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Abstract
Gradual typing aims to improve the correctness of dynamically typed programs by

incrementally adding type information. Sound gradual typing performs static type

checking and inserts run-time checks when a type cannot be guaranteed statically.

This form of gradual typing o�ers many features, but also requires that the program-

mer uses a language with a specialised gradual type system. A lightweight form of

gradual typing uses contracts to enforce types at run-time, assigning blame when a

type assertion fails. Contracts can be implemented as a library, without requiring

a specialised gradual type system. Contracts provide a lower barrier of entry into

sound gradual typing.

This thesis investigates the design and evaluation of contracts for gradual typing,

focusing on bridging the gap between JavaScript (dynamic) and TypeScript (static).

There are two key outcomes regarding theory and practice. Contracts for higher-

order intersection and union types can be designed in a uniform way, using blame to

derive the semantics of contracts satisfaction. Contracts and gradual typing can be

evaluated using the De�nitelyTyped repository, where JavaScript libraries are anno-

tated with TypeScript de�nition �les.

Contract composition is the fundamental method for building complex type asser-

tions. Intersection and union types are well suited for describing patterns common

to dynamically typed programs. Our �rst contribution is to present a calculus of

contracts for intersection and union types with blame assignment, giving a uniform

treatment to both operators.

A correct model of contracts must include a de�nition of contract satisfaction.

Our second contribution is to show that contract satisfaction can be de�ned using

blame: satisfying programs are those that do not elicit blame when monitored. We

de�ne a series of properties mandating how contract satisfaction should compose,

ensuring that a contract for a type behaves as one would expect for that type.

Building on our technical developments, our third contribution is a practical eval-

uation of gradual typing using the De�nitelyTyped repository. We show that con-

tracts can be used to enforce conformance to a de�nition �le, detecting errors in the

speci�cation. Our evaluation also reveals that technical concerns associated with im-

plementing contracts using JavaScript proxies are a problem in practice.
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Lay Summary
The purpose of a software system determines which tools are best suited for building

that system. Statically typed programming languages facilitate correctness and re-

quire that the design of the system is explicit about the shape, or type, of the data that

is used. Dynamically typed programming languages facilitate �exibility and allow the

design of the system to make no assumptions about the type of the data.

The challenge faced by many companies is that the purpose of a software system

can change over time. A prototype written in a dynamically typed language may

become an important system that would be better suited to a statically typed lan-

guage. Companies are burdened with the laborious task of rewriting their systems in

languages better suited to long-term maintenance.

Gradually typed languages have been developed to ease the migration from dy-

namic typing to static typing by allowing the same program to combine dynamically

typed and statically typed fragments. With gradual typing, a prototype can be built

using predominantly dynamic typing, and then incrementally upgraded to use pre-

dominantly static typing. A crucial aspect of gradual typing is that the boundary

between dynamically and statically typed fragments is monitored at run-time. Moni-

toring ensures that data �owing into a statically typed fragment has the correct type.

This thesis studies a monitoring technique used in gradual typing known as soft-

ware contracts. A contract describes a program property that is enforced during the

execution of a program; if a program breaks the contract a violation is raised that

identi�es the faulty code.

The �rst part of this thesis investigates how we can compose contracts to enforce

richer properties, and how we can verify that contracts enforce the properties they

describe. We focus on two mechanisms to compose contracts: intersection and union.

The intersection of two contracts enforces both contracts; the union of two contracts

enforces that at least one contract applies.

The second part of this thesis investigates how contracts and gradual typing can

be used with JavaScript, the dominant programming language for the web. We focus

on two questions. First, is contract enforcement justi�ed by detecting many viola-

tions in real code? Second, can contract enforcement be correctly implemented using

existing technology in JavaScript?
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Chapter 1

Introduction

Renovating a house is a hard task; renovating a house that you are living in is even

harder. Software development su�ers from a similar problem. Upgrading a legacy

code base is a hard task; upgrading a legacy code base that you actively depend upon

is even harder. This is an issue that many large companies face. A software ap-

plication is written to satisfy short-term goals, but goes on to become a vital piece

of infrastructure that requires long-term maintenance. Program renovation is inter-

spersed with bug �xes and new features, and must be done with minimal downtime.

A particular manifestation of this problem is through the choice of programming

language used to build an application. Dynamically typed languages place weak con-

straints on the speci�cation of a program; a programmer is free to compose the pro-

gram in such a way that might be unsafe at run-time. This liberal approach can make

it faster to prototype an application, but if the prototype grows into a signi�cant ap-

plication then this freedom can become a burden. Weak constraints provide weak

guarantees. A dynamically typed language provides few assurances about the cor-

rectness of the program.

Statically typed languages are rigorous in their construction; a static checker will

reject programs that may elicit certain kinds of unsafe behaviour. A statically typed

language knows more about a program, so a statically typed language can say more

about a program. Documentation, tooling, and testing are all improved by type infor-

mation, making statically typed languages suitable for large applications that require

long-term maintenance.

Programmers would like to renovate an application from dynamically typed to

statically typed when it reaches critical mass. This renovation has to be done in full:

the entire program must to be converted from dynamic to static and cannot be left in

1



Chapter 1. Introduction 2

an intermediate state. The transition requires a signi�cant upfront investment and for

large applications the cost can be too much to bear. To make progress, programmers

must be able to pay as they go.

Gradual typing is an approach to programming language design that facilitates

the incremental transition from dynamically typed to statically typed. With gradual

typing a programmer can add some type annotations to a dynamically typed program,

but signi�cantly, they are not required to fully annotate the program. At every point

in the transformation the program is a valid gradually typed program that remains

usable. This is the salient feature that make gradual typing suitable for incremental

renovation of legacy code. Over time, the program may be transformed from fully

dynamically typed to fully statically typed.

A gradually typed program consists of three key components: dynamically typed

fragments, statically typed fragments, and boundaries between these fragments. The

boundary is where interesting things happen, as data from one realm crosses over to

the other. At the boundary is where the opposing realms of dynamic and static meet,

and where their opposing views are reconciled.

Some approaches to reconciliation are strict: the boundary between dynamic and

static is enforced at run-time and values must be checked before crossing. This sound

approach uses contracts to implement dynamic type checking. Contracts ensure that

type annotations mediating between dynamic and static realms are meaningful. A

value crossing the boundary must conform to the annotated type, otherwise an ex-

ception is raised.

Some approaches to reconciliation are permissive: the boundary between dy-

namic and static is erased at run-time and values cross unchecked. Such an approach

is easy to implement, but type annotations mediating between dynamic and static

realms are reduced to super�cial documentation. There is no guarantee that a value

crossing the boundary conforms to the annotated type.

Theoretical and practical approaches to gradual typing are not in alignment. The

theory of gradual typing favours soundness and strict enforcement of the boundary.

The practice of gradual typing has yet to commit to soundness and favours erasure

of the dynamic-static boundary.

We study the theory and practice of gradual typing with the aim to bring them

closer in alignment. The thesis of this work is that intersection and union contracts

can be used to apply sound gradual typing to the largest repository of gradually typed

programs—the De�nitelyTyped repository. Type annotations are frequently incorrect



Chapter 1. Introduction 3

and sound gradual typing can be used to mitigate this. However, implementation is-

sues taken for granted in theory occur in practice, reducing the e�ectiveness of sound

gradual typing. Strengthening the connection between theory and practice requires

e�ort from both sides. Researchers of gradual typing must consider practical con-

cerns during design. Practitioners of gradual typing must consider the consequence

of widespread conformance violation during implementation.

1.1 Background

Contracts A vital feature of sound gradual typing is the use of dynamic type check-

ing to enforce type conformance, but gradual typing did not spawn this idea. Con-

tracts that dynamically assert program invariants were �rst proposed by Meyer (1988,

1992), where contracts enforce function pre-conditions and post-conditions.

Early work was limited to �rst-order function contracts that could be immediately

veri�ed at the call-site of a function. This restriction was lifted by the development

of higher-order function contracts by Findler and Felleisen (2002); their work was a

signi�cant contribution in the development of gradual typing. The insight of Findler

and Felleisen (2002) was wrapping: a higher-order function contract cannot be veri-

�ed immediately so it must be wrapped, where a wrapped function applies its domain

and codomain contracts on demand. Their work introduced the concept of blame. A

violated contract assigns blame to the party responsible. There are two parties to

a function contract, and consequently a function contract can assign two kinds of

blame: positive and negative. Positive blame indicts the subject of the contract and

negative blame indicts the context of the contract.

Contract operators facilitate contract composition, allowing a programmer to de-

scribe a rich set of invariants from reusable components. Findler and Felleisen (2002)

created a spark that ignited a �urry of work, and contracts have subsequently been

extended to support features including parametric polymorphism (Guha et al., 2007),

intersection and union (Keil and Thiemann, 2015a), temporal properties (Disney et al.,

2011), and session types (Jia et al., 2016; Melgratti and Padovani, 2017).

Gradual Typing in Theory The origins of gradual typing can be traced back to the

work by Henglein (1994), later extended by Siek and Taha (2006) and Tobin-Hochstadt

and Felleisen (2006). Siek and Taha (2006) developed the �rst system that supports

sound, �ne-grained interaction between dynamically and statically typed code. Casts
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mediate between dynamically and statically typed code and cast composition imple-

ments dynamic type checking. For example:

((V : I⇒ any) : any⇒ I)−→V

Composing a cast from integer type I to dynamic type any, with a cast from dynamic

type any to integer type I, allows a value from dynamically typed code to safely

�ow into statically typed code. Illegal cast composition will trigger a cast error. For

example:

((V : I⇒ any) : any⇒ B)−→CastError

The static realm is expecting a value of boolean type B, however the dynamic realm

has provided a value of integer type I. A cast error is raised that indicates a violation

at the boundary between dynamic and static.

A key development in the work by Siek and Taha (2006) is the consistency relation.

Existing work on dynamic-static integration struggled to get the balance right when

using casts to mediate between types. Too conservative and the system prevents

desirable inter-operation between dynamic and static; too liberal and the type system

collapses in on itself by permitting casts between nonsensical types. Siek and Taha

(2006) use the consistency relation to de�ne meaningful casts. The salient trait of

consistency is that the relation is not transitive. The relation is just �exible enough to

allow desirable inter-operation, but not so �exible that the type system degenerates.

Tobin-Hochstadt and Felleisen (2006) concurrently developed an alternate ap-

proach to gradual typing. Their style takes a wider perspective, focusing on the inter-

action between dynamically and statically typed modules. Statically typed modules

use contracts to ensure that dynamically typed modules conform to the desired type.

Contracts record provenance and assign blame when violated, indicating the source

of the violation. The insight provided by Tobin-Hochstadt and Felleisen (2006) is that

blame tracking can be used to prove strong guarantees about where contract viola-

tions occur: “code in typed modules can’t go wrong”.

Wadler and Findler (2009) brought harmony to the work of Siek and Taha (2006)

and Tobin-Hochstadt and Felleisen (2006), combining a �ne-grained cast calculus with

blame tracking—blame calculus. The soundness guarantee o�ered by blame calculus

is that “well-typed programs can’t be blamed”, shown by decomposing subtyping into

positive and negative variants. Positive and negative subtyping then recombine to

produce naive subtyping, a strictly covariant form of subtyping.
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Gradual typing research has subsequently �ourished. A variety of type system

features have been extended to gradual typing, including objects (Chung et al., 2018;

Siek and Taha, 2007), references (Siek et al., 2015c), parametric polymorphism (Ahmed

et al., 2017; Igarashi et al., 2017a; Toro et al., 2019), session types (Igarashi et al., 2017b;

Thiemann, Peter, 2014), intersection and union types (Castagna and Lanvin, 2017),

and linear types (Fennell and Thiemann, 2013).

Gradual Typing in Practice The theory of contracts, blame, and gradual typing

combine to form a signi�cant body of work aimed at integrating dynamically and stat-

ically typed code. Practitioners in industry have begun to adopt the ideas of gradual

typing, however they are yet to fully embrace sound gradual typing.

Industry demand for combining dynamic and static typing is evident. There is

a wide variety of industry tools focused on integrating dynamically and statically

typed code: Hack
1

by Facebook, a gradually typed language for integration with

PHP; Pytype
2

by Google, a type checker for Python that exploits type hints; Flow

by Facebook, a type checker for JavaScript (Chaudhuri et al., 2017); and TypeScript

by Microsoft, a gradually typed superset of JavaScript with a focus on tooling and

documentation (Bierman et al., 2014).

Every tool listed takes the permissive stance when reconciling the boundary be-

tween dynamically and statically typed code, coined the erasure embedding by Green-

man and Felleisen (2018). All type annotations are erased at run-time causing the

boundary between dynamically and statically typed components to evaporate. Type

annotations at the boundary are purely descriptive and have no run-time e�ect.

TypeScript is the most popular of these tools and the integration of TypeScript

code with legacy JavaScript libraries is emblematic of the erasure embedding. A

JavaScript library is paired with a de�nition �le: a hand written speci�cation of the

library interface using TypeScript types. De�nition �les are consumed by TypeScript

clients and prompt auto-completion and type checking for a client’s conformance to

the de�nition. TypeScript de�nition �les are vital to the ecosystem: the De�nitely-

Typed repository now contains de�nitions for over 4000 JavaScript libraries.

Figure 1.1 presents a basic example of a de�nition �le, the corresponding JavaScript

library, and a TypeScript client. The client expects to receive a value of type Box after

calling the library function makeBox, and TypeScript will provide auto-completion for

1https://hacklang.org
2https://opensource.google.com/projects/pytype

https://hacklang.org
https://opensource.google.com/projects/pytype
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Definition: box.d.ts

1 interface Box {

2 content: number;

3 }

4 export function makeBox(v: number): Box;

Library: box.js

1 module.exports.makeBox = v => ({ contents: v });

Client: box-client.ts

1 import * as basic from "./box";

2 const box: Box = basic.makeBox (42);

3 const result: number = box.content + 100;

Figure 1.1: Example Definition, Library, and Client

�eld content of value box.

TypeScript compiles to JavaScript and erases all types, including the types orig-

inating from the de�nition �le. After erasure, any semblance of a dynamic-static

boundary is lost. There is no way to determine if the library behaves in conformance

with the de�nition �le at run-time because there are no types at run-time. In the

example the library implementation subtly di�ers from the de�nition �le; the former

uses the �eld name contents while the latter uses the �eld name content. This error

is concealed to the client because it originates from the dynamic side of the boundary;

consequently, client code will evaluate in an unexpected manner. The client expects

result to evaluate to 142 but result will evaluate to NaN instead.

The choice to erase the dynamic-static boundary is motivated by two factors: per-

formance and implementation complexity. The performance regression introduced

by contracts used in sound gradual typing can be signi�cant (Takikawa et al., 2016).

Recent progress has been made to reduce performance degradation, however this is

yet to trickle down to mainstream implementations (Bauman et al., 2017; Feltey et al.,

2018; Muehlboeck and Tate, 2017). The second limiting factor is that implement-

ing contracts capable of monitoring all boundary interactions is di�cult. TypeScript

exploits intersection and union types in de�nition �les to describe overloaded func-

tions and uncertainty. Findler and Felleisen (2002) introduced higher-order function
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contracts before the rise of gradual typing, but it was not until much later that inter-

section and union contracts were added by Keil and Thiemann (2015a). The design

and correctness criteria of intersection and union contracts may be solved, but their

implementation still presents technical challenges.

There is signi�cant momentum behind both the theory and practice of gradual

typing, however the trajectories of the two tracks are yet to fully align. This is, in

part, due to a lack of research aimed at applying sound gradual typing principles in

real-world contexts.

1.2 Contributions

This work makes contributions to the theory and application of contracts for sound

gradual typing. First, by presenting a new design and implementation of higher-order

intersection and union contracts. Second, by conducting an empirical evaluation of

sound gradual typing against the De�nitelyTyped repository. Concretely, the contri-

butions of this work are:

• Extending the untyped lambda calculus with the �rst implementation of higher-

order intersection and union contracts where each operator has a single rule of

decomposition. We provide a blame assignment algorithm that supports uni-

form rules of decomposition.

• Presenting the �rst monitoring-oriented semantics for contract satisfaction that

supports intersection and union. We de�ne contract satisfaction using blame

assignment.

• Applying sound gradual typing to libraries in the De�nitelyTyped repository.

We monitor the library-client boundary using contracts and measure confor-

mance to the de�nition �le. There were 122 libraries that ful�lled our evaluation

criteria, of which 62 exhibited violations of conformance.

• Conducting a systematic evaluation of non-interference for contracts used to

implement sound gradual typing in JavaScript. We measure multiple forms of

interference, including object identity altered by function wrappers and data

sealed by polymorphic contracts. There were 122 libraries that ful�lled our

evaluation criteria, of which 22 exhibited violations of non-interference.
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1.3 Outline

This thesis is structured as follows:

• Chapter 2 reviews the fundamental concepts in contract monitoring and blame

assignment. We start with higher-order function contracts and the work of Find-

ler and Felleisen (2002), then we review higher-order intersection and union

contacts and the work of Keil and Thiemann (2015a).

• Chapter 3 presents the untyped lambda calculus extended with intersection

and union contracts. We give an operational semantics and blame algorithm

characterised by blame assignment and blame resolution.

• Chapter 4 describes a new de�nition of contract satisfaction using blame as-

signment. The programs that satisfy a contract are those that are never as-

signed blame when monitored using that contract. We present a new contract

soundness criterion and provide a series of sound monitoring properties that a

contract system should satisfy.

• Chapter 5 puts our theory into practice. We introduce The Prime Directive: a

tool that monitors libraries and clients for conformance to a TypeScript de�ni-

tion �le. We show how JavaScript proxies are used to implement higher-order

contracts including parametric polymorphic contracts.

• Chapter 6 presents the results of applying The Prime Directive to 122 libraries

in the De�nitelyTyped repository, recording all violations of conformance and

non-interference. We discuss alternate contract designs aimed at ameliorating

violations of non-interference in the presence of our results.

• Chapter 7 concludes this work by providing a summary our results and discus-

sion of future work.



Chapter 2

Contracts and Blame

Blame has been an integral component to the development of contracts and gradual

typing. From a theoretical perspective blame gives precise guarantees about where

run-time type errors can occur. The phrase by Wadler and Findler (2009): well-typed

programs can’t be blamed, fundamentally relies on blame tracking to prove the inno-

cence of statically typed code. From a practical perspective blame gives programmers

insightful information when run-time errors occur such as indicating whether a mod-

ule was at fault, or its client.

In this chapter we give an overview of existing work regarding blame for higher-

order contracts: �rst, function contracts, then intersection and union contracts. The

extension of contracts to support intersection and union reveals another vital role that

blame has. Correctly implementing higher-order intersection and union contracts

depends upon blame.

2.1 Anatomy of a Contract

In the purest sense a contract is the dynamic assertion of a program invariant; com-

monly, the invariant describes a type. A contract application can be written:

M@
pA

When describing these examples we let M and N range over program terms,V andW

range over program values, p and q range over blame nodes, and A and B range over

types. There are four key constituents that make up a contract application M@
pA

and we describe each in turn.

9
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Subject The subject of a contract, in this example M . A contract application will

assert that the subject conforms to the speci�cation of the contract.

Blame Tracking The blame node of a contract, in this example p. A contract appli-

cation uses a blame node to track the provenance of a contract and correctly assign

blame should the contract fail. In the context of this work we use the term prove-

nance to informally refer to the origin of a contract, and not as a direct reference to

the formal study of provenance (Bose and Frew, 2005; Cheney, 2011; Cheney et al.,

2009a,b; Simmhan et al., 2005). In section 3.4 we discuss existing work on provenance

in relation to the form of blame tracking we present.

The literature of blame tracking contains di�erent representations and descrip-

tions for the blame node annotating a contract. Findler and Felleisen (2002) use two

obligation variables: one to track the subject and one to track consumers of the sub-

ject. Wadler and Findler (2009) use a single blame label with a polarity. We use a

single blame node. When extending contracts to intersection and union types simple

obligations or labels are insu�cient. Instead, we use a blame node that represents

contract provenance and keeps a trace of evaluation; the detail of blame nodes will

be revealed at the relevant points.

Contract The contract itself, in this exampleA. A contract describes a speci�cation

or obligation to enforce. Contracts can be constructed from arbitrary boolean return-

ing functions, and then composed using a set of contract operators or combinators.

In this work we focus on contracts that describe types, using a �xed set of base types

that can be composed using operators. In the coming examples we write I, B, and

S to denote contracts for integers, booleans, and strings; → to denote the function

operator; and ∩ and ∪ to denote the intersection and union operators.

Context The last key component was hiding in plain sight. A contract application

does not happen in a vacuum, but in a context. To make this explicit we write the

contract application as a con�guration:

〈K ,M@
pA〉

We writeK to denote a continuation that consumes the result of evaluating a term. Al-

ternate systems may choose to use evaluation contexts instead, written as E[M@
pA].

The context of a contract is important to distinguish because some contracts place
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obligations on the context, in addition to the subject. In some examples we choose to

omit the context from a reduction, implicitly assuming the existence of the context.

Pu�ing Them Together A basic contract application will evaluate the subject and

ensure that the subject ful�ls the contract. For example:

42@
pI−→42

Applying the integer contract to 42 will immediately return the value because the

contract is satis�ed. However, consider another example:

42@
pB−→blamep

The integer value does not conform to the boolean contract and blame is correspond-

ingly assigned to the blame node p.

These examples are simple programs using simple contracts. In reality a program-

mer would like to build rich contracts for more complex programs. The primary way

to do this is by using contract operators to compose contracts; function contracts are

exemplary of contract composition.

2.2 Higher-order Function Types

Checking conformance of a value against a function contract is, in general, unde-

cidable. A function contract is unable to guarantee that a value conforms to a given

function type, but a function contract can ensure that every use of that function con-

forms to the type. This is achieved by wrapping (Findler and Felleisen, 2002).

Contract Monitoring A function contract will bond to a value, creating a wrapped

function. When a wrapped function is applied the contract will check that the argu-

ment conforms to the domain of the contract, and also that the result of the application

conforms to the codomain of the contract. For example, the wrap rule for a function

contract evaluates as follows:

(V@A→B)W −→(V (W@A))@B

Blame tracking is temporarily omitted, and will be restored later. The wrap rule �rst

ensures that argument W is checked against domain type A, then function V is ap-

plied, �nally the application result is checked against codomain type B.
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Functional and multi-paradigm programming makes heavy use of �rst-class func-

tions. Contracts extend to this programming style by composing function contracts

to build speci�cations for higher-order functions. For example:

(λf . f 1 > 0) (λy.y)

The expression applies a higher order function to the identity function. Argument f

is applied to 1 and the result is checked to determine if the value is positive. A contract

for this function can be de�ned using the higher order function contract (I→I)→B.

Example B Wrapping Higher-order Functions Evaluating wrapped functions

can trigger multiple invocations of the wrap rule when higher-order values and con-

tracts are used.

((λf . f 1 > 0)@(I→I)→B) (λy.y)

wrap
−→ ((λf . f 1 > 0) ((λy.y)@I→I))@B

−→ (((λy.y)@I→I)1 > 0)@B

wrap
−→ (((λy.y) (1@I))@I > 0)@B

−→ (((λy.y)1)@I > 0)@B

−→ (1@I > 0)@B

−→ (1 > 0)@B

−→ true@B

−→ true

The top-level function contract (I→ I)→ B wraps the argument λy.y with another

function contract I→I. When the wrapped argument is applied to 1 another wrap-

ping will take place. The example illustrates a successful evaluation where the func-

tion and its argument both conform to the contract. Reality may not be so perfect. A

programmer could write code that fails to conform to a contract, and in that event, a

violation should be raised that blames the party at fault.

Blame Blame assignment for higher-order functions was �rst presented by Findler

and Felleisen (2002). Their work identi�ed that function contracts have two parties

and should therefore have two sets of obligations. The two parties to a contract are

the subject and the context; the obligations are sometimes referred to as server and
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client obligations, or positive and negative obligations. We adopt the latter. Corre-

spondingly, when the subject violates the contract positive blame is assigned, and

when the context violates the contract negative blame is assigned.

The dichotomy of contract obligations has been present since the inception of

contracts: The precondition binds the client; the postcondition binds the class (Meyer,

1988, 1992). Tracking obligations for �rst-order functions with preconditions and

postconditions is straightforward because errors are localised to the application of

the guarded function. Applying the following wrapped function to argument true

will raise an error at the function call-site because of the violated domain contract,

and the client is always at fault for violations of the domain contract.

(λx .x > 0)@I→B

Applying the following wrapped function to any legal argument will raise an error

at the function call-site because of the violated codomain contract, and the subject is

always at fault for violations of the codomain contract.

(λx .x +1)@I→B

When higher-order functions are introduced obligation (or blame) tracking becomes

non-trivial. Errors may be deferred for higher-order contracts, occurring at a location

beyond the initial call-site. Applying the following wrapped function will not trigger

a violation until all the subsequent abstractions have been applied, which may happen

at a location distant from the initial call-site.

(λx .λy.λz.x +y+z)@I→I→I→B

A further challenge associated with blame tracking for higher-order functions is that

negative and positive obligations do not immediately partition in direct correspon-

dence with the domain and codomain contracts. We may not immediately assign

negative blame when the domain contract of function type (I→ I)→ B is violated

because the contract I→I has positive and negative obligations.

A violation could occur because the context provides an illegal argument. In the

following expression the context is obligated to provide an argument of type I→ I,

though clearly λy.true does not conform to this type.

((λf . f 1 > 0)@(I→I)→B) (λy.true)
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A violation could also occur because the subject uses the argument in an illegal way,

also read as the context of the argument violating the contract. In the following ex-

pression the subject is obligated to respect the negative obligations of domain contract

I→I, however supplying the argument true clearly violates the obligation.

((λf . f true > 0)@(I→I)→B) (λy.y)

The insight by Findler and Felleisen (2002) was to propagate blame information (or

obligations) through applications of wrapped functions. Blame propagates through

the domain contract in a contravariant way, while blame propagates through the

codomain contract in a covariant way. Findler and Felleisen (2002) implemented con-

travariant propagation by reversing the obligations associated with a contract. We

now restore blame tracking to our examples.

(V@
p,nA→B)W −→(V (W@

n,pA))@p,nB

Each contract has a pair of obligation identi�ers, positive (p ) and negative (n ). When

wrapping an application of a function contract the identi�ers are swapped in the

domain. In this work we adopt the style of Wadler and Findler (2009) that uses a single

blame node with a polarity. Instead of swapping a pair of identi�ers, we negate, or

complement, a single blame node.

(V@
pA→B)W −→(V (W@

−pA))@pB

The negation operation −p on blame nodes is involutive such that −(−p) ≡ p. By

negating the blame node we indicate that the obligations associated with that contract

are reversed. The obligation to provide a legal argument to an application does not

belong to the function itself, but the context of the function.

ExampleBWrapping Higher-order Functions with Blame Distinguishing pos-

itive and negative blame nodes and negating nodes as they �ow through domain con-

tracts make it possible to correct assign blame for higher order function contracts.

((λf . f true > 0)@p(I→I)→B) (λy.y)

wrap
−→ ((λf . f true > 0) ((λy.y)@−pI→I))@pB

−→ (((λy.y)@−pI→I)true > 0)@pB

wrap
−→ (((λy.y) (true@

pI))@−pI > 0)@pB

−→ (((λy.y)blamep)@I > 0)@B

−→ blamep
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The �rst invocation of the wrap rule bonds a contract of type I→I to the argument

λy.y, but importantly, negates the corresponding blame node p. The second invoca-

tion of the wrap rule applies the wrapped argument to boolean true. The blame node

for the integer domain contract is negated, but observe that the blame node is already

a negated blame node. The double negation means that the integer contract applied

to argument true is annotated with blame node p, indicating an obligation that be-

longs to the subject of the initial contract. The integer contract fails, assigning blame

to p. The fault of the violation is with the code inside the initial function contract

annotated with p. In particular, the function body applies its argument of declared

type I→I to a value of type boolean.

Example BHigher-order Negative Blame Another example indicates how neg-

ative blame can arise from the use of higher-order contracts.

((λf . f 1 > 0)@p(I→I)→B) (λy.true)

wrap
−→ ((λf . f 1 > 0) ((λy.true)@−pI→I))@pB

−→ (((λy.true)@−pI→I)1 > 0)@pB

wrap
−→ (((λy.true) (1@

pI))@−pI > 0)@pB

−→ (((λy.true)1)@−pI > 0)@pB

−→ (true@
−pI > 0)@pB

−→ (blame −p > 0)@pB

−→ blame −p

The �rst invocation of the wrap rule bonds a contract of type I→I to the argument

λy.true, negating the corresponding blame node p. The second invocation of the

wrap rule applies the wrapped argument to integer 1. The integer contract for argu-

ment 1 succeeds and β-reduction is applied to the inner application, yielding boolean

true. The integer codomain contract for the argument function is applied to the re-

sult. As the codomain contract of the argument function is in a contravariant position

relative to the initial function contract annotated with p, the integer contract is an-

notated with blame node −p. The integer contract fails, assigning blame to −p. The

fault of the violation is with the context of the initial function contract annotated

with p. In particular, the context provides a function which returns a boolean when

then declared type is I→I.



Chapter 2. Contracts and Blame 16

2.3 Dissecting Blame

Findler and Felleisen (2002) revealed many subtleties associated with propagating

blame information during contract evaluation. The tracking of blame contains nu-

ance, however the process of handling contract violations has been traditionally sim-

ple: when a contract fails the program halts without an opportunity for reparation.

Adopting the approach that instantly throws a blame error will not work when ex-

tending contracts to support intersection and union, as we will show in Section 2.4

and Section 2.5. To facilitate the explanation and implementation of intersection and

union contracts we dissect blame into two phases: assignment and resolution. Re-

vealing these two concepts that were previously implicit in contract design also has

bene�ts for systems that do not implement intersection or union.

When a contact V@
pA is violated blame is raised on p. Existing systems of con-

tracts or casts with blame considered raising blame as an atomic operation (Findler

and Felleisen, 2002; Wadler and Findler, 2009). We consider the process to consist

of two phases which we refer to as blame assignment and blame resolution. First is

blame assignment. When a contract annotated with blame node p is violated then

blame assignment is the process of determining whether p can be legitimately as-

signed fault, of blame, for the violation. If raising blame is raising a question of guilt,

then assigning blame is delivering a guilty verdict. Second is blame resolution. When

a contract annotated with blame node p is violated and blame is assigned to p, then

blame resolution is the process of determining what to do with that blame. If raising

blame is raising a question of guilt, then resolving blame is handing out the sentence.

In the existing literature assignment and resolution are implicitly implemented

in an immediate fashion. When a contract is violated then blame assignment always

ascribes fault to the implicated blame node; when a contract is violated then blame

resolution always throws a blame error. This implementation of assignment and reso-

lution is sound, but tightly coupled. Blame assignment may become incorrect if blame

resolution is changed.

A contract implementation may choose not to throw an error when blame is as-

signed during a contract violation. We selected this approach when conducting the

evaluation of gradual typing presented in Chapter 6 because we wanted to detect as

many violations as possible in a single execution of a program, without having to �x

code or amend contracts. Another example that warrants a di�erent design are con-

tracts implemented as asynchronous processes (Swords et al., 2018), where blame may
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not be fully resolved before other violations are raised. We demonstrate how blame

may be incorrectly assigned when changing resolution with the following example:

((λf . f 1)@p(I→I)→I) (λy.true)

From a short inspection of the expression it should be apparent that the function

λf . f 1 conforms to the type (I→I)→I, while the argument λy.true does not con-

form to the type I→I.

ExampleBResolution that Throws Starting with the traditional implementation

of blame—where blame resolution throws an error—then blame is correctly assigned

to blame node −p.

((λf . f 1)@p(I→I)→I) (λy.true)

−→ ((λf . f 1) ((λy.true)@−pI→I))@pI

−→ (((λy.true)@−pI→I)1)@pI

−→ (((λy.true) (1@
pI))@−pI)@pI

−→ (((λy.true)1)@−pI)@pI

−→ true@
−pI@

pI

−→ blame−p@
pI

−→ blame−p

Example B Resolution that Logs However suppose resolution is implemented

di�erently, returning the subject of the contract and logging the violation instead.

((λf . f 1)@p(I→I)→I) (λy.true)

−→ ((λf . f 1) ((λy.true)@−pI→I))@pI

−→ (((λy.true)@−pI→I)1)@pI

−→ (((λy.true) (1@
pI))@−pI)@pI

−→ (((λy.true)1)@−pI)@pI

−→ true@
−pI@

pI

Log blame for: −p

−→ true@
pI

Log blame for: p

−→ true
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Blame is �rst assigned and logged for node−p because the argument function λy.true

is expected to return an integer, but returns a boolean. Execution continues. If we

adopt the approach of unconditionally assigning blame then blame will be assigned

and logged for node p because the outer function is expected to return an integer, but

returns a boolean. The contract for type (I→ I)→ I assigns positive blame to the

function: an incorrect guilty verdict.

Always assigning blame is not a sound approach in general because it depends

upon program execution terminating at the �rst violation, preventing subsequent

contract violations. A more general approach is inspired by viewing function types

as logical implication (Curry, 1934). A function contract for type A→B should only

enforce the codomain contract B under the assumption that the domain contract A

is satis�ed. In other words: a subject is only required to conform to a function con-

tract under the assumption that the context conforms to the same contract. In our

example, assigning negative blame to −p indicates that the context has violated the

contract, and consequently, the subject should not longer be expected to conform to

that contract. Assigning blame to −p renders blame assignment to p void.

In Chapter 3 we give a semantics for blame that tracks violations by the context to

ensure that blame is correctly assigned to the subject. When doing so, care has to be

taken to distinguish multiple applications of the same function. This is achieved by

enriching the structure of blame nodes to record the provenance of the contract they

annotate. Our blame semantics is not the �rst to track violations by the context when

assigning blame; Keil and Thiemann (2015a) use the technique when implementing

intersection and union contracts. Our characterisation of blame in terms of assign-

ment and resolution is novel, and we argue the distinction is clarifying for contract

design in general.

2.4 Intersection Types

Intersection types have long history and were �rst introduced by Coppo and Dezani-

Ciancaglini (1978) and Coppo et al. (1981); recently, intersection types have seen a

renaissance in modern programming languages. They have proven to be a popular

mechanism for describing multiple inheritance and mixins, and are used in languages

such as Ceylon (Muehlboeck and Tate, 2018) and Scala (Rompf and Amin, 2016). In-

tersection types have also been popular in languages that widely exploit structural

subtyping to assign types to previously untyped code, including TypeScript (Bierman
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et al., 2014) and Flow for JavaScript (Chaudhuri et al., 2017).

A further use of intersection types is describing overloaded functions (Pierce,

1992). A common pattern in untyped languages is to perform a dynamic type test

on the arguments to a function. Each branch of the type test can return a di�erent

type, emulating the selection of an overload. For example:

1 function negateNumOrBool(x) {

2 return (typeof x === "number") ? -x : !x;

3 }

When the function negateNumOrBool is applied to a number the function will return

the negation of that number; when the function negateNumOrBool is applied to a

boolean the function will return the negation of that boolean. The type of negateNu-

mOrBool can be describe using an intersection type (I→ I) ∩ (B→ B). Intersection

types make a natural addition to a contract library’s repertoire of operators.

Contract Monitoring Keil and Thiemann (2015a) present the �rst account of con-

tracts for higher-order intersection types with blame assignment. Their implementa-

tion of intersection contracts is not uniform, and requires contract normalisation to

be dynamically applied. The normalisation process extracts all immediate contracts

nested within an intersection and evaluates them �rst. Evaluating intersections of

function contracts is delayed until function application. This behaviour is imple-

mented using three rules:

V@
p(K[I ]∩B) −→ (V@

p1I )@p2K[B]

V@
p(Q ∩K[I ]) −→ (V@

p1I )@p2K[Q]

(V@
pQ ∩R)W −→ ((V@

p1Q)@p2R)W

where A,B ::= �at(M) | A→B | A∩B | A∪B

Q,R ::=A→B | Q ∩R

K ::= � | K ∩B | Q ∩K

The �rst rule extracts a base (or immediate) contract from within the left branch of an

intersection. The second rules extracts a base contract from within the right branch

of an intersection if the left branch consists only of intersections of function types.

