that 

O(u u U', V u v') ==> e(U, V) v ®(u', v'). 

Proof- roof: 

Consider Consider the (trans) rule case: 

Assume ®(U, V); We know immediately that 

PEUUVUW 

:= pP and PO,P' H F", 

and (from ®(U, V), and the soundness of the proof in which 

the inference appears) that for some S c Sn, 

EU = EV = EW = 

Now if 4R E W st R = a ço then clearly ®(U, W); 

And if 2R E W st R = a H Wn, then clearly O(W, V); 

Similarly, ()(V, U) 	 U) V 	W); 

Hence On(UV) ==> ®(U, W) V O(W, V). 

The (sub+) rule case is similarly straightforward: 

Assume ®L(UuUl,Vu VI);  Again we know immediately that 

P E UUU'UVUV' 

PEEl5  and PO,P'+P", 

and that for some S c S, 

>(UuU') = (VuV') 
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and 

2P E U U U' such that P = a ] p, 

Suppose this P E U; then from ®(U U U', V U V'), and the 

soundness of the proof in which the inference appears, and 

from Proposition 5.3.3, we have for some S' C Sn , 

so clearly ®(U, V); 

And similarly, if this P E U', then O(U', V'). 

Similarly, O(V U V', U U U') == O(V, U) V O(V', U'); 

Hence EJn(U U U', V U V') = e(U, V) V e(U', V'). D 

5.3.2 Main Result 

Here we state and prove our main theorem, the nonexistence of a finite axiomati-

sation of any "reasonable" equivalence. 

Theorem 5.3.11 Let 2r be a finite saturated set of sound (with respect to any 

fixed reasonable congruence) axioms, and let n be large enough (as allowed by 

Proposition 5.3.9) 80 that no axiom in .7 can be instantiated to express any 

truth p = q where 

p 	>U and q >V such that e(u,V). 

Then our system cannot prove the statement 

W211 n +j:EAj jjA j  = EA j  I Wn + E211A1. 
i=1 j=1 	 i=1 	 3=1 

Hence no finite complete axiom system can exist for any reasonable congruence 

which is at least as strong as strong congruence. 

Proof- 
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Suppose we have a (shortest) proof of the statement 

W2 11 (Pn + 	EAoA5 = 	+ E W2OA5 
i=1 j=1 	 i=1 	 5=1 

which involves no terms containing 0 as a summand or a factor. The 

proof takes the following form: 

Do  
(rule), 

p = q 

where p>U0  and qEV0  for 

U0 = 	u {A A5  Ii < i < 2,1 < j :5 n} 

and 

V0  = {aii,aaiia} u {2 HA5 I i<j<n} 

so clearly 0(U0 , V0) holds. 

Since this must be a finite proof, somewhere in the proof tree is an 

inference 

V 
(rule) 	where 	e(U, V), 

such that the premise V of the inference contains no equality 

= >V' where ®(U',V'); 

By Proposition 5.3.10, (rule) can be neither of (trans) nor (sub); 

Furthermore, by Proposition 5.3.9, we know that (rule) cannot be 

(t = u) for any axiom t = u E .1; 

Also clearly (rule) cannot be (symm), as O(U, V) 	O(V, U); 

Finally, (rule) cannot be any of (ref 1), (suba), or (sub j), as this would 

contradict &(U, V); 

Hence we have shown that the original statement cannot be proven. 

FM- 



Chapter 6 

Sequencing with the 0 Process 

Up until this point, we have been interested solely in CCS-based process algebras. 

In this chapter, we shall consider a slightly different range of process algebras, those 

containing not CCS action prefixing, but rather sequential composition in the form 

of a binary operator which takes two process terms and produces the new process 

which performs the actions of the first term, followed by those of the second. 

Such process algebras include for instance those based on ACP, the Algebra of 

Communicating Processes of Bergstra and Kiop (e.g., [BER84], [BER85]), as well 

as that of Boudol and Castellani's partial order semantics ([B0U86]). 

The major proponents of equational studies of process algebras are certainly 

by far the Dutch researchers developing the ACP-based algebras. Much has been 

developed and published within this framework so a study of equational axioma-

tisations for process algebras would certainly be lacking if due attention were not 

awarded this family of languages. 

Throughout the development of the ACP algebras, the basic components of 

a process were atomic actions, given by a set Act as in CCS. The major differ-

ence from CCS, apart from using sequencing rather than action prefixing, was the 

lack of a 0 process term in their algebras. For the basic algebra of terms, these 

were really the only variations from the CCS-type algebras and equivalences; by 

defining a form of sequencing within the CCS framework, and imposing (strong 

and weak) observational congruences on the resulting algebras, we would arrive 

at exactly the ACP notions of congruences, which initially are defined by axiom 

122 
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systems without a previous operational model-based intuition built into the equa-

tional axioms. Thus we see presentations of ACP-type languages defined as the 

initial models of equational theories which in the CCS framework are precisely 

the complete axiomatisations of the operationally-based congruences. 

Recently, a 0 process has been incorporated into the ACP algebras, in the form 

of an empty process term e ([VRA86]). At this point, the CCS and ACP notions 

diverge greatly. The equivalence defined in [VRA86] for the ACP algebras with 

the e term is no longer immediately recognisable as an observational congruence; 

the operational intuitions on which the CCS notion of equivalence is based is not 

explicitly present. 

In this chapter, we quickly review the relevant portions of the ACP algebras 

for our investigation - namely, the Basic Process Algebra BPA, before and after 

the addition of the 0-type process c. From this brief exposé, we motivate a small 

change in the semantics of terms in order to bring the equivalence more in line 

with the usual CCS-based observational equivalences. We thus define a new 

semantic equivalence on terms, and examine questions regarding axiomatisations 

for our modified system. We then compare our system with BPA, first defining 

the BPA' congruence as an observational congruence, and then considering the 

relative ease which we have in adding merge and communication to our system, a 

state which as we shall see is not so true with BPA. Finally, we finish off this 

chapter with a modified proof of the previous chapter on the nonexistence of a finite 

axiomatisation for the BPA congruence when the full merge operator is added to 

the signature. To do this, we point out first that the unique decomposition result 

of Chapter 4 holds in this algebra. 

6.1 Introduction 

In this section, we introduce the process algebra BPA (Basic Process Algebra), 

and the modified language BPA involving the empty process E introduced by 

[VRA86]. After the definitions of these algebras and the equivalences defined 
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for them are presented, we make some observations and arguments for modifying 

the equational system BPA' from where it stands to something mimicking more 

closely the concepts and intuitions of CCS. 

For a long time, researchers working on the ACP family of process algebras 

have dealt with languages not involving a 0-like process. Their basic process 

algebra BPA is similar to a subset of CCS, with action prefixing replaced by 

atomic action processes and sequential composition, without the 0 process. They 

give a set of axioms, and define the equivalence within the process system as 

given by the initial model for these axioms. They present this system by means 

of an algebraic specification BPA = (EBPA, EBPA) in the style of [E11R85], as 

presented in Figure 6-1. Notice by convention that the sequential composition 

EBPA 
Sort 	P 	 (processes) 

Functions + P x P - P (choice) 

P x P - P 	(sequential execution) 

Constants a E Act 	(atomic actions) 

EBPA 
x+y=y+x 

(x+y)+zx+(y+z) 

X+x=X 

(x + y)z = xz + yz 

(xy)z = x(yz) 

Figure 6-1: Specification of BPA = (EBPA)  EBPA) 

operator . will often be dropped from terms, thus being represented simply by the 

juxtaposition of terms. The congruence generated by these axioms corresponds 

precisely to strong observational congruence, as it would intuitively be defined in 

this context, and as we shall define it in the next section. 
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In [VRA86], this algebra is extended by the addition of a 0-like process, the 

empty process c. When the empty process e is added to the signature, the modified 

system BPA = (EBPAe,EBPAC) is defined as presented in Figure 6-2. 

En -DA C 

Sort 	P 	 (processes) 

Functions + P x P -p P (choice) 

P x P -p P 	(sequential execution) 

Constants e 	 (empty process) 

a E Act_ - 	(atomic actions) 

EBPAC 

x±y=y+x 

(x +y) + z = X+ (y + Z) 

(x + y)z = xz + yz 

(xy)z = x(yz) 

6+6 =6 

ex =X 

Xe = X 

Figure 6-2: Specification of BPAt = (EBPAC,EBPAC) 

In going from BPA to BPA, a few points immediately arise. Firstly, we 

appear to lose the idempotence axiom, 

X + X = X. 

However, in fact, this law is derivable in the system EBPAC, using distributivity 

and the c-laws. Secondly, if we expected the c process to be intuitively analogous 

to the CCS 0 process, we quickly discover that there is no 0-absorptive law of the 

form 
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X+6 =X. 

This law cannot in fact be proven, and in the system BPA is not valid, for if it 

were, we could for example prove (using the distributivity of - over + on the right) 

that 

ab = (a + e)b = ab + eb = ab + b, 

which we clearly would not desire. In the system BPA, the option of doing 

nothing (performing the e process, allowing termination) is considered to be a 

valid choice. In CCS, such a process is liken to the process r.0. Hence the 

approach taken by BPA is motivated more by the work done on CSP ([110A85]), 

where a 0-like process exists representing termination, allowing an unobservable 

termination, or "tick", action V. In this case, one might expect that the process 

a + 6 might be allowed to terminate silently in the context 

(a + 6) 11 b, 

allowing the term to evolve silently into the process term b. However if this were 

to be the case, we could argue that in the BPA framework we would arrive 

at a nonassociative parallel composition operator J. Indeed, in [VRA86] we find 

remarks giving evidence that an earlier attempt at introducing the empty process 

6 into the process algebras of ACP ran up-'against this very problem. 