The third rules applies an intersection of function contracts, separately applying each

branch. The intent of the three rules is to ensure that state for blame assignment is

correctly aggregated across applications of intersection contracts.
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Blame The design of intersection contracts and blame assignment should accu-

rately re�ect the static semantics of intersection types. Basing blame assignment on

the behaviour of static type checking assists programmers to develop an intuition for

how contracts behave, whilst also allowing contracts to be used in systems that em-

ploy gradual typing. Introduction (I) and elimination (E) rules for intersection types

are presented below:

I-∩
M : A M : B

M : A∩B
E-∩1

M : A∩B

M : A
E-∩2

M : A∩B

M : B

Introduction rules for a type govern how values of that type are produced. Elimina-

tion rules for a type govern how values of that type are consumed. Correspondingly,

the introduction rules inform how positive blame is assigned for intersection con-

tracts, while the elimination rules inform how negative blame is assigned for inter-

section contracts. Some static type systems such as those by Pierce (1992) and Davies

and Pfenning (2000) favour the use of a subtyping relation to describe intersection

types rather than explicit introduction and elimination rules. We present introduc-

tion and elimination forms to reinforce the correspondence with positive and negative

blame assignment.

The introduction rule states that for a term, or subject, to conform to the inter-

section type A∩B then the subject must individually conform to both A and B. The

elimination rules state that a context may consume an intersection type A∩B at type

A or type B, eliminating the other. An alternate reading is to say for a context to con-

form to an intersection type A∩B then the context must conform to A or B. While

type rules pertain to conformance, blame assignment pertains to violation. In gen-

eral, a contract cannot prove that a value conforms to a type, however, a contract can

prove that a value fails to conform to a type by producing a counter-example. Using

these rules, an interpretation of blame assignment for intersection can be described.

+ Positive blame is assigned to an intersection type A∩ B if positive blame is

assigned to A or positive blame is assigned to B. A subject that conforms to

an intersection type must conform to both branches, and therefore assigning

blame to one branch is su�cient to show that the subject does not conform to

the intersection.

- Negative blame is assigned to an intersection type A∩B if negative blame is

assigned toA and negative blame is assigned toB. A context that conforms to an
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intersection type must conform to at least one branch, and therefore assigning

blame to both branches is su�cient to show that the context does not conform

to the intersection.

Positive Blame The presented de�nition delivers the expected behaviour for pos-

itive blame assignment.

((λx .x > 3)@p(I→I)∩ (I→B))42

The function should satisfy both branches of the intersection and should therefore re-

turn a result that satis�es both codomain types. No value can satisfy both the integer

and boolean contracts and consequently positive blame is assigned to the function.

In this example the function returns a boolean that violates the integer contract, as-

signing positive blame to the left branch that propagates to the intersection.

Negative Blame When considering the behaviour of negative blame assignment

observe that the de�nition permits some contract violations. Speci�cally, a negative

blame violation may be allowed for one branch provided that the other branch is not

assigned negative blame. We are no longer allowed to assume that blame resolution

can always throw an error.

The presented de�nition appears to deliver the expected behaviour for negative

blame assignment.

((λx .x)@p(I→I)∩ (B→B))42

The context should satisfy one branch of the intersection, and is free to violate the

other; a negative violation can be viewed as an elimination. No value can satisfy both

the integer and boolean contracts from the function domains, and consequently neg-

ative blame is assigned to function in the right branch. The negative blame assigned

to the right branch denotes an elimination of the right branch; the context is choosing

to use the type I→ I. When the function is applied the value 42 �ows through the

application to both codomain contracts. The boolean contract in the codomain of the

right branch will attempt to raise blame because the contract is violated, but positive

blame should not be assigned to the function. When the context decides to elimi-

nate the right branch—by supplying an illegal value—the subject is no longer bound

to the contract in that branch. Negative blame from the context makes assigning

positive blame to the subject void. Here we see importance of distinguishing blame

assignment which tracks past violations. Without using past knowledge of violations,



Chapter 2. Contracts and Blame 22

positive blame would be assigned to the right branch which then propagates to the

intersection, wrongly indicating that the function does not conform to the type.

Suppose the example is changed to use a di�erent argument:

((λx .x)@p(I→I)∩ (B→B)) "foo"

In this instance negative blame is assigned to both branches of the intersection be-

cause argument "foo" does not conform to the integer and boolean contracts—negative

blame is correspondingly assigned to the intersection.

A further subtlety arises when intersection contracts are used more than once (Keil

and Thiemann, 2015a). Take the following example:

let f = (λx .x)@p(I→I)∩ (B→B) in

if f true then f 1 else f 0

The example binds the contracted identity function to variable f , then applies f in

multiple locations: �rst in the “if” condition and then in each branch. The �rst appli-

cation of f uses a boolean argument that will cause negative blame to be assigned to

the left branch of the intersection. The condition will evaluate to true and proceed

to evaluate the “then” clause, applying f again. The second application of f uses an

integer argument that will cause negative blame to be assigned to the right branch

of the intersection. At this point negative blame has been assigned to both branches

of the intersection: our current de�nition tells us that negative blame should be as-

signed to the intersection itself. This use of an intersection contract is valid because

each application conforms to one of the branches; the proposed de�nition of negative

blame is too naive.

Our diagnosis begins by observing that the negative blame violations of the inter-

section contract have been accumulated across all uses of the contract. To aggregate

violations across all applications is to assume that the context chose which branch to

use at the creation of the contract, therefore binding that choice to every application.

This assumption is correct in some cases, but will not be correct in all cases.

Examining the static elimination rules again we see that the rule has no syntax

direction and can be invoked at any point in a program. Furthermore, if we have

a variable of intersection type that occurs in multiple locations then we are free to

eliminate the variable in multiple ways. In the face of many choices the only option

is to be as conservative as possible: an intersection contract must assume that the

elimination choice is made as late as possible, and each elimination choice is fresh.

The corrected de�nition of negative blame assignment is as follows:
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- Negative blame is assigned to an intersection type A∩B if negative blame is

assigned to A and negative blame is assigned to B in the same elimination con-

text.

With this de�nition the example that includes multiple applications behaves as one

would expected.

let f = (λx .x)@p(I→I)∩ (B→B) in

if f true then f 1 else f 0

The �rst application of f uses a boolean argument that will cause negative blame to be

assigned to the left branch of the intersection in the �rst application. The condition

will evaluate to true and proceed to evaluate the “then” clause, applying f again. The

second application of f uses an integer argument that will cause negative blame to

be assigned to the right branch of the intersection in the second application. At this

point negative blame has been assigned to both branches of the intersection, however

blame has not been assigned to both branches in the same elimination context. The

second application successfully evaluates and the expression reduces to the integer 1.

The behaviour of aggregating negative blame per application motivates the mon-

itoring rules by Keil and Thiemann (2015a). An intersection of function contracts is

only decomposed at the point of application, generating fresh monitoring state. The

cost of this design is that multiple rules are required. In Chapter 3 we present an alter-

nate semantics that relies on more detailed blame tracking to implement intersection

contracts using one uniform rule.

2.5 Union Types

Union types (Barbanera et al., 1995) are the natural dual to intersection types; in-

tersection represents certainty, while union represents uncertainty. It is the uncer-

tainty denoted by union types that has led them to become a popular feature in lan-

guages that bridge the gap between static and dynamic languages, such as Typed

Racket (Tobin-Hochstadt and Felleisen, 2006), TypeScript (Bierman et al., 2014), and

Flow for JavaScript (Chaudhuri et al., 2017). A conditional expression that returns

values of one type in one branch, and values of another type in the other branch, can

be assigned a type that is the union of both branch types.

When referring to union types we mean untagged unions, or “true” unions, rather

than tagged unions, or variants. Untagged unions are suitable for describing untyped
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code as they do not require values to be guarded by data constructors, or tags. Variants

may be encoded using untagged unions by assigning a tag �eld with a unique type

to each branch of the union.

A common pattern in untyped languages is to have a conditional expression with

values of di�erent types in each branch.

1 function zeroAsString(x) {

2 return x ? "0" : 0;

3 }

The function zeroAsString accepts an argument x and returns "0"when x is true and

0 when x is false. A contract of type B→(S∪I) can be used to guard this function. We

may add even more union types to this contract! Some systems encode the boolean

type as union of two singleton types, denoting true and false respectively (Kent et al.,

2016). An alternate contract for function zeroAsString would be (T∪ F)→ (S∪ I).

The speci�cation for the function could be strengthened even further by using the

intersection type (T→S)∩(F→I), however in general these types are not equivalent.

Contract Monitoring Keil and Thiemann (2015a) paired the �rst presentation of

higher-order intersection contracts with higher-order union contracts. There is a

single monitoring rule for union contracts, though the rule is not a simple decompo-

sition. Instead, the rule implements distribution of intersection over union:

V@
pK[A∪B] −→ (V@

p1K[A])@p2K[B]

where A,B ::= �at(M) | A→B | A∩B | A∪B

Q,R ::=A→B | Q ∩R

K ::= � | K ∩B | Q ∩K

The monitoring rule prioritises decomposition of union contracts over intersection.

When a union contract exists in a context of intersections the union is extracted and

the constituents are monitored in distinct contexts. The blame identi�ersp1 andp2 are

related to p by a union constraint (which we omit from the presentation). In essence,

this rule implements the distributive law:

(A∪B)∩C ≡ (A∩C)∪ (B∩C)

Blame To present blame assignment for higher-order union contracts we adopt the

same approach as intersection contracts and present the associated static type rules.
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We present the introduction and elimination rules by Dun�eld and Pfenning (2003).

I-∪1

M : A

M : A∪B
I-∪2

M : B

M : A∪B

E-∪
Γ `M : A∪B Γ,x : A ` E[x] :C Γ,y : B ` E[y] :C

Γ ` E[M] :C

The introduction rules state that for a term, or subject, to conform to the union type

A∪B then the subject must conform to A or B. The elimination rule states that for an

elimination context to conform to the union typeA∪B then the context must conform

toA and B. This is where the uncertainty manifests. A context cannot be sure whether

a value of typeA∪B will conform to typeA or type B, and must therefore be prepared

to accept both. Using these rules, an interpretation of blame assignment for union can

be described.

+ Positive blame is assigned to a union type A∪B if positive blame is assigned to

A and positive blame is assigned to B. A subject that conforms to a union type

must conform to at least one branch, and therefore assigning blame to both

branches is su�cient to show that the subject does not conform to the union.

- Negative blame is assigned to a union type A∪B if negative blame is assigned

toA or negative blame is assigned to B. A context that conforms to a union type

must conform to both branches, and therefore assigning blame to one branch

is su�cient to show that the context does not conform to the union.

The blame assignment rules for union are very close to the dual of intersection, as

to be expected. The one subtlety that prevents assignment for union being imple-

mented by negating intersection assignment is in the duality between introduction

and elimination. Negative blame for intersection contracts is aggregated per use of

the intersection, while positive blame for union contracts is aggregated across all uses

of the union. This is because a value of intersection type can be eliminated in multi-

ple places and in multiple ways, while a value of union type is only introduced once.

Consequently, the choice of which branch to satisfy persists across all uses of a value

of union type.

As was the case with intersection contracts, the use of union contracts means that

we cannot assume blame resolution raises an error, terminating the program. For
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example, no value can satisfy both the integer contract I and the boolean contract B,

however a value can satisfy the union of the two. Evaluating the contract I∪ B will

always result in at least one local violation, but that does not mean the program as a

whole has the violated the contract.

Positive Blame A function contract with a union type in the codomain may return

one of two types when applied.

((λx .if x then "0" else 0)@pB→(S∪I))true

Applying the contracted function will evaluate the conditional and return the string

"0". When evaluating the codomain contracts the string contract will succeed, while

the integer contract will fail and assign positive blame to the right branch of the union.

As only one branch has been assigned positive blame the conditions are not su�cient

to assign positive blame to the union.

((λx .if x then false else 0)@pB→(S∪I))true

In this example the contracted function will return the result false to which the

union contract is applied. The contract in the left branch of the union will be vi-

olated, assigning positive blame, however this is not su�cient to blame the union.

The contract in the right branch of the union will then be violated, assigning positive

blame. At this point both branches have been assigned positive blame and therefore

the union is assigned positive blame. This correctly indicates that the function failed

to return a value that satis�es the union type S∪I.

If the example used a union of function types then the outcome would be similar.

((λx .if x then false else 0)@p(B→S)∪ (B→I))true

The returned value false violates the codomain contract S in the left branch of

the union and is assigned positive blame. The return value false also violates the

codomain contract I in the right branch of the union and is assigned positive blame.

After evaluation of the second contract both functions in the union have been as-

signed positive blame, and therefore positive blame is assigned to the union itself.

Unions of function types have a subtle and interesting property; a union of func-

tion types can require multiple applications to detect a violation (Keil and Thiemann,

2015a). Take the following example:

((λx .if x then "0" else 0)@p(B→S)∪ (B→I))true
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Evaluating this expression will assign positive blame to the right branch of the union

because the returned value "0" does not satisfy the type I, but positive blame will not

be assigned to the union because the left branch is satis�ed. Suppose we change the

argument to the function:

((λx .if x then "0" else 0)@p(B→S)∪ (B→I))false

Evaluating this expression will assign positive blame to the left branch of the union

because the returned value 0 does not satisfy the type S, but positive blame will not

be assigned to the union because the right branch is satis�ed.

The function does not conform to the union type however no single application

of the contracted function will be su�cient to detect a violation. Recall that when

a union type is introduced the choice of branch is �xed; a value may not “�ip-�op”

between union branches. For a union of function types there is no way to detect

this “�ip-�op” in a single application, and consequently the contract may only assign

positive blame when the function is applied twice:

let f = (λx .if x then "0" else 0)@p(B→S)∪ (B→I) in

(f true, f false)

The �rst application assigns positive blame to the right branch but not the left; the

contract assumes that the value has selected the left branch to satisfy. The second

application assigns positive blame to the left branch but not the right. When blame is

aggregated across both applications then both the left and right branches have been

assigned positive blame, and therefore the union is assigned positive blame. A union

of function contracts is not free to satisfy di�erent branches at di�erent applications.

The correct contract for this function is B→(S∪I). Each application of the func-

tion produces a fresh union contract that may be satis�ed by a di�erent branch.

Negative Blame The nature of negative blame assignment for union contracts is

more ruthless than the positive counterpart, making the decision process easier. For

a union of function contracts the context must supply an argument that satis�es both

domain types because the context cannot be sure which branch the value implements.

For example:

(λx .if x = 10 then "0" else 0)@p(Pos→S)∪ (Even→I)
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The contract Pos accepts positive integers and the contract Even accepts even in-

tegers. Any context that uses this function must provide an argument that is both

positive and even, otherwise negative blame will be assigned to the context.

This restrictive nature of union contracts means that most practical contracts will

be between functions that have the same domain type, for example (B→S)∪ (B→I).

We cannot simplify this contract by pushing the union inwards, for example B→(S∪

I). As we have previously shown, these contracts have di�erent behaviour.



Chapter 3

Contracts for Intersection and
Union Types

In this chapter we take the intuition regarding blame assignment that we developed

in Chapter 2 and make it concrete. We extend the untyped lambda calculus to support

contracts for higher-order intersection and union types.

We de�ne the calculus λ∩∪, an untyped lambda calculus with contracts for inter-

section and union types. The primary result of our calculus is a pair of monitoring

rules for intersection and union contracts that uniformly decompose. To enable uni-

form monitoring we enrich the structure of blame nodes to record a history of the

evaluation that led to the construction of a given contract. When de�ning blame we

make explicit the phases of assignment and resolution, as characterised in Chapter 2.

We begin by de�ning the syntax and operational semantics for λ∩∪, then we add the

semantics of blame.

3.1 Syntax

The syntax of λ∩∪ is given in Figure 3.1. Our calculus is based on the CK machine

by Felleisen and Friedman (1986), a choice motivated by the presentation of contract

semantics de�ned in Chapter 4. We distinguish four broad syntactic categories: con-

tract types, program terms, blame tracking, and program con�gurations. We discuss

each in turn.

Contract Types Let A and B range over contract types. A contract type is either

an intersection type A∩B, a union type A∪B, a function type A→B, a base type ι,

29
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Types A,B ::= A∩B | A∪B | A→B | ι | any

Base Types ι ::= I | B

Terms M,N ::= x | k | λx .M | MN | blame ±` | M@
pA

Values V ,W ::= k | λx .M | V@
pA→B

Frames F ::= �N | V � | �@
pA

Continuations K ::= Id | K ◦ F

Wrap Indices n ∈ N

Blame Labels `

Branch Directions d ::= le� | right

Branch Types � ::= ∩ | ∪

Blame Contexts c ::= dom | cod

Blame Paths P ::= nil | cn/P

Blame Nodes p,q ∈ P ::= ±`[P] | p •d±� [P]

Blame States Φ ::= ∅ | { p } | Φ∪Φ
′

Context Trackers ∆ = P⇀N

Con�gurations ::= 〈Φ,∆,K ,M〉

Figure 3.1: Syntax

or the type any. Base types are either the integer type I or the boolean type B.

The type any matches all values and is analogous to the dynamic type in gradu-

ally typed cast languages, written ? or ? (Siek and Taha, 2006; Wadler and Findler,

2009). In a language that supports user-de�ned contracts any can be de�ned using a

predicate that always returns true. We include any in our language because it o�ers

ergonomic bene�ts. In Chapter 4 we discuss splitting types into their positive and

negative obligations and having access to any produces a succinct de�nition.

Another motivation for the type any is that programmers may wish to partially

enforce types for a program, for example, adding a contract for a function codomain

while leaving the domain unconstrained. This can be encoded with a function con-

tract of the form any→B. Inlining the codomain contract might appear a tempting

alternative to wrapping the function in a contract of type any→B, however inlining is

not a general solution. For instance, the behaviour of the contract (any→I)∩(B→B)

cannot be replicated by inlining the domain and codomain contracts. For a function

to satisfy this contract it must return an integer or diverge for all non-boolean ar-
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guments, and diverge for all boolean arguments. Divergence is required because a

boolean argument satis�es both domain types, therefore the function must return a

value that satis�es both codomain types; no value satis�es the integer and boolean

contracts so the only way to avoid blame is to diverge.

Program Terms Let M and N range over terms. A term is either a variable x ,

a constant k , an abstraction λx .M , an application MN , a blame error blame ±`, or

a contract application M@
pA. A blame error speci�es a blame label: an identi�er

associated with a violated contract from the source program. When we refer to source

contracts, or top-level contracts, we mean contracts that were in the source program

prior to evaluation. A source contract is not a sub-contract of any other contract.

Let V and W range over values. A value is either a constant k , an abstraction

λx .M , or a value wrapped in a function contract V@
pA→B. Recall that a function

contract cannot be immediately tested against a value for conformance. Instead, a

function contract bonds to a value and wraps every application of the value.

Let F range over frames and let K range over continuations, where a continuation

is a stack of frames that will consume a value. A frame is either an argument frame

�N that will consume a value, applying the value to argument N ; a function frame

V � that will consume a value, passing the value as argument toV ; or a contract frame

�@
pA that will consume a value, applying the contractA to the value. A continuation

is either the identity continuation Id that will consume a value and immediately return

the same value, or K ◦ F , a continuation with a frame appended. Once frame F has

consumed a value and the resulting term has been evaluated to a new value, that

value is then consumed by the remaining continuation K .

The operational semantics are not tied to the use of continuations and can be

de�ned in terms of evaluation contexts using the standard bijection between contin-

uations K and evaluation contexts E, de�ned by Felleisen and Friedman (1986).

Blame Tracking Let p and q range over blame nodes where a blame node denotes

the provenance of a contract. We write P for the set of all blame nodes. A blame node

is either a root node ±`[P] or a branch nodep •d±� [P]. The terms root and branch refer

to the interpretation of contract types as binary trees. An intersection or union type

denotes a node in a tree where the constituent types are connected via branches. A

blame node denotes a path through the binary tree, syntactically represented as a list.

A root node ±`[P] features a polarity, positive (+) or negative (−), that encodes
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the variance of the type associated with the contract. The variance of the type is

taken with respect to the source contract from which it originated. When presenting

blame nodes we make use of contextual negation. If we write ±`[P] for a root node

that may be positive or negative, then we write ∓`[P] for the same root node with

the polarity negated. The same behaviour applies to branch nodes. A root node also

features a blame label ` drawn from a set of identi�ers.

Every root node has a blame path. Let P range over blame paths where a path

is either the empty path nil, or a blame context prepending a path. Let c range over

blame contexts, dom denoting a domain contract, or cod denoting a codomain con-

tract. Every blame context is indexed by a wrap index drawn from the set of naturals.

The wrap index denotes how many times the function contract associated with the

blame context has been applied. For example, dom1 denotes the domain contract

created in the second application of a particular function contract. A blame path en-

codes the provenance of some sub-contract of a function contract, detailing the wrap

operations that led to the creation of the sub-contract. For example:

let f =V@
pB→I→B in

(f true0, f false1)

Identi�er f is bound to a wrapped function contract that is applied in each element of

a tuple; the contract associated with f is the higher-order type B→I→B. Application

of f will produce sub-contracts for the domain and codomain types, each associated

with a distinct blame path. The application of f to true wraps the argument in a

boolean contract associated with the blame path dom0/nil. The wrap index 0 indicates

that this is the �rst (0-th) application of f . The application of f to false wraps the

argument in a boolean contract associated with the blame path dom1/nil. The wrap

index 1 indicates that this is the second application of f . The function f returns

a result that is also a wrapped function; the contract associated with the result is

the type I→ B. The application of the result to 1 wraps the argument in an integer

contract associated with the blame path cod1/dom0/nil.

We assume that all source contracts are annotated with a positive root node with

an empty blame path, as in +`[nil], where the blame label ` is unique within the

program context.

A branch node p •d±� [P] consists of a pointer to parent node p and information

about the branch. Branch nodes annotate the sub-contracts of intersection or union

contracts, and the parent p represents the blame node annotating the intersection or
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union contract at the point the contract was decomposed. A branch node features a

polarity, like a root node, that encodes the variance of the type associated with the

contract. The variance of the type is taken with respect to the parent intersection or

union contract from which it originated. Every branch has a direction d , either le�

or right, and is also indexed by the type of the parent contract, either intersection ∩

or union ∪, ranged over by �. All branch nodes have a blame path, like a root node.

The blame path of a branch node is taken with respect to the parent intersection or

union contract from which it originated.

We present examples of contracts and the corresponding blame nodes that will be

assigned to the sub-contracts. Starting with the source contract:

V@
+`[nil](B∪I)→((I→I)∩ (B→B))

we detail the contracts that arise from the function domain in the �rst application of

the source contract, using wrap index 0 to indicate the �rst application.

Contract Blame Node

(B∪I)→((I→I)∩ (B→B)) +`[nil]

B∪I −`[dom0/nil]

B −`[dom0/nil] • le�+∪[nil]

I −`[dom0/nil] • right+∪[nil]

The node annotating the contract B has a positive polarity at the branch, but a neg-

ative polarity at the root. This is because the type B is in a positive position with

respect to the type B∪ I, but a negative position with respect to the type (B∪ I)→

((I→I)∩ (B→B)).

We now detail the contracts that arise from the function codomain in the �rst

application of the source contract, using wrap index 0 to indicate the �rst application.

Contract Blame Node

(B∪I)→((I→I)∩ (B→B)) +`[nil]

(I→I)∩ (B→B) +`[cod0/nil]

I→I +`[cod0/nil] • le�+∩[nil]

B→B +`[cod0/nil] • right+∩[nil]

We extend the table with the contracts that arise in the �rst application of the resulting

function contracts, similarly using wrap index 0 to indicate the �rst application of the
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resulting contracts.

Contract Blame Node

(B∪I)→((I→I)∩ (B→B)) +`[nil]

(I→I)∩ (B→B) +`[cod0/nil]

I→I +`[cod0/nil] • le�+∩[nil]

I (domain) −`[cod0/nil] • le�−∩[dom0/nil]

I (codomain) +`[cod0/nil] • le�+∩[cod0/nil]

B→B +`[cod0/nil] • right+∩[nil]

B (domain) −`[cod0/nil] • right−∩[dom0/nil]

B (codomain) +`[cod0/nil] • right+∩[cod0/nil]

The blame paths are split between the root node and the branch node. The contract

I is in the domain of the contract I→I, which in turn exists within the codomain of

the contract (B∪I)→((I→I)∩ (B→B)).

An observant reader may identify that the polarity of a root or branch node can

be entirely reconstructed from the paths of the children. A node has a negative po-

larity if there are an odd number of domain contexts in the paths of all the children.

We explicitly track the polarity because it makes the presentation clearer and avoids

recomputing the polarity.

Program Configurations Let 〈Φ,∆,K ,M〉 denote a program con�guration. A con-

�guration is a tuple that consists of a blame state Φ, a context tracker ∆, a continuation

K , and a term M .

A blame state is a set of blame nodes, where every node in the set has been as-

signed blame for a contract violation. We write ∅ for the empty blame state.

A context tracker is a partial map from blame nodes to wrap indices, where a

mapping p 7→ n indicates that the function contract annotated with blame node p

has been applied n times. The context tracker is not total with respect to function

contracts in the program. If a blame node p is not in the domain of the context tracker

it means that either p does not annotate a function contract, or the function contract

has not been applied yet. We write [ ] for the empty context tracker.

An initial program con�guration always has the form 〈∅, [ ], Id,M〉 where M rep-

resents the initial program.
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3.2 Operational Semantics

Figure 3.2 presents the operational semantics for λ∩∪, with auxiliary de�nitions pre-

sented in Figure 3.3. The operational semantics are presented as a binary relation

(−→) on program con�gurations, where one con�guration reduces to another, writ-

ten:

〈Φ,∆,K ,M〉 −→ 〈Φ′,∆′,K′,M′〉

When a component of a con�guration is omitted from a reduction we assume that the

component is unchanged in the reduction. Typically, we only choose to omit blame

states and context trackers from a reduction, always presenting the continuation even

if it remains the same. We write (−→∗) to denote the re�exive and transitive closure

of relation (−→). We split reductions into four broad categories and we discuss each

in turn.

Standard Reduction A con�guration of the form 〈K ,MN 〉 reduces by creating an

argument continuation that consumes a value, applying the value to N , and continues

as continuation K . The con�guration proceeds to evaluate M .

A con�guration of the form 〈K ◦�N ,V 〉 reduces by creating a function continu-

ation that consumes a value, applying V to the value, and continues as continuation

K . The con�guration proceeds to evaluate N .

A con�guration of the form 〈K ◦ (λx .M)�,V 〉 reduces by applying β-reduction

that substitutes valueV for bound variable x in function body M . We write M[x :=V ]

for the capture-avoiding substitution of x for V in M . The con�guration proceeds to

evaluate the function body (post substitution) with continuation K .

A con�guration of the form 〈K ,M@
pA〉 reduces by creating a contract contin-

uation that consumes a value, applying the contract A to the value, and continues

as continuation K . The reduction only happens under the condition that M is not a

value. The con�guration proceeds to evaluate M .

A con�guration of the form 〈K ◦�@
pA,V 〉 applies contract A to value V . The

con�guration will proceed to either decompose the contract or evaluate the contract.

Contract Decomposition A con�guration of the form 〈∆,K ◦ (V@
pA→B)�,W 〉

will invoke the wrap rule. First, the wrap index n is computed by the operation δ (∆,p)

de�ned in Figure 3.3. The operation queries the context tracker for the wrap index
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Reduction 〈Φ,∆,K ,M〉 −→ 〈Φ′,∆′,K′,M′〉

〈K ,MN 〉 −→ 〈K ◦�N ,M〉

〈K ◦�N ,V 〉 −→ 〈K ◦V �,N 〉

〈K ◦ (λx .M)�,V 〉 −→ 〈K ,M[x :=V ]〉

〈K ,M@
pA〉 −→ 〈K ◦�@

pA,M〉

if M ,V

〈K ◦�@
pA,V 〉 −→ 〈K ,V@

pA〉

〈∆,K ◦ (V@
pA→B)�,W 〉 −→ 〈∆′,K , (V (W@

−p�domnA))@p�codnB〉

where (∆′,n) = δ (∆,p)

〈K ,V@
pA�B〉 −→ 〈K , (V@

p•le�+� [nil]A)@p•right+� [nil]B〉

〈K ,V@
pany〉 −→ 〈K ,V 〉

〈K ,V@
pι〉 −→ 〈K ,V 〉

if V : ι

〈Φ,K ,V@
pι〉 −→ 〈Φ′,K ,M〉

otherwise, where Φ
′,M = blame(p,Φ,V )

〈K ,blame ±`〉 −→ 〈Id,blame ±`〉

if K , Id

Figure 3.2: Operational Semantics (Auxiliary Definitions in Figure 3.3)

of blame node p, returning an updated context tracker and the corresponding index.

The new context tracker will increment the index associated with p, indicating that

the function contract annotated with p has been applied an additional time. The wrap

rule decomposes the function contract, wrapping the argument and result with their

corresponding contracts and extended blame nodes. Blame node extension, written

�, is de�ned in Figure 3.3. The operation extends a blame node with a new blame

context to record the provenance of the sub-contract; extension appends a blame con-

text to the path of a blame node. The blame node for the domain contract is negated

to re�ect the inversion of contract obligations while the blame node for the codomain

contract retains the same polarity. Negation is de�ned in Figure 3.3 and recursively

negates all polarities in a blame node. Like existing de�nitions for negation of blame

labels (Wadler and Findler, 2009), negation for blame nodes is also an involution.

Proposition 3.2.1 (Involution). −−p = p.

A point of interest regarding function contracts is that they never check that the
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Wrap Index δ (∆,p)

δ (∆,p) =


(∆[p 7→ 1],0) if p < dom(∆)

(∆[p 7→ n+1],n) where n = ∆(p)

Blame Node Negation −p

−(±`[P] ) = ∓`[P]

−(p •d±� [P] ) = −p •d
∓
� [P]

Path Extension p � cn and P � cn

±`[P] � cn = ±`[P � cn]

p •d±� [P] � cn = p •d±� [P � cn]

nil� cn = cn/nil

(cn/P) � c′n = cn/(P � c′n)

Value Conformance V : A

V ∈ Z

V : I

V ∈ {true,false}

V : B

V : ι

V@
pA→B : ι

Figure 3.3: Auxiliary Definitions for Figure 3.2

wrapped value represents a lambda abstraction; function contracts only guard appli-

cation behaviour. This choice is made because it simpli�es the presentation and se-

mantics by avoiding the need to juggle �rst-order and higher-order obligations when

monitoring a function contract. The traditional interpretation of a function contract

which asserts that the wrapped value is an abstraction can be implementing using

an explicit composition of a �rst-order and higher-order check. Keil and Thiemann

(2015a) make the same design decision in the presentation of their system. The alter-

nate approach interprets M@
pA→B as checking both the �rst-order tag and higher-

order contract. Under this approach V@
pA→ B is no longer a value because the

�rst-order component of the contract must be checked; if we wish to syntactically

identify values we must introduce another function contract operator that denotes

only the higher-order obligations. Consequently, the approach starts to resemble the

encoding given Keil and Thiemann (2015a), but at the cost of introducing additional

syntax and reduction rules. Our contract implementation discussed in Chapter 5 does

use a single function operator that checks the �rst-order and higher-components—in

practice we �nd that this is convenient for implementation and improves the contract
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violation error messages.

A con�guration of the form 〈K ,V@
pA�B〉 will immediately decompose the inter-

section or union contract, monitoring the value V against the constituent contracts.

Each new contract is annotated with a branch node where p is the parent. The initial

polarity of a branch node is positive because the branch monitors the same subject as

the parent contract. The initial path of a branch node is empty because the type of the

new contract is the immediate type in the corresponding branch of the intersection

or union.

Contract Evaluation A con�guration of the form 〈K ,V@
pany〉 will immediately

evaluate the contract and produce a con�guration of the form 〈K ,V 〉. The type any

places no obligations on the subject or context therefore the contract is satis�ed by

all values.

A con�guration of the form 〈K ,V@
pι〉 will immediately evaluate the contract and

produce a con�guration of the form 〈K ,V 〉 when value V conforms to base type ι.

Conformance, written V : ι, is de�ned in Figure 3.3. An integer constant conforms to

the type I and a boolean constant conforms to the type B. Function wrappers do not

a�ect conformance. If a valueV conforms to the type ι thenV@
pA→B also conforms

to the type ι. This choice is made with union contracts in mind. Given a term of the

form:

4@
p(I→I)∪I

then we would like the value 4 to be viewed as an integer, even with the function

wrapper bound to the value. Removing the function wrapper is not an option because

we must still monitor the context of the function contract, even if the subject is not a

function. For example, given a term of the form:

(4@
p(I→I)∪I)true

then we must still raise a violation because the context has inappropriately used the

union contract. Consequently we view function wrappers as transparent with respect

to conformance.

A con�guration of the form 〈Φ,K ,V@
pι〉 will trigger a violation whenV does not

conform to ι, raising blame and appealing to the operation blame(p,Φ,V ) de�ned in

Figure 3.4. We describe the full semantics of blame in Section 3.3 and here we only

consider the interface of the operation.

blame : (P ×BlameState×Value) → (BlameState×Term)
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The operation accepts a blame node, a blame state, and value; the informal meaning

of blame(p,Φ,V ) can be taken as:

Raise blame in state Φ when value V violated a contract annotated with blame node p.

The operation outputs a result consisting of an updated blame state Φ
′

and a term M ;

the informal meaning of the result (Φ′,M) can be taken as:

Continue in state Φ
′ where the result of the contract application is termM .

The new blame state may di�er from the input state by inclusion of p, or a pre�x of

p, when the blame node and any parent nodes have been assigned blame. The new

termM is drawn from the set {V ,blame ±`}where ±` corresponds to the polarity and

blame label at the root of blame node p. When the violation is insu�cient to trigger a

blame error then V is returned as execution continues. When the violation indicates

that a source contract has been violated then blame ±` is returned as execution halts.

Li�ing A con�guration of the form 〈K ,blame ±`〉 will discard the current contin-

uation when K is not the identity continuation Id. The resulting continuation is of

the form 〈Id,blame ±`〉, lifting the blame error to the top-level.

3.3 Blame

Having de�ned the operational semantics that characterise the monitoring rules for

contracts we now turn our attention to blame assignment and resolution: the pro-

cess of interpreting contract violations. Figure 3.4 presents the semantics to blame

for λ∩∪, with auxiliary de�nitions presented in Figure 3.5. The entry point is the

operation blame, as introduced in Section 3.2. The operation blame(p,Φ,V ) will at-

tempt to assign blame to node p in the current blame state, appealing to the operation

assign(p,Φ ). Blame assignment accepts a blame node and a blame state, returning a

new blame state and truth value. The new blame state may di�er from the input state

by inclusion of p, or a pre�x of p, when the blame node and any parent nodes have

been assigned blame. The truth value speci�es whether blame assignment propagated

to a root node, indicating that a source contract has been violated. Blame assignment

(assign) is a mutually recursive function de�ned in conjunction with blame resolution
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Blame blame(p,Φ,V )

blame(p,Φ,V ) =


Φ
′,blame ±` if Φ

′,> = assign(p,Φ ), ±` = root(p )

Φ
′,V if Φ

′,⊥ = assign(p,Φ )

Blame Assignment assign(p,Φ )

assign(p,Φ ) =


Φ,⊥ if ∃q ∈ Φ. compat(−p,q)

resolve(p,Φ∪ {p} ) otherwise

Blame Resolution resolve(p,Φ )

resolve(±`[P],Φ ) = Φ,>

resolve(p •d+∩[P],Φ ) = assign(parent(p •d
+
∩[P] ),Φ )

resolve(p •d−∪[P],Φ ) = assign(parent(p •d
−
∪[P] ),Φ )

resolve(p •d−∩[P],Φ ) =


assign(parent(p •d−∩[P] ),Φ )

if ∃P ′. p •�ip(d)−∩[P ′] ∈ Φ

and elim(P ,P ′)

Φ,⊥ otherwise

resolve(p •d+∪[P],Φ ) =

assign(parent(p •d+∪[P] ),Φ ) if ∃P ′. p •�ip(d)+∪[P ′] ∈ Φ

Φ,⊥ otherwise

Figure 3.4: Blame Semantics (Auxiliary Definitions in Figure 3.5)

(resolve), both sharing the same interface:

assign : (P ×BlameState) → (BlameState× {⊥,>})

resolve : (P ×BlameState) → (BlameState× {⊥,>})

The operations call each-other in tandem as blame assignment propagates up through

branch nodes. We �rst describe the semantics of blame assignment, then we describe

the semantics of blame resolution.