Thus the equivalence given by BPAC (or the empty process &) neither resem-

bles much that of CSP nor that of CCS's strong observational congruence (i.e., 

the distributivity law fails here, whereas the absorptive law is valid). A new notion 

of e- bisimilarit,, is introduced in [VRA86] to mimic the BPAC equivalence given 

by EBPAC using a modified notion of bisimulation. However, we are interested 

here in giving an axiom system for true observational congruence of their system, 

with the understanding that e can perform no observable actions, thus restor-

ing the operational intuition given by CCS. Indeed, we find that we need the 

operationally-based semantic understanding in order to proceed with the proofs of 



Chapter 6. Sequencing with the 0 Process 	 127 

our results on the unique decomposability and the nonexistence of finite axioma-

tisations for the original language of BPA with the full merge operator added to 

its signature, as shall be presented later in this chapter. 

6.2 CCS With Sequencing 

The first step towards our goal is to define our language and its operational seman-

tics as a labelled transition system in the usual fashion so that we can define our 

congruence using the usual notion of bisimulation. This much is almost straight-

forward. 

The terms in our language are exactly as given by the signature EBPA  in 

Figure 6-2. The process e will represent the usual 0 process of CCS. Hence the 

only new notion here is the sequential composition operator. 

The operational semantics for this languages will be given as usual by a transi-

tion system —ç 2 x Act x 2 defined to be the least relation satisfying a certain 

collection of laws. In this case, we would intuitively like the transition system to 

satisfy the following laws: 

a (a E Act); 
a -* E 

a 	 a 
p—,.p1 - 	q—*q 

p + q 
a

-f p' 

a 
P -p p 

pq 
a - p'•q 

Vb,p':p/Lp', q--#q' 

pq 
a 

- q 

However, in light of the negative information in the premise of the last law, we 

cannot define our transition system to be the least relation satisfying these laws. 

For instance, if we added another law to the above, namely for some a E Act, 



Chapter 6. Sequencing with the 0 Process 	 128 

then the subprocess q in the process eq would never proceed, as we would have 

e. q 	e• q. A relation which satisfied this extended set of laws would of course 

satisfy our original set of laws, but would in fact be incomparable to the relation 

which we are defining. For instance, we would not want e•b --+ Eb, but we would 

want e b --+ e. Hence it would not make sense to require the existence of the 

least relation satisfying the original set of laws, as we have just exhibited two 

incomparable relations which each satisfy them, for neither of which is it the case 

that there exist a subset satisfying the laws. So we are forced to proceed in another 

way. 

Our solution results from the fact that we can easily tell purely syntactically 

if a process is equivalent to the empty process &. Thus we need simply to define 

syntactically when a term is equivalent to the e process, and then to use this 

definition in the place of the negative information in the premise of the definition 

of our transition system above. 

Proceeding in this way, we define the function isempty as follows: 

isempty(e) = true; 

isempty(a) = false 	(a E Act); 

isempty(p + q) = isempty(p.q) = isempty(p) A isempty(q). 

Intuitively, we would like it to be the case that p & if isempty(p), where '-i  is the 

strong observational equivalence which we are trying to define. Then our transition 

system can be validly defined as the least relation satisfying the following laws: 

a 

isempty(p), q --* q' 
a 1. 	 a 

p•q—pq 

a 	(a E Act); 
a -f € 

a 

p + q a
-p 

a 
p -.pl  

With the above transition system defined, our strong observational congruence 

is defined in the usual way via the notion of strong bisimulation using this 
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transition system. That is, 	is the largest relation such that whenever P 

we have that for all a E Act, 

(i) P --) F' implies 3Q' P' such that Q --* Q'; and 

(ii) Q -- Q' implies 3PI Q' such that P -- P'. 

We can now check that our definition of isempty indeed satisfies our desired 

requirement. 

Proposition 6.2.1 p e if and only if isempty(p). 

Proof: 

Straightforward. 

With the problems faced in defining the transition system above, it is worth 

checking that this definition does in fact yield a congruence relation. This is in 

fact not too difficult, as is outlined in the following proposition. 

Proposition 6.2.2 	is a congruence. 

Proof- roof: 

That That is an equivalence relation is straightforward, as it is defined via 

the notion of a bisimulation. 

To check that it is substitutive, we need to confirm that the following 

inferences are valid: 

p0 r.i q0, p1 '-'q1  
(sub), 

Po+Pi 	q0 +q1  

p0 rs q0, p1 'q1  
(sub.). 

PoPi "-i  q0•q1  

The (sub) case is straightforward; 

Assume that Po ' q0  and p '' q1; 

Suppose that Po + P1 
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Then either p0 --+p orp1  

Hence for some q 
'S-' 

either q0  --+ q or q1  --+ q; 

	

Therefore q0  + q1 	q; 

Similarly, q0  + q1 	q implies Po +Pi ---* p for some p 

Hence Po±Pi q0 +q1. 

The (sub.) case is more involved, relying on a proof by induction on 

the depths of terms; 

Assume that Po q0  and Pi .-' q1, and that for all p, p'1, q, q 

such that p 	q, p'1 	q, and jpj + II < fp0 j + IpI, we 

have that p•p'1 r'...  q•q; 

Suppose that p0•p1  

If p0 -- p' such that p = P'Pi, 

then q0  --+ q' for some q' - p', 

so q0-q1  ---* q'-q 	p'-p1 = 

(by the inductive hypothesis) 

Ifp0 — e and Pi 

then q0  ' e and q1 	q for some q ' 

soq0.q1  L-. q r...i p;  

Similarly, q0•q1  --+ q implies PoP1 	p for some p - q; 

Hence PoPi 'S-' q0•q1. 	 10 

Having succeeded in defining our observational congruence in the fashion which 

we desired, we can now proceed to its equational characterisation and properties. 

6.2.1 Equational Axiomatisation 

A complete axiomatjsatjon for our congruence r'.I would naturally contain the ax-

ioms characterising the usual language of nondeterministic terms, that is: 
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(x+y)+z = x+(y+z) 	(A3) x+x = 

x+y = y+x 	 (A4) x+c = 

But we now need other axioms to deal with properties of sequencing (which never 

arose with action prefixing). In particular we need the three axioms 

(S1) (xy)z = x(yz) 	(S2) x•e = x 	(S3) ex = x 

as well as the axiom schema 

M 	 m 

	

(Dm) (>ajxj).y = >cxy 	(for m>O, a2 EAct) 

The motivation for introducing this axiom schema is that it mimics the distributiv- 

	

ity law (x + y)z = xz + yz of EBPAe. This law holds as long as x, 	e, and this 

is certainly true if x and y are both prefixed by atomic action terms. In this case 

though we must account for an arbitrary number of action-prefixed summands in 

the first term. 

We shall refer to the above set of laws collectively by T; that is, we let 

T = {(A1),(A2),(A3),(A4),(s1),(s2),(s3)} U {(Dm) I m> o}. 

That these laws are all valid is a straightforward thing to prove, and we shall take 

this fact to be granted. However, there are problems about the completeness of 

these axioms which we would now like to address, namely: 

Are these laws complete for reasoning about closed terms? 

Are these laws u-complete, that is, complete for reasoning about 

open terms? 

In view of the axiom schema (Dm) introduced, is the equivalence 

in this signature finitely axiomatisable for reasoning about closed 

terms, using some other axioms to replace the axiom schema 

above? If so, is it also finitely axiomatisable for open term rea-

soning? 
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The next section will answer the first question in the affirmative, giving a com-

pleteness proof for reasoning about closed terms. The following section will then 

answer the first part of the third question also in the affirmative, giving a finite ax-

iomatisation for this system. After that, we shall investigate the axiomatisability 

of the extensional theory in this system, presenting some open statements which 

cannot be proven in the closed theories we develop. 

6.2.2 Completeness for Closed Term Reasoning 

The proof that the above laws T completely characterise the theory of closed 

terms over the language in question relies on a normal form for terms defined as 

usual by derivation trees. To get at the normal form, we shall again employ a 

denotation function which gives a set theoretic representation of the derivation 

tree corresponding to a given term. 

A derivation tree again is simply a finite unordered tree whose arcs are labelled 

by elements of the action set Act, in which no two identically-labelled arcs lead 

out of the same node to two isomorphic subtrees. Such a model is well-known to be 

a complete characterisation of closed finite CCS terms, including the terms in our 

present framework. The domain of derivation trees can be represented formally as 

the least fixed point solution V to the set equation 

V = P j (Act x V) 

where PFIN(S) again represents the set of finite subsets of S. 

Some of our proofs will depend on induction on the depth of the derivation trees 

of terms, which as usual in our set-theoretical formulation corresponds basically 

to the rank of a set. With this in mind, we define the rank of a derivation tree as 

follows. 

Definition 6.2.3 The rank of an element P E V is defined inductively by 

rank(P) = max ({o} U {1 + rank(PI) I 3a st (a, PI) E P}) 
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In particular, rank (P) = 0 if P = 0, and for any F, P' where there is some a such 

that (a, P') E F, we have that rank (P) > rank (PI). 

Our denotation defined for a term will simply be the set representation of the 

derivation tree representing the term. The definition of the denotation is straight-

forward, except in the case of sequential composition. Before giving the definition 

of the denotation on terms, we must state what the sequential composition of two 

derivation trees is. Intuitively, it is simply the first derivation tree with a copy 

of the second derivation tree tacked onto each of its leaves. More formally, for 

F, Q e V, we define P.Q inductively as follows: 

O•Q=Q, 

P.Q 	{(a,F'.Q) J (a, P') E P1 (P 0). 

With this we can now define the denotation H : P -p V by cases on the structure 
of terms as follows: 

= 0; [P  + q] = 	l[pJJ U [q]; 
lIaj = {(a,0)} 	(aEAct); [p•q 	= [pq. 

An important property of this denotation, which is reflected in the derivation 

trees which the denotations represent, is given by the following proposition. 

Proposition 6.2.4 	{(a, 1{p'I) I r' 

Proof- roof: 

By By structural induction on p. 

• =0=  {(a,JJp') I E ---.p'}; 	(as e-3p' for any a,p') 

= {(b, 0)} = {( a, fp'JJ) b -- p'}; 	(as b —L e only) 

I[p+qJl = l[p}l U  jq]J 

= {(ajp'I) I p--*p'}U{(ajp') I q --)p'} 
= (a, VD I P+q---P'},. 

(as p+q—_)p' iffp--4p' orq — --p') 
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If b'I = 0, then by the inductive hypothesis, 

p 71 + p' for any a,p', so isempty(p); 

thus 

D qII = l[F I[qI = 0 [qJj = 

= {(a,[p') q--)p'} 

(by the inductive hypothesis) 

= {(a,l{p']) 

(by definition of —_)) 

If 11 	0, then by the inductive hypothesis, 

p -- p' for some a, p', and hence -iisempty(p); 

thus 

l[pqJl = 

= {(ajp'.q) 

(by the inductive hypothesis) 

= {(a,fr.q) 

= {(a,p']) 

(by definition of _---).) 

D 

A unique (modulo associativity and commutativity of +) normal form can be 

extracted from the denotation of a term in the following fashion: 

nf(p) = 

where 

o,  (P) = 
(a,P')EP 

As usual, by convention, we let u(0) = e. That a term can be equated to its normal 

form relies on the following proposition. 

Proposition 6.2.5 For F, Q E 72', we have 
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7- I- o(P)-o(Q) = o(P.Q). 

Proof: 

By induction on rank(P). 

If rank(P) = 0, that is P = 0, then the result is immediate, as 

0T(0).0(Q) = e.a(Q) 
=T o(Q) = UN- 0- 

For P 0 0, we have that 

= 
 (

a.u(P1)).5(Q) 
(a,P')EP  

=T 	 a.(ci(P').o.(Q)) 	(using (D)) 
(a,P')EP 

> a.(o(P'.Q)) 
(a,P')EP 

(by the inductive hypothesis) 

= 	({(a,P1.Q) 
I (a) P') E P}) 

= o(P.Q). 

Proposition 6.2.6 7- F p = nf(p). 

Proof. 

By structural induction on p. 

• 	E = or(0) = °(frO) = nf(e); 

• 	a=a. = o({(a,0)}) = oa) = nf(a); 

•P _ 	nf(p) = cT(jfp]J) and q 	nf(q) = a[q]) 

== p+q T pI)+ o ([q]J) 

=T pJU[q]) 

= a(p+q) = nf(p+q); 

135 
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p =, nf(p) = o(J[p) and  =T nf(q) = 

== pq 	UpI)°(IIq11) 

= 2 	(p]H[qJI) 	(by Proposition 6.2.5) 
= o(ffp.q]J) = nf(p.q). 	 0 

Corollary 6.2.7 p] = 	= Y H p = q. 

Proof: 

p = nf(p) = o(E{pJI) = 	= nf(q) =T q. 	 U 

Finally, the proof of completeness of the axioms relies on the following propo-

sition. 

Proposition 6.2.8 p q == 	= [q]. 

Proof: 

We shall actually show by induction on rank(J[pJj) that 

Epl[q1I == p9q. 

Thus suppose that 	[q, and that (without loss of generality) 
(a, F) e p] but (a, F) 

Then by Proposition 6.2.4, p' st P = [p' and  -- p'; 

Suppose that q --* q'; 

Then again by Proposition 6.2.4, (a, [q') E q; 

Hence since (a, P) 0 Eqll, q' 	P = 

Therefore by the inductive hypothesis, p' 9t  q'; 

Thus Bqf'-.'p'stq----9.q', soprlq. 	 0 

Corollary 6.2.9 (Completeness) p .' q == T H p = q. 

Proof: 

Follows from Proposition 6.2.8 and Corollary 6.2.7. 	0 
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6.2.3 A Finite Axiomatisation 

In tUf section we shall present a finite axiomatisation for closed terms of our 

language. What we shall do is present two new rules which will together subsume 

the power of the axiom schema (Dm). That is, we shall show that given the other 

sum and sequencing laws, together with these two new laws, we can prove any 

instance of the schema (Dm). 

The two laws which we need are as follows. Firstly we have an absorption law 

(Abs) (ax + y)z = (ax + y)z + axz, 

which is very similar to the absorption law of CCS 

(ax + !/) H z = ( ax + y) H z + a(x 11  z), 

introduced in Section 3.3. Secondly we have a reduction law 

(Red) (x + y ± z)w + yw + zw = (x + y)w + yw + zw. 

Again these two new laws are easily seen to be valid. Notice here that if we let 

x = &, we get the derived reduction law 

(Red') (y + z)w + yw + zw = yw + zw, 

which we shall use in the proof of the following proposition. 

Proposition 6.2.10 Let 

F = {(A1), (A2), (A3), (A4), (S1), (S2), (S3), (Abs), (Red)); 

then for any m>O, F H (Dm). 

Proof: 

By induction on m. 
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For m = 1, the result follows from (Si) (associativity of.); 

For m = 2, we have 

( 1x1  + a2x2)y F (aj x1  + a2x2)y + a1x1y + a2x2 ' 

(using (Abs) twice) 

=F 01x1y + cx2x2y; 

(using the derived law (Red')) 

• 	For m>2, we have 

rn 
(aixi)y 

M-2 

F ( 	ax1  + arn_l xrn_i  + arnxm)y 

+ rn_1Xrn_1Y + a.x.y 

(using (Abs) twice) 
(rni 	

+ am_ixm_1y + amxrny 

(using (Red)) 

= 	axy + arn_l xm_iy + arnxrny 

(by the inductive hypothesis) 

=F axy. 	 0 

Thus since by the previous section, J U {(D) j m > O} is a complete theory 

for reasoning about closed terms over this language, we have shown that the finite 

theory Y is itself complete for closed term reasoning, as every instance of (Dm) is 
derivable from Y. 

6.2.4 Reasoning About Open Terms 

The question which we wish to address now is that of the axiomatisability of the 

theory of open terms over this language. In particular we wish to know if we can 

w-completely axiomatjse the theory, and if so if we can do it with a finite number 
of axioms. 
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Our original system for closed term reasoning, involving the axiom schema 

(Dm) was clearly not complete for reasoning about open terms, as it could not 

prove the validity of the two laws we introduced in the previous section, namely 

(Abs) (ax + y)z = (ax + y)z + axz; 

(Red) (x + y + z)w + ,w + zw = (x + y)w + y 	+ zw. 

The form of the law (Red) makes analysis of the system for open terms compli-

cated, as it is not immediately clear where to look for a normal form for this 

system in light of this law. 

If we consider the forms of the (Abs) law and the derived law, 

(Red') (x + y)w + xw + yw = xw + yw 

we see that we can introduce some notion of saturation to attempt to get a grasp on 

a normal form. That is, a normal form can be assumed to contain every instance 

of axz as a summand whenever it contains (ax + y)z as a summand (from the 

(Abs) law), and to contain every instance of (x + y)w as a summand whenever it 

contains xw and yw as summands (from the (Red') law). But saturation using the 

(Red) law does not fall out so easily. 

However, let us consider the form of the derived law (Red') more closely. It 

very much resembles the classic testing equivalence law from [DEN84], 

a(x+y)+elx+ciy=ax+ay. 

If we consider the analogous law corresponding to the second of the two classic 

testing equivalence laws, namely 

a(x+y+z) + ax = a(x+y+z) + a(x+y) + ax, 

then we get the following new law 

(Red") (x + y + z)w + xw = (x + y + z)w + (x + y)w + xw, 
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which again is easily confirmed to be a valid law. However, it appears not to be 

derivable from the previous laws including (Red); but along with the law (Red'), 

it is indeed as strong as (Red), as shown by the following proposition. 

Proposition 6.2.11 {(A1), (A2), (A3), (A4), (Red'), (Red")} I- (Red). 

Proof- roof: 

(X + y + Z)W (x+y+z)w + 11W + zw 

= (x + y + z)w + (x + y)w + yw + zw 	(by (Red")) 

= ((x+y)+z)w + (x+y)w + zw + yw 

= (x + y)w + zw + yw 	 (by (Red')) 

= (x+y)w + yw + zw. 	 LE 

Thus we can (and do) replace the original law (Red) by the two laws (Red') 

and (Red") to get a more powerful system. Furthermore, the newest law (Red") 

also fits nicely into our scheme of saturating terms to derive a normal form'; that 

is, now saturation will include the condition that a term contain every instance of 

(x + y)w as a summand whenever it contains xw and (x + y + z)w as summands. 

The question now is whether these laws completely characterise the open the-

ory. If this were so, then our saturation technique could perhaps be used to define 

a canonical form for expressions to facilitate a completeness proof. Alas though, 

we can show that we still do not have a complete system. For instance, we cannot 

prove the following valid open statements: 

(xax' + y)z = (xax' + y)z + xax'z 

((ax + x')y + 	= ((ax + x')y + 	+ (ax + x')yw 

In the general case, we want our absorption law to extend to cover the pseudo-
inference law: 

Sort(t) 	0 (i.e., t{/} L e) 

(t+u)v = (t+u)v + tv 
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To accomplish this, it would appear that we need an infinite set of new axioms. 

However, we can accomplish the same result using the three conditional axioms: 

(CO 	
(t + u)w = (1+ u)w + tw 

(t + V + u)w = (t + t' + u)w + (i + t')w 

(t+u)w 	(t+u)w + tw 

(St + u)w = (st + u)w + stw 

(t+u)w = (t+u)w + tw 

(ts + u)w = (ts + u)w + tsw 

Proposition 6.2.12 (Cl), (C2) and (C3) above are sound conditional laws. 