3.3.1 Assignment

The purpose of blame assignment is to determine whether a blame node p can be

rightfully considered at fault for a contract violation, or whether a previous violation
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Compatibility compat(p,q ) and compat(P ,P ′ )

compat(P ,P ′)

compat(±`[P],±`[P ′])

compat(P ,P ′)

compat(p •d±� [P],p •d
±
� [P
′])

compat(P ,P ′)

compat(cn/P ,cn/P ′)

c , c′

compat(cn/P ,c′n/P
′)

Matching Elimination elim(P ,P ′ )

elim(cn/P ,c′n/P
′)

Blame Node Parent parent(p )

parent(p •d±� [nil] •d
′±
�′
[P ′] ) = p •d±� [P

′]

parent(p •d±� [P
′] ) = p otherwise

Direction Flip �ip(d)

�ip(le�) = right

�ip(right) = le�

Blame Node Root root(p)

root(±`[P] ) = ±`

root(p •d±� [P] ) = root(p)

Figure 3.5: Auxiliary Definitions for Figure 3.4

by the context has invalidated the contract in question. Blame is not assigned to node

p when there exists a node compatible with −p, representing the context of p, that

has already been assigned blame. The condition is written:

∃q ∈ Φ. compat(−p,q)

Blame nodeq represents a violation by the context that relievesp of the duty to follow

the contract. The binary relation compat is de�ned in Figure 3.5 and is used to relate

blame nodes that originate from the same application of a function contract. Two

blame nodes are compatible if they are identical up to path compatibility. Two blame

paths are compatible if they share a pre�x and then diverge at di�erent blame contexts

with the same wrap index, for example:
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dom , cod
compat(dom0/nil, cod0/nil)

compat(dom0/dom0/nil, dom0/cod0/nil)

Compatibility is symmetric, but not re�exive. The intuition is that compatibility

relates violations by the subject and context, and therefore a re�exive relation would

undesirably relate violations from the same source. Similarly, the relation is not tran-

sitive because there are subject-context and context-subject pairs that are individu-

ally related, but cannot be collapsed to produce a related subject-subject pair. These

properties inherit from the use of inequality in the de�nition of path compatibility.

Proposition 3.3.1. The relation compat(p,q ) is symmetric, but not re�exive or transi-

tive.

When a blame node compatible with −p does exist then blame is not assigned to p

and the operation returns the unmodi�ed blame state and ⊥, indicating that a source

contract has not been violated. The particular blame polarity of p is not relevant, only

the blame polarity in relation to some other blame node is signi�cant. We could have

also stated the condition as ∃(q ∈ Φ). compat(p,−q)

Proposition 3.3.2. compat(−p,q) if and only if compat(p,−q ).

When a blame node compatible with −p does not exist then blame is assigned to p by

adding p to the blame state. Having assigned blame to p, blame must now be resolved

for p.

Preliminary Definitions We demonstrate blame assignment with a series of ex-

amples. To keep the examples concise we introduce additional reduction rules to

avoid the tedious steps of pushing and popping frames when an application immedi-

ately involves two values. The new and admissible rules are:

De�nition 3.3.3 (Simpli�ed Reduction).

〈K , (λx .M)V 〉 −→ 〈K ,M[x :=V ]〉

〈∆,K , (V@
pA→B)W 〉 −→ 〈∆′,K , (V (W@

−p�domnA))@p�codnB〉

where (∆′,n) = δ (∆,p)

Constructing an interesting example of blame assignment without intersection or

union contracts is challenging because the program will terminate with a blame error

at the �rst violation. To illustrate the intricacies of blame assignment, without having
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to introduce the complexities of intersection and union, we introduce two de�nitions

of blame.

The �rst de�nition of blame is the one we present in Figure 3.4, repeated here. We

refer to this de�nition as blame with exception semantics.

De�nition 3.3.4 (Blame with Exception Semantics).

blame(p,Φ,V ) =


Φ
′,blame ±` if Φ

′,> = assign(p,Φ ), ±` = root(p )

Φ
′,V if Φ

′,⊥ = assign(p,Φ )

The second de�nition is de�ned here. We refer to this de�nition as blame with logging

semantics.

De�nition 3.3.5 (Blame with Logging Semantics).

blameL(p,Φ,V ) = Φ
′,V where Φ

′,b = assign(p,Φ ), b ∈ {⊥,>}

The operation logs violations in the blame state, as was the existing behaviour,

however now the truth value is ignored and the operation always returns the value

V . In each example we make explicit which de�nition we are using.

ExampleB Simple Blame Assignment The �rst example, presented in Figure 3.6,

illustrates a simple case of higher-order blame assignment where a function contract

is violated and a blame error is correspondingly raised. Each reduction is discussed

in turn.

Reduction (3.1a) applies the wrap rule to the application. The context tracker

for the program con�guration is updated to indicate that the wrapped function an-

notated with blame node a, or +`[nil], has now been applied once. The blame nodes

that annotate the function sub-contracts have had their blame paths extended to track

the application context. Reduction (3.1b) creates a contract continuation that applies

an integer contract annotated with blame node c , or +`[cod0/nil]. Reduction (3.1c)

applies β-reduction, substituting the wrapped function into the body of abstraction

λy.y false. Reduction (3.1d) applies the wrap rule again. In this instance the con-

text tracker is updated with a mapping for blame node b, or −`[dom0/nil]. Reduc-

tion (3.1e) creates another contract continuation, also of integer type, however the

annotating blame node is e , or −`[dom0/cod0/nil]. Reduction (3.1f) creates an argu-

ment continuation by pushing the unevaluated function argument false@
dB to the

frame stack. Reduction (3.1g) pops the argument from the frame stack, then pushes
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let a = +`[nil]

〈∅, [ ], Id, ((λy.y false)@a(B→I)→I)λx .true〉

let b = −`[dom0/nil]; c = +`[cod0/nil]

−→ 〈∅, [a 7→ 1], Id, ((λy.y false) ((λx .true)@bB→I))@cI〉 (3.1a)

−→ 〈∅, [a 7→ 1], Id ◦�@
cI, (λy.y false) ((λx .true)@bB→I)〉 (3.1b)

−→ 〈∅, [a 7→ 1], Id ◦�@
cI, ((λx .true)@bB→I)false〉 (3.1c)

let d = +`[dom0/dom0/nil]; e = −`[dom0/cod0/nil]

−→ 〈∅, [a 7→ 1;b 7→ 1], Id ◦�@
cI, ((λx .true) (false@

dB))@eI〉 (3.1d)

−→ 〈∅, [a 7→ 1;b 7→ 1], Id ◦�@
cI◦�@

eI, (λx .true) (false@
dB)〉 (3.1e)

−→ 〈∅, [a 7→ 1;b 7→ 1], Id ◦�@
cI◦�@

eI◦� (false@
dB),λx .true〉 (3.1f)

−→ 〈∅, [a 7→ 1;b 7→ 1], Id ◦�@
cI◦�@

eI◦ (λx .true)�,false@
dB〉 (3.1g)

−→ 〈∅, [a 7→ 1;b 7→ 1], Id ◦�@
cI◦�@

eI◦ (λx .true)�,false〉 (3.1h)

−→ 〈∅, [a 7→ 1;b 7→ 1], Id ◦�@
cI◦�@

eI,true〉 (3.1i)

−→ 〈∅, [a 7→ 1;b 7→ 1], Id ◦�@
cI,true@

eI〉 (3.1j)

Violation! blame(e,∅,true) = {e},blame −`

−→ 〈{e}, [a 7→ 1;b 7→ 1], Id ◦�@
cI,blame −`〉 (3.1k)

−→ 〈{e}, [a 7→ 1;b 7→ 1], Id,blame −`〉 (3.1l)

Figure 3.6: Simple Blame Assignment (with Exception Semantics)
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the evaluated abstraction, creating a function continuation. Reduction (3.1h) evalu-

ates the boolean contract that is applied to the constant false, successfully validating

the contract without incident. Reduction (3.1i) applies β-reduction. Reduction (3.1j)

pops the �rst of the integer contracts from the frame stack, applying the contract

to value true. Reduction (3.1k) evaluates the integer contract annotated with blame

node e , or −`[dom0/cod0/nil]. The value true does not conform to the contract I

therefore a violation is triggered and the blame operation is invoked.

Violation! blame(e,∅,true) = {e},blame −` as

assign(e,∅) = resolve(e, {e}) as �q ∈ ∅. compat(−e,q)

resolve(e, {e}) = {e},>

where e = −`[dom0/cod0/nil]

Assignment is trivial because the blame state is empty and therefore no compatible

node can be found. Resolution is similarly trivial because the blame node in question

is a root. The result > is returned by the resolve operation indicating that a source

contract has been violated therefore a blame error should be raised. The result of

blame(e,∅,true) is a blame state that implicates e , and a blame error that implicates

the context of the initial function contract. Reduction (3.1l) discards the remaining

continuation as an error has been raised; the program con�guration reaches a termi-

nal state.

ExampleBBlame Assignment with Logging Semantics We start with the same

initial program however now we now use blameL rather than blame. By inspecting

the blame state at the end of evaluation we can observe all blame nodes that were

assigned blame, or all violations that were “logged”. The full reduction sequence is

de�ned in Figure 3.7.

Reduction (3.2a) to (3.2j) proceed exactly as before. Reduction (3.2k) evaluates the

integer contract annotated with blame node e , or −`[dom0/cod0/nil]. The value true

does not conform to the contract I therefore a violation is triggered and the blameL
operation is invoked.

Violation! blameL(e,∅,true) = {e},true as

assign(e,∅) = resolve(e, {e}) as �q ∈ ∅. compat(−e,q)

resolve(e, {e}) = {e},>

where e = −`[dom0/cod0/nil]

Assignment is trivial because the blame state is empty and therefore no compatible

node can be found. Resolution is similarly trivial because the blame node in question
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let a = +`[nil]

〈∅, [ ], Id, ((λy.y false)@a(B→I)→I)λx .true〉

let b = −`[dom0/nil]; c = +`[cod0/nil]

−→ 〈∅, [a 7→ 1], Id, ((λy.y false) ((λx .true)@bB→I))@cI〉 (3.2a)

−→ 〈∅, [a 7→ 1], Id ◦�@
cI, (λy.y false) ((λx .true)@bB→I)〉 (3.2b)

−→ 〈∅, [a 7→ 1], Id ◦�@
cI, ((λx .true)@bB→I)false〉 (3.2c)

let d = +`[dom0/dom0/nil]; e = −`[dom0/cod0/nil]

−→ 〈∅, [a 7→ 1;b 7→ 1], Id ◦�@
cI, ((λx .true) (false@

dB))@eI〉 (3.2d)

−→ 〈∅, [a 7→ 1;b 7→ 1], Id ◦�@
cI◦�@

eI, (λx .true) (false@
dB)〉 (3.2e)

−→ 〈∅, [a 7→ 1;b 7→ 1], Id ◦�@
cI◦�@

eI◦� (false@
dB),λx .true〉 (3.2f)

−→ 〈∅, [a 7→ 1;b 7→ 1], Id ◦�@
cI◦�@

eI◦ (λx .true)�,false@
dB〉 (3.2g)

−→ 〈∅, [a 7→ 1;b 7→ 1], Id ◦�@
cI◦�@

eI◦ (λx .true)�,false〉 (3.2h)

−→ 〈∅, [a 7→ 1;b 7→ 1], Id ◦�@
cI◦�@

eI,true〉 (3.2i)

−→ 〈∅, [a 7→ 1;b 7→ 1], Id ◦�@
cI,true@

eI〉 (3.2j)

Violation! blameL(e,∅,true) = {e},true

−→ 〈{e}, [a 7→ 1;b 7→ 1], Id ◦�@
cI,true〉 (3.2k)

−→ 〈{e}, [a 7→ 1;b 7→ 1], Id,true@
cI〉 (3.2l)

Violation! blameL(c, {e},true) = {e},true

−→ 〈{e}, [a 7→ 1;b 7→ 1], Id,true〉 (3.2m)

Figure 3.7: Blame Assignment with Logging Semantics
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is a root. The modi�ed operation blameL ignores the truth value and returns the

value true in a modi�ed state that assigns blame to node e , or −`[dom0/cod0/nil].

Reduction (3.2l) pops the second integer contract from the frame stack, applying the

contract to value true. Reduction (3.2m) evaluates the integer contract annotated

with blame node c , or +`[cod0/nil]. The value true does not conform to the contract

I therefore a violation is triggered and the blameL operation is invoked.

Violation! blameL(c, {e},true) = {e},true as

assign(c, {e}) = {e},⊥ as ∃q ∈ {e}. compat(−c,q)

where c = +`[cod0/nil]

e = −`[dom0/cod0/nil]

Attempting to assign blame to node c involves querying the blame state for existing

violations. We observe that the negation of blame node c , de�ned as−(+`[cod0/nil])=

−`[cod0/nil], is compatible with node e that has previously been assigned blame.

cod , dom
compat(cod0/nil, dom0/cod0/nil)

compat(−`[cod0/nil], −`[dom0/cod0/nil])

The context has violated the contract by supplying an argument that does not con-

form to the domain contract B→I, as evidenced by the blame assigned to the blame

node −`[dom0/cod0/nil].

A consequence of assigning blame to the context is that the subject is no longer

obligated to follow the contract; no blame is assigned when the subject produces a

value that violates the codomain contract I.

The existence of a compatible blame node means that blame is not assigned to

node c; the existing blame state is returned without modi�cation. Blame does not

need to be resolved because blame was never assigned, therefore the operation assign

returns ⊥, and the operation blameL returns the same blame state and value true.

After reduction (3.2m) the program con�guration reaches an irreducible form.

The �nal blame state correctly logs the contract violations: the blame node e in-

forms us that the context has failed to conform to the contract (B→I)→I. Further-

more, blame was correctly not assigned to the subject of the contract, even though

the codomain contract was violated.

ExampleB Presumptuous Functions Blame assigned to the context of a function

does not always absolve the function of blame. In particular, a function that presumes
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let a = +`[nil]

〈∅, [ ], Id, ((λy.(y false,y 1))@a(B→I)→any)λx .true〉

let b = −`[dom0/nil]; c = +`[cod0/nil]

−→ 〈∅, [a 7→ 1], Id, ((λy.(y false,y 1)) ((λx .true)@bB→I))@cany〉 (3.3a)

−→ 〈∅, [a 7→ 1], Id ◦�@
cany, (λy.(y false,y 1)) ((λx .true)@bB→I)〉 (3.3b)

let V = ((λx .true)@bB→I)

−→ 〈∅, [a 7→ 1], Id ◦�@
cany, (V false,V 1)〉 (3.3c)

let K = Id ◦�@
cany◦ (�,V 1)

−→ 〈∅, [a 7→ 1],K ,V false〉 (3.3d)

let d = +`[dom0/dom0/nil]; e = −`[dom0/cod0/nil]

−→ 〈∅, [a 7→ 1;b 7→ 1],K , ((λx .true) (false@
dB))@eI〉 (3.3e)

−→ 〈∅, [a 7→ 1;b 7→ 1],K ◦�@
eI, (λx .true) (false@

dB)〉 (3.3f)

−→ 〈∅, [a 7→ 1;b 7→ 1],K ◦�@
eI◦� (false@

dB),λx .true〉 (3.3g)

−→ 〈∅, [a 7→ 1;b 7→ 1],K ◦�@
eI◦ (λx .true)�,false@

dB〉 (3.3h)

−→ 〈∅, [a 7→ 1;b 7→ 1],K ◦�@
eI◦ (λx .true)�,false〉 (3.3i)

−→ 〈∅, [a 7→ 1;b 7→ 1],K ◦�@
eI,true〉 (3.3j)

−→ 〈∅, [a 7→ 1;b 7→ 1],K ,true@
eI〉 (3.3k)

Violation! blameL(e,∅,true) = {e},true

−→ 〈{e}, [a 7→ 1;b 7→ 1],K ,true〉 (3.3l)

Figure 3.8: Presumptuous Functions: Part One (with Logging Semantics)
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ill-behaviour of the context is not allowed: a function must assume that the context

has honest intentions.

Compatibility is de�ned to only consider the longest pre�x of two blame paths, or

the most speci�c application context. The concrete intuition for this behaviour is to

prevent di�erent applications of the same function from interfering. Each application

must be considered fresh.

We illustrate this behaviour with an example presented in Figure 3.8 and Fig-

ure 3.9. As was the case before, we use the blameL de�nition that only logs assigned

blame. Before explaining the reduction sequence we highlight some key di�erences

with previous examples. First, the body of the wrapped function returns a tuple with

each element applying argumenty. This choice is made to demonstrate the presump-

tuous behaviour when evaluating the right element. Second, the codomain of the

function contract is any rather than I. This choice is made to avoid extending value

conformance to include tuples; we can trivially evaluate the contract any without

conformance checking. For this example we assume that the operational semantics

are extended with the standard rules for tuples; we do not require tuple contracts or

associated operations.

We start with explanation of Figure 3.8 that contains the reduction sequence up

to the evaluation of the �rst tuple element in the body of the wrapped function. Re-

duction (3.3a) to reduction (3.3c) proceed as before. Reduction (3.3d) pushes a tuple

frame that accepts a value to be inserted into the left element, then the con�guration

proceeds to evaluate the term from the left element. Reduction (3.3e) performs the

�rst wrapping of V , or the wrapped argument function. As was the case before, new

blame nodes with extended paths are created for the domain and codomain contracts.

Reduction (3.3e) to reduction (3.3l) evaluate similarly to the previous example, with

the only di�erence being that continuation K holds the other element of the tuple.

Reduction (3.3l) ends having evaluated the �rst element of the tuple to true. The

blame state currently implicates the context for providing an argument that does not

conform to the contract B→I. Evaluation resumes in Figure 3.9.

Reduction (3.3m) exchanges the tuple elements in the con�guration; the evalu-

ated term is placed in the frame stack and the term in the right element is selected

for evaluation. Reduction (3.3n) applies the wrapped argument function again. The

context tracker is updated to indicate that this is the second application of the func-

tion, and the new blame nodes f and д for the domain and codomain contracts are

correspondingly extended. Reduction (3.3o) to reduction (3.3q) evaluate the applied
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let K′ = Id ◦�@
cany◦ (true,�)

−→ 〈{e}, [a 7→ 1;b 7→ 1],K′,V 1〉 (3.3m)

let f = +`[dom0/dom1/nil]; д = −`[dom0/cod1/nil]

−→ 〈{e}, [a 7→ 1;b 7→ 2],K′, ((λx .true) (1@
f B))@дI〉 (3.3n)

−→ 〈{e}, [a 7→ 1;b 7→ 2],K′ ◦�@
дI, (λx .true) (1@

f B)〉 (3.3o)

−→ 〈{e}, [a 7→ 1;b 7→ 2],K′ ◦�@
дI◦� (1@

f B),λx .true〉 (3.3p)

−→ 〈{e}, [a 7→ 1;b 7→ 2],K′ ◦�@
дI◦ (λx .true)�,1@

f B〉 (3.3q)

Violation! blameL(f , {e},1) = {e, f },1

−→ 〈{e, f }, [a 7→ 1;b 7→ 2],K′ ◦�@
дI◦ (λx .true)�,1〉 (3.3r)

−→ 〈{e, f }, [a 7→ 1;b 7→ 2],K′ ◦�@
дI,true〉 (3.3s)

−→ 〈{e, f }, [a 7→ 1;b 7→ 2],K′,true@
дI〉 (3.3t)

Violation! blameL(д, {e, f },true) = {e, f },true

−→ 〈{e, f }, [a 7→ 1;b 7→ 2],K′,true〉 (3.3u)

−→ 〈{e, f }, [a 7→ 1;b 7→ 2], Id ◦�@
cany, (true,true)〉 (3.3v)

−→ 〈{e, f }, [a 7→ 1;b 7→ 2], Id, (true,true)@cany〉 (3.3w)

−→ 〈{e, f }, [a 7→ 1;b 7→ 2], Id, (true,true)〉 (3.3x)

Figure 3.9: Presumptuous Functions: Part Two (with Logging Semantics)
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function. Reduction (3.3r) evaluates the boolean contract which is applied to the in-

teger 1, triggering a violation and raising blame on node f , or +`[dom0/dom1/nil].

Violation! blameL(f , {e},1) = {e, f },1 as

assign(f , {e}) = resolve(f , {e, f }) as �q ∈ {e}. compat(−f ,q)

resolve(f , {e, f }) = {e, f },>

where f = +`[dom0/dom1/nil]

e = −`[dom0/cod0/nil]

We observe that the context has already violated the contract annotated with blame

node e , however blame should still be assigned to f , the subject. Speci�cally, while e

and f share the pre�x dom0 the two paths diverge at di�erent application contexts:

cod0 and dom1 respectively. The intuition is that the body of the function must al-

ways assume that the argument is conforming. A violation from a distinct and prior

application of the argument function cannot be used as evidence to escape blame. If

the context were to supply a conforming argument such as λx .42, or the tuple ele-

ments were reversed, then there would be no blame assigned to e at the point f is

blamed. In the current reduction there happens to be an unrelated violation from a

di�erent application, but this should not absolve the subject of blame. In general, the

negative blame assigned to e cannot be relied upon by the subject of the contract.

Reduction (3.3s) to reduction (3.3u) proceed as before, with the only di�erence

being that the continuation K′ holds �rst element of the tuple. We omit discussion

of the remaining reductions as they do not provide any additional insight regarding

blame assignment.

Ge�ing Away with It Due to the limitations of contract monitoring there are some

cases where a presumptuous function can escape blame, or “get away with it”. This is

because contract monitoring is unable to prove conformance of a function in all cases;

contract monitoring can only prove that a function does not conform. For example:

((λf .λx . f 4)@p(B→B)→(B→B)) (λy.y)4

Evaluation of the term will assign blame to the context for applying the returned

function to the integer 4, however, blame will not be assigned to the subject of the

contract for applying f to the integer 4. This is undesirable because the function

de�ned by the subject is presumptuous and relies on the violation from the context

to escape blame. If the context were to supply true instead of 4 then the subjectwould

be assigned blame.
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Detecting this case is not possible in our system because we are unable to distin-

guish an integer value supplied by the context, and an integer value that originated

in the body. For example:

((λf .λx . f x)@p(B→B)→(B→B)) (λy.y)4

The function implemented here conforms to the function contract and assigning

blame to the subject would be wrong. During evaluation we end up in the same

situation as the previous example after substituting x with the integer 4. There is no

way to distinguish 4 passed as argument, and 4 originating from inside the de�nition

of the function.

A potential amelioration is to employ taint tracking. When the integer 4 provided

by the context violates the �rst boolean contract the integer is tainted, distinguish-

ing it from the integer inside the function de�nition. Another approach is to use a

parametric contract ∀X .(X→X )→(X→X ). The integer 4 provided by the context is

sealed upon substitution for variable x , and unsealed upon substitution for variabley.

The integer 4 in the body of the function is never sealed and a violation will be raised

at any attempt to unseal the integer. This is dual to taint tracking. Instead of tainting

the argument provided by the context, we vet the argument using a seal. However,

this is not a general solution because the function may not be polymorphic in nature.

A further solution would be to employ where-provenance (Buneman et al., 2001) to

determine the location in the source program from where the integer originated.

Failing to detect certain presumptuous functions does not negatively impact our

contract semantics. For example:

((λf .λx . f 4)@p(B→B)→(B→B)) (λy.y)4

Failing to assign blame to the subject is justi�ed because a logical interpretation of

the contract shows that the contract is satis�ed. We interpret the function contract

(B→B)→(B→B) as the proposition (A⇒ B) ⇒ (C⇒ D), and interpret any contract

violation as the falsi�cation of the corresponding proposition. When proposition C

is false the overall proposition is satis�ed:

((A⇒ B) ⇒ (⊥⇒ D)) ⇔ >

Reinterpreting this in the setting of contracts: the contract (B1→B2)→(B3→B4) is

satis�ed when contract B3 is violated, which is precisely the violation that occurs in

our example program ((λf .λx . f 4)@p(B→B)→(B→B)) (λy.y)4.
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Furthermore, as we show in our contract semantics de�ned in Chapter 4, we do

not consider this function to satisfy the contract in general. For the function to sat-

isfy the contract in general the function must conform to the contract in all possible

contexts. We can construct the following context for the function that will expose the

lack of conformance, rendering the function unsatisfactory.

((λf .λx . f 4)@p(B→B)→(B→B)) (λy.y)true

3.3.2 Resolution

Blame that is assigned must be interpreted in the context of the current blame state,

or resolved. There are two broad phases of resolution: root resolution where blame

is assigned to a root node that annotated a source contract, and branch resolution

where blame is assigned to a branch node and the parent intersection or union must

interpret that blame. The de�nition of blame resolution is de�ned in Figure 3.4, with

auxiliary de�nitions de�ned in Figure 3.5. For convenience we repeat the relevant

cases inline. We discuss each phase of resolution in turn.

Root Resolution Resolving blame for a root node ±`[P] in state Φ requires no

additional work and we indicate that a source contract has been violated by returning

the boolean value >. The blame state Φ is returned unmodi�ed.

resolve(±`[P],Φ ) = Φ,>

Recall that blame assignment is responsible for adding ±`[P] to the state and at the

point of resolution there is no further information to add.

Branch Resolution Resolving blame for a branch node p •d±� [P] has four con�g-

urations: positive or negative, intersection or union. We discuss each starting with

the simple cases for positive intersection and negative union.

Positive Intersection Resolving blame for a positive intersection branch p •d+∩[P]

immediately assigns blame to the parent node p.

resolve(p •d+∩[P],Φ ) = assign(parent(p •d
+
∩[P] ),Φ )

Recall that an intersection contract is assigned positive blame if either branch is as-

signed positive blame, and as a consequence there are no additional constraints re-

quired to assign blame to the parent. When propagating blame to the parent node
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the operation parent is used to extract the parent from a branch. The purpose of the

operation is to share information across nested intersection and union contracts; we

defer detailed discussion of the operation until the end of this section.

Negative Union Resolving blame for a negative union branch p •d−∪[P] immedi-

ately assigns blame to the parent node p.

resolve(p •d−∪[P],Φ ) = assign(parent(p •d
−
∪[P] ),Φ )

Recall that a union contract is assigned negative blame if either branch is assigned

negative blame, and as a consequence there are no additional constraints required to

assign blame to the parent.

Negative Intersection Resolving blame for a negative intersection branchp•d−∩[P]

depends upon the current blame state Φ.

resolve(p •d−∩[P],Φ ) =


assign(parent(p •d−∩[P] ),Φ )

if ∃P ′. p •�ip(d)−∩[P ′] ∈ Φ

and elim(P ,P ′)

Φ,⊥ otherwise

Recall that an intersection contract is assigned negative blame if both branches are

assigned negative blame in the same elimination context. Consequently, the reso-

lution process must examine the current blame state to determine if both branches

have been assigned negative blame, and only then is blame assigned to the parent of

the branch. The condition under which blame is assigned to the parent is concretely

de�ned as:

∃P ′. p •�ip(d)−∩[P ′] ∈ Φ and elim(P ,P ′)

The �rst half of the conjunction asserts that the other branch of the intersection has

already been assigned negative blame with any path P ′, using operation �ip to reverse

the direction of a branch. This condition alone is insu�cient because it does not assert

that violations occur in the same elimination context. Revisiting the example from

Section 2.4:

let f = (λx .x)@p(I→I)∩ (B→B) in

if f true then f 1 else f 0

Evaluation of the condition will assign blame to the node p • le�−∩[dom0/nil]: the do-

main contract (I) in the left branch of the intersection during the �rst application.
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Evaluation of the “then” clause will assign blame to the node p • right−∩[dom1/nil]:

the domain contract (B) in the right branch of the intersection during the second ap-

plication. At the point of the second violation the �rst conjunct will be satis�ed as

there exists a path (dom0/nil) along which the inverse branch has been blamed. To

ensure that no blame is assigned in this instance the second half of the conjunction

asserts that the path must share the same elimination context, denoted elim(P ,P ′).

The relation elim(P ,P ′) is de�ned to relate two paths if the wrap indices at the head

of each path match. The blame contexts at the head of each path are not required to

match; for instance the paths dom0/nil and cod0/dom1/nil are related. In this exam-

ple the second conjunct is not satis�ed because the two paths dom0/nil and dom1/nil

are not related; the paths do not stem from the same elimination context, indicated

by the di�ering wrap indices 0 and 1.

Example B Negative Intersection We revisit another example from Section 2.4

that should be assigned blame:

((λx .x)@p(I→I)∩ (B→B)) "foo"

Figure 3.10 presents the full reduction sequence. In the full sequence we replace the

abstract blame node variable p with the concrete root node +`[nil]. Furthermore, in

the remaining examples we use blame instead of blameL.

Reduction (3.4a) creates an argument frame and begins evaluating the intersec-

tion contract. Reduction (3.4b) decomposes the intersection contract, creating branch

nodes a and b. Reduction (3.4c) creates a function continuation and begins evalu-

ating the argument. Reduction (3.4d) wraps the application of the outer function

contract B→ B. Reduction (3.4e) creates a contract continuation for the codomain

contract B. Reduction (3.4f) creates an argument continuation and begins evaluating

the function wrapped in a single contract I→I. Reduction (3.4g) creates a function

continuation and begins evaluating the argument wrapped in the domain contract B.

Reduction (3.4h) evaluates the boolean contract applied to the string “foo”, triggering

a violation.

Violation! blame(c,∅,“foo”) = {c},“foo” as

assign(c,∅) = resolve(c, {c}) as �q ∈ ∅. compat(−c,q)

resolve(c, {c}) = {c},⊥ as �P ′.− `[nil] • le�−∩[P
′] ∈ {c}

where c = −`[nil] • right−∩[dom0/nil]
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〈∅, [ ], Id, ((λx .x)@+`[nil](I→I)∩ (B→B))“foo”〉

−→ 〈∅, [ ], Id ◦�“foo”, (λx .x)@+`[nil](I→I)∩ (B→B)〉 (3.4a)

let a = +`[nil] • le�+∩[nil]; b = +`[nil] • right+∩[nil]

−→ 〈∅, [ ], Id ◦�“foo”, ((λx .x)@aI→I)@bB→B〉 (3.4b)

−→ 〈∅, [ ], Id ◦ (((λx .x)@aI→I)@bB→B)�,“foo”〉 (3.4c)

let c = −`[nil] • right−∩[dom0/nil]; d = +`[nil] • right+∩[cod0/nil]

−→ 〈∅, [b 7→ 1], Id, (((λx .x)@aI→I) (“foo”@
cB))@dB〉 (3.4d)

−→ 〈∅, [b 7→ 1], Id ◦�@
dB, ((λx .x)@aI→I) (“foo”@

cB)〉 (3.4e)

−→ 〈∅, [b 7→ 1], Id ◦�@
dB◦� (“foo”@

cB), (λx .x)@aI→I〉 (3.4f)

−→ 〈∅, [b 7→ 1], Id ◦�@
dB◦ (λx .x)@aI→I�,“foo”@

cB〉 (3.4g)

Violation! blame(c,∅,“foo”) = {c},“foo”

−→ 〈{c}, [b 7→ 1], Id ◦�@
dB◦ (λx .x)@aI→I�,“foo”〉 (3.4h)

let e = −`[nil] • le�−∩[dom0/nil]; f = +`[nil] • le�+∩[cod0/nil]

−→ 〈{c}, [b 7→ 1;a 7→ 1], Id ◦�@
dB, ((λx .x) (“foo”@

eI))@f I〉 (3.4i)

−→ 〈{c}, [b 7→ 1;a 7→ 1], Id ◦�@
dB◦�@

f I, (λx .x) (“foo”@
eI)〉 (3.4j)

−→ 〈{c}, [b 7→ 1;a 7→ 1], Id ◦�@
dB◦�@

f I◦�“foo”@
eI,λx .x〉 (3.4k)

let K = Id ◦�@
dB◦�@

f I◦ (λx .x)�

−→ 〈{c}, [b 7→ 1;a 7→ 1],K ,“foo”@
eI〉 (3.4l)

Violation! blame(e, {c},“foo”) = {c,e,−`[dom0/nil]},blame −`

−→ 〈{c,e,−`[dom0/nil]}, [b 7→ 1;a 7→ 1],K ,blame −`〉 (3.4m)

−→ 〈{c,e,−`[dom0/nil]}, [b 7→ 1;a 7→ 1], Id,blame −`〉 (3.4n)

Figure 3.10: Negative Intersection Blame (with Exception Semantics)
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Blame is immediately assigned to node c , or −`[nil] • right−∩[dom0/nil], as the blame

state is empty. When considering how blame is resolved for c we observe that no left

branch has been assigned negative blame, and therefore we cannot assign blame to

the intersection. Blame resolution returns ⊥ and no blame error is created. The con-

tract violation is not without e�ect; the violation has been recorded as evidenced by

the addition of c to the resulting blame state. Reduction (3.4i) wraps the application

of the remaining function contract I→I. Reduction (3.4j) creates a contract contin-

uation for the codomain contract I. Reduction (3.4k) creates an argument continua-

tion and begins evaluating the identity function. Reduction (3.4l) creates a function

continuation and begins evaluating the argument wrapped in the domain contract I.

Reduction (3.4m) evaluates the integer contract applied to the string “foo”, triggering

a violation.

Violation! blame(e, {c},“foo”) = {c,e,−`[dom0/nil]},blame −` as

assign(e, {c}) = resolve(e, {c,e}) as �q ∈ {c}. compat(−e,q)

resolve(e, {c,e}) = assign(−`[dom0/nil], {c}) as − `[nil] • right−∩[dom0/nil] ∈ {c,e}

assign(−`[dom0/nil], {c,e}) = resolve(−`[dom0/nil], {c,e,−`[dom0/nil]})

resolve(−`[dom0/nil], {c,e,−`[dom0/nil]}) = {c,e,−`[dom0/nil]},>

where c = −`[nil] • right−∩[dom0/nil]

e = −`[nil] • le�−∩[dom0/nil]

Blame is immediately assigned to node e , or −`[nil] • le�−∩[dom0/nil], as the blame

state has no positive blame nodes to match the negation of e . When considering how

blame is resolved for e we observe that a right branch has already been negatively

blamed, speci�cally node c . Furthermore, the paths of both e and c match. This com-

bined information indicates that the intersection should be blamed, and consequently

blame is assigned to the parent of e . When blaming the parent we hoist the blame

path up to the parent, the details of which we explain at the end of the section. Blame

is assigned to the root node −`[dom0/nil] because there are no other root nodes in

the blame state and resolution indicates that a source contract has been violated. The

result of the blame operation is the new blame state {c,e,−`[dom0/nil]}, and a blame

error blame −`. Reduction (3.4n) discards the remaining continuation, causing the

blame error to propagate to the top.
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〈∅, [ ], Id,“foo”@
+`[nil]I∪B〉

let a = +`[nil] • le�+∪[nil]; b = +`[nil] • right+∪[nil]

−→ 〈∅, [ ], Id, (“foo”@
aI)@bB〉 (3.5a)

−→ 〈∅, [ ], Id ◦�@
bB,“foo”@

aI〉 (3.5b)

Violation! blame(a,∅,“foo”) = {a},“foo”

−→ 〈{a}, [ ], Id ◦�@
bB,“foo”〉 (3.5c)

−→ 〈{a}, [ ], Id,“foo”@
bB〉 (3.5d)

Violation! blame(b, {a},“foo”) = {a,b,+`[nil]},blame +`

−→ 〈{a,b,+`[nil]}, [ ], Id,blame +`〉 (3.5e)

Figure 3.11: Positive Union Blame (with Exception Semantics)

Positive Union Resolving blame for a positive union branch p • d+∪[P] depends

upon the current blame state Φ.

resolve(p •d+∪[P],Φ ) =

assign(parent(p •d+∪[P] ),Φ ) if ∃P ′. p •�ip(d)+∪[P ′] ∈ Φ

Φ,⊥ otherwise

Recall that a union contract is assigned positive blame if both branches are assigned

positive blame. Consequently, the resolution process must examine the current blame

state to determine if both branches have been assigned positive blame, and only then

is blame assigned to the parent of the branch. The condition under which blame is

assigned to the parent is concretely de�ned as:

∃P ′. p •�ip(d)+∪[P ′] ∈ Φ

The condition asserts that the other branch of the union has already been assigned

positive blame with any path P ′, using operation �ip to reverse the direction of a

branch. Unlike intersection, there is no constraint on the matching path P ′ because

the choice of branch is made once at the introduction of the value, not at each elim-

ination. Blame is aggregated across all uses of the contract, or across all paths. Fig-

ure 3.11 presents the full reduction sequence of a union contract that is assigned

positive blame.

Reduction (3.5a) decomposes the union contract, creating branch nodes a and b.

Reduction (3.5b) creates a contract continuation for the right branch contract B. Re-
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duction (3.5c) evaluates the integer contract applied to the string “foo”, triggering a

violation.

Violation! blame(a,∅,“foo”) = {a},“foo” as

assign(a,∅) = resolve(a, {a}) as �q ∈ ∅. compat(−a,q)

resolve(a, {a}) = {a},⊥ as �P ′.+ `[nil] • right+∪[P
′] ∈ {a}

where a = +`[nil] • le�+∪[nil]

Blame is immediately assigned to node a, or +`[nil] • le�+∪[nil], as the blame state is

empty. When considering how blame is resolved fora we observe that no right branch

has been assigned positive blame, and therefore we cannot assign blame to the union.

Blame resolution returns ⊥ and no blame error is created. The contract violation is

not without e�ect; the violation has been recorded as evidenced by the addition of

a to the resulting blame state. Reduction (3.5d) pops the contract continuation from

the frame stack. Reduction (3.5e) evaluates the boolean contract applied to the string

“foo”, triggering a violation.

Violation! blame(b, {a},“foo”) = {a,b,+`[nil]},blame +` as

assign(b, {a}) = resolve(b, {a,b}) as �q ∈ {a}. compat(−b,q)

resolve(b, {a,b}) = assign(+`[nil], {a,b}) as ∃P ′.+ `[nil] • le�+∪[P ′] ∈ {a,b}
assign(+`[nil], {a,b}) = resolve(+`[nil], {a,b,+`[nil]})

resolve(+`[nil], {a,b,+`[nil]}) = {a,b,+`[nil]},>

where a = +`[nil] • le�+∪[nil]

b = +`[nil] • right+∪[nil]

Blame is immediately assigned to nodeb, or+`[nil]•right+∪[nil], as the blame state has

no negative blame nodes to match the negation of b. When considering how blame is

resolved for b we observe that a left union branch has already been positively blamed,

speci�cally node a. This indicates that the union should be blamed, and consequently

blame is assigned to the parent ofb. Blame is assigned to the root node+`[nil] because

there are no other root nodes in the blame state and resolution indicates that a source

contract has been violated. The result of the blame operation is the new blame state

{a,b,+`[nil]}, and a blame error blame +`.

Blame Path Hoisting When blame propagates from branch node to parent node

the operation parent(p ), de�ned in Figure 3.5, is used to select the parent node fromp.

The operation is a partial function on blame nodes, omitting the case for root nodes,
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though our system only applies the operation to branch nodes. The motivation for

the operation begins with a nested intersection contract.

((B→B)∩ (I→I))∩ (S→S)

Semantically all three function contracts exist at the same “level”; all three function

contracts are eliminated at the same application context. When concretely monitor-

ing these contracts the context information—the blame paths—will only be added to

the deepest branch nodes. The consequence of this is that intermediate intersection

or union contracts can miss out on information if blame is not correctly propagated.

Consider the following example:

〈∅, [ ], Id, (V@
+`[nil](((B→B)∩ (I→I))∩ (I→any)))“foo”’〉

The domain contract for each function will be violated with the following blame

nodes, reading left-to-right.

(a) −`[nil] • le�−∩[nil] • le�
−
∩[dom0/nil] for contract B→B

(b) −`[nil] • le�−∩[nil] • right
−
∩[dom0/nil] for contract I→I

(c) −`[nil] • right−∩[dom0/nil] for contract I→any

Negative blame will be assigned to the intersection (B→B)∩ (I→I) contract in the

left branch of the outermost intersection as blame is assigned to branch nodes a and

b. If we were to naively blame the parent of these branches directly then blame would

be assigned to the parent of a and b, node −`[nil] • le�−∩[nil]. However, the path of

this parent node is empty and will never match the path for blame node c . The result

is that negative blame will never be assigned to the top level intersection contract. By

naively blaming the parent we lose valuable path information that has been collected

by the children.

The solution we present is to hoist the blame path, but only under the condition

that the parent path is empty. A parent node with an empty path must denote a se-

quence of nested intersection or union contracts. If the parent node had a non-empty

blame path then there must be some intermediate function contracts between the

current intersection or union contract, and the parent intersection or union contract.

An alternate phrasing is to say that we compare the elimination contexts of a branch

blame node and its parent. If the path of the parent is empty then there were no inter-

mediate evaluation contexts between parent and child: they were eliminated in the

same context. Consequently, blame path information from the child should be shared

with the parent.
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The special form of a parent with an empty path always denotes a blame node

where that parent and the child are from the same context, consequently it is never

the case that the polarity of the parent and child di�er.

Proposition 3.3.6. IfM is a source program then 〈∅, [ ], Id,M〉 X−→∗ 〈Φ,∆,K ,N 〉 where

p •d±� [nil] •d
′∓
�′
[P] ∈ 〈Φ,∆,K ,N 〉.

Furthermore, given that a blame node with a parent that has an empty path denotes a

contract nested within an intersection or union, and all nested contracts share the

same evaluation context, we expect blame node compatibility to be preserved by

blame path hoisting.

Proposition 3.3.7. If compat(p,q ) then compat(parent(p),parent(q) )

when p = p1 •d
±
� [nil] •d

′±
�′
[P] and q = p1 •d

±
� [nil] •d

′±
�′
[P ′]

In the example, when blame propagates from the inner intersection the path is hoisted

and the modi�ed parent −`[nil] • le�−∩[dom0/nil] is blamed. The modi�ed parent of

nodes a and b will now have a matching path with node c . The result is that negative

blame will be correctly assigned to the outermost intersection.

The de�nition of parent has the blemish of performing case analysis on the parent

path. The is a consequence of our heavily syntactic approach to representing blame

nodes using lists. Future work would be to remedy this and �nd a representation

closer to the underlying semantics, where the evaluation context spanning multiple

intersection or union contracts is represented in blame tracking.

3.4 Related Work

3.4.1 Gradual Typing with Intersection and Union

The only existing work that presents a design of higher-order intersection and union

contracts is that of Keil and Thiemann (2015a), from which we take much inspiration.

There are two key di�erences between their system and ours.

First is our use of the context tracker ∆ to record function contract eliminations,

or applications. The use of the contract tracker is critical to the implementation of

uniform contract monitoring for intersection and union, however the context tracker

does incur an overhead. The size of the overhead is proportional to the size of the

blame state. Keil and Thiemann (2015a) do not require a context tracker as their mon-

itoring rules are not uniform, and consequently avoid the extra cost. Both systems
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maintain a blame state and the overhead is the same in each system; the blame states

are implemented as a forest of directed acyclic graphs of similar structure. In the

presence of recursive contracts the blame state is unbounded in size (under a naive

solution), however neither system implements recursive contracts. Finding e�cient

representations of the blame state remains an open problem.

The second key di�erence is that Keil and Thiemann (2015a) implement user-

de�ned contracts, while we do not. In most cases our system can be immediately

extended to support user-de�ned contracts without change, however there is one

class of contracts that demand attention. Keil and Thiemann (2015a) identify that

user-de�ned contracts that apply their argument, such as

λf . f 1 > 0

will violate the commuting property of intersection and union contracts. Contracts

from one branch may �ow into contracts from the other branch given a certain or-

dering of an intersection or union contract. For example, taking �at contract C to

be the predicate λf . f 1 > 0, then the contract (B→ B) ∩C will evaluate C with an

argument wrapped in contract B→ B, while the contract C ∩ (B→ B) will not. Keil

and Thiemann (2015a) solve this problem by dropping the function contract B→ B

when it �ows into the contract C . We expect that their solution can be adapted to

our system in a straightforward manner. This technique is similar to the lax contract

monitoring strategy and is therefore not a complete monitor (Dimoulas et al., 2012).

Implementing intersection and union contracts with user-de�ned contracts that form

a complete monitor is interesting and challenging future work.

The Racket (Flatt and PLT, 2010) language provides the most extensive implemen-

tation of contracts and combinators, however there is no higher-order intersection or

union combinator. The closest counterparts are the combinators and/c and or/c.

Both operators treat positive and negative blame in a covariant way. The combinator

and/c is assigned blame if any of the constituents are assigned positive or negative

blame. The combinator or/c is assigned blame if all of the constituents are assigned

positive or negative blame. Another phrasing is that and/c handles both positive and

negative obligations using conjunction, while or/c handles both positive and nega-

tive obligations using disjunction.

The or/c combinator also has the additional constraint where only one higher-

order type is allowed. For example:

(or/c number? (-> string? string? string?))
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is a legal use of the combinator, while

(or/c (-> number? number?) (-> string? string? string?))

is not a legal use of the combinator. The implementation of or/c depends upon being

able to detect a violation using only �rst-order checks, or having an unambiguous

candidate after �rst-order checks are applied. There is no �rst-order check capable

of distinguishing the contracts (-> number? number?) and (-> string? string?

string?), therefore the combination is outlawed.

Castagna and Lanvin (2017) are the �rst to combine gradual types with set-theoretic

types including intersection, union, and negation types. The premise of their work

is that combining intersection and union types with the unknown (or any) type will

provide greater control over the spectrum between static and dynamic. Consider an

example that they present:

1 function f(condition: B, x: /* ???? */) {

2 if (condition) {

3 return succ(x);

4 } else {

5 return not(x);

6 }

7 }

When condition is true the successor function is applied to x; when condition is

false the negation function is applied to x. Ascribing the any type to x allows the

programmer to write the body of f without explicit type casts, but allows a caller

to provide any arguments, including those outside the domain of succ and not. As-

cribing the type I∪ B to x will statically reject any argument outside the domain of

succ and not, but requires the programmer to write explicit type casts in the body of

f. Castagna and Lanvin (2017) propose ascribing the type (I∪B)∩any to x, yielding

the best of both approaches. Static type checking is enforced at the call-site of the

function: the argument must be an integer or boolean. Automatic cast insertion is

provided in the body of the function: the any type annotation omits the need for the

programmer to write casts by hand.

The semantics of gradual types are given using abstract interpretation in the style

of Garcia et al. (2016), where gradual types are interpreted as sets of static types. Their

work does not consider blame or the gradual guarantee (Siek et al., 2015b). A blame
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theorem is sacri�ced in favour of a simpler, but sound, cast calculus. Multiple function

casts are collapsed, and only the outer cast is considered.

Castagna et al. (2019) build on the ideas of Castagna and Lanvin (2017) and seek to

combine semantic subtyping, gradual typing, and polymorphism. They are inspired

by the work of Garcia et al. (2016) on abstract interpretation but observe that the ap-

proach is still heavily syntactic, rather than semantic. Castagna et al. (2019) take a

new perspective that interprets the unknown type as a particular form of type vari-

able, where each occurrence of the unknown type is possibly a distinct type variable.

Their idea leads to the notion of discrimination which gives a semantics to grad-

ual types by replacing the unknown type with a type variable. Under discrimination,

each polymorphic gradual type is mapped to a set of polymorphic static types that

are interpreted using semantic subtyping. Castagna et al. (2019) also give new in-

sights about the fundamental relations between gradual types. Their work replaces

consistency (Siek and Taha, 2006) and consistent subtyping (Garcia et al., 2016) with

subtyping and materialization. Both subtyping and materialization are preorders and

therefore transitive, while consistency and consistency subtyping are not.

Castagna et al. (2019) provide a blame theorem for their calculus, but they do not

prove the theorem in the style of Wadler and Findler (2009) that use positive and

negative subtyping. Instead, the polarity of a blame label is statically typed according

to the variance of the cast. Blame soundness therefore follows directly from type

soundness. Castagna et al. (2019) also prove the static component of the gradual

guarantee (Siek et al., 2015b).

3.4.2 Provenance

The formal study of provenance in programming languages covers many aspects re-

garding origin, history, and usage. Buneman et al. (2001) develop where and why

provenance. The former distinguishes an unambiguous location from which an ob-

ject in the output was sourced. There are both similarities and di�erences with the

blame tracking we present and where provenance. We use blame nodes to identify

unique �rst-order contracts in a manner reminiscent of where provenance, with both

systems employing a notion of a “path”. A key di�erence is that blame nodes identify

contracts, not the data to which the contract is applied; in contrast, where provenance

identi�es data. This di�erence gives rise to a limitation in contract monitoring, as we

describe in Section 3.3.1 with our example Getting Away with It. We can uniquely
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identify a contract but we cannot uniquely identify the value that violated the con-

tract, and consequently there are pathological examples where a function can avoid

blame. A future extension to contract monitoring might use blame nodes for contracts

and labels for data, combining both to detect more violations.

Related variants why (Buneman et al., 2001) provenance and dependency prove-

nance (Cheney et al., 2007) are concerned with identifying the data that contributed

to a particular output. We draw two parallels between why provenance and gradual

typing. The �rst is with blame assignment. Blame assignment is a function of blame

state, and given a root node that is assigned blame we might consider the set of nodes

that “proved” blame as a form of why provenance. Our formalism does not report

this provenance, but in practice this provenance is a useful debugging aid. For exam-

ple, a union contract is violated when both branches are violated; knowing the root

node tells us the location of the union contract, but it does not tell us the location of

each branch violation. Ideally, we would like to know why the contract was violated,

which corresponds the to set of branch nodes that proved blame. The second parallel

is with the work of Vitousek et al. (2017). They use a blame map and collaborative

blame. Given a contract violation the blame map is consulted to learn why the con-

tract was violated. The di�erence with this work and ours is that the blame map is

not used to assign blame, only to reconstruct the provenance.

Acar et al. (2012) develop a core calculus for provenance that exploits traced execu-

tion and provides generalised provenance extraction; many existing forms of prove-

nance can be seen as instances of the generalised extraction mechanism. Blame nodes

provide a limited form of tracing that is specialised to contract elimination, while trac-

ing in the core calculus considers all expression forms. An interesting line of work

would be to instantiate contract checking in the core calculus, evoking a direct rela-

tionship between blame tracking and tracing, and blame assignment and provenance

extraction. A further line of work would be to relate the various contract monitoring

strategies presented by Swords et al. (2018) as various forms of provenance extrac-

tion. Dimoulas et al. (2011) develop complete monitors that use ownership labels to

enforce correctness properties of contracts; only programs that satisfy certain owner-

ship constraints can reduce. An interesting question is whether complete monitoring

can be restated as a property of traces and provenance extraction. For example, given

a trace from a contract violation and an appropriate provenance extraction function,

there should be a single owner associated with the provenance of the violation.
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Blame-oriented Contract Semantics

In Chapter 3 a concrete operational semantics for contracts was presented, focus-

ing on the detection of contract violations and blame assignment. An alternate view

might focus on the dual perspective: the absence of contract violations and blame.

What does it mean for a program to satisfy a contract, and how might we expect a

satisfying program to behave?

In this chapter we investigate contract semantics, focusing on notions of contract

satisfaction and properties of programs that satisfy contracts. Contract monitoring

distinguishes two parties: subject and context, and distinguishes blame accordingly:

positive and negative. We continue this dichotomy when discussing the semantics

of contract satisfaction. Values positively satisfy a contract and continuations, or

contexts, negatively satisfy a contract. From a de�nition of contract satisfaction we

derive a series of properties that relate contract types and contract satisfaction for

both values and continuations.

We begin by discussing two broad approaches to contract satisfaction and then

present a new re�nement on contract satisfaction that we refer to as blame-oriented

contract satisfaction. Next, we relate existing notions of contract soundness to our

presented de�nition of contract satisfaction, and consider new implications that arise

from our de�nition. Equipped with a de�nition of contract satisfaction we present a

series of sound monitoring properties that relate contract types and contract satisfac-

tion, in essence, providing a set of correctness checks for a contract implementation.

We conclude with a discussion of similar approaches and related work.

66
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4.1 Approaches to Contract Satisfaction

Contract satisfaction is the notion that a program ful�ls the invariants of a contract.

We following existing work by Dimoulas and Felleisen (2011) and Keil and Thiemann

(2015a) that distinguishes positive and negative contract satisfaction, separating the

obligations associated with a contract. A value may positively satisfy a contract while

a continuation or evaluation context may negatively satisfy a contract. Dimoulas

and Felleisen (2011) and Keil and Thiemann (2015a) both use a positive and negative

duality in their de�nition of contract satisfaction, however the fundamental semantics

are signi�cantly di�erent. We characterise the two approaches as monitoring oriented

contract satisfaction and denotational contract satisfaction.

4.1.1 Monitoring Oriented Contract Satisfaction

A monitoring oriented de�nition of contract satisfaction is one in which contracts

and contract monitoring play a central role in de�ning the semantics. In this set-

ting contract satisfaction is de�ned by the observed behaviour of a program when a

contract is applied.

Dimoulas and Felleisen (2011) de�ne contract satisfaction using observational

equivalence between programs monitored with contracts. A contract can be split

into positive and negative components that only monitor the positive and negative

obligations of the contract respectively. For example, de�ne operations A+ and B− on

simple types as:

De�nition 4.1.1 (Positive and Negative Contract Obligations).

(A→B)+ =A−→B+ ι+ = ι any+ = any

(A→B)− =A+→B− ι− = any any− = any

The operation A+ returns the positive obligations of type A and the operation B−

returns the negative obligations of type B. Obligations for function types are con-

travariant in the domain and covariant in the codomain, like subtyping and blame.

The positive obligation of a base type ι is the type itself, while the negative obligation

of a base type ι is the type any. There are no requirements placed on a base type by

the context so any is used instead. There are no obligations associated with the type

any therefore the operations any+ and any− are the identity.

Dimoulas and Felleisen (2011) de�ne a value as positively satisfying contract A

if monitoring the value with contract A is observationally equivalent to monitoring
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the value with contract A− in all contexts. Similarly, a context is de�ned as nega-

tively satisfying contract B if monitoring the context with contract B is observation-

ally equivalent to monitoring the context with contract B+, for all values passed to

the context. An alternate phrasing is that a value satis�es contract A when the pos-

itive (or subject) obligations of contract A are not observable when monitoring the

value, precisely because the value never violates the positive obligations.

A monitoring oriented de�nition of contract satisfaction such as the one presented

by Dimoulas and Felleisen (2011) does not capture any external intuition associated

with a particular contract type. The de�nition does little to constrain which values

should satisfy a type, and which values should not. For example, a nonsensical con-

tract implementation may choose to trigger a violation at every use of an integer

contract, independent of the value under contract. Clearly such a design contradicts

our intuition that only non-integers should violate the integer contract; in general we

would like contract violations to indicate meaningful errors. In Section 4.4 we supple-

ment contract satisfaction with a series of monitoring properties to guide the design

of contracts, and these properties should be derivable in a system. The monitoring

properties act as our frame of reference, articulating our intuition about types that

contract satisfaction should entail. Dimoulas and Felleisen (2011) do not derive mon-

itoring properties for types, however a set of properties could be similarly obtained

for their system.

4.1.2 Denotational Contract Satisfaction

A denotational de�nition of contract satisfaction is one in which contracts and con-

tract monitoring do not de�ne the semantics. Contract satisfaction is de�ned by the

structure of a given program, distinct from any notion of contract monitoring.

Keil and Thiemann (2015a) present a novel denotational approach to contract sat-

isfaction that describes the intrinsic properties of satisfying programs. Their seman-

tics de�nes sets of terms that positively satisfy a contract and sets of contexts that

negatively satisfy a contract. Each set is constructed co-inductively using rules that

describe the shape of satisfying programs. For example—and as no surprise—the set

of terms that positively satisfy the integer contract is the set of terms that reduce to

an integer. Keil and Thiemann (2015a) support user-de�ned contracts therefore the

set is precisely de�ned as the set of terms that do not reduce to false when the in-

teger predicate is applied. This denotational set-based semantics pleasingly extends
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to intersection and union in the expected way. For example, the set of terms that

positively satisfy the contract A∩B is the intersection of terms that positively sat-

isfy A and positively satisfy B. In contrast, the set of terms that positively satisfy the

contract A∪B is the union of terms that positively satisfy A or positively satisfy B.

The de�nition of negative contract satisfaction is more involved, for example,

consider the rule for evaluation contexts where the hole is in an argument position.

∀M,V . λx .M = λx .M[x] ⇒ E[M{x :=V }[�]] ∈ JCK−

E[(λx .M)�] ∈ JCK−

While complex, this rule does capture the intuitive behaviour. We do not describe the

rule in detail but present a high-level reading. A context that applies λx .M to the hole

satis�es C if the context that arises by replacing all-but-one bound occurrences of x

in M withV , also satis�esC , where the one remaining occurrence of x is replaced by

the hole. Importantly, the rule ranges over all possible values and all possible choices

of the remaining hole in the body of the function.

Blume and Mcallester (2006) also present a denotation style model of contract

satisfaction that is sound and complete. They de�ne sets of terms that satisfy a con-

tract, but unlike Keil and Thiemann (2015a); they do not have a context counterpart

to contract satisfaction.

4.2 Blame-oriented Contract Satisfaction

We present blame-oriented contract satisfaction: de�ning contract satisfaction using

blame assignment. We take inspiration from both the monitoring and denotational

approaches, de�ning contract satisfaction in terms of the former, and then deriving

properties capturing the essence of the latter. Additionally, we adopt the presenta-

tion style of Keil and Thiemann (2015a) that uses sets of values to denote positive

satisfaction and sets of continuations to denote negative satisfaction.

First, we start with a high level description of blame-oriented contract satisfaction

before revealing the details in the de�nition. In Section 4.4 we then present a series

of sound monitoring properties relating contract types and contract satisfaction.

We write JAK+ to denote the set of closed values that positively satisfy the type A,

and JBK− to denote the set of closed continuations that negatively satisfy the type B.

A value V satis�es type A if applying a contract of that type can never elicit positive

blame in any context. A continuation K satis�es a type B if applying a contract of
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that type can never elicit negative blame for any value.

Figure 4.1 presents the de�nition of contract satisfaction, with auxiliary de�ni-

tions presented in Figure 4.2. We proceed by discussing a particular instance of con-

tract satisfaction that we call witness satisfaction.

Witness Satisfaction If contract monitoring is the process of obtaining counter-

examples to the claim that a value or continuation satis�es a contract, then the blame

node annotating the contract acts as witness to the counter-example. This idea is

captured by witness satisfaction, whereby a value or continuation satis�es a contract

observed by a particular witness, or blame node.

We write JAK+p to denote the set of closed values that positively satisfy the type A

for witness p; the de�nition is given Figure 4.1 and we repeat the de�nition inline.

V ∈ JAK+p
def

= ∀Φ,∆,K .〈Φ,∆,K ,V@
pA〉 X−→∗ 〈 p〉 when p # 〈Φ,∆,K ,V 〉

A valueV positively satis�es typeA for witness p if 〈Φ,∆,K ,V@
pA〉 is safe for p, writ-

ten 〈Φ,∆,K ,V@
pA〉 X−→∗ 〈 p〉. The statement ranges over all blame states, context

trackers, and continuations, as satisfaction should not be conditioned on a particular

context. Furthermore, we require that the witness nodep is fresh in the con�guration,

written p # 〈Φ,∆,K ,V 〉. The semantics of blame safety and freshness are de�ned in

Figure 4.1 and Figure 4.2 respectively, and described in the following section.

We write JBK−p to denote the set of closed continuations that negatively satisfy the

type B for witness p; the de�nition is given Figure 4.1 and we repeat the de�nition

inline.

K ∈ JBK−p
def

= ∀Φ,∆,V .〈Φ,∆,K ,V@
pB〉 X−→∗ 〈 −p〉 when p # 〈Φ,∆,K ,V 〉

A continuationK negatively satis�es type B for witnessp if 〈Φ,∆,K ,V@
pA〉 is safe for

−p, written 〈Φ,∆,K ,V@
pA〉 X−→∗ 〈 −p〉. The statement ranges over all blame states,

context trackers, and values, and also requires freshness of p.

The choice to be explicit about the witness to the contract may seem pedantic;

contract monitoring is typically concerned with the presence or absence of violations,

rather than the particular witness involved. The strength of witness satisfaction is

that it enables us to relate satisfaction of multiple program components that share a

common witness; certain desirable properties only hold for a particular combination

of witnesses. In Section 4.3 we show how witness satisfaction allows us to reason

about contract soundness for function contracts.
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Blame Implication Φ |= p

Φ |= p
def

= (∃P ′. replace-path(p,P ′ ) ∈ Φ∧pre�x(path(p),P ′)) and

(�P ′. replace-path(p,P ′ ) ∈ Φ∧ compat(path(p),P ′))

Blame Safety 〈Φ,∆,K ,M〉 X−→∗ 〈 p〉

〈Φ,∆,K ,M〉 X−→∗ 〈 p〉 def

= �Φ
′,∆′,K′,N . 〈Φ,∆,K ,M〉 −→∗ 〈Φ′,∆′,K′,N 〉 ∧Φ

′ |= p

Witness Satisfaction V ∈ JAK+p and K ∈ JBK−p

V ∈ JAK+p
def

= ∀Φ,∆,K .〈Φ,∆,K ,V@
pA〉 X−→∗ 〈 p〉 when p # 〈Φ,∆,K ,V 〉

K ∈ JBK−p
def

= ∀Φ,∆,V .〈Φ,∆,K ,V@
pB〉 X−→∗ 〈 −p〉 when p # 〈Φ,∆,K ,V 〉

Contract Satisfaction V ∈ JAK+ and K ∈ JBK−

V ∈ JAK+ def

= ∀p. V ∈ JAK+p
K ∈ JBK− def

= ∀p. K ∈ JBK−p

Figure 4.1: Contract Satisfaction (Auxiliary Definitions in Figure 4.2)

Blame Safety and Freshness The predicate on program con�gurations:

〈Φ,∆,K ,M〉 X−→∗ 〈 p〉

is read safe for p. Informally, a con�guration is safe for blame node p if the con�g-

uration never reduces to a con�guration that assigns blame to p—where p has wit-

nessed a contract violation. Formally, a con�guration is safe for p if the con�gura-

tion never reduces to a con�guration 〈Φ′,∆′,K′,N 〉 where Φ
′ implicates p. We write

〈Φ,∆,K ,M〉 −→∗ 〈 p〉 for the negation of the predicate.

Blame implication, written Φ |= p and de�ned in Figure 4.1, states that p has been

assigned blame in Φ for some path extension. We write this condition as:

∃P ′. replace-path(p,P ′ ) ∈ Φ∧pre�x(path(p),P ′)

which states that there is some path replacement of blame node p in Φ, such that the

existing path of p is a pre�x of the new path P ′. The operations replace-path, pre�x,
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Path Pre�x pre�x(P ,P ′)

pre�x(P ,P)

pre�x(P ,P ′)

pre�x(P ,P ′� cn)

Path Extraction path(p)

path(±`[P] ) = P

path(p •d±◦ [P] ) = P

Path Replacement replace-path(p,P)

replace-path(±`[P] ,P ′) = ±`[P ′]

replace-path(p •d±◦ [P] ,P
′) = p •d±◦ [P

′]

Blame Ordering p ≤ q

p ≤ p

p ≤ q

p ≤ (q � cn)

p ≤ q

p ≤ q •d±◦ [nil]

p ≤ q •d±◦ [P]

p ≤ q •d±◦ [nil] •d
′±
◦′ [P]

Context Ordering p ≤∆ q

p ≤∆ p

p ≤∆ q

δ (∆,q) = (∆′,m) m ≤ n

p ≤∆ (q � cn)

p ≤∆ q

p ≤∆ q •d±◦ [nil]

p ≤∆ q •d±◦ [P]

p ≤∆ q •d±◦ [nil] •d
′±
◦′ [P]

Freshness p # 〈Φ,∆,K ,V 〉

p # 〈Φ,∆,K ,V 〉
def

= �q. ∈ {∆,K ,V }. (p ≤ ±q)∨ (±q ≤∆ p) and �q. ∈ Φ. (p ≤ ±q)

Figure 4.2: Auxiliary Definitions for Figure 4.1

and path are de�ned in Figure 4.2. For example, if Φ= {+`[cod0/nil]} then Φ |=+`[nil]

by the path replacement of +`[nil] with path cod0/nil.

Blame implication tolerates path contraction, that is, replacing the path of a blame

node with a pre�x. Violating a function sub-contract should also implicate the con-

taining function contract. For example, if the integer contract in the type B→ I has

been violated, then the function contract has also been violated. Blame implication

does not include branch extension because assigning blame to a branch node does not

imply that the parent will be assigned blame. We include an additional constraint on

blame implication stating that there is no node in the blame state that is compatible
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with the implicated node. We write this condition as:

�P ′. replace-path(p,P ′ ) ∈ Φ∧ compat(path(p),P ′)

which states that there is no path replacement of blame node p in Φ, such that the

existing path of p is compatible with the new path P ′. This condition in primarily

technical and serves to ensure that the implicated blame node p is unambiguously

the �rst violation associated with a contract.

We writep # 〈Φ,∆,K ,V 〉 to indicate thatp is fresh in the con�guration. Freshness is

de�ned in Figure 4.2 and requires orderingsp ≤ q andp ≤∆ q, also de�ned in Figure 4.2.

We refer to the former as blame ordering, and the latter as context ordering. De�ning

freshness for p only as the absence of p in the con�guration is insu�cient. A blame

node p that was initially absent may become present as blame propagates from child

to parent. For example, take the following blame state:

{+`[nil] • right+∩[nil]}

The blame node+`[nil] does not directly appear in the blame state, but will be synthe-

sised when blame is assigned to branch +`[nil] • right+∩[nil] and propagates to parent

+`[nil]. We say that +`[nil] is not fresh in blame state {+`[nil] • right+∩[nil]}. Fur-

thermore, a blame node p that was initially absent may become present as a contract

decomposes. For example, take the following program con�guration:

〈∅, [ ], Id, (V@
+`[nil]B→I)4〉

The blame node +`[cod0/nil] does not directly appear in the con�guration, but will

be synthesised when the application is wrapped. We say that +`[cod0/nil] is not fresh

in con�guration 〈∅, [ ], Id, (V@
+`[nil]B→I)4〉.

Blame ordering describes the case where nodes are synthesised through propa-

gating blame, and context ordering describes the case where nodes are synthesised

through contract decomposition. The de�nition of each ordering replays the way

a blame node may be synthesised. Context ordering is parameterised by a context

tracker ∆ and uses operation δ (∆,q) de�ned in Figure 3.3, this provides a greater de-

gree of tolerance. For example, take the following program con�guration:

〈∅, [+`[nil] 7→ 5], Id, (V@
+`[nil]B→I)4〉

The blame node +`[cod0/nil] is currently fresh in the con�guration and will remain

fresh because any wrapping of the function contract will only extend paths using
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indices of 5 or greater. When the context tracker parameterising context ordering is

the empty map [ ], then blame and context ordering coincide.

Proposition 4.2.1. p ≤ q⇔ p ≤[] q

The last rules for blame ordering and context ordering that inject an empty branch

node are motivated by the operational semantics and the notion of blame path hoist-

ing. The orderings are intended to approximate the blame nodes that can be synthe-

sised and assigned blame during evaluation, and consequently we require the follow-

ing proposition to be valid.

Proposition 4.2.2. If p = parent(q) then p ≤ q and p ≤∆ q.

This proposition is not valid without the last rules in blame ordering and con-

text ordering. The unintuitive origin of these rules is a direct consequence of the

unintuitive de�nition of parent(q) required to resolve nested intersection and union

contracts. As discussed in Section 3.3.2, we consider it future work to �nd a repre-

sentation of blame nodes that is less dependent on syntactic manipulation; a more

natural de�nition of blame node ordering would also follow from this work.

The de�nition of freshness delivers the expected property that fresh blame nodes

are never assigned blame.

Lemma 4.2.3 (Safety by Freshness). If p # 〈Φ,∆,K ,M〉 then 〈Φ,∆,K ,M〉 X−→∗ 〈 ±p〉.

Proof. See Appendix A.

Contract Satisfaction We may now give a concrete de�nition of contract satis-

faction, having described the foundations. We write JAK+ to denote the set of closed

values that positively satisfy the type A; the de�nition is given Figure 4.1 and we

repeat the de�nition inline.

V ∈ JAK+ def

= ∀p. V ∈ JAK+p

A value positively satis�es the typeA if the value is in the positive witness satisfaction

set JAK+p for all witnesses p.

We write JBK− to denote the set of closed continuations that negatively satisfy the

type B; the de�nition is given Figure 4.1 and we repeat the de�nition inline.

K ∈ JBK− def

= ∀p. K ∈ JBK−p



Chapter 4. Blame-oriented Contract Semantics 75

A continuation negatively satis�es the type B if the continuation is in the negative

witness satisfaction set JBK−p for all witnesses p.

A value or continuation can only satisfy a contract if it satis�es the contract for

any witnesses, without relying on leniency or special treatment from a particular wit-

ness. Interactions speci�c to a particular witness can arise from blame nodes created

through function wrapping, for example −p � domn and p � codn. If our current

witness is p � codn then assigning blame to −p � domn makes it impossible to ever

assign blame to p � codn, even if p � codn annotates a violated contract. If we were

to change the witness to q� codn, for some distinct q, then blame would be assigned

to the witness q � codn because it is not compatible with −p � domn. This interac-

tion is not ruled out by freshness; −p � domn and p � codn are fresh with respect to

each-other and can co-occur. Treating these two blame nodes as distinct is necessary

because an application of the wrap rule for function contracts should synthesise two

fresh nodes.

Freshness is not primarily concerned with preventing blame nodes interacting

through compatibility; freshness is primarily concerned with ensuring that we can

accurately attribute the source of a violation.

Satisfaction for Terms Positive witness satisfaction and contract satisfaction can

be extended to include terms. De�nition 4.2.4 de�nes witness satisfaction for terms.

De�nition 4.2.4 (Term Witness Satisfaction).

M ∈ JAK+p
def
= M −→∗V and V ∈ JAK+p

We write M −→∗V as an abbreviation for 〈∅, [ ], Id,M〉 −→∗ 〈Φ,∆, Id,V 〉. A term M

satis�es type A for witness p if M reduces to value V and V satis�es A for witness p.

De�nition 4.2.5 de�nes contract satisfaction for terms.

De�nition 4.2.5 (Term Contract Satisfaction).

M ∈ JAK+
def
= ∀p. M ∈ JAK+p

A term M satis�es type A if M satis�es type A for all witness p.
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4.3 Contract Soundness

The property of contract soundness is a fundamental tenet of contract systems. The

essential characteristic provided by contract soundness is that applying a contract

to any program produces a program that satis�es the contract. We crystallise this

property for our system in Theorem 4.3.1, adopting a similar presentation to Keil and

Thiemann (2015a).

Theorem 4.3.1 (Contract Soundness).

(a) M@
±`[P]A ∈ JAK+

(b) K ◦�@
±`[P]B ∈ JBK−

Proof. See Appendix B.

Contract soundness consists of positive and negative components. For any term

M , applying a contract of typeA annotated with a root blame node±`[P] yields a term

that positively satis�es type A. For any continuation K , applying a contract of type B

annotated with a root blame node ±`[P] yields a continuation that negatively satis�es

type B. The use of a root blame node to annotate the guarding contract is fundamental

to the validity of contract soundness. A root node is required to ensure blame assigned

to the inner contract generates a blame error that terminates the program before the

outer contract observes ill-behaviour. If the blame node annotating the inner contract

is a branch blame node there is no guarantee that blame will resolve to the parent root

node, and consequently, the outer contract may get evaluated.

To explain the intuition behind contract soundness we expand the de�nition for

the positive case.

M@
±`[P]A ∈ JAK+ ≡ (M@

±`[P]A)@pA X−→∗ 〈 p〉

Satisfaction of type A is equivalent to guaranteeing that the outer contract is never

assigned positive blame. The guarantee is ful�lled in two ways. If term M already

satis�es typeA then both contracts act as the identity. If term M does not satisfy type

A then any illicit behaviour will �rst assign blame to the inner contract, generating a

blame error and terminating the program before the outer contract can be violated.

The case for negative satisfaction is interpreted in a similar manner, except it is the

outer contract that prevents the inner contract from detecting a negative contract

violation.
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Contract soundness is useful for reasoning about function contracts. For example:

(λx .x)@±`[nil](I→I)→(I→I)

The above function contract will never be assigned positive blame because any argu-

ment will always be wrapped in a guarding contract for the type I→I. Speci�cally,

after β-reduction we have a value of the form:

(W@
−`[domn/nil]I→I)@+`[codn/nil]I→I

for some argumentW . Using contract satisfaction we derive two observations:

• W@
−`[domn/nil]I→I ∈ JI→IK+

• Id ◦�@
+`[codn/nil]I→I ∈ JI→IK−

The statements tell us that blame nodes +`[codn/nil] and +`[domn/nil] will never be

assigned blame therefore the function contract will never be assigned positive blame.

The property of contract soundness is not compositional. Consider a similar ex-

ample using an intersection contract.

(λx .x)@±`[nil]((I→I)→(I→I))∩ ((B→B)→(B→B))

This function will never be assigned positive blame for the same fundamental reason

as before, however contract soundness cannot be applied here. After splitting the

intersection contract the two function contracts are annotated with branch nodes, not

root nodes, and therefore contract soundness does not apply. The limitation is that

contract soundness depends upon the guarding contract causing divergence before

the outer contract can observe ill-behaviour, but this property is not compositional

in the presence of intersection and union.

We would like a supplementary property that is not reliant on contract violations

causing divergence, applying uniformly to constituent branches of an intersection or

union contract. We introduce the notion of witness soundness.

Theorem 4.3.2 (Witness Soundness).