Proof: 

We shall only deal with case (C3), as the other two cases are identical. 

We just need show that for closed terms p, p', q, r and P, 

if (p+p')q - (p+p')q + pq, and prq --- F, 

then (pr + p')q --* Q for some Q r P. 

If -'isempty(pr), 

then pr 	po st P = p0q; 

hence (pr + p')q --- p0q = P. 

If isempty(pr), 

then q --- P and isempty(p); 

thus pq --* P, so (p + p')q --+ Q for some Q P; 

hence either p' -- Po St 
 Q = p0q, 

whence (pr + p')q -- Q; 

or isempty(p') and q ---+ Q, 

whence isempty(pr+p') and so (pr+p')q --* Q. D 
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These These three conditional laws are in fact enough to give us our desired result, 

as shown by the following proposition. 

Proposition 6.2.13 {(A2),(C1),(C2),(C3)} F- 
	Sort(t)O 

(t + u)v = (t + u)v + tv 

Proof: 

By structural induction on t. 

t 	or 	x = Sort(t) = 0; 

t 	t1  + t2  and Sort(t) 0 ==t Sort(t1 ) 	0 or Sort(t2) 0; 

Sort(t1) 0 == (t1  + u)v = (t1  + u)v + t1v 

(by the inductive hypothesis) 

== (t + u)v = ( + u)v + Iv; 	(using C1) 

Sort(t2) 54  0 == (t+u)v=(t+u)v+iv. 

(Similarly, using A2) 

I 	tt2  and Sort(t) 0 == Sort(t1) 0 orSort(12) 0; 

Sort(t1) 0 = (t + u)v = (t + u)v + t1v 

(by the inductive hypothesis) 

== (t+u)v=(t+u)v+tv; 	(using C3) 

Sort(I2)0 	(t+u)vz(t+u)v+tv; 

(Similarly, using C2) 

FEK 

Thus we find ourselves using unconditional axioms to cover all of the possible 

cases implied by the above conditional rule. Having done this, we are still left 

with a nontrivial task of finding a canonical form for terms to show that we now 

have an w-complete axiomatisatjon, which we leave here as a still open problem. 
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6.3 Comparison with BPA 

We have now redefined the semantics of the process algebra BPAC to define the 

equivalence between terms as an observational congruence. Unlike the original 

theory for BPA presented as a simple equational theory in Figure 6-2, the 
distributivity law (x + y)z = xz + yz is not valid in our semantic model. However, 

we have discovered a simple finite set 17  of equational laws characterising the new 

congruence, so the original theory for BPA  does not much benefit over this new 

framework in ease of equational presentation. 

In [VRA86], a graph model is presented which characterises the BPAC  congru-

ence which uses a modified notion of bisimulation, called e-bisimulation. What we 

shall show in this section is a method of characterising the BPAC congruence as a 

true observational congruence, by defining a natural labelled transition system on 

terms of the algebra which when used as the basis for a bisimulation equivalence 

will not exactly be the congruence of BPA, but will contain this congruence as 

the largest congruence within it. However the ctiaracterisation is difficult to prove, 

as the defined bisimulation equivalence is not a congruence, and several alternate 

characterisations of the congruence will need to be invoked in the proof. 

We shall then consider including the merge operators, first without and then 

with communication, into the signature, and compare how our new semantic model 

and the original BPAC model of [VRA86] fare in this experiment. 

6.3.1 The BPA Equivalence as an Observational 

Congruence 

In this section, we shall present a bisimulation characterisation of the BPA equiv-

alence described in Section 6.1. That is, we shall present a transition system 

defined on our process algebra such that the largest congruence contained in the 

bisimulation equivalence defined by the transition system will be precisely the 

congruence generated by the axioms of EBPAe. 
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Similar to the definition isempty of the previous section, we can define a 

"hasempty" predicate on terms specifying when a term contains the empty process 

(or anything equivalent to it) as a summand, as follow. 

hasempty(e) = true; 

hasempty(a) = false 	(a E Act); 

hasempty(p + q) = hasempty(p) V hasempty(q); 

hasempty(p.q) = hasempty(p) A has empty(q). 

With this predicate, we can define a transition system -+ as the least relation 

satisfying the following laws. 

a — -+e (aEAct), and 

== P+Q --P', Q+P — -+ F', P.Q --P'.Q,and 

hasempty(Q) = Q.ppi 

From here we could define an equivalence in the usual fashion via bisimu-

lations by letting be the largest binary relation such that whenever P Q we 

have that for all a e Act, 

P --* F' implies 3Q' F' such that Q -- Q'; and 

Q -- Q' implies 3PI Q' such that P -- P'. 

However this equivalence relation is not a congruence. This is because we would 

have for instance a + e a but (a + )a 0 aa. Hence we define the relation which 

we are interested in to be the largest congruence 	contained in . 

This congruence relation, as we shall show, is precisely that of the BPA sys-

tem. Unfortunately, it is not a straightforward task to prove that this congruence 

coincides with that defined by the axioms of EBPAe. To do this, we use yet another 

characterisation, which we now describe. 

Let 	be the largest binary relation such that whenever P Q, we have that 
for all a E Act, 

(i) P -- F' implies 3Q,  P' such that Q 	QI; 



Chapter 6. Sequencing with the 0 Process 	 145 

Q a)  Qt implies  3P"—` Q' such that P a, P'; and 

hasempty(P) = hasempty(Q). 

We can easily show that this relation, defined by a modified bisimulation, is a 

congruence relation. Also, it is clearly contained in the equivalence relation (as 

it satisfies the definition of , being defined by a more restrictive definition). We 

shall continue from here to show that is in fact precisely the congruence defined 

by EBPAC. Upon doing that, we shall show that 	is contained in . From this it 
shall follow (since c  is the largest congruence contained in ) that 	coincides 

precisely with , and so also with the congruence generated by EBPAe. 

That the equations of EBPAC are valid -equivalences is a straightforward 

matter to verify. The proof that these laws completely characterise the equivalence 

. relies on a normal form for terms defined by flagged derivation trees, where the 

flags are used to specify when a process has the empty process as a summand. To 

get at the normal form, we shall once again employ a denotation function which 

gives a set theoretic representation of the flagged derivation tree corresponding to 

a given term. 

A flagged derivation tree is simply a finite unordered tree whose arcs are la-

belled by elements of the action set Act, and whose nodes are labelled by the 
set { true, false}, in which no two identically-labelled arcs lead out of the same 

node to two isomorphic subtrees. As usual, the arcs eminating from the root of 

a flagged derivation tree represent the possible actions which the corresponding 

process can perform, namely, those which label the arcs. The flag associated with 

the derivation tree specifies whether or not the empty process is a summand in 

the process term represented by the tree. 

The domain of flagged derivation trees can be represented formally as the least 

fixed point solution V to the set equation 

V = PFIN(Act x V) x {true,false} 

where PFIN(S) again represents the set of finite subsets of S. For an element 

D = (T,tt) G V, let 
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tree(D) = T, 	and 	flag(D) = tt. 

Again, some of our proofs will depend on induction on the depth of the flagged 

derivation trees of terms, which in our set-theoretical framework corresponds ba-

sically to the rank of a set. With this in mind, we make the following definition. 

Definition 6.3.1 The rank of an element D E V is defined inductively by 

rank(D) = max ({o} U I  + rank(D') I 3a st (a, D') E tree(D)}) 

Thus in particular, rank(D) = 0 if D = (0, tt), and for any D, D' where there 

exists some a such that (a, D') e tree(D), we have that rank(D) > rank(D'). 

Our denotation defined for a term will simply be the set representation of 

the flagged derivation tree representing the term. Before giving the definition 

we must state what the sequential composition of two flagged derivation trees is. 

Intuitively, it is simply the first flagged derivation tree with a copy of the second 

flagged derivation tree tacked onto each node which is labelled by true, with the 

flag of that node reset to equal the flag of the second tree. More formally, for 

P, Q E D, we define P.Q inductively as follows: 

tree (P.Q) = {( a,P'.Q) I (a, P') E tree(P)} 

U {(a,Q') (a, Q') E tree(Q) A flag(P) = true}; 

flag (P.Q) = flag (P) A flag (Q). 

With this we can now define the denotation [.]J : P -+ V by cases on the structure 
of terms as follows: 

= (0, true); 

= ({(a, (0, true))},false), (a E Act); 

f[p + qj = (tree( jfp) U tree( qfl, flag( I[J) V flag( [q]); 

IJ1pq = [p] - [q. 

An important property of this denotation, which is reflected in the flagged 

derivation trees which the denotations represent, is given by the following propo- 

sition. 
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Proposition 6.3.2 f[pJ = ({(a, I[p') I p -- p'}, hasempty(p)). 

Proof: 

By structural induction on p; 

I[eI = (0, true) = ({(ajp'I) 1 e _0_p1},hasempty(e)); 

(as e 71_ p' for any a, p' and hasempty(e) = true) 

= ({(b,(ø,true))},false) 

= ({(ajp') I b---*p'},hasempty(b)); 

(as b ---. e only, and hasempty(b) =false) 

= (tree&j) U tree([q]), flag(jp]) V flag(~qj)) 

= ({(ajp') I p-?--)pl} U {(ajq') I q—q'}, 

hasempty(p) V has empty(q)) 

(by the inductive hypothesis) 

= ({(a, r') I p + q --) r'}, hasempty(p + q)); 

I[p.qJJ=IIpH[q 

= ({(a,P'.[q) I (a, P') E tree(J[pI)} 

U{(a,Q') (a, Q') E tree({q}) 

Aflag(p) = true}, 

fiag([p1j) A ilag(I[q}J)) 

= ({(a,fr]1.[q]) J p--'p'} 

U{(a, q'JJ) J q --) q' A hasempty(p) = true}, 

hasempty(p) A hasempty(q)) 

(by the inductive hypothesis) 

= ({(a,fr.q) I 

U{(a, {q'JJ) q ---* q' A hasempty(p) = true}, 

hasempty(p.q)) 

= ({(ajjij) I 

(by definition of --) 
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A unique (modulo associativity and commutativity of + and associativity of 

normal form can be extracted from the denotation of a term in the following 

fashion: 

nf(p) = G[p]1) 

where 

(Ia-o,(DI) I (a, D') E tree(D)} 

U {e I flag(D) = true}). 

That a term can be equated to its normal form relies on the following proposition. 

Proposition 6.3.3 For F, Q E D, we have 

Proof: 

By induction on rank(P). 

= ( 	
({a.(PI) I (a, P') E tree(P)} 

U {E I flag(P) = true})) . (Q) 

(a, PI) e tree(F)} 

U {c(Q) I flag(P) = true}) 

(using distributivity) 

= 	(ja-o,(PI-Q) I (a, PI ) E tree(P)} 
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U {a.o(Q') I flag(P) = true A (a, Q') Etree(Q)} 

U { 	flag(P) = flag(Q) = true}) 

(by the inductive hypothesis) 

= (fa.o,(R) (a, R) E tree(P-Q) 

U fe I flag(P-Q) = true}) 

= cr(P.Q). 	 U 

Proposition 6.3.4 p = nf(p). 

Proof- roof: 

By By structural induction on p. 

e = cr((O, true)) = o(fr) = 

a = ac = o(({(a,(Ø,true))},false)) 

= cr(aI) = nf(a); 

p = nf(p) = a(I[p]j) and  = nf(q) = ci(j{q) 

== p + q 	p}J)+a(j[q]) 

= r(tree([p]) U tree(j[q]), 

flag([p]J) V flag({qfl) 

= o([p+qJJ) = nf(p+q), 

p = nf(p) = u([p) and  = nf(q)  

= p•q = cTp]J).crq]J) 

= a(jpqJ) 

(by Proposition 6.3.3) 

= cr[p.q]) = nf(p.q). 	 0 
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Corollary 6.3.5 DI = 1i == p = q. 

Proof: 

P = nf(p) = °([pJ) = cr([qJj) = nf(q) = q. 	 U 

Finally, the proof of completeness of the axioms relies on the following propo-

sition. 

Proposition 6.3.6 p q = 1i = 1q10. 

Proof- roof: 

We We shall actually show by induction on ranlc(l[pi) that 

1q10 implies  p 	q. 

Thus suppose that 110 54 1q10. 

If fiag(I[p) 0 flag(q) , then by Proposition 6.3.2 we would have that 

hasempty(p) =A hasempty(q), so clearly p q. 

Hence we just need show that if tree(lpI) 54 tree(q) then p q. 

Suppose then that tree(I[pI) tree(J[q), and that (without loss of gen- 

erality) (a, P) E tree(I[pi) but (a, P). 0 tree(I[q); 

Then by Proposition 6.3.2, 3p,  st P = fri and p -- p'; 

Suppose that q --* q'; 

Then again by Proposition 6.3.2, (a, lq'11) E tree(q); 

Hence since (a, P) 0 tree(q),  lq'i P = 

Therefore by the inductive hypothesis, p' 

Thus ,q' p' such that q --- q', so p q. 	 0 

Corollary 6.3.7 (Completeness) p q == p = q. 
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Proof. 

	

Follows from Proposition 6.3.6 and Corollary 6.3.5. 	 El 

It now remains to show that 	In order to do this, we shall show that 
c  satisfies the definition of , and as such, since 	is defined to be the largest 

relation satisfying its definition, our result will follow. 

Firstly it is straightforward to show that 	satisfies the final clause in the 
definition of ; namely, that P 	Q ==. hasempty(P) = hasempty(Q). This is 
true as 

hasempty(p) = false implies Va, r st p•b --* r, p'  st r = p'.b, but 

hasempty(p) = true implies p•b --- 6 P -b. 

Hence it remains to show that 

p 	c q and p -- p' implies q' 	p' such that q ---* q' 

and vice versa. This follows from the following final characterisation of . 

Proposition 6.3.8 p q implies Yr : r.p r.q. 

Hence Yr : p•rq•r 	pq. 

Proof. 

By induction on depth(r). Let p 	q. r•p --* p' if either of the 
following: 

7.' 	0 
(2) r —+ r' A p' r'.p or 

(ii) hasempty(r) A p ---* p'; 

For (i), r --* r' A p' = r'p == r.q --* r'.q r'.p = p'; 

(by the inductive hypothesis) 

For (ii), hasempty(r) A p --+ p' == 	q' p' st q --- q' 

== r.q--+q'p'. 	0 
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Proposition 6.3.9 p 	q A p ---  p' implies q' 	p' such that q --+ q'. 

Pro of: 

Let p 	q and p -- p'. 

Furthermore, let r be any arbitrary process. 

By Proposition 6.3.8, we need only show that 

2q'stq..?._*q1 A p'•rq'•r. 

But we know that p.r q•r and p.r --) p'-r; 

(by Proposition 6.3.8) 

Hence q.r --* r' p'•r; 

Therefore 3q' st q --) q' and q'•r p'•r. 	 0 

Thus we have managed to characterise the BPA congruence as an observa-

tional congruence. However, the approach ran upon difficult points which were 

not be met by the more natural congruence defined in the previous section. Fur-

thermore, as we shall see in the next section, the original congruence does not 

fit as well into the theory as our new observational congruence when the parallel 

combinator is added to the signature of the language. 

6.3.2 Adding Merge and Communication 

In this section, we increase our language by adding the full merge 11 and left merge IL 
operators, as is done in [VRA86]. The full merge operator is in fact the interesting 

new concept, whereas the left merge operator is added as usual simply to facilitate 

the easy (finite) axiomatisation of the resulting system. 

The terms in our new language are thus given by the extended signature 

E = Act U {e, +,il  j, I[} with the labelled transition system operational behaviour 

of the operators defined as usual. When we define the new bisimulation equiva-

lence based on this extended transition system, we get the theory which is well 
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known to be characterised by the theory F given for the sequential language above, 

along with the new merge laws 

xh,  = xll.y + yIlx 	(M4) (x+y)z = xILz + yllz 

6 L = 6 	 (M5) (xJ[y)[z = a4(y 11z) 

oxI[y = o(xIIy) 

That these laws are valid is again straightforward to prove. That they along 

with the previous laws suffice to characterise the closed theory follows from the 

conservativity of the extension (the true statements in the original signature will 

be the same as before), and the fact that using the merge laws, you can express 

any term as a term in the original signature. 

Hence in the case of ,.we are done. However, the congruence defined in 

[VRA86], which admits the distributivity law, simplifying the axiomatisation of 

the sequential language, suffers with the addition of the merge operators. For 

instance, if we added the above set of merge laws as is, due to the axiom M2  we 

would be able to derive 

(a II b)c = a(bc-i-c) + b(ac+c), 

which is clearly undesirable. Thus we cannot reduce c I[x  to e. The situation is 

remedied in [VRA86] by the introduction into the signature of another constant 

8, a symbol used in the full ACP language to represent deadlock. Along with this 

new constant, we have the following axioms: 

(D1) o+x = x, 	(D2) ox = 8. 

With this, we can bypass the problem with the occurrences of e in expanding out 

merged terms by letting 6 11x = 8. However, if we were to use this law universally, 

we would run into an equally disasterous situation, as then we would be able to 

derive 

(a 11 b)c = abO + baS. 



Chapter 6. Sequencing with the 0 Process 	 154 

Thus care had to be taken in [VRA86]. There we find that the single law (M2) 

above is replaced by the following list of laws: 

(421) eO€ = 	(Mn) 4ax = 5; 

(M22) eO.o = 5; 	(M24) e11(x + y) = &0x + 4y; 

(M25) S[x = 5. 

Thus we can see that whereas in our new semantic model for this process algebra 

with sequencing we had no problems in introducing the new operators for merging 

processes, the approach in [VRA86] had to take care in how these new operators 

are dealt with in its model. 

From here we can add communication in the usual ACP fashion. First we 

define a communication function -y : Act x Act -p Act satisfying y(a, b) = 7(b, a) 

and 7('y(a,b),c) = y(a,'y(b,c)). Then we add a communication operator t to our 

signature, and add to our labelled transition system operational semantics the 

following rules: 

p--3p' q±qF 

i(a,b) 
P q -p  r' H q' 

a 
p__*pl q ± qi 

7(a,b) 
p 1 q -p  p' II q' 

Again it is straightforward for us to axiomatise this extended system; we simply 

replace (M1) above by 

(Mi) xOy=x[y+y[x+xy 

and add the usual communication laws 

(CO a/3 = 	 (C4) e4x = e 

xy = yx 
	

(C5) axy = (cxy)I[x 

(xy)z —x(yz) 
	

(C6 ) (x+y)z = xz + yz 

Again, the approach taken in [VRA86] had to take care in how it handled its 

equivalence. Its axiomatisation again required the use of the deadlock constant 8, 

and the replacement of law (C4) above with the following laws: 

(Ci) ex 	5, 	(C') 6x = 5. 
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In conclusion, though the approach to adding the empty process to BPA taken 

in [VRA86] allowing the right distributivity of. over + eases the axiomatisation of 

the sequential language, problems arise with the addition of the merge operators. 

The study must resort to going outside of the signature to introduce a constant 

6 representing deadlock to be able to axiomatise the system. In our case, we re-

tained the well-respected observational equivalence, and tackled the problem of 

replacing the distributivity law with valid laws which would completely charac-

terise the equivalence; in the end we indeed succeeded in finding two simple axioms 

which would do just that. From there we had no problem with adding the merge 

operators and axiomatising the resulting equivalence within the signature. 