(a) M@
−p�domnA ∈ JAK+

p�codn

(b) K ◦�@
p�codnB ∈ JBK−

−p�domn

Proof. See Appendix B.
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For any term M , applying a contract of type A annotated with blame node −p �

domn yields a term that positively satis�es type A for witness p � codn. For any

continuation K , applying a contract of type B annotated with blame node p � codn

yields a continuation that negatively satis�es type B for witness −p � domn.

Witness soundness captures the implication-like quality of function types. If a

context assumes responsibility for providing a value of a type A, then a subject may

freely assume that the value satis�es type A. If the context fails to provide a satis-

fying value then the subject is relieved of all obligations. As witness soundness is

explicit about the blame nodes, or witnesses, this property can be satis�ed by correct

blame assignment. The property that all contract violations guarantee divergence

does not hold as intersection or union contracts decompose, but blame assignment is

una�ected. For example, consider the term:

(W@
−`[nil]•right−∪[domn/nil]I→I)@+`[nil]•right

+
∪[codn/nil]I→I

Intuitively the inner contract should guard the outer contract, however we cannot

reason using contract soundness because the blame nodes are branches rather than

roots. However, we can express the blame nodes as −p � domn and p � codn, and

may therefore reason using witness soundness.

Contract soundness and witness soundness are complementary properties as one

does not subsume the other. In some cases we would like the strong guarantee that no

contract can observe a violation, which is where contract soundness shines. In other

cases we only require that a function result is never violated under the condition that

the function argument is never violated, which is where witness soundness shines.

4.4 Monitoring Properties of Contracts

In this section we present sound monitoring properties associated with each contract

type and Figure 4.3 gives the complete de�nition. Each property captures the intu-

itive behaviour associated with a given contract type as well describing how contract

satisfaction composes. Properties come in pairs: for each contract type there is a

property for values and a property for continuations. The structure of each property

is an implication under which satisfaction of a value or continuation is expected to

hold, however in the setting of contract violations the interesting consequences are

obtained through contraposition. In essence the rules say that if a value (or continu-

ation) violates a contract then there is a meaningful reason for that violation.
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V ∈ JιK+ if V : ι

K ∈ JιK− if true

V ∈ JanyK+ if true

K ∈ JanyK− if true

V ∈ JA→BK+p if ∀N ∈ JAK+
p�codn

. V N ∈ JBK+
p�codn

∧

∀K ∈ JBK−
−p�domn

. K ◦V � ∈ JAK−
−p�domn

K ∈ JA→BK− if ∀K′,N . K −→∗�K′ ◦�N ⇒ N ∈ JAK+∧K′ ∈ JBK−

V ∈ JA∩BK+ if V ∈ JAK+∧V ∈ JBK+

K ∈ JA∩BK− if K ∈ JAK−∨K ∈ JBK−

V ∈ JA∪BK+ if V ∈ JAK+∨V ∈ JBK+

K ∈ JA∪BK− if K ∈ JAK−∧K ∈ JBK−

Terms M,N ::= · · · | V �

Values V ,W ::= · · · | V �

for some Φ,∆,V

〈Φ,∆,K ,V �〉 −→∗ 〈Φ′,∆′,K′ ◦V ��,N 〉

K −→∗�K
′ ◦�N

Figure 4.3: Sound Monitoring Properties

Base Types A value V positively satis�es base type ι if V conforms to base type ι.

Using contraposition this property says that if V violates contract ι then V is not a

constant that conforms to ι. To summarise: all values that violate the integer contract

are not integers.

A continuationK negatively satis�es base type ι unconditionally. Using contrapo-

sition this property says that no context can be assigned negative blame for violating

a base type contract.

The any Type A value V positively satis�es type any unconditionally. Similarly, a

continuationK negatively satis�es type any unconditionally. There are no obligations

associated with a contract of type any and therefore the contract should never assign

positive or negative blame.

Function Types The property constraining contract satisfaction for values and

function types makes use of witness satisfaction. A value V positively satis�es type

A→B for witness p if the value respects a conjunction constraining the result when
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V is applied, and how the argument is used when V is applied. The �rst conjunct

states that for all arguments N that satisfy type A for witness p � codn, applying V

to N returns a result that satis�es B, also for witness p � codn. To summarise: ap-

plyingV to satisfying arguments returns satisfying results. The second conjunct states

that for all continuations K that satisfy type B for witness −p� domn, the composed

continuation that �rst applies V and then passes the result to K satis�es type A, also

for witness −p� domn. To summarise: applyingV in a context that respects the result

ensures that V respects the argument.

Witness satisfaction is used to make the implication naturally associated with

function types explicit in the semantics of blame. For example, the �rst conjunct

states that if the witness p � codn is unable to provide a counter-example that the

argument satis�es the domain type, then the witness should not be able to provide a

counter-example that the result satis�es the codomain type.

A pertinent question is whether witness satisfaction is mandatory, or whether the

same property can be stated and veri�ed using contract satisfaction. We conjecture

that the property can be stated and veri�ed using contract soundness, but at the cost of

additional reasoning. For example, when verifying the property and considering the

behaviour ofV wrapped in a function contract, such asV@
pA→B, we must be able to

synthesise an argument that satis�es the domain contract. Using witness satisfaction

the satisfying argument is immediate; any argument is wrapped as N@
−p�domnA,

and N@
−p�domnA ∈ JAK+

p�codn
follows from Theorem 4.3.2. If we were to use contract

satisfaction then N@
−p�domnA ∈ JAK+ is not immediate, or necessarily valid. Instead

we must consider three possible cases. First, N satis�es A. Second, N does not satisfy

A and the application of V assigns blame to −p � domn, rendering satisfaction of B

trivial because the codomain contract can never be assigned blame. The �nal case

is the most nuanced: N does not satisfy A however function V does not exercise N

su�ciently to assign negative blame. In this instance we must be able to show that

there is another argument N ′ that does satisfy A and is observationally equivalent to

N in the body ofV . For example, if we consider the contraposition of the monitoring

property and assume (λf .42) < J(I→ I)→ BK+, we must consider the case that an

argument is not satisfying, but does not evoke negative blame. For example:

〈∅, [ ], Id, ((λf .42)@p(I→I)→B) (λx .true)〉 −→∗ 〈 p � codn〉

then we must be able to show that:

〈∅, [ ], Id, ((λf .42)N )@p�codnB〉 −→∗ 〈 p � codn〉
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for some argument N ∈ JI→IK+. We cannot use λx .true or (λx .true)@−p�domnI→

I as they are not known to satisfy I→I, and there is no negative blame violation that

makes the case trivial as f is never applied. Instead, we must be able to construct an

argument that behaves the same as λx .true in the current context but also satis�es

the domain type, for example λx .42.

Using witness satisfaction avoids this complexity and the monitoring property

still quanti�es over all blame nodes annotating the function contract. The cost is

that the premise of the monitoring property is less general as it refers to speci�c

witness nodes, however the mentioned nodes are precisely those that arise naturally

in reduction. We consider the validation of a more general rule as future work and the

use of witness satisfaction to present a weaker, but useful property, as a contribution

of this work.

The property constraining contract satisfaction for continuations and function

types makes use of contract satisfaction, not witness satisfaction. The reason is that

the property does not encode an implication between domain and codomain types. A

continuation K negatively satis�es type A→B if for every argument continuation of

the form K′ ◦�N that K reduces to, then N positively satis�es A and K′ negatively

satis�es B. The property makes use of context reduction, written −→∗�, and de�ned

in Figure 4.3. Context reduction:

K −→∗�K
′ ◦�N

states that applying continuation K to some value V reduces to a con�guration that

applies V to N in continuation K′; we use universal quanti�cation to range over all

resulting con�gurations. Context reduction uses notationV � to distinguish the value

passed to continuation K ; operationally V � behaves identically to V .

Our monitoring properties for function types capture the essence of a function

contract. As we do not de�ne satisfaction structurally like Keil and Thiemann (2015a)

we avoid having to present detailed rules involving function abstraction, as presented

in Section 4.1.2.

Intersection Types A valueV positively satis�es typeA∩B ifV positively satis�es

type A and positively satis�es type B. If a value violates an intersection contract then

it violates either the left branch or the right branch.

A continuation K negatively satis�es type A∩B if K negatively satis�es type A or

negatively satis�es type B. If a continuation violates an intersection contract then it

violates both the left branch and the right branch.
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Union Types A value V positively satis�es type A∪B if V positively satis�es type

A or positively satis�es type B. If a value violates a union contract then it violates

both the left branch and the right branch.

A continuation K negatively satis�es type A∪B if K negatively satis�es type A

and negatively satis�es type B. If a continuation violates a union contract then it

violates either the left branch or the right branch.

Theorem 4.4.1 (Monitoring Properties). λ∩∪ satis�es the properties in Figure 4.3.

Proof. See Appendix C.

4.5 Comparison

In this section we compare our work to the primary examples of monitoring oriented

contract satisfaction and denotational contract satisfaction identi�ed in Section 4.1.

4.5.1 On Contract Satisfaction in a Higher-order World

Dimoulas and Felleisen (2011) de�ne a contract semantics for CPCF, a call-by-value

variant of PCF with dependent function contracts. An initial observation is that our

de�nition of contract satisfaction is closely related to their de�nition. In particular,

their de�nition of contract satisfaction implies our de�nition. We restate Theorem 5.3

by Dimoulas and Felleisen (2011). We write V |= A to denote that value V satis�es A

according to the de�nition of contract satisfaction by Dimoulas and Felleisen (2011).

If V |=A then C[V@
+`A] 6⇓ blame +` for all contexts C .

where C[V@
+`A] 6⇓ blame +` is equivalent to our de�nition V ∈ JAK+. Recall that

Dimoulas and Felleisen (2011) de�ne contract satisfaction using obligation splitting

as de�ned in De�nition 4.1.1; speci�cally, using observational equivalence between

contracts with full and partial obligations. We restate De�nition 5.1 by Dimoulas and

Felleisen (2011).

De�nition (Tight Contract Satisfaction).

V |=A if V@
+`A 'V@

+`A−

C |= B if C[V@
+`B] 'C[V@

+`B+]
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For simple types their de�nition of contact satisfaction implies our de�nition. If the

language of contracts is extended to include intersection and union then the cor-

respondence is less clear. There is no immediate way to extend the Dimoulas and

Felleisen (2011) style of contract satisfaction to include intersection and union. A

�rst attempt may extend De�nition 4.1.1 with cases for intersection and union using

congruence.

De�nition 4.5.1 (Positive and Negative Contract Obligations with ∩ and ∪).

(A∩B)+ =A+∩B+ (A∪B)+ =A+∪B+

(A∩B)− =A−∩B− (A∪B)− =A−∪B−

However consider the following example. The continuation K ◦�4 negatively sat-

is�es the type (I→ I) ∩ (B→ B), therefore using the Dimoulas and Felleisen (2011)

de�nition of satisfaction suggests that monitoring with the complete intersection

contract is observationally equivalent to monitoring with the positive obligations

only. Speci�cally, the following two program con�gurations should be observation-

ally equivalent.

〈K ◦�4,V@
+`(I→I)∩ (B→B)〉 ' 〈K ◦�4,V@

+`(any→I)∩ (any→B)〉

for all V

Suppose that we choose a value V that we expect to positively satisfy the contract,

such as λx .x . The program with the complete contract will evaluate to 4, while

the program with the negative obligations erased will raise a blame error, assigning

blame to +`. These programs are not observationally equivalent, despite the con-

text and the value both intuitively satisfying the contract. Erasing obligations from

a contract in a satisfying context should not add blame to a wrapped value, however

this is what has occurred. The contract we obtain by erasing negative obligations

is (any→I)∩ (any→B) and no total function can satisfy this type. Our naive at-

tempt to extend Dimoulas and Felleisen (2011) style contract satisfaction to include

intersection and union has failed. We argue that the source of the disparity between

Dimoulas and Felleisen (2011) style satisfaction and ours is the particular e�ect each

system observes when monitoring. Dimoulas and Felleisen (2011) observe the e�ect

of raising a contract error, or diverging, and from that deduce blame assignment. Our

approach is to observe the e�ect of assigning blame, and from that deduce contract

errors. For simple types the two e�ects are equivalent: raising a contract error im-

plies that blame has been assigned; assigning blame implies that a contract error is
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raised. The introduction of intersection and union breaks this bi-implication: raising

a contract error implies that blame has been assigned, however assigning blame does

not necessarily imply that a contract error is raised.

Extending the Dimoulas and Felleisen (2011) approach to contract satisfaction

may be possible, however the surgical process of separating obligations in a contract

requires greater precision.

4.5.2 Higher-order Contracts with Intersection and Union

The system of contract semantics presented by Keil and Thiemann (2015a) supports all

the sound monitoring properties we specify in Figure 4.3. The denotational approach

of Keil and Thiemann (2015a) means that the properties are satis�ed by construction,

as all satisfying values and contexts are built using rules that e�ectively encode the

monitoring properties. This should come as no surprise because the monitoring prop-

erties we provide are heavily in�uenced by the work of Keil and Thiemann (2015a)

and their de�nition of contract satisfaction.

Keil and Thiemann (2015a) present a denotational de�nition of contract satisfac-

tion and therefore there is no equivalent notion of witness satisfaction, which relies

on an explicit reference to a blame node annotating a contract. Consequently, there

is also no equivalent notion of witness soundness (Theorem 4.3.2). A similar prop-

erty is likely provable in the Keil and Thiemann (2015a) system, but formulating the

property in terms of contract satisfaction may be di�cult.

Our implementation of function contracts follows the design of Keil and Thie-

mann (2015a) which does not conduct any �rst order checks and therefore a primi-

tive value such an integer trivially satis�es any function contract. Keil and Thiemann

(2015a) propose encoding a traditional function contract using an intersection that

combines a �rst-order tag check and a higher-order function component. However,

using the de�nition of contract satisfaction of Keil and Thiemann (2015a) or our sound

monitoring property reveals that an intersection contract is not the right operator.

We write A 7→ B to denote a traditional function contract. Suppose we were to

implement A 7→ B such that A 7→ B = (→) ∩ (A→B), where → is the �at contract

type that all abstractions conform to. Following our sound monitoring properties

then any continuation that satis�es the type (→) ∩ (A→ B) need only satisfy one

branch, and furthermore, all continuations satisfy �at contract types such as→. The

consequence is that all continuations satisfy the type A 7→ B.
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An observation to draw from this behaviour is that intersection contracts should

not be used combine types with disjoint eliminators. If the elimination contexts for

the types are disjoint then there is no context where both branches of the intersection

could be assigned negative blame, and it follows that there is no context where the

intersection could be assigned negative blame.

We propose using the and contract, which we write as u, and is introduced in

multiple contract systems (Findler et al., 2004; Flatt and PLT, 2010). Positive and neg-

ative blame for the operator u is covariant, acting like intersection for positive blame

and union for negative blame. The monitoring properties for u are de�ned as:

De�nition 4.5.2 (Monitoring Properties for u).

V ∈ JAuBK+ if V ∈ JAK+∧V ∈ JBK+

K ∈ JAuBK− if K ∈ JAK−∧K ∈ JBK−

If A 7→ B is de�ned such that A 7→ B = (→)u(A→B), then the monitoring properties

tell us that a continuation satis�es A 7→ B if it satis�es → and A→B. The former

condition is trivially satis�ed and acts as a neutral constraint, allowing us to restate

the condition: a continuation satis�es A 7→ B if it satis�es A→B.

4.6 Related Work

4.6.1 Correctness Criteria

Dimoulas et al. (2011) develop a framework for specifying and classifying correct

blame assignment and use their framework to evaluate two contract monitoring strate-

gies for dependent function contracts: lax and picky. The lax strategy does not wrap

the variable bound in the codomain of the contract with the domain contract, while

the picky strategy will wrap the variable. Two concepts are introduced: ownership

and obligation. Ownership relates expressions and blame nodes, attributing the result

of an expression to a blame node. Obligations relate contract types and blame nodes,

attributing the positive and negative obligations of a contract to a set of blame nodes.

Dimoulas et al. (2011) proceed to de�ne correct blame using ownership and obligation.

Blame correctness guarantees that at the evaluation of every �at contract the positive

(server) blame node annotating the contract is the owner of the contracted value, and

additionally, the positive blame node is contained in the set of positive obligations

for the contract. The lax contract monitoring strategy is shown to be blame correct,



Chapter 4. Blame-oriented Contract Semantics 86

while the picky strategy is not blame correct. Under the picky strategy, the contract

that wraps the variable bound in a dependent contract may blame the wrong party.

While the picky strategy is not blame correct, the strategy does detect more con-

tract violations than the lax strategy. To get the best of both—detecting more viola-

tions with correct blame assignment—Dimoulas et al. (2011) introduce a third strategy

called indy. Every contract monitor is equipped with an additional blame node that

represents the contract itself. The indy strategy uses this new blame node to wrap

the variable bound in a dependent function contract. By distinguishing a third party

in contract monitoring, the contract itself, Dimoulas et al. (2011) are able to detect the

same violations as picky whilst retaining the blame correctness of lax.

Dimoulas et al. (2012) observe that while the indy strategy is better than the lax

strategy, the criterion of blame correctness does not distinguish the two. In order

to elucidate the di�erences between indy and lax they enforce a single owner policy

and develop the criterion of a complete monitor. The single owner policy lifts owner-

ship (Dimoulas et al., 2011) to a fundamental component of term reduction. A term

may only reduce if it is the sole owner of all arguments in the redex. The criterion

of a complete monitor extends blame correctness. The criterion ensures that for any

violation indicating a failed contract, the owner of the violating value matches the

positive blame node decorating the violated contract, and additionally, the contract

belongs to the positive obligations of that node. Furthermore, complete monitoring

also requires progress: no term gets stuck. The indy strategy is shown to be a com-

plete monitor, while the lax strategy is not a complete monitor. Speci�cally, the lax

strategy can violate the single owner policy causing terms to get stuck. The picky

strategy is also not a complete monitor because it does not ensure blame correctness.

We conjecture that our calculus is a complete monitor, but primarily for the unin-

teresting reason that is we omit user-de�ned and dependent contracts. In our setting

it does not make sense to distinguish between lax, pick, or indy. Keil and Thiemann

(2015a) support user-de�ned contracts but their calculus is not a complete moni-

tor. They drop contracts that cross into other contracts from separate intersection

or union branches. If we extend our calculus to support user-de�ned contracts in

their style then we would similarly fail the complete monitoring property. Adding

user-de�ned contracts and maintaining complete monitoring is future work.
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4.6.2 Monitoring Semantics

In the monitoring semantics we present, all monitoring is synchronous and within

the same execution context, however contract monitoring is not restricted to this

design. Swords et al. (2018) study a variety of monitoring strategies such as strict,

lazy, and concurrent, and provide a core theoretical framework capable of describing

each. Their key insight is to describe contract monitoring as communication between

a monitor and a contracted program. For example, application of an eager contract

monitor can be thought of as spawning a new process to perform the contract check,

sending the contracted value along a channel to the new process, and then await-

ing the result which is either the initial value or a contract error. Alternatively, a

promise-based contract monitor can be thought of as spawning a new process to per-

form the contract check, sending the contracted value along a channel to the new

process, and then returning a promise that contains the result of the contract appli-

cation. The communication oriented framework presented by Swords et al. (2018) is

compositional, permitting contracts for data structures to combine multiple strate-

gies. Extending their work to support intersection and union contracts would be an

interesting line of work. Intersection and union operators naturally lend themselves

to parallel monitoring; Keil and Thiemann (2015a) �rst explain their semantics for

intersection and union using a non-deterministic parallel operator.

Findler et al. (2004) investigate the semantics of contracts as pairs of projections,

building a denotational categorical model of contracts. Speci�cally, they describe

errors as pairs of error projections: idempotent functions that may additionally return

an error value. The denotational model they construct is fully abstract with respect to

the calculus SPCF, and all semantic contracts may be written in SPCF. The question

that they pose is whether the contract operators of Findler and Felleisen (2002) are

su�cient to represent all semantic contracts, and the answer they �nd is “no”. In

particular, the existing operators are unable to compose �rst-order and higher-order

contracts, leading them to introduce the and operator we discuss in Section 4.5.2.

Findler and Blume (2006) also investigate contracts as pairs of projections. They

begin by discussing a contract implementation based on the composition of projec-

tion functions. Their analysis �nds that a projection-based implementation is more

e�cient than the traditional pattern-matching approach, where contract types are

rei�ed as data-structures. Their work also considers the ordering that arises between

contracts; an ordering between contracts A and B means that A raises a violation at
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least as often as B. The ordering raises the question: what is the highest contract

in the ordering, a contract we might call the any contract. Perhaps surprisingly, the

semantics of the highest contract is not the semantics of any that we present in Sec-

tion 4.4. Instead, the highest contract is one that never assigns positive blame, and

always assigns negative blame.



Chapter 5

Contracts for Gradual Typing

In this chapter we make the transition from the design of contracts to their applica-

tion. We present The Prime Directive: a tool that implements sound gradual typing

in TypeScript and is based on the technical foundations from previous chapters and

blame calculus. Our tool uses contracts to monitor JavaScript libraries and TypeScript

clients for conformance to the corresponding TypeScript de�nition �le. We show how

JavaScript proxies can be used to implement higher-order contracts, including para-

metric polymorphic contracts.

Sound gradual typing should satisfy non-interference. Monitoring a program

should never change its behaviour, except to raise additional type errors when a pro-

gram does not conform to the expected type. This idea is the inspiration for the

name The Prime Directive. In the Star Trek universe, members of Star�eet must fol-

low the Prime Directive: personnel should not interfere with the development of

monitored civilisations and planets. Viewers of the television series will know that

the characters �agrantly ignore the directive; proxies in JavaScript are equally dis-

obedient. Opaque proxies, as they are implemented in JavaScript, do not guarantee

non-interference. We discuss how proxies that are used to implement contracts can

violate non-interference.

5.1 Introduction

There is now a variety of widely used programming languages that exhibit gradual

typing in some form such as C#, Clojure, Dart, Python, Racket, Flow (Chaudhuri

et al., 2017), and TypeScript (Bierman et al., 2014). Flow is a static type checker for

JavaScript that favours soundness when possible, but allows integration with dynam-

89
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ically typed code through the any type. TypeScript is a superset of JavaScript that sup-

ports optional type annotations with the primary aim of enhancing developer tools

such as code editors and documentation.

5.1.1 TypeScript

A Pragmatic Approach Type annotations are used within TypeScript for both

type inference and type checking. Type inference improves the accuracy of auto-

completion by suggesting properties compatible with the inferred type. Type check-

ing prevents certain programming errors such as accessing unavailable properties.

TypeScript favours pragmatism over rigorous correctness and is unsound by design

(Bierman et al., 2014). The type checker supports unsound rules such as bivariant

subtyping for functions and covariant subtyping for mutable objects, but it is the dis-

tinguished type any that best distils TypeScript’s philosophy. A programmer may

opt out of static type checking through use of the dynamic type any, and opt back

in through the addition of an explicit type annotation. This provides the option to

sacri�ce static safety if the programmer is sure the program will not exhibit bad be-

haviour when executed, or the perceived development cost of maintaining safety is

too high. TypeScript adopts the weakest form of gradual typing, the erasure embed-

ding (Greenman and Felleisen, 2018), which retains no type information when com-

piling TypeScript to executable code.

1 const XZ: any = { x: 3, z: false };

2 const XY: { x: number; y: boolean } = XZ;

Here XZ has a �eld with label z while the declared type of XY has a �eld with label

y. Annotating XZ with type any delegates all responsibility for the type of XZ from

TypeScript to the programmer. There are no checks, static or dynamic, that ensure

the untyped identi�er XZ conforms to the static type declared at the assignment to

identi�er XY. Type inference will provide auto-complete suggestions for XY that are

incompatible with the value at run-time. Type checking will miss errors that arise

through accessing non-existent property y.

TypeScript with JavaScript A crucial aspect to TypeScript’s popularity is sup-

porting the use of existing JavaScript libraries within TypeScript applications. An

untyped JavaScript library is paired with a type speci�cation of its API, a de�nition
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�le, and is then imported into a TypeScript client. De�nitelyTyped
1

is the primary

repository of de�nition �les for JavaScript libraries, hosting over 4000 de�nitions. A

de�nition �le acts like a type annotation for a library, assisting auto-completion and

providing documentation for clients. Libraries and de�nitions are disjoint entities,

making it possible to apply de�nitions to legacy JavaScript libraries without modi�-

cation of the library code.

Conformance A JavaScript library and TypeScript client should conform to the

de�nition. When calling a library function a client should provide arguments of the

correct type, while the library should return a result of the correct type. However, as

was the case with type annotations, TypeScript takes a similarly pragmatic view when

checking conformance to the de�nition. JavaScript is untyped so there is no checking

for a library’s conformance to the de�nition. TypeScript is checked but unsound, so

there is no guarantee of a client’s conformance to the de�nition. Each de�nition �le

is maintained separately to the library it describes and is often written by a di�erent

author than the library. Mistakes can be easily introduced and left unchecked, or

the library can change causing the de�nition to become outdated. If the de�nition

�le and library do not conform then auto-completion suggestions can be misleading,

producing unexpected results or introducing errors.

5.1.2 Contracts for Sound Gradual Typing

A Safer Approach Sound gradual typing permits typed and untyped code to coex-

ist but does not follow the approach taken by TypeScript that chooses to forgo safety.

Instead, dynamic checks are inserted at the typed-untyped boundary to ensure that

dynamically typed code conforms to the expected static type an run-time. We ap-

ply this approach to JavaScript libraries with TypeScript de�nitions. Dynamic checks

are inserted at the library-client boundary to ensure that library and client code con-

forms to the de�nition �le. Contracts are an apt mechanism for implementing these

dynamic checks because they monitor both parties and can be applied without modi-

fying library code. Instead, contracts are applied when a library is imported, wrapping

the library.

Implementing Contracts Proxies are presented as a suitable mechanism for im-

plementing contracts in JavaScript because they allow new behaviours to be retroac-

1https://definitelytyped.org

https://definitelytyped.org
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tively added to existing objects and functions. An object can be wrapped in a proxy

to intercept property access and updates. A function can be wrapped in a proxy to in-

tercept the arguments and result during an application. Using proxies, we can apply

additional dynamic type checks to existing JavaScript code, without modifying the

underlying code. Proxies are now a standard feature in JavaScript run-times making

them readily accessible to programmers.

Non-Interference One important property of sound gradual typing is noninter-

ference. Adding dynamic type checks to an existing program should not change its

behaviour, except to raise an error should a value fail to conform to its speci�ed type.

Proxies have many attributes suitable for implementing contracts, however opaque

proxies (as they are implemented in JavaScript) do not satisfy non-interference. Ap-

plying a proxy to an object does not retain the object’s identity. Consequently, the

same equality test can return di�erent results when evaluated with and without prox-

ies. Applying a proxy to primitive values requires changing their type. Consequently,

the same type test can return di�erent results when evaluated with and without prox-

ies.

The threat that proxy interference poses to sound gradual typing in practice is

unclear. Keil and Thiemann (2013) discuss the consequences of using opaque proxies,

but do not evaluate the scale of the problem. Keil et al. (2015) give insight by analysing

how often proxies alter equality tests when used to implement contracts for JavaScript

benchmarks, however it is unclear if JavaScript libraries exhibit the same issues as

JavaScript benchmarks.

Previous work does not tell the whole story: there is an additional source of inter-

ference caused by the use of parametric polymorphic contracts. A parametric poly-

morphic contract employs run-time sealing to enforce data-abstraction, however seals

implemented using proxies violate non-interference by altering the sealed value’s

type. This kind of interference has never previously been measured in practice.

5.1.3 Overview

Section 5.2 introduces The Prime Directive, explaining how the tool wraps a JavaScript

library to enforce conformance to the TypeScript de�nition �le. Section 5.3 illustrates

how proxies are used to implement higher-order contracts, and how contracts may

violate non-interference. Section 5.4 discusses related work regarding sound gradual

typing for TypeScript and implementing contracts.
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Definition: basic.d.ts

1 interface Point {

2 x: number;

3 y: boolean;

4 }

5

6 export function getX(obj: Point): number;

7 export function getY(obj: Point): boolean;

Library: basic.js

1 module.exports.getX = obj => true;

2 module.exports.getY = obj => obj.y;

Client: basic-client.ts

1 import * as basic from "./basic";

2

3 const XZ: any = { x: 3, z: false };

4 const XY: { x: number; y: boolean } = XZ;

5 const x: number = basic.getX(XY);

6 const y: boolean = basic.getY(XY);

Figure 5.1: Example Definition, Library, and Client

5.2 The Prime Directive

The Prime Directive is a tool that generates a contract from a de�nition �le, and the

contract monitors a library and client for conformance to the de�nition. When a li-

brary does not conform to the de�nition the contract assigns positive blame; when

a client does not conform to the de�nition the contract assigns negative blame. Fig-

ure 5.1 illustrates a basic example of a de�nition, library, and client.

5.2.1 Definitions, Libraries, and Clients

Definition A de�nition �le (with su�x .d.ts) is a set of TypeScript types describ-

ing the API of a library. Our evaluation uses libraries that are packaged as node.js

modules, though TPD also works for other systems. When a library is deployed for
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Definition (Alternate): basic-assignment.d.ts

1 interface Point {

2 x: number;

3 y: boolean;

4 }

5

6 interface Library {

7 getX(obj: Point): number;

8 getY(obj: Point): boolean;

9 }

10

11 declare const API: Library;

12 export = API;

Figure 5.2: Example Definition using export assignment

node.js the API of the library is packaged as a JavaScript object that is then consumed

by a client. A de�nition �le for a library describes the type of this object, where the

export keyword is used to indicate the exported API members, or the the properties

of the packaged object. De�nition �le basic.d.ts describes a library that exports

two functions: getX and getY. The former accepts an argument of type Point and

returns a result of type number; the latter accepts an argument of type Point and

returns a result of type boolean. De�nitions may de�ne auxiliary types, such as

Point. The Point type is implemented as an interface and describes an object with

two properties: x of type number, and y of type boolean.

There is an alternate way to write this de�nition �le that directly describes the

type of object representing the library, rather than implicitly describing each of the

exported members, or properties of the object. An export assignment export = API

states that the type of the library, or API, is the type of identi�er API. Figure 5.2

demonstrates an alternate way to write basic.d.ts. The interface Library directly

describes the type of the library with exported members, or properties, getX and

getY. The identi�er API is assigned the type Library and exported using an export

assignment, indicating that any client that imports the library will receive an object

that conforms to the type Library. A de�nition �le is not allowed to have an export

assignment and exported members—they are mutually exclusive.
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Library A library is a collection of JavaScript �les (with su�x .js) implementing

the API. When a library is packaged for node.js the API of the library is assigned

to the prede�ned JavaScript object module.exports. The library basic.js assigns

functions to the properties getX and getY on the object module.exports. The syntax

obj => true denotes an anonymous function that accepts a parameter named obj

and returns the boolean constant true. The syntax obj => obj.y denotes an anony-

mous function that accepts a parameter named obj and returns the value assigned to

property y of obj.

Client A client is a collection of TypeScript �les (with su�x .ts) using the API.

The library basic.js is imported using the syntax:

1 import * as basic from "./basic";

The entire API (denoted by *) is imported and bound to identi�er basic. Concretely,

the module.exports object in basic.js is assigned to identi�er basic in basic-

client.ts. The client code applies each of the exported functions getX and getY to

the argument XY, binding the result to identi�ers x and y respectively. Both functions

require an argument of type Point while the client supplies an argument of type {

x: number; y: boolean }, an anonymous object type. TypeScript has a structural

type system therefore types Point and { x: number; y: boolean } are equivalent.

Consequently, the client code is deemed valid by the type checker.

Conformance A careful reader may have noted that there are two issues of con-

formance present in Figure 5.1. The �rst violation of conformance originates in the

library. The implementation of the function getX does not conform to the speci�ed

type because the it returns a boolean when a number is expected. No checking of

the library is done and the error goes without reprimand. The unsuspecting client

assumes the library is honest and assigns the result of applying getX to an identi�er

of type number, yet at run-time this identi�er will be bound to a boolean.

The second violation of conformance originates in the client. Both function appli-

cations are supplied the argument XY that is assumed to conform to the type Point,

however the value XY lacks the property y and therefore does not conform to the

type Point. During the application of function getY the property access will fail

and return the distinguished value undefined. The identi�er y, declared to be of

type boolean, will be assigned the incompatible value undefined at run-time. The

client code has sabotaged itself through an illegal application of a library function!
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Although the client code is type checked no static violation is raised; the client has

used the dynamic escape-hatch any to create an ill-typed value.

5.2.2 Contracts for Definitions

TPD enforces conformance by generating a contract for a de�nition �le, where the

generated contract is a speci�cation for the object exported by the library. In Fig-

ure 5.1, the de�nition states that the exported object has two properties of function

type: getX and getY. TPD will generate a value that represents the contract that can

then be used by monitoring code to enforce conformance. The corresponding con-

tract for the de�nition in Figure 5.1 is:

1 const PointC = TPD.obj({

2 x: TPD.num ,

3 y: TPD.bool

4 });

5 const basicC = TPD.obj({

6 getX: TPD.fun([ PointC], TPD.num),

7 getY: TPD.fun([ PointC], TPD.bool),

8 });

The identi�er PointC corresponds to a contract for the interface Point. The contract

is constructed by the TPD contract combinator TPD.obj that creates an object con-

tract from a mapping of properties to contracts. The contract TPD.num represents the

contract for the type number; the contract TPD.bool represents the contract for the

type boolean.

The identi�er basicC corresponds to a contract for the entire library, or more

speci�cally, the object exported by the library. This contract similarly uses the com-

binator TPD.obj, and additionally uses the combinator TPD.fun to build function

contracts. The contract operator TPD.fun accepts a list of contracts denoting the

function arguments, and a contract denoting the function result.

TPD does not provide an explicit contract operator for all TypeScript types such

as functions with overloaded call signatures, or functions with optional arguments.

Instead, TPD encodes equivalent contracts using intersection and union combinators.

Intersection TPD uses intersection types to encode overloaded functions. For ex-

ample, given the following interface that contains overloaded function negate:
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1 interface Calc {

2 negate(x: boolean): boolean;

3 negate(x: number): number;

4 }

the corresponding contract would be:

1 const CalcC = TPD.obj({

2 negate: TPD.intersection(

3 TPD.fun([TPD.bool], TPD.bool),

4 TPD.fun([TPD.num], TPD.num)

5 )

6 });

The contract for negate is an intersection of two function contracts, one for each

overload.

Union TypeScript also permits optional properties and arguments. An optional

property, written x?: T, states that property x either has a value of type T or is unde-

�ned. An option argument, also written y?: T, states that argument y may be a value

of type T, or the value is omitted from the application. TPD does not have an explicit

representation for optional properties and arguments, instead choosing to use union

types. For example, given the following interface that features optional parameters

and arguments:

1 interface Math {

2 MAX_INT ?: number;

3 round(x: number , digits ?: number): number

4 }

the corresponding contract would be:

1 const MathC = TPD.obj({

2 MAX_INT: TPD.union(TPD.num , TPD.undef),

3 round: TPD.fun(

4 [TPD.num , TPD.union(TPD.num , TPD.undef)],

5 TPD.num

6 )

7 });
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Library (Wrapped): basic.js

1 module.exports.getX = obj => true;

2 module.exports.getY = obj => obj.y;

3

4 // --- generated wrapper code ---

5 const PointC = TPD.obj({

6 x: TPD.num ,

7 y: TPD.bool

8 });

9 const basicC = TPD.obj({

10 getX: TPD.fun([ PointC], TPD.num),

11 getY: TPD.fun([ PointC], TPD.bool),

12 });

13 module.exports = TPD.assert(module.exports , basicC);

Figure 5.3: Wrapped Library

The contract for optional property MAX_INT is the union of the contracts TPD.num and

TPD.undef, where the latter is the contract for the unit type undefined. The contract

for the optional argument digits in function round is similarly a union contract that

accepts numbers or the distinguished value undefined.

Note At the time this evaluation was performed TypeScript did not have explicit

intersection (&) types. This is no longer the case, though the TPD combinator inter

can be used to model the explicit TypeScript type.

5.2.3 Applying Generated Contracts

Having determined the contract type for the de�nition �le, TPD must then apply the

contract to the library. The function TPD.assert(v, c) applies the contract type c

to the value v, ensuring that v and its context conform to the type speci�ed by c.

One approach to apply the contract to a library is to append wrapper code to

the library �le. The wrapped version of the library in Figure 5.1 is given in Fig-

ure 5.3. Wrapper code assigns any auxiliary contracts that are required and then

wraps the library implementation before exporting using the same module.exports

object. Any client that imports the library will now receive a version that is wrapped
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by TPD.assert, instead of the original library. This approach avoids modifying ex-

isting library code, with the exported library functions unchanged.