GA The Non-Finite-Axiomatisability of BPAfl  

In this section, we consider the theory BPA1  of the algebra BPA extended with 

the full merge operator 11 but not the left merge operator L. The congruence 

defined for this language by the ACP community and as presented above as an 

observational congruence coincide in the absence of the empty process E. This 

theory is given by the equational theory 

T = 

U {(EXPm,M,n,N) 1 0 < m _< M, 0 < n < N, M, N > 0  

as specified as follows. 

(x+y)+z = x+(y+z) 

x+y = y-1-x 

x+x = 

(EXPm,M,n,N) 

Fort =aixi  + E a2 
i=1 	im+1 

(Si) (xy)z = x(yz) 

(D) (x+y)z = xz+yz 
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n 	 N 
and u = Eflo.' + : 

3=1 	j=n+1 
rn 

	

tJJu = 	a (Xi u) + 

(M,N >0), 

M 	 n 	 N 
cu + E ,8j(t11y3)  + 

im+1 	3=1 

We shall show in this section that this infinite equational axiomatisatjon cannot 

be replaced by any finite axiomatisation. Our proof method will be similar to that 

of Section 5.2, except we shall have to use a more subtle argument. In particular, 

the proof in Section 5.2 relied on the fact that in the algebra in question (that 

using action prefixing), we could not express the process term 

a 11 (a + aa + ... + an) 

as a sum of fewer than n+ 1 terms without one of those terms itself being equivalent 

to 'the whole term. In this case, this result is no longer valid, as 

a 11 (a + aa + .. + an) 

= a(a+aa+...+an) + (a+aa+...+an)a. 

Thus we must be careful in how closely we mimic the proof of Section 5.2. 

6.4.1 Preliminary Results 

Before we tackle our problem, we must address a few formalities. Firstly, we are 

going to view BPAJ  as a CCS-like algebra, and work with our defined transition 

system over it, as well as exploit the properties of bisimulations. To do this we 

must augment the language with the empty process e, to allow the transitions 
a 	e. Then our equivalence over this augmented language will be defined as 

in Section 6.2. This equivalence, when restricted to process terms not involving 

the e term yields precisely the BPA-congruence 7 from above. 

Our proofs are often going to use induction on the depths I I of terms as 
defined as follows. 

Definition 6.4.1 
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lal = 1; 	 IpqI = IpI+IqI; 

Ip+qI = max(IpJ,IqI) ; 	IOI = IpI+IqI. 

We also extend the definition of depth to include depth(e) = 0. Some important 
properties of depth which we shall exploit in our inductive proofs are given by the 

following proposition. 

Proposition 6.4.2 For all p, q E BPA, 

II > 0,• 	 (iv) IPI = 1 if p = a for some a E Act; 

IpqI > IpI,IqI; 
	

(v) 	p --* p' implies IpI > Ip'I; 
Illl > IpI,IqI. 

Proof: 

Straightforward. 	 LRI 

Next, we can define a couple special semantic classes of prime terms which shall 

be useful in our analysis. As before, they will give us a handle on syntactically 

classifying terms. 

Definition 6.4.3 A term p e BPA1  is seq-prime zff it cannot be expressed as 
p = qr for any q, r e BPA1. A term p E BPA1  is prime if it cannot be expressed 

as p = qllrfor any q, r E BPA1. 

Simple tests for primality (seq-primality) are given by the following proposition. 

Proposition 6.4.4 

If p --* &, then p is both prime and seq-prime. 

If p -- p' and p -- p", where p' and p" are distinct seq-primes, then p itself 

must be a seq-prime. 

(iii) If p --* p' and p 	p", where p' and p" are distinct primes such that 

p' 11 p", then p itself must be a prime. 
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(iv) If p --* p', p 	p" and p --+ p", where p', p"  and p"  are distinct primes, 
then p itself must be a prime. 

Proof- roof: 

Straightforward.Straightforward. 
IMI 

The useful result about these prime (seq-prime) terms is given by the following 

proposition regarding the decomposition of terms. 

Proposition 6.4.5 (Unique Factorisation Theorems) Any term p e BPA 
can be expressed uniquely as a sequential composition of seq-primes, and uniquely 

as a parallel composition of primes. 

Proof: 

As in Section 4.1 or Section 4.2. 

Generally, we shall work with processes defined using only a single atomic 

action symbol a E Act. As we explained above, this is the only assumption we 

shall make on the action set Act, that such an action exists, and this assumption 

is valid and necessary. Two important sequences of terms which we shall make 

extensive use of are given in the following definition. 

Definition 6.4.6 

n_a+aa++an; 

= aço1  + aç02  + ... + app. 

Example primes and seq-primes which will be useful to us are given by the 

following propositions. 

Proposition 6.4.7 For n> 1, 
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(i) ep0  is seq-prime;  a 	W. is seq-prime 

is seq-prime;  a 	EJ 	is seq-prime; 

(iii) 	is prime; 	(vi) a 0 1D. + Q is seq-prime VQ. 

Proof: 

Straightforward, using Proposition 6.4.4. 

Proposition 6.4.8 For h> 1 and 0 <r1  <r2  <.- - -  

acori  + acc' 2  + .. + acp,., 

is prime and seq-prime. 

Proof: 

Straightforward, using Proposition 6.4.4 and Proposition 6.4.7. 

U 

The utility of these propositions will become evident in the proofs to follow. By 

saying that a term is prime (seq-prime), we are restricting the possible syntactic 

form of the term. 

6.4.2 Technical Lemmata 

In this section we state and prove the technical lemmata which we need to derive 

our main result in the final section. Firstly however, we define a proposition on 

pairs of sets of terms which will designate a property of equations which we want 

to analyse in our proof system. 

159 

EN 

Definition 6.4.9 For n > 1 and U, V c BPA1  being two sets of terms, let 

eL(U, V) be the proposition which states the following: 
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P E U U V 

and >2U = >2V = 

and 3P E U st P = a 

and aQEVstQ = aII. 

Thus ®(U, V) states that the equation >2 U = >2 V expresses a (valid) equality 
between terms equal to all 	in which the term all 4Dn is already captured by 

a single summand on the left hand side of the equality, but not by any single 

summand on the right hand side of the equality. 

Then let O(U, V) = ®(U, V) V 0(V, U). 

Proposition 6.4.10 Let n> 1 and U, V C BPA be such that e(U, V), and let 

P E U U V be the term satisfying P = a 	; Then P A 11 P1 , where A = a and 
P=tf;. 

Pro of: 

P 0 P'•P", as P = a J "I is seq-prime. 	(by Proposition 6.4.7(v)) 

Also, P # a, F' + F" 

Hence P F' 11 Pit. 

Now a 	---* , which is prime; 	(by Proposition 6.4.7(u)) 

Without loss of generality, assume that F' --) Q where  Q 11 F" = 

Then Q = E, F" 	, and P = F' 

Hence F' = a; 

(by Proposition 6.4.2(iv), as IP'I = la II Dn l - IP"I = 1) 

Thus F A 11 P, where A = a and P, = 	 El 

Proposition 6.4.11 Let .T be a finite set of (valid) equational axioms, and let n 

be bigger than twice the number of operators in any axiom in the set T. Then no 

axiom t = u in .1 can be instantiated to a statement >2U = >2V where O(U,V). 
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Proof: 

Let n be as above, and suppose t = u is an axiom in F such that under 

substitution o, t = u instantiates to >2U = >2V where O(U,V). 

Without loss of generality, assume that O(U, V); 

Clearly, fv(t) = fv(u), as t = u is assumed to be a valid axiom. 

t1 +t2+-  +tk and u u1  + u2  + .. + 	for some k, k' > 0, 

where each t, ui  # v + v'; 

O(U, V) == for some i, either to- A P, or tcr A II P. + Q, 

where A=a and P=; 

(by Proposition 6.4.10) 

Thus tr is seq-prime; 	 (by Proposition 6.4.7) 

Consider the structure oft,: 

I, a == tcY a (contradiction); 

	

ti 	tit" === to- 	(t'o)(t"o-) 

(contradiction, as t j  is seq-prime) 

	

tj 	t' + V' == (contradiction); 

x = o 	tior and x e fv(u1) for some j 

==ua 	 (as xgfv(a)) 

and u 	u' + u" 	(by assumption on u5  's) 

and u j 	u'-u", u' jJ 

(as otherwise n + 2 = Iuoi < ju jorl < Jo = n + 2) 

= ujxandANPEV 

(contradicting O(U, V)) 

	

Thus t, 	t' lit" and tcT 	t'o 11  t"a = a JJ 'I; 

	

Hence t 	t' 11 t" with t'o-  A = a and t"o-  P = 

(by Proposition 6.4.7(iii) and Proposition 6.4.5) 
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Now t"vi+v2 +...v1 wherel< 	and each vh v+v'; 

t"t7 V10 + V20• + V10• = 	= ap1  + ap2  + 	+ aço, 

so some Vh0 = aWrl  + ap 2  + + ap,. for some a > 2, and 

some rl,r2,••,ra  stO<rl<r2< ... <ra; 

Thus clearly Vh 0 a, v + v', vv', v 11 v', 

(by primality/seq-primality of vo, from Proposition 6.4.8) 

so Vh x for some variable x 

with or, = aco + aco 2  + ... + a; 

Clearly x Øfv(V), as lVoi = la  = 1 < ra  = 

Let o•' = 

Then t' 	Vc, and to,, --) Vo 	= a 

Therefore for some j, u5cr' -- a II 

Now ju jo,1 1 > n + 2 =luo,rl,so clearly x E fv(u1); 

Consider the structure of u5: 

u5 	x == u1 	a 	f-p a 11  ço (contradiction); 

u5 a 	' xfv(u5) (contradiction); 

u1 	u' -u"  ==> u10- 	(u' or) (u"o) ---* a II 

which is prime; 