An alternate approach that avoids adding any code to the library is to place the

wrapper code at the point the library is imported by the client. This approach might

be preferable if the client does not have access to the library code, or the library code

is prone to change while the client is not.

The technique adopted in our evaluation is the �rst approach, appending wrapper

code to the library. This method only requires modifying one �le rather than every

client test �le that uses the library.

5.3 Implementing Contracts

In addition to generating wrapper code from de�nition �les, TPD also implements the

contracts that perform dynamic type checking. In this section we discuss the details

of these contracts, how they are implemented using proxies, and how they can violate

non-interference.

5.3.1 Contract Assertion

The entry-point for enforcing contracts using TPD is the assert function. The de�-

nition of assert and auxiliary function check is given in Figure 5.4.

Function assert generates a fresh root blame node and then proceeds to call

check. Our implementation assigns a unique identi�er to each root node; an alter-

nate implemenation may also want to provide textual meta-data to the root node to

aid debugging.

Function check applies the correct checks to the value given the speci�ed contract

type. Each type contains a kind discriminator that enables dispatch using a switch

operator. Essentially, type is an algebraic data type and the switch performs pattern

matching. Every clause in the switch dispatches to the appropriate function; for ex-

ample, when applying a number contract with kind Num, the checkNumber function

is applied to the value. An alternate approach to contract implementation is to use a

pair of projection functions, rather than pattern matching (Findler and Blume, 2006;

Findler et al., 2004). Findler and Blume (2006) observe that using projections can yield

signi�cant performance improvements.
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1 function assert(value , type) {

2 return check(value , root(), type);

3 }

4

5 function check(value , p, type) {

6 switch(type.kind) {

7 case TypeKind.Num:

8 return checkNumber(value , p);

9 case TypeKind.Bool:

10 return checkBoolean(value , p);

11 case TypeKind.Fun:

12 return wrapFunction(value , p, type);

13 · · · // other cases omitted

14 }

15 }

Figure 5.4: Contract Assertion

5.3.2 First-order Contracts

A contract for a �rst-order type such as number or boolean can be implemented as

a predicate because a value can be immediately inspected for conformance to a �rst-

order type.

Figure 5.5 illustrates how contracts for the types number and boolean are imple-

mented. Each function accepts the value to be tested and a blame node p. When the

value has the correct run-time type tag, obtained using operator typeof, then the

value is returned immediately having satis�ed the contract. When the value does not

have the correct type a violation is raised using function blame.

The function blame is de�ned using the semantics de�ned in Chapter 3, with two

di�erences. First, the implementation implicitly stores the blame state in blame node

p, rather than explicitly passing it as an argument. Second, when blame resolves to

a top level contract the violation is logged rather than thrown as an exception. This

allows TPD to collect all violations in a single pass, rather than halting at the �rst.

The argument value supplied to blame is return by the function unmodi�ed.
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1 function checkNumber(value , p) {

2 return typeof value === "number" ?

3 value :

4 blame(p, value);

5 }

6

7 function checkBoolean(value , p) {

8 return typeof value === "boolean" ?

9 value :

10 blame(p, value);

11 }

Figure 5.5: First-order Contracts

5.3.3 Function Contracts

As noted previously, checking that a value conforms to a function type cannot be

done by immediate inspection of the value, therefore we wrap each application of

that value. When applied, the arguments to the function are wrapped according to

the domain type, the underlying application is then evaluated, and the result of the

function is wrapped according to the codomain type.

Function wrappers in TPD are implemented using the JavaScript Proxy API pro-

posed by Van Cutsem and Miller (2010, 2013). The proxy constructor accepts two ar-

guments: the target object that is to be replaced by the proxy, and a handler object

that holds the traps to be attached to the proxy. A trap is a function that is designed to

intercept an operation on a proxy; traps include property accesses, property update,

and function application. A supplied handler may not implement all traps. When a

trap is omitted from the handler the default behaviour is implemented. For example:

1 const obj = {x: 3, z: false};

2 const proxiedObj = new Proxy(obj , {});

wraps obj in a proxy with an empty handler. Every trap adopts the default behaviour

and no additional functionality is added to proxiedObj.

Function contracts, or wrappers, can be implemented using a proxy with an apply

trap that performs wrapping. Each function contract corresponds to a single proxy

which simpli�es the implementation but can lead to a signi�cant performance loss.
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1 function wrapFunction(value , p, type) {

2 if(typeof value !== "function") {

3 return blame(p, value);

4 }

5 const handler = {

6 apply: (target , thisArg , argumentsList) => {

7 const wrappedArguments =

8 checkArr(argumentsList , negate(p), type.dom);

9 const result =

10 target.apply(thisArg , wrappedArguments);

11 return check(result , p, type.cod);

12 }

13 }

14 return new Proxy(value , handler);

15 }

Figure 5.6: Function Contracts

Siek and Wadler (2010), Siek et al. (2015a), and Feltey et al. (2018) consider di�erent

techniques for merging multiple wrappers.

Figure 5.6 presents a simpli�ed implementation of function wrappers in TPD. A

value is �rst checked for conformance to the JavaScript function type prior to wrap-

ping in a proxy. When the value is not a function, blame is immediately assigned to

node p and the value is returned without wrapping. This behaviour deviates from the

semantics presented in Chapter 3 which do not perform any immediate checks and

wraps the value unconditionally. We choose a di�erent behaviour because when em-

ulating the semantics of TypeScript types we are always required to perform the �rst

order check, so including the check in wrapFunction simpli�es the implementation.

When the supplied value is a function we construct the handler for the corre-

sponding proxy. The handler consist of the single trap, apply, that accepts three

arguments: target, the function being applied; thisArg, the this argument for the

application; and argumentsList, the array of arguments for the application. For ex-

ample, given the following application where function getY is wrapped in a proxy:

1 const y: boolean = basic.getY(XY);
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then during execution of an apply trap

• target will be getY

• thisArg will be basic

• argumentsList will be [XY]

The details of the trap follow the previously described behaviour of function wrap-

pers: the arguments are checked according to the domain type, the function is applied,

and the result is checked according to the codomain type. When the arguments are

checked on Line 8 the blame node is negated, denoting that the obligation to respect

the domain type belongs to the context, not the subject. We use the function checkArr

to map check over arrays of arguments and types.

Object contracts are implemented in a similar way to function contracts except

that the modi�ed traps are get and set, rather than apply. The set operation is con-

travariant so the associated blame node is negated in the implementation of the trap.

Function contracts are fundamentally “lazy” and must be implemented using a wrap-

per, which is not true in general for object contracts. An alternate implementation of

object contracts might eagerly traverse the entire object and return the original ob-

ject without applying a wrapper. TPD implements lazy object contracts rather than

eager contracts for the following reasons. First, eager contracts do not guard against

update operations so they are unable to handle mutable objects which is the default in

TypeScript. Second, eager contracts may incur a signi�cant performance reduction

by traversing a large data-structure such as a tree. Last, eager contracts introduce

additional property accesses not in the original program. A JavaScript object may

have custom “getters” that perform side-e�ects, so an eager contract that traverses

an object may add side-e�ects which violates non-interference.

5.3.4 Parametric Polymorphic Contracts

TypeScript supports parametric polymorphic types, or generics, and correspondingly

TPD supports polymorphic contracts.

Parametricity A function that is polymorphic in the type of its argument must

act uniformly on that argument, independently of the particular value or type the

argument has. This requirement provides a strong form of data abstraction, known

as the abstraction theorem, or parametricity (Reynolds, 1983; Wadler, 1989). Formally,
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parametricity states that a function should map related inputs to related outputs, and

in particular, a polymorphic function should preserve all relations. For example, given

a function f of type ∀X .X→X and arguments x and y related by any relation, then

f (x) and f (y)must also be related by the same relation. Wadler (1989) demonstrated

that parametricity can provide free theorems about the behaviour of functions of a

given type, without needing to inspect the implementation. For example, given a

function of type ∀X .X→X , then the only total function that conforms to this type is

the identity function.

Dynamically enforcing conformance to a polymorphic type can be tricky. Suppose

we declare a function special with the following polymorphic type:

1 declare function special <X>(x : X): X;

then the following implementation does not satisfy parametricity:

1 function special(x) {

2 if (typeof x === "number") return x + 1;

3 else return x;

4 }

When the argument is of type number the function will return the incremented ar-

gument and when the argument is of any other type the function will return the

unmodi�ed value—the function does not treat all types the same. A contract that

checks special always returns a value with the same type as the argument is insu�-

cient: special will always preserve the type of its argument, but it will not preserve

type abstraction.

RTG We adopt the technique of Matthews and Ahmed (2008) and Ahmed et al.

(2017) that uses run-time type generation (RTG) to implement polymorphic contracts

that employ sealing to enforce parametricity. A seal is an opaque value that cannot be

inspected or modi�ed. When a value enters a polymorphic function we seal the value

with a freshly generated type, or name. When a value exits a polymorphic function

we unseal the value, provided the value is a seal of the same name.

Figure 5.7 shows the extension of function check to include polymorphic con-

tracts. Checking a value against polymorphic contract ∀X .A requires checking the

value against contractA after substituting all occurrences ofX inAwith a fresh name.

Function substituteNames implements name generation and substitution, addition-

ally distinguishing names that appear in covariant and contravariant positions. For
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1 function check(value , p, type) {

2 switch(type.kind) {

3 case TypeKind.Num:

4 return checkNumber(value , p);

5 case TypeKind.Bool:

6 return checkBoolean(value , p);

7 case TypeKind.Fun:

8 return wrapFunction(value , p, type);

9 case TypeKind.Forall:

10 return check(value , p, substituteNames(type));

11 case TypeKind.Name:

12 const fn = type.covariant ? unseal : seal;

13 return fn(value , p, type);

14 · · · // other cases omitted

15 }

16 }

Figure 5.7: Contract Assertion (Extends Figure 5.4)

example, when applied to the identity function type substituteNames is de�ned as:

substituteNames(∀X .X→X ) = Y−→Y+ for fresh name Y

Type Y denotes a freshly generated name and each name is indexed by a polarity

indicating the variance of the name with respect to the original type abstraction. We

write + for covariance and − for contravariance.

When checking a generated name contract we inspect the variance of the name.

If the name is contravariant with respect to the type abstraction then the currently

checked value is entering a polymorphic function, so the value must be sealed. If

the name is covariant with respect to the type abstraction then the currently checked

value is exiting a polymorphic function, so the value must be unsealed.

Sealing The implementation of the seal function is given in Figure 5.8. A store is

used to track all seals in the program. Constant SEAL_STORE is a mapping from seals

to seal data, where seal data records the value and name associated with a seal. A
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1 const SEAL_STORE = new WeakMap ();

2 function seal(value , p, name) {

3 // Create coffer to mask value 's type

4 const coffer = { };

5 const handler {

6 get: function(target , property , receiver) {

7 return blame(negate(p), value[property ]);

8 },

9 set: function(target , property , x, receiver) {

10 return blame(negate(p), value[property] = x);

11 },

12 · · · // rest of traps omitted

13 }

14 const seal = new Proxy(coffer , handler);

15 SEAL_STORE.set(seal , {value: value , name: name});

16 return seal;

17 }

Figure 5.8: Sealing

WeakMap
2

implements the store therefore seals do not have to be explicitly deleted

to conserve memory.

The seal function consists of three key steps. First, a co�er is created for the

sealed value; a proxy will be later applied to the co�er to implement the seal. The

purpose of the co�er is to obscure the type of the proxied value. Wrapping an object

in a proxy will return a proxy of type object; wrapping a function in a proxy will

return a proxy of type function. By using a co�er the proxy that implements the

seal will always have the same type, therefore any run-time type tests applied to the

seal will behave uniformly. The co�er also enables primitives to be sealed because

primitive values cannot be directly wrapped in proxy.

Second, a handler for the proxy is created. A parametric function should not

inspect its argument therefore a seal should raise blame when examined by a context.

The handler implements every trap, raising blame and then forwarding the behaviour

2https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_
Objects/WeakMap

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/WeakMap
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/WeakMap
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1 function unseal(value , p, name) {

2 if(SEAL_STORE.has(value)) {

3 const contents = SEAL_STORE.get(value);

4 if(contents.name === name) {

5 // Unseal

6 return contents.value;

7 }

8 // Sealed under different name;

9 return blame(p, contents.value);

10 }

11 // Not a sealed value

12 return blame(p, value);

13 }

Figure 5.9: Unsealing

to the sealed value. When tampered with, a seal will blame the negation of the blame

node associated the with seal. We say the context of the seal is to blame for tampering,

not the sealed value. Finally, the proxy implementing the seal is created, added to the

seal store, then returned. Every seal is associated with the value it seals and the name

the value was sealed under.

We use a store to associate seal data rather than recording the data on the seal for

two reasons. First, the seal store provides an unforgeable way to identify a seal. A to-

ken that is placed on the seal could be extracted and used to clone the seal. Conversely,

the store is not publicly accessible and recognises seals by their object identity. A seal

is uniquely determined by recording its identity in the store, and only a parametric

contract may add a seal to the store. Second, recording data on the seal runs the risk

of raising a tamper violation when queried by an unsealing contract. Implementing

hidden properties that do not trigger tamper violations when queried is possible, but

technical. Recording data in the store avoids this issue and is easier to implement.

Unsealing The implementation of the unseal function is given in Figure 5.9. First,

the seal store is queried to determine if the supplied value is a seal. In the event the

value is not a seal then blame is immediately assigned to the blame node. When at-

tempting to unseal a value known to be a seal the corresponding seal data is extracted
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from the store. If the name associated with the seal and the name associated with the

unseal operation match this denotes a value entering and then exiting a polymorphic

function at the same type parameter—the unsealed value is returned. If the names do

not match then an illegal attempt has been made to unseal a value that was sealed

under a di�erent name—blame is assigned to the corresponding blame node.

Type names play a crucial role in the implementation of polymorphic contracts

because sealing alone is insu�cient to enforce parametricity. Consider the following

de�nition that declares the type of function noSwap.

1 interface Pair <X, Y> {

2 fst: X;

3 snd: Y;

4 }

5 declare function noSwap <X,Y>(

6 pair: Pair <X,Y>

7 ): Pair <Y,X>;

Parametricity states that the only total function with the corresponding type is the

function that accepts a pair and returns a new pair with the values assigned to fst

and snd swapped. Suppose a library (incorrectly) implements the function such that

it performs no swapping of the values:

1 function noSwap(pair) {

2 return { fst: pair.fst , snd: pair.snd };

3 }

4 const swapped = noSwap ({ fst: 1, snd: true });

5 const one = swapped.snd;

Applying a polymorphic contract to noSwap will seal pair.fst and pair.snd in the

body of the function, and unseal properties fst and snd when accessed on a value

returned by noSwap.

A contract implementation that employs sealing without names (alternatively

stated as an implementation that uses a single name) will not assign blame when

accessing swapped.snd, which is incorrect. Without attributing names to each seal

it is impossible to distinguish seals corresponding to di�erent type parameters, and

therefore the contract implementation cannot verify that the contents of the pair were

swapped. TPD uses fresh names to correctly assign blame in this example. Upon ac-

cessing swapped.snd the object contract will attempt to unseal the value using name
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Definition

1 interface Box {

2 value: number;

3 }

4

5 declare function isY(x: Box): boolean;

Library

1 const y = { value: 4, label: "foo" };

2 function isY(x) {

3 return x === y;

4 }

Figure 5.10: Proxy-object Identity Comparison

X, but will receive a value sealed using name Y, triggering a violation.

5.3.5 Non-Interference

Contracts should satisfy the property of non-interference, which in this context means

that adding contracts to a program should not change the behaviour of the program,

except to raise a blame error. The design of proxies in JavaScript means that contracts

implemented using proxies may violate non-interference.

Proxy Identity Proxies in JavaScript are implemented as opaque proxies, rather

than the alternate approach of transparent proxies (Keil et al., 2015). An opaque proxy

has a distinct identity which means that the identity of a proxy is di�erent to the object

it wraps, and furthermore, two proxies of the same object have di�erent identities.

Figure 5.10 shows how an equality test may be a�ected by a proxy-object comparison.

Function isY captures a references to unwrapped object y. If the function is wrapped

according to the type declared in the de�nition then every argument will be wrapped

in a contract of type Box. Each contract will be a proxy with a fresh identity, therefore

this function will always return false, even when passed the original reference y.

Figure 5.11 shows how an equality test may be a�ected by a proxy-proxy com-

parison. Function boxEqualsLabelled compares its arguments against each-other.

If the function is wrapped according to the type declared in the de�nition then both
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Definition

1 interface Box {

2 value: number;

3 }

4

5 interface Labelled {

6 label: string;

7 }

8

9 declare function boxEqualsLabelled(

10 x: Box , label: Labelled

11 ): boolean;

Library

1 function boxEqualsLabelled(x, labelled) {

2 return x === labelled;

3 }

Figure 5.11: Proxy-proxy Identity Comparison

arguments will be wrapped in a di�erent contract. Each contract will be a proxy with

a fresh identity, therefore this function will always return false, even if called with

the same arguments such as boxEqualsLabelled(x, x).

Proxy Type Proxies in JavaScript allow a programmer to intercept many operations

on an object, but typeof is not one. Consequently, when implementing dynamic seals

it is not possible to raise an error when applying the non-parametric operation typeof

to a sealed value. Figure 5.12 shows how a type test may be a�ected by a dynamic

seal. If the function special is wrapped using the identity function type then inside

the body of the function argument x will be sealed. As shown earlier, TPD wraps

every value in a co�er prior to sealing, meaning that every seal has type object.

The wrapped function will always select the else branch because the type compar-

ison always returns false, acting as the identity. Though the contract has enforced

parametricity, it has done so at the expense of non-interference. The unwrapped and

wrapped versions of the function behave di�erently, and no blame error is raised.
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Definition

1 declare function special <X>(x : X): X;

Library

1 function special(x) {

2 if (typeof x === "number") return x + 1;

3 else return x;

4 }

Figure 5.12: Proxy Type Comparison

5.4 Related Work

5.4.1 Gradual Typing and TypeScript

Swamy et al. (2014) develop a gradually-typed core of JavaScript called TS
?

with a

focus on security, viewing attacks as type errors. Their language provides memory

isolation for typed objects, even in the presence of malicious attacks from untyped

contexts. Type safety is guaranteed even under �agrant use of eval, stack walks, and

other object manipulations. Their approach uses run-time type information (RTTI)

to tag values, ensuring dynamic safety. Dynamically typed code is instrumented to

perform type checks and tag associated values with their RTTI. The RTTI associated

with a value evolves monotonically over time, only becoming more precise. They

do not consider blame assignment, but suggest that blame should be assigned to the

point of tagging. TS
?

does not satisfy the gradual guarantee of Siek et al. (2015b).

The gradual guarantee provides two key properties. First, removing type annotations

from a well-typed program should produce a well-typed program. Second, when

adding type annotations to a program, if the program remains well-typed then the

only change in behaviour can be the addition of trapped errors. TS
?

violates the

guarantee because the operation to set RTTI on a value is conservative. Coercing

between function types that are not positive subtypes will fail, even if the function is

never applied.

Rastogi et al. (2015) present a compiler for TypeScript that employs sound gradual

typing with a greater focus on performance, called Safe TypeScript. Their technique

also uses RTTI but establishes a novel notion of di�erential subtyping, calculating the

minimum amount of information that a value must be tagged with. Another feature
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of their approach is tag erasure: a typed value in a fully typed context will have the

obsolete type tag removed. Traditional gradual typing relates the dynamic type any

to all types, however Rastogi et al. (2015) do not relate any to erased types. This

important feature provides a form of abstraction; an erased type may not be viewed

at type any and subsequently manipulated using dynamic access operations. Safe

TypeScript and TPD di�er in how they treat certain types. The former treats classes

nominally while TPD adheres to the approach taken by TypeScript, treating classes

structurally. Safe TypeScript does not permit casts from generic types to the dynamic

type because this would require sealing. TPD does not maintain such a restriction.

Richards et al. (2015) develop a variant of TypeScript called StrongScript that

supports hardening via concrete types. StrongScript supports three programming

�avours: untyped that has no annotations and performs no static or dynamic check-

ing; optional that supports type annotations which are statically checked, but not

guaranteed at run-time; and concrete types that are statically checked and retained

at run-time for optimisations and correctness. They distinguish an important prop-

erty called trace preservationwhich is similar to our notion of non-interference, except

that it precludes throwing an error as trace preserving. Adding optional types to an

untyped program should not change the behaviour of a program. A parallel would

be the guarantee that adding a TypeScript de�nition to a library should not change

the behaviour of a library. They also state the strengthening property. Transforming

all optional types to concrete types in a cast-free program should be trace preserv-

ing. Richards et al. (2015) evaluate their use of concrete types against a small set of

benchmarks, reporting speedups of 22% when executed on an optimised JavaScript

run-time.

5.4.2 Contract Implementations

Guha et al. (2007) present implementations of parametric polymorphic contracts for

PLT Scheme and JavaScript. The PLT Scheme implementation makes use of generative

structs to construct opaque seals with fresh types. There is no need to associate each

seal with a name to distinguish values sealed under di�erent names; a type predicate

for the struct is used instead. Furthermore, there is no need to wrap a value in a co�er

prior to sealing to obscure the type of the value. The JavaScript implementation does

not have the luxury of structs, and also precedes the development of JavaScript prox-

ies. Seals are implemented using basic JavaScript objects that hold the sealed value



Chapter 5. Contracts for Gradual Typing 113

and the associated name, therefore they are vulnerable to malicious code modifying

the properties of the seal. Both implementations handle blame, but only at the point

of unsealing; attempting to unseal a value sealed under a di�erent name will raise

positive blame. There is no treatment of blame when seals are tampered with; the

implementation solely relies on seals appearing opaque and behaving uniformly.

Disney (2015) designs a macro system for JavaScript that is used to build con-

tracts.js, a contract library based on proxies. The library supports parametric poly-

morphic contracts and the implementation of seals applies proxies to co�er objects.

Blame is given a full treatment: traps on the proxy will raise negative blame; incor-

rectly unsealing a value will raise positive blame. Disney (2015) also observes the

problem posed by proxies being unable trap type tests, suggesting an extended proxy

interface for virtual values (Austin et al., 2011).

Guha et al. (2007) and Disney (2015) both support contract inference for type pa-

rameter instantiations. The former provides this as a convenience to the programmer

because the implementation of polymorphic contracts requires explicit instantiation.

The latter provides this as an aid to detect cases where heterogeneous lists are passed

to functions that act on polymorphic lists, suggesting that this indicates a fault rather

than correct code. Ahmed et al. (2017) show that inference is unnecessary and each

polymorphic contract can be instantiated with the dynamic type any: TPD follows

this approach. There is also justi�cation for believing that contract inference is un-

suitable for languages like TypeScript that support union types, the dynamic type

any, and the top type unknown. Distinguishing an array that is incorrectly heteroge-

neous, rather than correctly homogeneous with a �xed union type, is not predictable

and can potentially lead to confusing false-positives.

Strickland et al. (2012) design chaperones and impersonators: mechanisms for be-

havioural interposition similar to proxies, and well suited for implementing contracts.

A chaperone can wrap a value performing delayed checks, but the only behaviour a

check can add is to raise an error. An impersonator can replace a value, behaving

di�erently, or appearing opaque. Chaperones and impersonators are opaque and can

be distinguished from a value they wrap using the eq? operator, however both are

transparent with respect to the more commonly used equal? operator. Chaperones

are better suited for wrapping immutable data than their JavaScript proxy counter-

part. A proxy wrapping an immutable object must return exactly the same underlying

value when trapping a property access, preventing recursive wrapping for higher-

order contracts. A chaperone is permitted to wrap the underlying value in another
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chaperone, enforcing the higher-order contract.

Keil and Thiemann (2015b) implement higher-order contracts for JavaScript us-

ing proxies. The implementation supports function and object contracts, intersection

and union contracts, and also user-de�ned contracts; the implementation does not

support polymorphic contracts. They study non-interference, in particular focus-

ing on user-de�ned contracts that may induce side-e�ects when applied, violating

non-interference. Keil and Thiemann (2015b) apply user-de�ned contracts in a sand-

box that monitors the execution environment for modi�cations to the program state.

When a contract tries to mutate an object outside the scope of the contract then an

error is raised, enforcing non-interference.

Feltey et al. (2018) design and implement collapsible contracts, a novel concept

aimed at addressing a signi�cant source of performance degradation associated with

the use of contracts. Typically, when a value crosses a typed-untyped boundary at a

higher-order type a wrapper is applied; repeated crossings causes redundant wrap-

pers to accumulate, a�ecting performance. To address the degradation they imple-

ment collapsible contracts: trees of contracts where branches split client and server

obligations and leaves are sequences of �at contracts. When applying a contract to

an already wrapped value the two contracts are combined using a merge operation.

The merge retains the behaviour of the two contracts while pruning redundant �at

checks using a partial order. Feltey et al. (2018) implement their design in Racket (Flatt

and PLT, 2010) and Typed Racket (Tobin-Hochstadt and Felleisen, 2008), showing that

the technique can signi�cantly improve performance for some cases. Collapsible con-

tracts do incur additional maintenance at run-time. A worst case overhead of 14% is

recorded, which they argue can be softened by dynamically transforming traditional

contracts to collapsible contracts when a su�cient number of wrappers accumulate.



Chapter 6

Mixed Messages: An Evaluation of
Sound Gradual Typing

Proponents of gradual typing argue that providing programmers with a spectrum

between safety and dynamism will improve software as a developer is able to choose

the best approach for the task. While the vision for gradual typing is de�nite, the

path from theory to practice is less known.

Using our tool TPD we evaluate the application of sound gradual typing against

the De�nitelyTyped repository, the primary collection of TypeScript de�nitions for

JavaScript libraries. The evaluation uses our tool to monitor JavaScript libraries and

their test code for conformance to the corresponding de�nition �le. Through our

evaluation we measure the bene�t sound gradual typing can provide as well as con-

sidering the impact of issues known to exist in theory, but not necessarily in practice.

Our results yield mixed messages. We show that contracts and sound gradual typ-

ing can be used to enforce conformance of JavaScript libraries and TypeScript clients

to a de�nition �le, detecting a signi�cant number of violations. However, our eval-

uation also emphasises technical concerns associated with implementing contracts

in JavaScript using proxies. We show that violations of non-interference caused by

contracts are a real problem in practice.

6.1 Evaluating Sound Gradual Typing

We performed an evaluation of sound gradual typing against the De�nitelyTyped

repository. We applied TPD to the JavaScript libraries in De�nitelyTyped that run on

node.js and had a set of unit tests that all passed. When we conducted this evaluation

115
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there were 500 libraries in De�nitelyTyped, of which 122 satis�ed our constraints.

The evaluation addressed two concerns:

Is sound gradual typing justi�ed? Are there su�cient violations of conformance

to justify the use of sound gradual typing with JavaScript libraries and Type-

Script clients?

Is sound gradual typing plausible? Are the known technical concerns associ-

ated with JavaScript proxies—where contracts violate non-interference—a sig-

ni�cant problem to practitioners of sound gradual typing?

We recorded the frequency of libraries that failed to conform to their TypeScript def-

inition, classifying the reason for the failure. From the 122 libraries we tested TPD

detected violations in 62 libraries with a total of 179 distinct conformance errors.

We recorded the frequency of proxy interference introduced through the use of

TPD. Our evaluation considers all kinds of proxy interference. From the 122 libraries

we tested there were 22 violations of non-interference caused by TPD. Twelve li-

braries exhibited interference due to proxy identity, �ve due to run-time sealing, four

due to re�ection, and two due to issues in the proxy implementation.

6.1.1 Overview

Section 6.2 begins with an example violation of conformance, obtained through our

evaluation using TPD. Section 6.3 demonstrates contracts violating non-interference,

also obtained through our evaluation using TPD. Section 6.4 presents the results of

our evaluation. Section 6.5 evaluates proposed solutions to contract interference in

the context of our results. Section 6.6 discusses related work regarding evaluation

of sound gradual typing and JavaScript libraries, in addition to alternate designs for

sound gradual typing.

6.2 Violating Conformance

We present an example of a library failing to conform to the de�nition. The exam-

ple illustrates higher-order positive blame where a library incorrectly uses a function

argument; the example was found by applying TPD and running the unit tests for

the library. We refer to blame in the technical sense. Whether the code is wrong, or

the type annotation is wrong, depends on the domain. In general we view library
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code to have higher authority than de�nition �les. The De�nition �le is taken from

the De�nitelyTyped repository; library and client code is taken from the correspond-

ing JavaScript library. When presenting the example we omit some blank lines and

comments. We write “· · · ” to indicate code we have chosen to elide.

This example is taken from the library swiz. The swiz library provides seriali-

sation and validation for XML and JSON interfaces. The de�nition
1

was written by

Goddard
2
, and the library

3
and client

4
were written by Rackspace

5
.

Definition Figure 6.1 contains the de�nition �le. The de�nition �le exports class

Valve with overloaded method check. The �rst overload accepts three arguments:

an object to check of any type, a con�guration object, and a callback that accepts

two arguments of any type. The callback and the check method both return void.

The second overload accepts two arguments: an object to check of any type, and a

callback that accepts two arguments of any type. The callback and the check method

both return void.

Library Figure 6.1 contains the library implementation �le. We omit initialisation

at the beginning of the check method, the purpose of which is to provide a value

for options if the argument is not provided by the caller. The method applies the

checkSchema function to the object that requires validation. The checkSchema func-

tion takes a callback that performs validation and forwards the result to the callback

passed as argument to check.

Client Figure 6.2 contains the client test �le that evoked the violation of confor-

mance. The test �le imports the Valve class on line 3. A test function is de�ned on

line 12 that attempts to validate a bad value that omits a key; the test case checks that

the returned error contains the correct information.

Wrapped Behaviour When the test case in Figure 6.2 is executed TPD will assign

positive blame to the library. The diagnosis begins with the application of the callback

1https://github.com/DefinitelyTyped/DefinitelyTyped/blob/
03f12b0f667d29fe8e15c2e5c56f3ed7e10c8eb9/swiz/swiz.d.ts

2
Je� Goddard: https://github.com/jedigo

3https://github.com/racker/node-swiz/blob/4ee9b36a620e7365003d526f195bcf76e05a863a/
lib/valve.js

4https://github.com/racker/node-swiz/blob/4ee9b36a620e7365003d526f195bcf76e05a863a/
tests/test-valve.js

5
Rackspace: https://developer.rackspace.com

https://github.com/DefinitelyTyped/DefinitelyTyped/blob/03f12b0f667d29fe8e15c2e5c56f3ed7e10c8eb9/swiz/swiz.d.ts
https://github.com/DefinitelyTyped/DefinitelyTyped/blob/03f12b0f667d29fe8e15c2e5c56f3ed7e10c8eb9/swiz/swiz.d.ts
https://github.com/jedigo
https://github.com/racker/node-swiz/blob/4ee9b36a620e7365003d526f195bcf76e05a863a/lib/valve.js
https://github.com/racker/node-swiz/blob/4ee9b36a620e7365003d526f195bcf76e05a863a/lib/valve.js
https://github.com/racker/node-swiz/blob/4ee9b36a620e7365003d526f195bcf76e05a863a/tests/test-valve.js
https://github.com/racker/node-swiz/blob/4ee9b36a620e7365003d526f195bcf76e05a863a/tests/test-valve.js
https://developer.rackspace.com
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Definition swiz.d.ts

1 · · ·

2 export class Valve {

3 · · ·

4 check(obj: any , options: ICheckOptions , callback: (err:

any , cleaned: any) => void): void;

5 check(obj: any , callback: (err: any , cleaned: any) =>

void): void;

6 · · ·

7 }

8 · · ·

Library valve.js

1 · · ·

2 Valve.prototype.check = function(_obj , options , callback) {

3 · · ·

4 checkSchema(obj , this.schema , [], false , this.baton ,

function(err , cleaned) {

5 if (err) {

6 callback(err);

7 return;

8 }

9 if (finalValidator) {

10 finalValidator(cleaned , function(err , finalCleaned) {

11 if (err instanceof Error) {

12 throw new Error('err argument must be a swiz

error object ');

13 }

14 callback(err , finalCleaned);

15 });

16 }

17 else {

18 callback(err , cleaned);

19 }

20 });

21 };

22 · · ·

Figure 6.1: Violating Conformance Example (Definition and Library)
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Client test-valve.js

1 var swiz = require('../lib/swiz');

2 var async = require('async ');

3 var V = swiz.Valve;

4 · · ·

5 var badExampleNode1 = {

6 'id' : 'xkCD366 ',

7 'is_active ' : true ,

8 'name' : 'exmample ',

9 'ipaddress ' : '42.24.42.24 '

10 };

11 · · ·

12 exports['test_schema_translation_2 '] = function(test ,

assert) {

13 var validity = swiz.defToValve(def),

14 v = new V(validity.Node);

15 assert.isDefined(validity.Node);

16 assert.isDefined(validity.NodeOpts);

17

18 v.check(badExampleNode1 , function(err , cleaned) {

19 assert.deepEqual(err.message , 'Missing required key (

agent_name)',

20 'schama translation failure (missing agent_key)');

21 test.finish ();

22 });

23 };

24 · · ·

Figure 6.2: Violating Conformance Example (Client)
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function at line 6 in the library:

callback(err);

The validation of the object fails and the callback passed to check is called with a

single argument, however in both overloads the callback expects two arguments—

a violation of conformance. The callback function supplied to check comes from

the client, and is wrapped in a function contract annotated with a negative blame

node. When the wrapped callback function is applied with an incorrect number of

arguments the function contract assigns negative blame to the context. Recall that

the contract was already annotated with a negative blame node, therefore this will

assign positive blame to the library. The library has incorrectly used the callback

function by only applying the function to one argument. The semantics of JavaScript

will assign the value undefined to any argument that is omitted at the call site to

a function. There is some justi�cation for allowing an argument of type any to be

omitted because the default value of undefined will be used instead, respecting the

type any. TypeScript does not follow this reasoning and raises a type error based on

the arity mismatch alone, and we implement our contract monitors to behave in the

same way.

6.3 Violating Non-Interference

We present examples of proxy interference caused by the application of sound grad-

ual typing to JavaScript libraries. The examples illustrate the two fundamental ways

interference occurs: by changing object identity through wrapping and by changing

type through sealing. Both examples were found by applying TPD and running the

unit tests for each library. De�nitions are taken from the De�nitelyTyped repository;

library and client code is taken from the corresponding JavaScript library. When pre-

senting the examples we omit some blank lines and comments. We write “· · · ” to

indicate code we have chosen to elide.

6.3.1 Proxy Identity

This example is taken from the library gulp-if. The gulp library is a streaming build

system for JavaScript applications and the gulp-if library is a plugin that implements
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Definition gulp-if.d.ts

1 declare module "gulp -if" {

2 function gulpIf(

3 condition: boolean ,

4 stream: NodeJS.ReadWriteStream ,

5 elseStream ?: NodeJS.ReadWriteStream): NodeJS.

ReadWriteStream;

6 export = gulpIf;

7 }

Library index.js

1 'use strict ';

2

3 var match = require('gulp -match ');

4 var ternaryStream = require('ternary -stream ');

5 var through2 = require('through2 ');

6

7 module.exports = function (condition , trueChild , falseChild

, minimatchOptions) {

8 if (! trueChild) {

9 throw new Error('gulp -if: child action is required ');

10 }

11

12 if (typeof condition === 'boolean ') {

13 // no need to evaluate the condition for each file

14 // other benefit is it never loads the other stream

15 return condition ? trueChild : (falseChild || through2.

obj());

16 }

17

18 function classifier (file) {

19 return !!match(file , condition , minimatchOptions);

20 }

21

22 return ternaryStream(classifier , trueChild , falseChild);

23 };

Figure 6.3: Proxy Identity Example (Definition and Library)
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Client boolean.js

1 · · ·

2 describe('when given a boolean ,', function () {

3 var tempFile = './temp.txt';

4 var tempFileContent = 'A test generated this file and

it is safe to delete ';

5 it('should call the function when passed truthy ',

function(done) {

6 // Arrange

7 var condition = true;

8 var called = 0;

9 var fakeFile = {

10 path: tempFile ,

11 contents: new Buffer(tempFileContent)

12 };

13 var s = gulpif(condition , through.obj(function (

file , enc , cb) {

14 // Test that file got passed through

15 (file === fakeFile).should.equal(true);

16

17 called ++;

18 this.push(file);

19 cb();

20 }));

21 // Assert

22 s.once('finish ', function (){

23

24 // Test that command executed

25 called.should.equal (1);

26 done();

27 });

28 // Act

29 s.write(fakeFile);

30 s.end();

31 });

32 · · ·

33 }

Figure 6.4: Proxy Identity Example (Client)
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a conditional operator for streams. The de�nition
6

was written by Asana
7
, and the

library
8

and client
9

were written by Richardson
10

.