== 	u'o' -- e and u"a' = all (Dn  

with x E fv(u"); 

(as Ju"oj < Ju"o') 

U'1 	w1  + w2  + + w1  for some 1 

with each Wh 0 W + w, 

and x E fV(Wm) for some m; 

Consider the structure of the Wm  with x E fv(wm): 

Wm 	a == x 0 fv(w) (contradiction); 
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W m 	w + w' == (contradiction); 

WmEWW' orwmwOw' 

x E fv(w) or x E fv(w') 

n +2 = Ju"oI ~! I'm0'I 

= wol + Iw'oI 

> I =n+2 

(contradiction); 

Thus x E fV(Wm) 	 x and wma' = a; 

Now u"cr' = a H 4 	a 11 Wn, 

SO wo' -- a ço for some rn; 

Clearly o 74-* a II 

Hence 	--+ a 11 (O for some m 

such that x 

But then w 	--* a 11 Wn; 

Thus n+2 < IWmO! < jullorl  

<Iu3ai Iuoi = n +2 

(contradiction) 

UI = u' + u" ===> (contradiction); 

Hence u5 u' I u" with x E fv(u'); 

Now since u"cr ---  p for some p, we have uo a
-p u'cr H 

Thus u'oIp= 	or u'o- JIp=allcok for some k: 1 < k< n; 

If u'o Jl P = , then p = E and u'o = , and so also u"o- = a, 

(Since 'I is prime, by Proposition 6.4.7(iii)) 

so u5o 	tLO H ullor = a 11 '' (contradicting e(U, V)); 

Hence u'o- p = a c°k for some k: 1 < k 

Since x E fv(u') and o 2, = aco 1 + ap2 + 	+ 

we have that for some 1> 0 and for some q E 7, 

a1 u'o -p (p2q for each s: 1 < s < a; 

163 
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L I  
Now for l'>l, u'oIIp= aII ,k ---)p' implies p' = a8 

for some s : 0 <s < k; 

But u'o11p a1
+11 	

al l  

- 	raq, where p -- 6, 

and rq a8 = aa• • a, 	 (By Proposition 6.4.5) 

so 1 + It < 2, which means I'= 0 and thus p = 

Hence u'o = a 11 

But then u'a = a II Wk --  (p 8 q implies r8  = 1 or r3  = k; 

(contradicting a > 2 where u'u ----) 

for each s:1<s<a, and 0<ri <r2 < ... <r0 ) 

Therefore no axiom t = u E 	can be instantiated to a statement 

= 	V where e(u,v). 	 0 

Proposition 6.4.12 Suppose in a sound proof, we have an inference: 

>u=>w >w=>v 
y.rans) 

where REW = RR'+R"; Then 

®(U, V) = ®(U,W) V ®,(W, V). 

Similarly for the (sub) rule; corresponding to the inference: 

EU=V u,=>v, 
>:uuu' = VUV' 	

(sub), 

we have the result that 

O(U U U', Vu V') = e(U, V) V ®(u', V'). 

Pro of: 

Consider the (trans) rule case: 
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Assume O(U, V); 

We know immediately that 

PEUUVUW 	PP'+P"; 

And (from 	V), and the soundness of the proof in which 

the inference appears) that 

aIl 	= 	= E V = 

Now if ARE W st R a 	, then clearly 	W); 

And if 3R E W si R = a 	, then clearly O(W, V); 

Similarly, EJL(V, U) == e(W, U) V O(V, W); 

Hence O(U, V) = O(U, W) V ®(W, V). 

The (sub+)  rule case is similarly straightforward: 

Assume ®(U U U', V U V'); 

Again we know immediately that 

PEUUU'uVUV' = PP'+P", 

and 

PEUUU'stP=aO; 

Suppose this P E U; then (from E(U U U', V U V'), and 

the soundness of the proof in which the inference appears) 

we have that 

EU = >V = 

so clearly e(U, V); 

And similarly, if this P e U', then ®(U', V'). 

	

Similarly, O(V U V', U U U') == 	U) V O(V', U'); 

Hence O(U U U', V U V') == e(u, V) V e(U', V'). 

U 
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6.4.3 Main Result 

Here we state and prove our main theorem, the non-finite-axiomatisability of our 

equivalence. 

Theorem 6.4.13 Suppose that F is a finite set of (valid) equational axioms. Let 

n be large enough (as allowed by Proposition 6.4.11 so that no axiom in F can 

be instantiated to express any truth > ,U = E V where O(U, V). Then our natural 

deduction style equational proof system cannot prove the true statement 

a 1 	= a+ a(a JIwi)+  a(a co2)+ ... + a(a JJ). 

Therefore no finite complete axiom system can exist for BPAV. 

Proof: 

Suppose we have a (shortest) proof of the statement 

a IIDn = a+ a(a ço1)-j- a(a jço2)+ ... + a(a ça). 

The proof takes the following form: 

Do  
(rule), 

uo=>vo 
where 

and 

V0  = {a, a(a II 	a(a W2), •., a(a 0 c)}, 

so clearly 0(U0 , V0) holds. 

Since this must be a finite proof, there is somewhere in the proof tree 

an inference 

V 
(rule) 	where 	O(U, V); 
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such that the premise V of the inference contains no equality 

EUI = EV, 	where 0.(U,, V'); 

By Proposition 6.4.12, (rule) can be neither of (trans) nor (sub). 

Furthermore, by Proposition 6.4.11, we know that (rule) cannot be 

(t = u) for any axiom t = u E .T; 

Also clearly (rule) cannot be (symm), as EJ(U, V) @= ®,(V, U); 

Finally, (rule) cannot be any of (ref 1), (subs), or (sub), as this would 

contradict O(U, V); 

Hence we have shown that the original statement cannot be proven. 



Chapter 7 

Conclusions and Open Problems 

We present here a brief summary of what was accomplished, and what was not 

accomplished, in the main body of the thesis. 

In Chapter 3, we investigated axiomatisations of the extensional theories for 

several languages for nondeterministic and concurrent processes. In that chapter, 

we were able to present finite w-complete axiomatisations for a simple language 

for nondeterminism, and a language with concurrency in the form of the full and 

left merge operators. However, we failed to find such an axiomatisation, finite or 

otherwise, for a language with full merge in the absence of the simplifying left 

merge operator. We do know in fact from a result proven in Chapter 5 that such 

an axiomatisation would have to at least be infinite. 

In Chapter 4, we proved several results on the decomposability of processes 

into parallel components. In particular, we showed unique factorisation results for 

our simple concurrent language with and without communication with respect to 

strong and weak observational congruence. However, in the case of weak observa-

tional congruence, the results had to be taken modulo the existence of a r-factor 

in the decomposition. 

In Chapter 5, we proved the nonexistence of a finite axiomatisation for any 

reasonable congruence for our concurrent language which is at least as strong as 

strong observational congruence. This result gives us some indication as to where 

the difficulty arose in Chapter 3 in trying to w-completely axiomatise our system, 
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and furthermore explains the origins of the difficulty faced in trying to completely 

axiomatise some noninterleaving semantic congruence over this language, when 

the simple axiom schema given by the Expansion Theorem of CCS is not valid. 

In Chapter 6, we investigated the above questions in the framework of process 

algebras using sequential composition as opposed to action prefixing. Starting with 

a model defined by [VRA86], we refined the semantic interpretation and presented 

a model based on operational semantic methods as in CCS. We found a finite 

complete axiomatisation for the nondeterministic language, but failed to find an w-

complete axiomatisation. With our operational approach, we were able to extend 

our results on the unique decomposability of processes to this new framework, and 

prove the nonexistence of a finite axiomatisation for the language with the full 

merge operator in the absence of the left merge operator. 

In the rest of this chapter, we shall outline some of the problems which were 

not solved in this thesis, but whose solutions would have been included. 

7.1 w-Complete Axiomatisation for the Full 

Merge Language 

In Chapter 3, we investigated extensional axiomatisations for several process 

algebras. We managed to find a relatively easy w-complete axiomatisation for our 

language containing both full merge and left merge operators, but we ran upon 

severe difficulties with the language containing just the full merge operator, in 

the absence of the simplifying left merge operator. We discovered sequences of 

independent and arbitrarily-complex Reduction and Absorption Laws which must 

be accounted for in an w-complete axiomatisation. 

There is very little difference in the above two languages for concurrency. The 

left merge operator is a slightly restricted version of the full merge operator, which 

in turn is easily definable in terms of the left merge operator and nondeterministic 

choice by 
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xlly = x[y+y[x. 

The complicated axioms discovered in Section 3.3 are in fact derived from this 

close relationship between the two algebras. For instance, to derive the Reduction 

Law 

ax 11 (fly + z) + a(x 11 z) = a(x II (fly + z)) + fl(ax H ) + ax H z, 

we take the largest parallel composition, ax 11 (fly + z), which is the term being 

reduced, and translate it into the left merge language, and then simplify the result 

using the left merge laws from Section 3.2 to get 

ax 11 (fly + z) = ax J[(fly + z) + (fly + z) Lax 

= 	a(xH (fly  +z)) + fl (ax Oy) + 4ax. 

Adding to both sides of the equation the reverse of the nonsimplifying left merge 

term z Lax,  namely ax ILz = a(x H z), and then again simplifying in the obvious 

way, we arrive at our desired axiom. 