Definition Figure 6.3 contains the de�nition �le. The de�nition describes a module

that exports a single function using an export assignment. The function accepts three

arguments: a boolean condition, a NodeJS.ReadWriteStream object that denotes the

true stream, and an optional NodeJS.ReadWriteStream object that denotes the false

stream. An optional argument may be omitted when calling the function; JavaScript

�lls missing arguments with the undefined value at run-time. The function returns

a stream of type NodeJS.ReadWriteStream.

Library Figure 6.3 contains the library implementation �le. The library de�nes

the primary function that accepts a condition argument and returns the argument

trueChild when the condition evaluates to true. If the condition evaluates to false

then argument falseChild is returned when supplied, otherwise a default stream

value is used. We omit discussion of the behaviour when the function in called with

a non-boolean condition because this functionality is not exposed in the type of the

de�nition �le. When applying TPD we observed that test code for this library exer-

cises the additional functionally and TPD would correspondingly signal a negative

blame violation. The violation indicates that the de�nition �le is incomplete with re-

spect to the implementation of the library. We use incomplete informally as it is not

clear what a complete de�nition �le means. In this setting we intend for incomplete to

mean that a de�nition �le is too strict and rejects programs that the library authors

intend to be accepted, evidenced by unit tests that induce negative blame.

Client Figure 6.4 contains the client test �le that evoked the interference. The func-

tions describe and it are provided by a unit-test library. The former describes a set

of tests and the latter describes a particular test case. Lines 7-12 initialise the test pa-

rameters: condition is the branch for the stream ternary, called is a counter used

to certify a callback was evaluated, and fakeFile is an object to pass through the

6https://github.com/DefinitelyTyped/DefinitelyTyped/blob/
03f12b0f667d29fe8e15c2e5c56f3ed7e10c8eb9/gulp-if/gulp-if.d.ts

7
Asana: https://asana.com

8https://github.com/robrich/gulp-if/blob/54550add63670d801d7776486512dbb6e46147c7/
index.js

9https://github.com/robrich/gulp-if/blob/54550add63670d801d7776486512dbb6e46147c7/
test/boolean.js

10
Rob Richardson: https://github.com/robrich/gulp-if

https://github.com/DefinitelyTyped/DefinitelyTyped/blob/03f12b0f667d29fe8e15c2e5c56f3ed7e10c8eb9/gulp-if/gulp-if.d.ts
https://github.com/DefinitelyTyped/DefinitelyTyped/blob/03f12b0f667d29fe8e15c2e5c56f3ed7e10c8eb9/gulp-if/gulp-if.d.ts
https://asana.com
https://github.com/robrich/gulp-if/blob/54550add63670d801d7776486512dbb6e46147c7/index.js
https://github.com/robrich/gulp-if/blob/54550add63670d801d7776486512dbb6e46147c7/index.js
https://github.com/robrich/gulp-if/blob/54550add63670d801d7776486512dbb6e46147c7/test/boolean.js
https://github.com/robrich/gulp-if/blob/54550add63670d801d7776486512dbb6e46147c7/test/boolean.js
https://github.com/robrich/gulp-if
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stream. Lines 13-20 de�ne the new stream using the ternary. The stream to be se-

lected when the condition is true asserts that the piped object is equal to fakeFile,

signals that the callback was evaluated by incrementing counter, and passes the �le

through the stream. Line 29 commences the test by writing fakeFile to the stream.

Unwrapped Behaviour The assertion on line 15 will pass as the fakeFile is writ-

ten to the stream, then piped to the stream in the true branch of the ternary. The as-

sertion on line 25 will pass as the callback associated with the true stream is executed,

setting the counter to one.

Wrapped Behaviour The assertion on line 15 will fail as the �le piped through

the stream is not equal to the expected fakeFile. The diagnosis begins with the

initial step on line 29 that writes the �le to the stream. The object s is the result

of applying the library function gulpif and is therefore wrapped in a contract for

type NodeJS.ReadWriteStream. The type NodeJS.ReadWriteStream has a method

write of type:

write(buffer: Buffer | string, cb?: Function): boolean;

The application of this method will be wrapped by the contract and therefore the

buffer argument will be wrapped in a contract for type Buffer—a proxy. As a con-

sequence the argument fakeFile will be wrapped in a proxy before being passed

through the stream; line 15 will compare a wrapped and unwrapped version of the

same object, returning false and failing the assertion.

6.3.2 Dynamic Sealing

This example is taken from the library clone. The clone library provides deep

cloning of JavaScript objects and primitives. The de�nition
11

was written by Simp-

son
12

, and the library
13

and client
14

were written by Vorbach
15

.

11https://github.com/DefinitelyTyped/DefinitelyTyped/blob/
2f47c75835b837777a85287611703d683b0aaa83/clone/clone.d.ts

12
Kieran Simpson: https://github.com/kierans/DefinitelyTyped

13https://github.com/pvorb/clone/blob/2d907392855214439ee9f9b6c60b3e47c5fae07b/
clone.js

14https://github.com/pvorb/clone/blob/2d907392855214439ee9f9b6c60b3e47c5fae07b/
test.js

15
Paul Vorbach: https://github.com/pvorb/clone

https://github.com/DefinitelyTyped/DefinitelyTyped/blob/2f47c75835b837777a85287611703d683b0aaa83/clone/clone.d.ts
https://github.com/DefinitelyTyped/DefinitelyTyped/blob/2f47c75835b837777a85287611703d683b0aaa83/clone/clone.d.ts
https://github.com/kierans/DefinitelyTyped
https://github.com/pvorb/clone/blob/2d907392855214439ee9f9b6c60b3e47c5fae07b/clone.js
https://github.com/pvorb/clone/blob/2d907392855214439ee9f9b6c60b3e47c5fae07b/clone.js
https://github.com/pvorb/clone/blob/2d907392855214439ee9f9b6c60b3e47c5fae07b/test.js
https://github.com/pvorb/clone/blob/2d907392855214439ee9f9b6c60b3e47c5fae07b/test.js
https://github.com/pvorb/clone
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Definition clone.d.ts

1 declare module "clone" {

2 function clone <T>(val: T, circular ?: boolean , depth?:

number): T;

3 module clone {

4 function clonePrototype <T>(obj: T): T;

5 }

6 export = clone

7 }

Library clone.js

1 function clone(parent , circular , depth , prototype ,

includeNonEnumerable) {

2 if (typeof circular === 'object ') {

3 · · ·

4 }

5 · · ·

6 if (typeof circular == 'undefined ')

7 circular = true;

8 if (typeof depth == 'undefined ')

9 depth = Infinity;

10 // recurse this function so we don't reset allParents

and allChildren

11 function _clone(parent , depth) {

12 // cloning null always returns null

13 if (parent === null)

14 return null;

15 if (depth === 0)

16 return parent;

17 · · ·

18 if (typeof parent != 'object ') {

19 return parent;

20 }

21 · · ·

22 }

23 return _clone(parent , depth);

24 }

Figure 6.5: Dynamic Sealing Example (Definition and Library)
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Client test.js

1 · · ·

2 exports["clone number"] = function (test) {

3 test.expect (5); // how many tests?

4

5 var a = 0;

6 test.strictEqual(clone(a), a);

7 a = 1;

8 test.strictEqual(clone(a), a);

9 a = -1000;

10 test.strictEqual(clone(a), a);

11 a = 3.1415927;

12 test.strictEqual(clone(a), a);

13 a = -3.1415927;

14 test.strictEqual(clone(a), a);

15

16 test.done();

17 };

18 · · ·

Figure 6.6: Dynamic Sealing Example (Client)
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Definition Figure 6.5 contains the de�nition �le. The de�nition �le exports iden-

ti�er clone, the type of which is constructed by a function signature and module

de�nition. JavaScript permits functions to act like objects and have properties. A

mechanism to encode this in a de�nition �le is to specify a function and module of

the same name, the types of both will then be merged. The function type speci�es

that the library exports a generic function that accepts three arguments: an argu-

ment of generic type T to be cloned, an optional boolean, and an optional number.

The function returns a value of the same generic type. The module type speci�es that

the library exports a property clonePrototype that is of function type.

Library Figure 6.5 contains the library implementation �le. Lines 2-9 are responsi-

ble for initialisation; the majority of the work is done in the inner-recursive function

_clone de�ned on line 11 and applied on line 23. Cloning a null pointer will return a

null pointer. Exhausting the depth limit will return the current clone target immedi-

ately. Cloning a primitive value—indicated by having a non-object type—will return

the same value. The de�nition of identity is vacuous for primitive values so the clone

target can be immediately returned.

Client Figure 6.6 contains the client test �le that evoked the interference. The code

describes a set of tests that evaluate the cloning function on numbers. There are �ve

expected tests and each test checks that cloning a number is equal to itself. The test

cases are contained in a function that takes as argument a particular testing API that

exports three functions: expect, a function to indicate the expected number of cases;

strictEqual, a generalised (deep) equality function; and done, a function to indicate

that all cases have been evaluated.

Unwrapped Behaviour Each strictEqual application will evaluate to true be-

cause the clone function immediately returns the unmodi�ed argument.

Wrapped Behaviour Each strictEqual application will evaluate to false because

the wrapped clone function no longer returns the original argument. The diagnosis

begins by examining the type of the clone: a generic function. When the wrapped

function is applied to a number the argument is sealed because the contract expects

an argument of generic type. The co�er used by the seal causes the type test on

line 18 to return false, when the test returned true in unwrapped code—a violation of

non-interference. The failing type test causes the clone function to proceed to treat
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the seal like an object and clone the seal, returning a new object with a fresh iden-

tity. When the cloned seal is returned from the function the contract will attempt

to unseal the value, however this will fail. Recall that unsealing recognises seals by

their identity, but because the value is not a seal, rather a clone of a seal, the value

will not be recognised. TPD chooses to log blame errors rather than throw an excep-

tion for convenience in automated testing. As a consequence, execution continues

and the cloned seal is returned, however the cloned seal is not equal to the original

argument and the equality test fails. Throwing an exception is not enough to restore

non-interference because the seal has already altered the behaviour of the program.

Assigning a parametric type to a clone function seems nonsensical because any

clone function must perform type analysis, but whether a type is sensible—or not—

should have no in�uence on the contract’s ability to enforce the speci�cation. Al-

though the example uses a type de�nition that is clearly wrong we still consider the

example useful in highlighting limitations in the proxy design.

6.4 Results

This section presents our results from applying sound gradual typing to the De�nite-

lyTyped repository using our tool The Prime Directive. The evaluation can be obtained

in the form of a software artifact (Williams et al., 2017b).

6.4.1 Method

The De�nitelyTyped repository was used as a corpus of JavaScript libraries with a

type speci�cation of their API, available as a TypeScript de�nition �le. There were

three requirements for a library to be included in the evaluation. First, the library

had to be packaged as a node.js module and executable on the node.js JavaScript run-

time. This requirement made it easier to automatically install, wrap, and test libraries

as they conformed to a regular package structure. Second, it must be possible to

install the library without direct intervention. This requirement made it easier to

automatically reproduce the evaluation in di�erent environments. Last, the library

had to come with a suite of unit tests that all passed once the library was installed.

This requirement meant it was possible to attribute any failing tests as a violation of

non-interference. At the time the evaluation was conducted there were around 500

libraries in De�nitelyTyped, with 122 libraries meeting our criteria.
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Blame

Error Kind Library ( Positive ) Client ( Negative )

Base Type 47 47

Function Arity 23 43

Void Return Type 14 2

Parametricity 3 0

Distinct Errors 87 92

Distinct Libraries 40 48

Table 6.1: Classification of Failures to Conform.

The evaluation process took each library and added wrapper code generated by

TPD to the library �le that exported the module. The unit tests of the wrapped library

were executed and conformance violations detected by TPD were logged and classi-

�ed. Additionally, unit tests that subsequently failed after wrapping were recorded

as violations of non-interference and classi�ed.

6.4.2 Conformance

Table 6.1 shows the classi�cation of violations where a library or its test code failed to

conform to the de�nition. A library failing to conform corresponds to a TPD contract

assigning positive blame, while a client (test code) failing to conform corresponds to

a TPD contract assigning negative blame. Each row records the distinct number of

errors for a given class, distinguished by error source. From the 122 libraries tested

there were 179 distinct errors found in 62 libraries. We informally consider two errors

to be distinct if correcting one error does not correct the other.

Base Type A base type violation is where a value fails a �rst-order check associated

with a contract. This includes producing a string where a number is speci�ed, or

producing an object where a function is speci�ed.

Function Arity An arity violation is where a function application supplies too

many or too few arguments. We conjecture that the skew in frequency between

library and client is due to �rst-order functions being more prevalent than higher-
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order functions; an arity error on a �rst-order function would assign negative blame.

In general, arity errors were very frequent which may be due de�nition authors mis-

understanding Typescript semantics. For example, callbacks for asynchronous func-

tions were often ascribed the type (err: any, val: any) => void. When the

asynchronous function succeeded, err would be supplied as a “falsy” value and val

would be supplied as the result. When the asynchronous function failed, err would

be supplied as an error object and val would be omitted. This would be a violation as

TypeScript expects the callback to always be called with two arguments, even if the

arguments have dynamic type any. The correct type of the callback is one that marks

the second argument as optional: (err: any, val?: any) => void.

Void Return Type A void return type violation is a distinguished base type viola-

tion where a function was expected to return nothing, or speci�cally the undefined

value, but instead returned some other value. This class of error captured the com-

mon mistake of incorrectly ascribing a synchronous function as asynchronous. A

synchronous function returns its result; an asynchronous function returns nothing,

but accepts a continuation or callback.

Parametricity A parametricity violation is where a function fails to conform to a

polymorphic type. A violation can arise in three ways: a polymorphic function can

tamper with a seal, a polymorphic function can attempt to unseal a value sealed using

a di�erent name, or a polymorphic function can attempt to unseal a value that is not

a seal. This class of violation was comparatively infrequent. The cause of this may

be due to de�nition authors being unfamiliar with generics, favouring any instead.

Additionally, applying type tests to seals which should be a violation of parametricity

cannot be reported because proxies do not intercept typeof.

6.4.3 Non-Interference

Table 6.2 shows the classi�cation of violations of non-interference. Each row records

the number of libraries that exhibited that form of interference. From the 122 libraries

tested there were 23 violations of non-interference found in 22 libraries (one library

exhibited two forms of interference).

Proxy Identity There were twelve libraries that exhibited interference because

equality tests that returned true in unwrapped code now returned false in wrapped
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Cause of Interference

Proxy Identity

TI ( proxy-object ) 7

TII ( proxy-proxy ) 5

Sealing 5

Re�ection 4

Proxy Implementation 2

Distinct Libraries 22

Table 6.2: Classification of Interference.

code. The classi�cation distinguishes proxy-object and proxy-proxy equality tests in

a similar manner to Keil et al. (2015). In seven cases the failing equality test was be-

tween an object and a proxy for that object (TI). In �ve cases the failing equality test

was between two proxies for the same object (TII). Section 6.5.1 discusses the use of

identity preserving membranes as a potential solution to the issue of proxy identity.

Distinguishing the type of equality test—TI or TII—is helpful when evaluating the

suitability of membranes because the di�erent forms of equality test pose di�erent

challenges.

Sealing There were �ve libraries that exhibited interference because of dynamic

sealing. Sealing may introduce interference in two ways: either by changing the type

of an object or by changing its identity. The former arises because proxies are unable

to trap type tests so to enforce parametricity all seals must have the same type. The

latter arises because proxies that implement seals are opaque. We distinguish iden-

tity interference caused by seals and identity interference caused by function or object

contracts because they have di�erent solutions. For general contracts a transparent

proxy provides a complete solution, whereas transparent proxies are insu�cient for

seals. A proxy cannot intercept equality operations to raise blame so a naive trans-

parent proxy will not enforce parametricity when applying equality tests to seals.

Reflection There were four libraries that exhibited interference because of re�ec-

tion: where a library inspected its own code in some capacity. Two distinct forms of

re�ection interference were caused by the use of TPD. First, some libraries employed

linting to ensure code meets an expected style and the TPD wrapper code would fail
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to meet that style. Di�erent libraries have di�erent style guidelines so there is no easy

remedy; preventing this source of interference in general would require TPD produc-

ing wrapper code that is dependent on the particular linter a library uses. Second,

some libraries would analyse the library footprint on the JavaScript global name-

space. TPD wrapper code requires access to the contract implementation to perform

the dynamic checks and consequently introduces new dependencies into the global

name-space. The new dependencies would be �agged as unexpected. Both sources

of interference are inconvenient, but not fatal. A library maintainer that adds TPD

to their project would presumably make accommodations for TPD in the testing pro-

cess. The interference exhibited here is primarily due to the evaluation process that

unilaterally applies TPD to a swathe of libraries.

Proxy Implementation There were two libraries that exhibited interference be-

cause of issues in the proxy implementation. At the time this evaluation was per-

formed the proxy implementation was still in an experimental phase and therefore

the implementation was not complete. In particular, certain operations that internally

performed dynamic type checking did not correctly unwrap proxy objects, throwing

dynamic type errors instead.

6.4.4 Summary of Results

We argue that there are two contributions to be taken from the results of our evalu-

ation. First, TypeScript de�nition �les are prone to error and contracts can be used

to detect violations of conformance. When a violation occurs it could be viewed that

the library is implemented or tested incorrectly, alternatively, the de�nition could be

incorrectly speci�ed—we assume the latter. Only those libraries that passed all their

unit-tests were evaluated; the library was correct according to implicit speci�cation of

the tests which we view to have higher authority than de�nition �les. Feldthaus and

Møller (2014) also evaluate the correctness of de�nition �les; our results support and

extend theirs. They consider the ten largest de�nition �les in De�nitelyTyped while

our sample includes very small de�nition �les. We show that even simple de�nitions

are incorrectly speci�ed.

The second contribution of our results is evidence that interference caused by

opaque proxies is a signi�cant problem for contract implementations in JavaScript.

Issues associated with proxy identity were known in theory and Keil et al. (2015)

demonstrated that the problem can manifest in benchmark code. We show that using
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proxies to implement sound gradual typing violates non-interference in a signi�cant

number of cases. Additionally we measure a new source of interference caused by

the use of dynamic sealing. Interference caused by sealing similarly poses a threat to

the applicability of sound gradual typing.

6.4.5 Threats to Validity

We discuss four threats to the validity of the presented results.

Completeness The approach adopted in the evaluation to record violations of con-

formance is incomplete. A library may violate conformance but TPD would not

raise a violation because there was no unit test that exercised the appropriate con-

tract. As a consequence, the frequency of violations presented in Table 6.1 is an

under-approximation. Similarly, the approach adopted to record violations of non-

interference is also incomplete. Proxies used by TPD could violate non-interference

in a way that does not cause a unit test to fail, therefore going undetected. As a

consequence, the frequency of violations presented in Table 6.2 is also an under-

approximation. We consider the primary contribution of this evaluation to be demon-

strating that violations of conformance and non-interference are signi�cant in prac-

tice: providing an under-approximation does not diminish this contribution.

Sample Bias The evaluation only applies TPD to a sample of libraries from De�-

nitelyTyped therefore it is possible that the sample is not representative of the entire

population. We argue that the criteria for selecting libraries does not favour libraries

that exhibit a particular behaviour when TPD is applied.

Esoteric Tests The “client” code used in the evaluation came from the library’s

suite of unit tests. There is the possibility that unit test code is not representative of

real client code, and therefore the results may not characterise experience in practice.

This threat is most applicable to the results regarding violations of non-interference;

unit-test code could contain a higher number of equality tests than real code, there-

fore problems regarding proxy identity would be disproportionately high. Running

unit-tests is an important part of software maintenance, so even in the event that

interference occurs excessively in unit-tests, we still consider this a signi�cant ob-

servation. The threat is less signi�cant when considering violations of conformance

because a violation of the de�nition is a problem regardless of where it was detected.
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Test Coverage The evaluation crucially relies on unit-tests to exercise wrapped

code; when the unit-tests have a low coverage TPD may miss latent violations of

conformance or non-interference. We gauge the a�ect of this threat similarly to the

threat of incompleteness. Missing violations does not diminish the results because

we argue that the lower bound we record is su�ciently large to be of interest. De-

tecting additional violations would strengthen our results, rather than weaken them.

Mezzetti et al. (2018) use unit-tests from JavaScript libraries to accurately classify

version changes. Their study suggests that unit-tests for JavaScript libraries typically

have su�cient coverage to faithfully re�ect the library interface.

6.5 Solutions to Contract Interference

This section discusses design alternatives intented to ameliorate the problem of in-

terference caused by JavaScript proxies that implement contracts.

6.5.1 Membranes

An identity preserving membrane (Miller, 2006; Van Cutsem and Miller, 2010, 2013) is

a distinguished boundary between library and client (also described as wet and dry).

A membrane guarantees two properties. First, an object crossing the boundary at two

locations is wrapped with the same proxy. Second, an object that crosses the bound-

ary and then back through is unwrapped rather than being wrapped twice. Identity

preserving membranes are transitive such that accessing a property on a wrapped ob-

ject will extend the membrane around the accessed value. The composition of these

properties ensures that given two objects x and y that share identity on the wet side,

then their corresponding representations on the dry side will also share identity. This

addresses issues associated with proxy-proxy (TII) equality tests. Furthermore, there

are never direct comparisons between wet and dry objects. This addresses issues as-

sociated with proxy-object (TI) equality tests.

Designing contracts to implement identity preserving membranes is presented as

a solution to the problem of proxy identity, however we identify three challenges

associated with combining contracts and identity preserving membranes.

Implementing any The contract for the dynamic type, or any, is typically pre-

sented in the literature as the identity function: the contract performs no checking
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and values pass through immediately. A vital property of identity preserving mem-

branes is that they are transitive to preserve the continuity of the membrane.

1 const wetVal = { a: 42 };

2 const wetBox = { value: wetVal };

3 const dryBox = membrane(wetBox);

4 const dryVal = dryBox.value;

A membrane is applied to wetBox returning a dry reference; accessing the property

value should extend the membrane around the resulting object. Suppose that mem-

brane was a contract for the type:

1 interface Box { value: any }

Accessing the property value through contract any will act as the identity function,

returning a direct reference to wetVal on the dry side: the any contract acts like a

puncture in the membrane. The consequence of this is that it is possible to have com-

parisons between wet and dry objects—between unwrapped and wrapped objects—

resulting in TI proxy identity interference.

The solution is to implement the any contract such that it wraps the value, per-

forming no type checking, but extending the membrane. This is possible but at the

cost of additional complexity and with increased run-time overhead.

Contract Merging To resolve the problem of proxy-proxy comparisons (TII) an

identity preserving membrane will ensure that the same object is wrapped with the

same proxy when crossing a boundary.

1 const wetFunction = (f, g) =>

2 (f === g) || (f(1) > 0) || g(true);

3 const dryFunction = membrane(wetFunction);

4 const dryVal = x =>

5 typeof x === "number" ? 42 : !x;

6 const result = dryFunction(dryVal , dryVal);

The object dryVal crosses the boundary from dry to wet when passed as both argu-

ments to dryFunction, and is correspondingly wrapped. To ensure the equality test

in the body of wetFunction evaluates correctly, both occurrences of dryVal must be

wrapped in the same proxy.

Suppose that membrane was a contract for the type:
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1 (

2 f: (x: number) => number ,

3 g: (x: boolean) => boolean

4 ) => boolean

A basic contract implementation would wrap each argument to dryFunction in a

separate function wrapper, or proxy. However, when implementing an identity pre-

serving membrane both arguments correspond to the same reference, therefore the

behaviour of the two function wrappers must be merged into one contract proxy. Un-

fortunately there is no correct way to combine the two contracts for f and g while

preserving the original semantics. A simple combination using the and contract com-

binator would be too strict: the new contract would demand that the argument to each

application satisfy types number and boolean. A combination using an intersection

type would be too permissive: the new contract would allow f to be called with a

boolean while the original type only accepts numbers.

Parametricity When an object crosses a boundary, and then crosses back, the ob-

ject is unwrapped rather than being wrapped twice.

1 const wetFunction = (f, x) => f(x);

2 const dryFunction = membrane(wetFunction);

3 const val = { a: 42 };

4 const fn = x => x === val ? val : x;

5 const result = dryFunction(fn, val);

Application of dryFunction wraps both arguments because they cross the mem-

brane. Evaluating the body of wetFunction involves applying wrapped function fn

to wrapped argument val, and in the process, argument val crosses the boundary

for a second time. At the second crossing val is unwrapped so that the body of fn

only compares two unwrapped references to val, ensuing the equality test evaluates

correctly. Suppose that the membrane was a contract for the type:

1 (

2 f: <X>(x: X) => X,

3 x: { a: number }

4 ) => any

Application of dryFunction wraps both arguments in contracts for their correspond-

ing type. Evaluating the body of wetFunction involves applying wrapped function
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1 const prim_get = Reflect.get; // Original API

2 const types = new WeakMap ();

3

4 function wrapObj(obj , p, type) {

5 types.set(obj , { node: p, type: type });

6 return obj;

7 }

8

9 // Modified Reflect API

10 Reflect.get = function(target , property , receiver) {

11 const val = prim_get(target , property , receiver);

12 if (types.has(target)) {

13 const p = types.get(target).node;

14 const type = types.get(target).type;

15 return wrap(val , p, type[property ]);

16 }

17 return val;

18 }

Figure 6.7: Contracts via Reflection

fn to wrapped argument val, and in doing so, we face a dilemma. A polymorphic

contract demands that wrapped argument val is sealed to enforce parametricity. An

identity preserving membrane demands that wrapped argument val is unwrapped

to its original form to ensure that a wet value does not appear in the body of a dry

function. Both demands cannot be simultaneously satis�ed. Choosing to omit seal-

ing means that it is not possible to correctly detect that fn fails to conform to the

polymorphic contract; without sealing the argument there is no distinction between

a reference to val passed as an argument, and a reference originating from the func-

tion body. Choosing to omit unwrapping at the double crossing means that the use of

contracts introduces interference; the equality test in unwrapped code will evaluate

to true, while the equality test in wrapped code will evaluate to false.
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6.5.2 Rewriting

A drastic but e�ective technique is to employ program rewriting: either replacing

certain operators with proxy-aware variants, or by replacing proxies with re�ective

operators.

To address the problem of opaque proxies—those that have a distinct identity and

cannot intercept type tests—a proposed solution is to replace equality and type tests

with proxy-aware variants. An implementation of proxy-aware operators would re-

quire a map from proxies to the objects they wrap, permitting operations to be for-

warded to the unwrapped object. This technique would demand source transforma-

tion of both library and client, weakening some of the bene�ts of contracts. Addi-

tionally, special care has to be taken in the event of arbitrary code execution through

mechanisms like eval.

Another rewriting solution is to invert the behavioural modi�cation introduced by

contracts. Rather than applying type checking behaviour to each object via a proxy,

type checking behaviour is applied at each use of an object through the Reflect16

API. The re�ection interface mirrors the proxy interface, exposing the same set of op-

erations. This technique requires rewriting because most code uses default object op-

erations such as foo.x, rather than re�ective operations such as Reflect.get(foo,

"x"). Implementing contracts with re�ection requires mapping references to contract

types and using re�ective operations to propagate type information.

Figure 6.7 presents an extract of a contract implementation that uses the re�ec-

tion API. When an object is wrapped a type is associated with the object, however

the original object is returned. When accessing a property via Reflect.get, if the

object has an associated type then the property is recursively wrapped. A recursive

wrapping will either perform a type test in the case of �at contracts, or associate a

type in the case of higher-order contracts. The re�ection approach does not use prox-

ies and wrapped objects retain their identity, therefore equality tests are una�ected

by contracts.

This technique is used by Vitousek et al. (2017) where a blame map associates

heap addresses and casts; the weak-map type serves as the blame map in our exam-

ple. There are also similarities between the re�ection encoding and gradual typing

that employs a �rst-order embedding (Greenman and Felleisen, 2018). The former

dynamically propagates type-information through the re�ection API, while the latter

16https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_
Objects/Reflect

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Reflect
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Reflect
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statically propagates type-information.

There are limitations of the approach that uses re�ection. Without proxies there

is no way to implement polymorphic contracts that use dynamic sealing. Associat-

ing a type to an object is not su�cient to distinguish references that are passed as

generic arguments, and references captured in the environment of a function. The

re�ection approach also su�ers from the contract merging problem of identity pre-

serving membranes. Applying multiple contracts to the same object requires merging

of the contracts, which does not have a general solution.

6.5.3 Transparent Proxies

Keil et al. (2015) propose transparent proxies as an alternative to opaque proxies. The

primary di�erence is that an equality test applied to a transparent proxy is forwarded

to the wrapped object, ensuring that equality tests in wrapped code behave like equal-

ity tests in unwrapped code. This design does raise security questions: a transpar-

ent proxy could maliciously masquerade as an existing object and a client would be

unable to detect the deviant proxy. One solution is to provide an explicit isProxy

function to expose proxies. However, this solution is not well suited for polymorphic

contracts. A proxy predicate is not capable of distinguishing the same object sealed

under di�erent names, while using co�ers to force a fresh identity would undermine

the purpose of using transparent proxies.

Keil et al. (2015) present a nuanced alternative that uses realms. Every proxy

is associated with a realm responsible for its creation and realms provide an addi-

tional equality operator. A proxy is transparent when compared outside the realm,

but opaque when compared within. For example:

1 const realm = newRealm ();

2 const obj = {};

3 const p1 = realm.newProxy(obj , handler);

4 const p2 = realm.newProxy(obj , handler);

5 p1 === p2; // true

6 realm.equals(p1, p2); // false

Realms provide a better solution when implementing polymorphic contracts. In user

code (outside the realm) a seal can inherit the identity of the object it wraps, preserv-

ing non-interference; when attempting to unseal a value (inside the realm) a proxy

seal will be exposed.
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6.5.4 Virtual Values

Austin et al. (2011) present the design of virtual values, a mechanism to de�ne spe-

cialised values that support behavioural modi�cation. A virtual value is like a proxy,

supporting traps that implement custom behaviour, though a virtual value can be

constructed from a primitive value such as a number or boolean, unlike a proxy.

Virtual values are a natural way to implement dynamic seals for polymorphic

contracts. Recall that a primitive value must be wrapped in a co�er prior to seal-

ing with a proxy, violating non-interference by changing the type of the value they

wrap. Virtual values do not su�er this restriction. Furthermore, the interface of a

virtual value is richer than the interface of a proxy, providing the ability to trap more

operations such as equality and type tests. By permitting virtual values to trap these

operations which violate parametricity, dynamic seals may throw an error, enforcing

parametricity without violating non-interference.

6.6 Related Work

6.6.1 Evaluating Gradual Typing

Keil et al. (2015) present the �rst evaluation of contracts in JavaScript that focuses on

non-interference. They modify the canonical set of JavaScript benchmarks to include

contract checks implemented using proxies, then they record the frequency of proxy

equality comparisons using an instrumented JavaScript run-time. Their results show

that proxies can a�ect equality comparisons in practice, also indicating that identity

preserving membranes only address some of the occurrences. The contracts for the

benchmarks are created by the authors of the evaluation, and are only applied to

selected functions. There is a possibility that their use of contracts is not represen-

tative of contracts speci�ed for library interfaces, however our evaluation with TPD

suggests that the behaviour is consistent.

Takikawa et al. (2016) perform the �rst comprehensive evaluation of the per-

formance impact of sound gradual typing. They develop a principled approach to

conducting evaluations of sound gradual typing. First, select a suite of fully typed

benchmark programs. Second, measure the performance of all gradually typed con-

�gurations for the benchmark programs, ranging from fully untyped to fully typed.

Finally, record the number of con�gurations that that do not exceed a speci�ed ac-

ceptable overhead. Their results give a poor outlook, with most con�gurations incur-
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ring unacceptable overhead. In particular they demonstrate performance valleys: a

programmer that adds more type annotations to an already slow program will reduce

performance further. Only when the program is full typed is performance regained.

Muehlboeck and Tate (2017) develop a new gradually typed language that aims

to avoid the performance loss demonstrated by Takikawa et al. (2016). They specify

novel properties transparency and immediate accountability that they use to inform

the design and implementation of a gradual language. Transparency ensures that a

successful dynamic type check leaves no trace. Immediate accountability ensures that

a failing check can be immediately traced to its source when the check is executed,

and is not later blamed in a deferred execution. Their presented language boasts good

performance, avoiding the extreme slowdowns exhibited by Takikawa et al. (2016).

One component of their successful approach is to sacri�ce expressiveness in some

cases, using nominal typing rather that structural typing.

Bauman et al. (2017) address the performance issues of gradual typing in a di�er-

ent manner. Instead of reducing the number of wrappers they seek to improve wrap-

per performance. They develop Pycket, an implementation of Racket that utilises a

tracing JIT compiler. A novel implementation of proxies, or impersonators (Strickland

et al., 2012), that exploits hidden classes is given. A hidden class is a representation of

the object layout associated with an object. Code that frequently executes on values

of the same hidden class can be turned into e�cient machine code that is specialised

to the object layout. The modi�ed compiler produces signi�cant increases in perfor-

mance, reducing some slowdowns by two orders of magnitude. Their approach could

be adopted to proxies in JavaScript as most run-times uses hidden classes. One chal-

lenge in migrating the technique is that JavaScript objects are mutable, while they

exploit immutability. The hidden class of an immutable object will not change at run-

time because no extra �elds are introduced. The hidden class of a mutable object will

change at run-time when a new �eld is added.

Greenman and Migeed (2018) apply the technique of Takikawa et al. (2016) to

Reticulated Python (Vitousek et al., 2017), a gradual typed language based on transient

semantics. Their results show that any con�guration of untyped-typed code only

incurs a slowdown within one order of magnitude, however adding type annotations

increases overhead at a linear rate. Consequently, fully typed code experiences the

largest slowdown.
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6.6.2 Evaluating JavaScript Libraries

Heidegger and Thiemann (2010) implement contracts for JavaScript libraries, apply-

ing the contracts through instrumentation that analyses contract signatures in code

comments. The contract signatures are additionally used to perform random testing,

where re�nements can be included in contract signatures to guide test generation. For

example, generation of test values for object contracts can be guided to use properties

referenced in the body of a function, drastically reducing the search space.

Feldthaus and Møller (2014) perform the �rst evaluation that measures the cor-

rectness of TypeScript de�nition �les. They develop a tool, tscheck, which performs

a two-stage analysis for detecting incorrect de�nition �les. The �rst stage conducts

a heap-snapshot. A library is initialised and the structure of the global object imple-

menting the library is compared against the type speci�ed in the de�nition �le. This

technique only works for object types and is unable to verify that a function object

conforms to the type in the de�nition. The second analysis performs a light-weight,

but unsound, static analysis that checks function implementations against the ex-

pected type. They apply their tool to the ten largest libraries in De�nitelyTyped and

their results indicate that errors in de�nition �les are frequent. Their technique im-

plements an o�ine analysis and requires access to the library source code, making

their technique more suitable for library and de�nition authors, rather than clients

that may dynamically import JavaScript libraries at run-time.

Kristensen and Møller (2017a) observe that while the tool developed by Feldthaus

and Møller (2014) is successful at detecting libraries that do not conform to their

de�nition, the tool does not help authors write de�nitions, or maintain them through

the life of the library. To address these two weaknesses, Kristensen and Møller (2017a)

develop two tools: tsinfer and tsevolve. The former builds directly upon the work

by Feldthaus and Møller (2014) to generate a candidate de�nition �le. The latter uses

tsinfer to compare changes between two versions of a library. Di�erences between

the two versions are compared, with changes unrelated to the old version removed to

reduce spurious warnings. Their approach for de�nition inference is successful: the

majority of all declared classes are inferred and nearly all �elds correctly detected.

Kristensen and Møller (2017b) build a tool for detecting errors in de�nition �les,

but unlike the static techniques employed by Feldthaus and Møller (2014) and Kris-

tensen and Møller (2017a), they use dynamic analysis similar to TPD. Kristensen and

Møller (2017b) evaluate libraries using a type test script: a client that is generated
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from the de�nition �le of the library. TPD uses generated contracts and existing test

code to evaluate the library; a type test script could be viewed as a specialised test

�le with contract assertions built in. The nature of test scripts means that proxies are

not required to implement type checks, and therefore test scripts do not violate non-

interference. Furthermore, test scripts are correct-by-construction, rendering blame

tracking trivial because the library must always be at fault. Choosing to use a gener-

ated client does sacri�ce the opportunity to detect errors that are elicited by library

unit-tests; TPD found that half of all errors detected were due to faults originat-

ing in client code. A unit-test may include permutations of function arguments that

are domain speci�c and unlikely to be randomly generated. Kristensen and Møller

(2017b) support test scripts for a wide range of TypeScript types, including generics,

but do not enforce parametricity. The choice is justi�ed by suggesting that para-

metric polymorphism is unsuitable for JavaScript code that is highly dynamic and

heavily utilises re�ection, such as enumerating all object properties. Parametricity

is not necessarily incompatible with this view. An alternate implementation of para-

metric contracts could assume that universal quanti�cation only ranges over types

that implement certain operations such as equality or enumeration.