Every Reduction Law introduced in Section 3.3 can be viewed, and indeed 

was first conceived of, in the above manner. By translating a term into the left 

merge language and then distributing the left merge operator through the non-

deterministic choice from the right, we can express all of the possible first-step 

behaviours of the process term separately. This gives us the minimal amount of 

first-step behavioural properties which must exist in a process term which repre-

sents an expression containing our reduced-out term as a summand. This is the 

sense in which we argued in Section 3.3 that our axioms were minimal. Further-

more, whenever some term x t appears as a summand in this minimal first-step 

behaviour expression, we know that the process represented by the term must have 

the capability of proceeding via the indeterminate process x in the context where 

it is running in parallel with the term t. Thus we know that the behaviour t Itx 
must be present in the minimal first-step behaviour expression. The Absorption 

Laws were originally conceived of in an identical fashion. 
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Using this as a guide, we can attempt to prove the w-completeness of the infinite 

set of axioms presented in Section 3.3 including the sequences of Reduction and 

Absorption Laws. That is, we can perhaps utilise the left merge language, for 

which we have complete knowledge of the extensional theory, as a metalanguage 

for defining a normal form, and use properties derived from considerations of the 

special properties of full merge to arrive at our completeness result. For instance, 

we can start by using the left merge denotation function to distinguish terms. 

That is, we have the denotation function H from Definition 3.2.5 restricted to 

terms in the sublanguage 22 of 2  where the left merge operator does not appear. 

Recall that this denotation maps elements of 21  (and hence elements of 22 as 

well) to the domain V1  given as the least fixed-point solution to the set-theoretic 

equation 

V1 	= PFIN( Var x V1  U Act x V1), 

where PFIN(S) represents the set of finite subsets of S. The denotation of a 

term gives the set of action—derivative pairs specifying what initial actions are 

possible along with the resulting derived terms which the process would evolve into, 

and the variable—process pairs specifying what indeterminate processes appear 

unguarded in the term along with the processes representing the parallel context 

within which the variable processes appear. For instance, the term a + b 11 x would 

have a denotation representing the normal form a + bx + x Lb. 

We know immediately that this denotation function is consistent with respect 

to our equational theory. That is, due to the soundness of the axioms, we know 

that whenever the axioms can prove t = u, we have that 	= Jul. The problem 

here is to show the reverse implication. The difficulty lies in that not every element 

of the domain V1  is the image of a term in P2. For instance, the domain element 

{ (x, a)} represents the left merge term 4a which has no equivalent form in the 

subalgebra P2. Thus we need to place restrictions on the possible forms of domain 

elements which can be the images of P2  terms. With the motivation forming the 

basis of our axiom construction above, we can immediately come up with the 
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following conjecture on a restriction for the denotations of terms from the full 

merge language. 

Conjecture 7.1.1 For terms t, t' E 22, (x, [t'J) E i]J implies t'[(x + 

for some t" E P2 

What this conjecture is telling us is that whenever within a term t, we can 

proceed with an indeterminate process x within the parallel context (x + t") lit', 

then we must also be able to proceed in that context with any initial transition of-

fered by t'. This is reflected in our (minimal) Reduction Law construction method 

above, where we add the term t' Lx to both sides of our equation when one side 

has the nonsimplifying term x I[' as a summand. 

We can then proceed to define the normal form of a term t e 2 by 

nf(t) = a([t]), 

where o would be defined somehow like the following: 

o,  (T) = E a.o(S) + E xjo(S). 
(a,S)ET 	 (z,S)ET 

The only difference between this definition and the one of Definition 3.2.10 is 

that here we have x 11 t instead of x [• This is not a correct definition, as it fails 

to take account of the extra V' term from Conjecture 7.1.1. How to define that 

extra term is where we find the first problem to this approach. However, given 

that we could repair the definition, with the help of Conjecture 7.1.1, we would 

next like to prove the following conjecture. 

Conjecture 7.1.2 With our axioms, we can prove the statement t = nf(t). 

This would be where our greatest problems would lie, as it is where we must 

make our axioms work for us. The difficulty would arise in a large part due to the 

indeterminate nature of the t" in Conjecture 7.1.1. However, assuming it to be 



Chapter 7. Conclusions and Open Problems 	 173 

true, we would have as an immediate corollary that we could prove the statement 

t = u with our axiom set whenever [t = 

From here it would just remain to show that the denotation is sound with 

respect to our congruence, that is, that []I = hull whenever t u. However, we 

get this result almost for free from Proposition 3.2.14 and Corollary 3.2.15. 

Hence, this approach to the solution to our w-completeness problem looks very 

promising. However, we have not been able yet to follow out the details to a 

successful end. 

7.2 The Non-Finite-Axiomatisability of 

Observational Congruence 

In Chapter 5, we managed to prove the nonexistence of any finite axiomatisation 

first for strong congruence, and then for any reasonable congruence at least as 

strong as strong congruence, over the languages 9 and 'P30, the languages con-

taining full merge and merge with synchronisation respectively in their signatures. 

As we recall, the usual complete axiomatisation for strong congruence over 

is given by Tt, consisting of the following axioms. 

(x+y)+z = 	 (A3) x+x = 

x+y = y+x; 	 (A4) x+O = 

	

m 	 n 
(Expma) For u = 	pixi  and v = 

	

i=1 	 j=1 

	

m 	 n 

ulv = 	,t(xlv) + E v(uIy) + 	r(x j y). 

	

1=1 	 j1 

What we did not do, and which is sorely lacking in the chapter, is prove an 

analogous result for the weaker observational congruence over these languages. 

Recall that the usual complete axiomatisation for observational congruence 

over P30  is given by 7b,  consisting of the axioms of Tt, above, along with the 

following 7-  laws. 



Chapter 7. Conclusions and Open Problems 	 174 

jATX = 

X+TX = TX; 

ji(x + ry) + #Y = (x + ry) 

Though the conjecture is that these systems are equally not finitely axiomatisable, 

the proof technique used for the previous results falls through in the presence of 

silent r actions. 

One immediate problem is that we no longer have the property that congruence 

respects yntactic depth. For instance, 

a.r.t 	C a.t, 

whereas 

Ja.r.tI = 2 + V! L 1 + Itl = Ia.tI. 

However, this particular problem can be easily remedied by redefining the depth 

function I I to allow it to ignorer actions. We can then show that observational 

congruence, as indeed -observational equivalence, respects this new definition. 

Our bigger problem arises with actually arguing about terms derived from 

congruent terms, which can be assumed to be observationally equivalent, but 

not necessarily congruent. Furthermore, we cannot easily manipulate syntactic 	- - 

terms which derive under an indeterminate number of silent r actions into some 

term equivalent to a behaviour in which we are interested. In relation to our 

proof in Chapter 4 on the unique decomposition of agents in P30  with respect to 

observational congruence, we cannot assume given a proof tree of a statement that 

all subterms which appear in the tree are going to be expressible as proper normal 

forms, even when the statement which is being proven by the proof tree expresses 

a relationship between proper normal form terms. In particular, we would still 

like to prove that all statements of the form 

aI(a + aa + .. + an) 

= a(a+aa+... ±a") + aa + aaa + ... + a'+' 
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cannot be proven using any finite set of valid equational axioms. 

Ideally, we would like to show some relationship between strong congruence 

and observational congruence which would allow us to infer that given a finite 

axiomatisation for the latter, we could deduce a finite axiomatisation for the for-

mer. Given this, our problem would be solved, as we have already shown the 

non-finite-axiomatisability of strong congruence. Notice that the reverse direction 

can be seen to hold: given a (finite) axiomatisation for strong congruence, we 

would simply need to add to this axiomatisation the three r laws {(T1), (T2), (T3)1 

from above in order to get a (finite) axiomatisation for observational congruence. 

Unfortunately, such a relationship is not obvious. One may think it sufficient to 

remove any and all laws which manipulate silent r actions from an axiomatisation 

for observational congruence in order to derive a (smaller) set of axioms for strong 

congruence. However, we can see that such an approach fails immediately, by 

noting that TQb,\{(A3)} is a complete axiomatisation for observational congruence, 

all ground instances of the idempotence of + being derivable using the other laws. 

For example, 

a+a = arT + ar 

= a(r+rr) + ar 

= a(r+rr) 

= arr 

= a. 

(using (T1) three times) 

(using (T2)) 

(using (T3)) 

(using (T2)) 

(using (T1) twice) 

However, by removing the r laws from 7 ,b,\{(A3)}, we would arrive at Jtr\{(A3)}, 
in which we could not prove that a + a = a. 

An equally ideal situation would be to reason that given a finite complete 

axiomatisation for , we could add a finite number of sound laws in order to derive 

a modified axiomatisation in which we could prove any statement p = q in which 

p and q only contain the action a in their sorts (Sort(p) = Sort(q) = {a}) without 

using any term possessing a sort different from {a}. With this, our analysis could 

mimic the strong congruence case (we would no longer need to worry about silent 7 
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transitions, as no r actions would appear explicitly, nor could any communications 

occur, given the further assumption that a 0 a). 

An analogous trick was used in Section 5.1 to eliminate any unnecessary U's 

appearing as subterms in proofs. We started with a (supposedly) finite, complete 

and sound set of equational axioms for '-', and added to these a finite number of 

additional axioms which allowed us to prove any valid statement not containing 

any 0 summands or factors in either agent using only similar agents in the proof 

tree. In this case, we would like to assume given a finite set F of sound and 

complete laws for , and extend this to some superset F of sound laws by adding 

a finite collection of new laws, so that we can guarantee that there will be proof 

trees for the valid statements 

aI(a + aa + ..• + a') 

= a(a + aa + ••. + an) + aa + aaa + ... + a+1, 

in which every term P appearing in the proof trees satisfy Sort(P) = {a}. 

Following the technique employed in Section 5. 1, what we would like to deduce 

is that any proof of a statement P = Q in a system parameterised by a finite and 

complete set of axioms F, where P and Q each have sort {a}, could be replaced by 

a valid proof of the same statement over the extended set F of laws by replacing 

each inference 

by an inference 

(rule) 
p  

p=q 

where j is p with all r actions removed. Formally, 

0=0; 	 pTq =±; 

ttA if1tr, 
9P 	

A 
pJq=pq. 

ZfIL=r; 
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