Mezzetti et al. (2018) present the technique type regression testing to detect break-

ing changes between versions of a library. JavaScript libraries are instrumented with

proxies that construct paths: a sequence of interactions with the library, including

property access and function calls, along with the expected result type of the inter-

action. Multiple clients that import the library as a dependency are used to construct

a model of the library by executing the client test code. Breaking changes between

library versions can be detected by comparing the models from each version. The

technique is highly accurate, correctly classifying 90% of library changes. Mezzetti

et al. (2018) acknowledge proxies violating non-interference when evaluating client

code, but do not report the frequency of violations. The model constructed by the

technique does not consider parametric polymorphism, which may also su�er from

violations of non-interference as experienced by TPD.

6.6.3 Alternate Gradual Typing Design

Vitousek et al. (2014) develop a gradually typed dialect of Python, named Reticu-

lated Python, in which they experiment with alternate approaches to gradual typing

design. They acknowledge that the traditional view of gradual typing (Findler and
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Felleisen, 2002; Siek and Taha, 2006), also described as a guarded semantics, violates

non-interference by using proxies that alter object identity (though they do not mea-

sure to what extent). To address this, they propose an alternate design called a tran-

sient semantics that does not require wrappers implemented with proxies. A transient

semantics inserts �rst-order checks at call-sites and object interactions; the name is

derived from the observation that checks do not introduce proxies—leaving no trace.

However, the choice to forgo proxies means that their presented transient semantics

does not provide blame for failing checks.

Vitousek et al. (2017) extend the work on transient gradual typing. First they de-

velop the notion of open-world soundness. Inserting a translated source program into

a target context should only become stuck due to incorrect behaviour originating in

the context. They then add blame to the existing transient semantics (Vitousek et al.,

2014), but unlike traditional gradual typing, an error may blame multiple labels rather

than one. Finally, they demonstrate that a transient semantics can deliver better per-

formance than a guarded semantics.

Greenman and Felleisen (2018) unify the diverging approaches to gradual typing

in a common framework. They distinguish three kinds of gradual typing: the era-

sure embedding that performs no dynamic type checking, including languages such

as TypeScript (Bierman et al., 2014); the higher-order embedding that eagerly enforces

types and uses wrappers, also known as the guarded approach; and the �rst-order em-

bedding that only checks type constructors to prevent against �rst-order errors, also

known as the transient approach. They compare the three approaches formally and

practically. A performance evaluation is conducted using the common framework.

The erasure embedding is used as the baseline and the slowdown incurred by the

�rst-order and higher-order approaches are compared. Their conclusions align with

previous work. The higher-order embedding performs worse on mixed-type pro-

grams, in some cases slowing a program by three orders of magnitude. The �rst-order

embedding performs worse on fully-typed programs, always incurring a slowdown

while the higher-order embedding achieves speedups in some cases.

Chung et al. (2018) present a unifying approach to gradual typing with a focus on

object-oriented languages. They distinguish four kinds of gradual typing in contrast

to Greenman and Felleisen (2018) who distinguish three. The classi�cation of Chung

et al. (2018) is de�ned as: optional, which is equivalent to the erasure embedding;

behavioural, which is equivalent to the higher-order embedding; transient, which

is equivalent to the �rst-order embedding; and concrete, which has no analogue in
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the Greenman and Felleisen (2018) classi�cation. The concrete semantics, included

in languages such as C#, uses run-time subtype tests on type constructors at casts

between typed and untyped code. Chung et al. (2018) develop a litmus test for dis-

tinguishing approaches to gradual typing; the test consists of three sample programs

designed to elicit errors by combining typed and untyped code. A further contribu-

tion of their work is KafKa: a statically typed target language with objects, mutable

state, and casts. Chung et al. (2018) use KafKa to study the four approaches to grad-

ual typing by providing a translation from each variant into KafKa. To support every

class of gradual typing KafKa must provide behavioural casts and structural casts, as

well as dynamically typed and statically typed method invocation.

Tunnell Wilson et al. (2018) conduct an evaluation of programmer preference to-

wards the di�erent approaches to gradual typing distinguished by Greenman and

Felleisen (2018). They survey a sample of professional developers, computer science

students, and Mechanical Turk workers about their preferences and expectations re-

garding the behaviour of mixed-type code. Respondents were asked to consider if a

certain behaviour was expected or not, and liked or not. Tunnell Wilson et al. (2018)

conclude that respondents prefer an approach that dynamically enforces static type

annotations in full. Furthermore, their study also distinguishes two �avors of the

higher-order embedding. Eager, that will immediately traverse the contents of an ar-

ray to check the elements, and lazy, that will wrap the array and check elements upon

access. The study revealed a preference towards the eager approach.



Chapter 7

Conclusion

7.1 Contributions

Gradual typing is a thriving area in research and industry, however the two tracks

are not perfectly aligned. Research favours safety and soundness, strongly enforcing

the dynamic-static boundary. Industry favours pragmatism, erasing gradual types to

simplify implementation and maintain performance.

This work puts theory into practice with the aim of bringing the tracks of research

and industry closer in alignment. We provide new insights about what can be done

in theory, why practitioners should consider the rigour of sound gradual typing, and

which practical concerns must be addressed by research.

In Chapter 2 we review higher-order blame assignment for function, intersection,

and union types. Findler and Felleisen (2002) introduced blame and contracts for

higher-order functions. Higher-order contracts place obligations on the subject and

context of the contract. Positive blame is assigned when the subject violates its obli-

gations; negative blame is assigned when the context violates its obligations. Keil and

Thiemann (2015a) introduced higher-order intersection and union contracts, showing

that a local contract violation may be insu�cient to assign blame to an intersection

or union. Contract violations are recorded during the evaluation of a program and

interpreted using constraint satisfaction.

In Chapter 3 we show that intersection and union contracts can be implemented

in a uniform way, making it easier to design compositional contract libraries. Blame

nodes annotate contracts and record the elimination context of function contracts,

enabling the immediate decomposition of intersection and union contracts. The im-

mediate reduction of intersection contracts avoids rules based on distributive laws
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which duplicate contracts. We stratify blame using assignment and resolution, giv-

ing an algorithm for blame in these terms.

In Chapter 4 we present a semantics for contract satisfaction in terms of blame

assignment. A value satis�es a contract if monitoring the value using that contract

never elicits positive blame. A continuation satis�es a contract if monitoring the

continuation using that contract never elicits negative blame. Our de�nition of con-

tract satisfaction evokes a new form a contract soundness called witness soundness.

Witness soundness decouples contract soundness from divergence by explicitly rep-

resenting the logical implication associated with function contracts. Each contract

operator gives rise to a pair of monitoring properties de�ned using contract satisfac-

tion. One rule relates positive satisfaction for values and one rule relates negative

satisfaction for continuations.

In Chapter 5 we introduce our tool based on sound gradual typing—The Prime

Directive. TPD synthesises wrapper code from a TypeScript de�nition �le which is

then placed at the boundary between library and client. The wrapper code enforces

conformance to the de�nition �le using a contract. We show how TPD uses proxies

to implement higher-order function contracts and parametric polymorphic contracts.

A polymorphic contracts seals input data using a proxy, preventing inspection and

enforcing abstraction.

In Chapter 6 we present the results of applying TPD to the De�nitelyTyped repos-

itory. Our evaluation measures violations of conformance and non-interference and

we provide concrete examples of both. We found that from the 122 libraries we eval-

uated, 62 libraries did not conform to the corresponding de�nition �le. JavaScript

proxies are presented as a suitable mechanism for behavioural intercession such as

contract checking. We found that from the 122 libraries we tested, 22 libraries exhib-

ited interference due to proxies. Each source of interference was classi�ed. We found

that from the 23 distinct violations of non-interference, 17 violations were due to the

fundamental design of proxies in JavaScript.

7.2 Future Work

Some questions have been answered—many remain. In this section we discuss future

avenues of research prompted by our results.
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Contract Performance Taming the performance overhead of contracts and sound

gradual typing is an important area of research. Multiple approaches have been pur-

sued, including cast and contract merging (Feltey et al., 2018; Herman et al., 2010; Siek

et al., 2015a; Siek and Wadler, 2010), and optimisation of contract run-times (Bauman

et al., 2017; Richards et al., 2017). This body of work has targeted dynamic type check-

ing for operators that induce blame from a single violation, such as function or object

types. Intersection and union contracts require blame provenance to track contract

elimination, and require state to track contract violations. This additional informa-

tion is likely to impact performance, and in the presence of recursive types, space

consumption may be unbounded. Additional work is needed to understand the cost of

intersection and union contracts, and whether existing optimisation techniques can

be adapted. For example, the technique of collapsible contracts (Feltey et al., 2018)

drops inner contracts that are subsumed by outer contracts. Collapsing intersection

and union contracts may be non-trivial. Contract subsumption is no longer uniquely

determined by the checks that a contract can perform, but also the intermediate vi-

olation state associated with that contract. The challenge is to correctly determine

which checks may be collapsed and which checks must be retained.

Contract Semantics Our de�nition of contract satisfaction comes equipped with a

notion of contract soundness which we refer to as witness soundness. The de�nition

of witness soundness is coupled to the structure of blame nodes that we present. Gen-

eralising our contract semantics to other systems will require an abstract presentation

of witness soundness that is parameterised by an algebra for blame tracking. In par-

ticular, witness soundness should refer to the abstract operations used to synthesise

domain and codomain blame nodes when wrapping a function contract.

Another direction of work is to understand the relationship between our de�ni-

tion of contract satisfaction and that of Dimoulas and Felleisen (2011). The de�nitions

are equivalent for simple types, however the approach by Dimoulas and Felleisen

(2011) does not immediately extend to intersection and union. Further work is re-

quired to understand the necessary extensions to their work to support intersection

and union, and how the resulting system compares to the system we present.

Sound Gradual Typing in Practice Our application of sound gradual typing lib-

erally uses proxies to implement object contracts, function contracts, and parametric

polymorphic contracts. This approach is not practical when paired with the current
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design of JavaScript proxies; opaque proxies frequently violate non-interference. One

direction of further work is to consider a more judicious use of proxies. Eagerly en-

forcing object contracts sacri�ces safety in the presence of mutation, but eliminates

the need for proxies. With such a strategy it is unclear how many violations of confor-

mance will be missed, and how many violations of non-interference will be avoided.

TypeScript is a language that evolves at a rapid pace. Since we conducted our

evaluation of gradual typing, De�nitelyTyped has grown signi�cantly and TypeScript

has added many new types, including mapped object types and conditional types. This

growth presents new questions. Are users now more experienced at authoring de�ni-

tion �les? Have the new types made the process of authoring de�nition �les harder?

A further challenge is implementing dynamic type checking for the new type opera-

tors, in particular, conditional types.

7.3 Summary

This work shows that intersection and union contracts can be used to build a sound

gradual typing tool for TypeScript. Practical implementations of gradual typing favour

boundary erasure, placing the burden of writing correct type de�nitions solely on the

shoulders of programmers. Our evaluation shows that JavaScript libraries frequently

fail to conform their TypeScript de�nition �le. The burden of writing correct type

de�nitions appears to be a heavy one. Sound gradual typing o�ers a way to lessen

the load by dynamically checking conformance.

Our evaluation also reveals practical challenges associated with implementing

sound gradual typing. Proxies are presented as one of the canonical mechanisms to

implement contracts. However, we found that JavaScript proxies frequently violate

non-interference when used to implement contracts.

Combining ideas can produce results that are greater than the sum of their parts.

Gradual typing combines static and dynamic typing to get the best of both. In this

work we combine theory and practice to evaluate what sound gradual typing has to

o�er, and to understand what sound gradual typing still has to solve. While we �nd

obstacles in the implementation of sound gradual typing, we also �nd strong bene�ts

in its application. Practical sound gradual typing remains an unsolved problem, but

a problem with a strong motivation. For research, that is a good place to be.
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Freshness and Blame

A.1 Preservation of Freshness

De�nition A.1.1 (Blame node length).

length(±`[P] ) = = length(P)

length(p •d±◦ [P] ) = length(p )+1+ length(P)

Lemma A.1.2 (Preservation of Freshness). If p # 〈Φ,∆,K ,M〉 and 〈Φ,∆,K ,M〉 −→

〈Φ′,∆′,K′,N 〉 then p # 〈Φ′,∆′,K′,N 〉.

Proof. First note that if p ≤ q or p ≤∆ q then q is greater than or equal to p in length,

de�ned in De�nition A.1.1. We proceed with case analysis on reduction. We start

with the interesting cases that interact with blame nodes.

Case 1. 〈∆,K ◦V@
qA→B�,W 〉 −→ 〈∆′,K , (V (W@

−q�domiA))@q�codiB〉

Let (∆′,i) = δ (∆,q). In a wrap reduction only the term and context tracker are

a�ected. First we consider freshness with respect to the new blame nodes. We break

the proof down, considering the lengths of p and q. We then consider freshness for

the resulting context tracker ∆
′
.

• p � ±(q � domi) and p � ±(q � codi)

– q is greater than or equal to p in length.

If p ≤ ±(q� domi) then p ≤ q, contradicting the assumption. If p ≤ ±(q�

codi) then p ≤ q, contradicting the assumption.

– q is shorter than p.
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If ±(q � domi) remains shorter than p then p � ±(q � domi). If ±(q �

codi) remains shorter than p then p � ±(q � codi).

If the extension causes them to become equal in length, then they are only

“unfresh” when ±(q � domi) = p. If that were the case, then in the prior

reduction we would have q ≤∆ ±(q� domi), where ∆(q)= i , contradicting

the assumption that q �∆ p. We conclude that p � ±(q � domi) and p �

±(q � codi).

• ±(q � domi) �∆
′ p and ±(q � codi) �∆

′ p

– q is greater than or equal to p in length.

If q is greater than or equal to p in length, then so is the extension, there-

fore ±(q � domi) �∆
′ p and ±(q � codi) �∆

′ p.

– q is shorter than p.

We now show that ±(q� domi) �∆
′ p when q is shorter than p. We use an

inductive argument, where the interesting case is when the extension of

q causes them to become equal. We use similar reasoning as before: that

if they are equal after the reduction then it must have been the case that

q ≤∆ p, contradicting the assumption.

From these cases we conclude that p is fresh in the resulting term. We show

that p is fresh in the new context tracker.

• p # ∆
′

The only adjustment to the new state ∆
′
is the q may be included with a counter

of 1 if q < ∆, or the existing counter for q is incremented. Given that p and q

are distinct by assumption, then including q does not violate freshness. When

incrementing the counter we observe that this could only invalidate freshness

if previously δ (∆,q) = (∆′, j) and i′ > j for some j in a wrap index, then after,

δ (∆′,q) = (∆′′,i′′) and i ≤ j. Given that the function δ strictly increments values

in ∆
′

this cannot occur.

Case 2. 〈K ,V@
qA∩B〉 −→ 〈K , (V@

q•le�+∩[nil]A)@q•right+∩[nil]B〉

• p � (q • le�+∩[nil]) and p � (q • right+∩[nil])
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– q is greater than or equal to p in length.

If p ≤ (q • le�+∩[nil]) or p ≤ (q • right+∩[nil]) then it must be the case that

p ≤ q, contradicting the assumption.

– q is shorter than p.

If q is less than p in length, then p ≤ (q • le�+∩[nil]) only holds when p =

(q• le�+∩[nil]). If this were true, then prior to the reduction we would have

q ≤∆ (q • le�+∩[nil]), contradicting the assumption that q �∆ p. The same

reasoning applies to blame node q • right+∩[nil].

• (q • le�+∩[nil]) �∆ p and (q • right+∩[nil]) �∆ p

– q is greater than or equal to p in length.

In such a case then the extension of q is also greater in length than p, so

(q • le�+∩[nil]) �∆ p and (q • right+∩[nil]) �∆ p.

– q is shorter than p.

To show that (q • le�+∩[nil]) �∆ p when q �∆ p and q is shorter than p we

use inductive reasoning. The interesting case is the base case, where p

and q can only become “unfresh” if p = (q • le�+∩[nil]). If p = (q • le�+∩[nil])

then we have:

q ≤∆ (q • le�+∩[nil]) ≡ q ≤∆ p

which is a contradiction of our initial assumption q �∆ p. We use the same

reasoning for the blame node q • right+∩[nil].

Case 3. 〈K ,V@
qA∪B〉 −→ 〈K , (V@

q•le�+∪[nil]A)@q•right+∪[nil]B〉

This case follows the same reasoning as the intersection case; the di�erent type

in the branch nodes has no impact on our reasoning.

Case 4. 〈Φ,∆,K ,V@
qι〉 −→ 〈Φ′,∆,K ,M〉 where Φ

′,M = blame(q,Φ,V )

• p # Φ
′

When a contract is violated the blame state may be updated. We must show

that p remains fresh in the new blame state Φ
′
.

Consider that the blame state Φ
′

can only di�er by adding q, or some pre�x of

q according to the parent function. That is, Φ
′ = Φ∪Φq where Φq is a subset of

the re�exive and transitive closure of parent on q.
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We must show that there is no q′ ∈ Φq where p ≤ q′. Observing that the e�ect

of parent(q) can always be undone by a forward reading of ≤, and that if p ≤ q′

for some q′ ∈ Φq , then p ≤ q, contradicting the assumption.

Case 5. The remaining reduction rules do not introduce new blame nodes into the

program con�guration. Freshness is preserved by assumption, using congruence to

reconstruct freshness for the new con�guration.

A.2 Absence of Blame

LemmaA.2.1 (Freshness closure). Ifp # 〈Φ,∆,K ,M〉 and 〈Φ,∆,K ,M〉 −→∗ 〈Φ′,∆′,K′,N 〉

then p # 〈Φ′,∆′,K′,N 〉.

Proof. By induction on the derivation of −→∗, using Lemma A.1.2 to preserve fresh-

ness for each step.

Lemma A.2.2 (Freshness and Blame Implication). If p # Φ then Φ 6 |= p.

Proof. By contrapositive. Namely, if Φ |= p then ∃q ∈ Φ.p ≤ ±q. By the de�nition

of Φ |= p then there is a repathing of p in Φ such that pre�x(path(p),P ′), for some

path P ′. We pick q = replace-path(p,P ′), observing that p ≤ q holds under basic path

extension.

Lemma 4.2.3 (Safety by Freshness). If p # 〈Φ,∆,K ,M〉 then 〈Φ,∆,K ,M〉 X−→∗ 〈 ±p〉.

Proof. By contradiction. Assume that there is a con�guration that implicates p. By

Lemma A.2.1 and Lemma A.2.2 we form a contradiction as p must be fresh in the

implicating blame state.

Lemma A.2.3 (Con�guration Safety & Blame Safety). If 〈Φ,∆,K ,M〉 X−→∗ 〈 ±`[nil]〉

then 〈Φ,∆,K ,M〉 X−→∗ 〈Φ′,∆′, Id,blame ± `〉.

Proof. We assume that source programs do not start with blame terms, and that blame

only arises from a contract failure during evaluation. Assume that the conclusion is

false, such that there is some con�guration:

〈Φ,∆,K ,M〉

−→∗ 〈Φ′,∆′,K′,V@
p±`A〉

−→ 〈Φ′′,∆′,K′,blame ± `〉

−→ 〈Φ′′,∆′, Id,blame ± `〉
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By our de�nition of blame, then the root node of p±` has the form ±`[P], for some

path P , and the root node is in the state ±`[P] ∈ Φ
′′
. If ±`[P] ∈ Φ

′′
then Φ

′′ |= ±`[nil],

however by assumption we know Φ
′′ 6 |= ±`[nil], forming a contradiction.
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Contract Soundness

B.1 Witness Enriched Calculus

To assist with technical developments we present a witness enriched version of λ∩∪

(Figure B.1). The enriched calculus retains blame node information on values after

contract application, however the extra information has no run-time e�ect.

Pre-values P (unambiguous with blame paths) are supplemented with a witness

trace. A trace contains the blame node and type for a contract that has been applied

to P . We assume that all source programs start with empty traces.

De�nition B.1.1 (Enrichment Erasure). De�ne enrichment erasure † by congruence

on program con�gurations, and these cases:

(kw )† = k

((λx .M)w )† = λx .M†

Lemma B.1.2 (Enrichment Simulation). The witness enriched calculus simulates λ∩∪.

Assume:

• M =M†
1
and K = K†

1

• If 〈Φ,∆,K ,M〉 −→ 〈Φ′,∆′,K′,M′〉 then 〈Φ,∆,K1,M1〉 −→ 〈Φ
′,∆′,K′

1
,M′

1
〉

whereM′ =M′
1

† and K′ = K′
1

†, for some K′
1
,M′

1

• If 〈Φ,∆,K1,M1〉 −→ 〈Φ
′,∆′,K′

1
,M′

1
〉 then 〈Φ,∆,K ,M〉 −→ 〈Φ′,∆′,K′,M′〉

whereM′ =M′
1

† and K′ = K′
1

†, for some K′,M′

Proof. By case analysis on −→. Witness traces have no in�uence on reduction. We

prove that † commutes with substitution using induction in the standard way.
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Mark m ::= X | x

Witness Trace w ::= · | w ; (p,A,Φ,m)

Terms M,N ::= · · · | kw | (λx .M)w

Pre-Values P ::= kw | (λx .M)w

Values V ,W ::= P | V@
pA→B

Contract Context C ::= [] | C@
pA

Value Contract Context V ::= [] | V@
pA→B

...

〈K ◦ (λx .M)w �,V 〉 −→ 〈K ,M[x :=V ]〉

〈Φ,K ,V[Pw ]@pany〉 −→ 〈Φ,K ,V[Pw ;(p,any,Φ,X)]〉

〈Φ,K ,V[Pw ]@pι〉 −→ 〈Φ,K ,V[Pw ;(p,ι,Φ,X)]〉

ifV[Pw ] : ι

〈Φ,K ,V[Pw ]@pι〉 −→ 〈Φ′,K ,M〉

otherwise, where Φ
′,M = blame(p,Φ,V[Pw ;(p,ι,Φ,x)])

Figure B.1: Enriched Syntax and Operational Semantics (extends and modifies)
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De�nition B.1.3 (Witness Trace Static Signature). De�ne the static trace of a witness

trace by erasing blame states and marks.

‖ · ‖ = ·

‖w ; (p,A,Φ,m)‖ = ‖w ‖; (p,A)

De�nition B.1.4 (Witness Signature). De�ne the signature of a contract context as

sig(C). We make liberal use of notation where ++ appends traces, de�ned in the standard

way for cons-lists.

sig([]) = ·

sig(C@
pA) = sig(C)++ sig(p,A)

sig(p, ι) = (p, ι)

sig(p,any) = (p,any)

sig(p,A→B) = ·

sig(p,A∩B) = sig(p • le�+∩[nil],A)++ sig(p • right+∩[nil],B)

sig(p,A∪B) = sig(p • le�+∪[nil],A)++ sig(p • right+∪[nil],B)

De�nition B.1.5 (Function Wrap Signature). De�ne the wrap signatures of a value

contract context as sigdom(∆,V) and sigcod(∆,V).

sigdom(∆, []) = ·

sigcod(∆, []) = ·

sigdom(∆,V@
pA→B) = sig(−p � dom∆(p),A)++ sigdom(∆,V)

sigcod(∆,V@
pA→B) = sigcod(∆,V)++ sig(p � cod∆(p),B)

De�nition B.1.6 (Rooted Contexts). We write Cp and Vp for contexts where all con-

tracts in the context are annotated with node q such that p ≤ q.

De�nition B.1.7 (Pre�x replacement). For a blame node r where p ≤ r , we write r [q]

to be the replacement of the pre�x p by q. When we write Cp and Cq we mean that the

contexts are the same up to pre�x replacement. That is, replacing all nodes r in Cp with

r [q] produces Cq , and replacing all nodes r in Cq with r [p] produces Cp .

Lemma B.1.8 (Contract Context Reduction). For any con�guration 〈Φ,∆,K ,Cp[Pw ]〉

then one of the following holds:

(a) 〈Φ,∆,K ,Cp[Pw ]〉 −→∗ 〈Φ′,∆′,K ,Vp[P
w++w ′]〉 where ‖w′‖ = sig(Cp).

(b) 〈Φ,∆,K ,Cp[Pw ]〉 −→∗ 〈Φ,∆, Id,blame ± `〉 where ±` is the label for p.

Proof. By induction on C, observing that sig(C) mirrors the behaviour of contract

decomposition in reduction.
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g-const

kw : p guards q

g-abs

M : p guards q

(λx .M)w : p guards q

g-var

x : p guards q

g-app

M : p guards q N : p guards q

MN : p guards q

g-blame

E[blame ± `] : p guards q

Figure B.2: Predicate Φ,∆,M : p guards q (Basic)

B.2 Guarding

We describe a predicate on programs that states that blame node p guards blame

node q. Any blame on q must happen after equivalent blame for p, and any blame on

−p must happen after equivalent blame for −q.

In this section we rely on an operation semantics that uses evaluation contexts

rather than con�gurations, implicitly relying on a simulation between the two (Felleisen

and Friedman, 1986). We do this to save duplicating work when de�ning predicates

on contract contexts that span continuations and terms.

De�nition B.2.1 (Guarding for p and q). De�ne predicate Φ,∆,M : p guards q for

blame nodes p and q, where p � ±q and q � ±p. When we omit Φ or ∆ from a rule

we implicitly assume that they are guarded in the conclusion and any premises. The

predicate is de�ned in Figure B.2, Figure B.3, and Figure B.4.

LemmaB.2.2 (Preservation of guards). The predicate guards is preserved by reduction.

If Φ,∆,M : p guards q and Φ,∆,M −→Φ
′,∆′,N then Φ

′,∆′,N : p guards q.

Proof. By induction on Φ,∆,M : p guards q. We handle each case from the de�nition

in turn.

Case 1. (g-const) Trivial as the term does not reduce.

Case 2. (g-abs) Trivial as the term does not reduce.

Case 3. (g-var) Trivial as the term does not reduce.

Case 4. (g-app) The following cases apply

• M reduces. Apply the IH then apply (g-app).
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g-contract

q � r p � r

r �∆ q r �∆ p

∆,M : p guards q

∆,M@
rA : p guards q

g-guard-term

M ,V M : p guards q

Cq[Cp[M]] : p guards q

g-guard-val

V[Pw++w
′
p++w

′′
q ] : p guards q

‖w′p ‖++ sig(C′p) = ‖w′′[p]‖++ sig(C[p])

Cq[C
′
p[V[P

w++w ′p++w
′′
q ]]] : p guards q

g-guard-app

V′p , [] N = C2

−p[C
1

−q[V[P
w++w ′−q++w

′′
−p ]]]

∆,V : p guards q ∆,V[Pw++w
′
−q++w

′′
−p ] : p guards q

‖w′−q ‖++ sig(C1

−q)++ sigdom(∆,Vq) = ‖w
′′
[−q]‖++ sig(C2

[−q])++ sigdom(∆,V′[q])

sigcod(∆,V′p )++ sig(C3

p ) = sigcod(∆,V[p])++ sig(C4

[p])

∆,C4

q [C
3

p [(Vq[V
′
p[V ]]N )]] : p guards q

g-guard-term-neg

M ,V M : p guards q

C−p[C−q[M]] : p guards q

g-guard-val-neg

V[Pw++w
′
−q++w

′′
−p ] : p guards q

‖w′−q ‖++ sig(C′−q) = ‖w′′[−q]‖++ sig(C[−q])

C−p[C
′
−q[V[P

w++w ′−q++w
′′
−p ]]] : p guards q

g-guard-app-neg

V′−q , [] N = C2

q [C
1

p [V[P
w++w ′p++w

′′
q ]]]

∆,V : p guards q ∆,V[Pw++w
′
p++w

′′
q ] : p guards q

‖w′p ‖++ sig(C1

p )++ sigdom(∆,V−p) = ‖w′′[p]‖++ sig(C2

[p])++ sigdom(∆,V′[−p])

sigcod(∆,V′−q)++ sig(C3

−q) = sigcod(∆,V[−q])++ sig(C4

[−q])

∆,C4

−p[C
3

−q[(V−p[V
′
−q[V ]]N )]] : p guards q

Figure B.3: Predicate Φ,∆,M : p guards q (Contracts)
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g-blame-state

∀q′ ∈ Φ. q ≤ q′⇒ q′[p] ∈ Φ

∀p′ ∈ Φ. −p ≤ p′⇒ p′[−q] ∈ Φ

Φ : p guards q

g-tracker

∀p′,q′ ∈ ∆. p ≤ ±p′∧q ≤ ±q′⇒ ∆(p′) = ∆(q′)

∆ : p guards q

Figure B.4: Predicate Φ,∆,M : p guards q (Blame State and Context Tracker)

• M =V and N reduces. Apply the IH then apply (g-app).

• M = V and N =W . If both are values then either beta reduction or function

wrapping applies. (We cannot get stuck by assumption).

– M = (λx .M′)w . The program reduces to M′[x :=W ]. We prove that sub-

stitution preserves guards in the standard way using induction. The im-

portant observation is that we cannot a�ect witness traces in cases such

as (g-guard-val) because the trace is attached to a pre-value P and can

therefore not be replaced by substitution.

– M = V@
rA→B. The only cases that can apply to M are (g-contract),

(g-guard-val), (g-guard-val-neg).

∗ (g-contract).

We have Φ,∆, (V@
rA→B)W −→Φ,∆′, (V (W@

−r�domiA))@r�codiB

· (W@
−r�domiA) : p guards q by (g-contract).

· V (W@
−r�domiA) by (g-app)

· (V (W@
−r�domiA))@r�codiB by (g-contract).

· ∆
′

: p guards q by observing that r is unrelated to p and q.

∗ (g-guard-val). We have Φ,∆, (Vq[V
′
p [V ]]@

q1A→B)W

−→Φ,∆′, (Vq[V
′
p [V ]] (W@

−q1�domiA))@q1�codiB. We apply (g-guard-app)

with C1 = []@
−q1�domiA, C2 = [], C3 = [], C4 = []@

q1�codiA, w′−q = ·,

w′′−p = ·.

∗ (g-guard-val-neg). Follows the same reasoning as the previous case

but applies (g-guard-app-neg) instead.

Case 5. (g-blame) The term reduces if E , [], in which case we apply (g-blame) with

a new evaluation context E′ = [].

Case 6. (g-contract) The following cases apply
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• M reduces. Apply the IH then apply (g-contract).

• M =V and A = any. Reduces to V which is guarded by assumption.

• M =V and A = ι. The result of the reduction is one of:

– Φ,∆,V when the value is conforming. This is guarded by assumption.

– Φ
′,∆,V when the value does not conform. We observe that the blame state

can only change in ways independent of p and q, and is therefore guarded.

V is guarded by assumption.

– Φ
′,∆,blame ± `. Apply (g-blame).

• M = V and A = A1 ∩ B1. Split the contract and apply (g-contract) to both

branch contracts.

• M = V and A = A1 ∪ B1. Split the contract and apply (g-contract) to both

branch contracts.

Case 7. (g-guard-term) Apply IH to M . If the result is still a non-value, then apply

(g-guard-term) again. Otherwise apply (g-guard-val). Pick Cq and C′p to be the

contract contexts from the assumption. Pick w to be the trace on the resulting value,

and pick w′p and w′′q to be ·.

Case 8. (g-guard-val) We assume that C′ has the same (or) fewer contracts than C,

and that when C′ is not a value context thenw′′q = ·; we have not yet started evaluating

contracts from the outer context. We distinguish the cases where C′p is a value context

or has further reductions.

• C′p = C
′′
p [[]@

piA]. Consider the cases for A.

– A = any. The contract evaluates without failure; apply (g-guard-val).

Pick new w′p as w′p ; (pi ,any,Φ,X). Pick new C′p as C′′p . Keep Cq , w,w′′q

as before. We note ‖w′p ‖ ++ sig(C′′p [[]@
piany]) = ‖w′p ; (pi ,any,Φ,X)‖ +

+ sig(C′′p ).

– A = ι. If the value conforms to type ι then the reasoning is similar to the

case for any. Instead we pick the new w′p as w′p ; (pi , ι,Φ,X).

If the value does not conform then either we raise blame or return the

value (both with a modi�ed blame state). In the case of blame we apply

(g-blame) with E = Cq[C
′′
p]. In the case that we do not raise blame then
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we pick the new w′p as w′p ; (pi , ι,Φ,x). We instantiate the remaining vari-

ables as was the case for any and apply (g-guard-val). Again, we note

that ‖w′p ‖ ++ sig(C′′p [[]@
pi ι]) = ‖w′p ; (pi , ι,Φ,x)‖ ++ sig(C′′p ).

We know that for resulting blame state Φ
′
, then Φ

′
: p guards q as we do

not include any nodes pn such that q ≤ pn or −p ≤ pn.

– A =A1∩B1. We split the contract into two branch contracts.

Pick C′p = C
′′
p [([]@

pi•le�+∩[nil]A1)@
pi•right+∩[nil]B1]. All other existential vari-

ables are instantiated from the assumption. We note that:

sig(C′′p [[]@
piA1∩B1]) = sig(C′′p [([]@

pi•le�+∩[nil]A1)@
pi•right+∩[nil].B1])

– A =A1∪B1. We split the contract into two branch contracts.

Pick C′p = C
′′
p [([]@

pi•le�+∪[nil]A1)@
pi•right+∪[nil]B1]. All other existential vari-

ables are instantiated from the assumption. We note that:

sig(C′′p [[]@
piA1∪B1]) = sig(C′′p [([]@

pi•le�+∪[nil]A1)@
pi•right+∪[nil].B1])

• C′p =V
′
p , then Cq = C

1

q [[]@
qiA] for some C1

q . Consider the cases for A.

– A = any. The contract evaluates without failure; apply (g-guard-val).

Pick new w′′q as w′′q ; (qi ,any,Φ,X). Pick new Cq as C1

q . Keep V′p , w,w′p

as before. We note ‖w′′q ‖ ++ sig(C1

q [[]@
qiany]) = ‖w′′q ; (qi ,any,Φ,X)‖ +

+ sig(C1

q ).

– A = ι. If the value conforms to type ι then the reasoning is similar to the

case for any. Instead we pick the new w′′q as w′′q ; (qi , ι,Φ,X).

If the value does not conform then either we raise blame or return the

value (both with a modi�ed blame state). In the case of blame we apply

(g-blame)with E = C1

q [V
′
p ]. In the case that we do not raise blame then we

pick the new w′′q as w′′q ; (qi , ι,Φ,x). We instantiate the remaining variables

as was the case for any and apply (g-guard-val). Again, we note that

‖w′′q ‖ ++ sig(C1

q [[]@
qi ι]) = ‖w′′q ; (qi , ι,Φ,x)‖ ++ sig(C1

p ).

We must show that for resulting blame state Φ
′
, then Φ

′
: p guards q. This

equates to showing that when blaming qi and adding it (and any pre�x)

to the blame state, that an equivalent pi is already in the state. The traces

w′p and w′′q ; (qi , ι,Φ,x) are equal up to the addition of qi (modulo pre�x

substitution), and therefore denote equal calls to blame. As we know that
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p � q and q � p, then the sequence that blames w′p does not a�ect the

sequence that blames w′′q ; (qi , ι,Φ,x). In e�ect, we could blame them in

parallel and combine the result. The sequence of contract violations and

blame calls denoted by the trace directly mirror each-other (up to pre�x

substitution), and therefore anyqi in the state is mirrored by an equivalent

pi , thus the resulting blame state is guarded for p and q.

The only way that the resulting blame state is not guarded is if qi is added

to the blame state with no corresponding pi ; given that the traces denote

equal calls, this can only happen if there is some node compatible with

−pi , but there is no node compatible with −qi . This situation is prevented

by the de�nition of guarded on blame states.

– A =A1∩B1. We split the contract into two branch contracts.

Pick Cq = C
1

q [([]@
qi•le�+∩[nil]A1)@

qi•right+∩[nil]B1]. All other existential vari-

ables are instantiated from the assumption.

We note that:

sig(C1

q [[]@
qiA1∩B1]) = sig(C1

q [([]@
qi•le�+∩[nil]A1)@

qi•right+∩[nil].B1])

– A =A1∪B1. We split the contract into two branch contracts.

Pick Cq = C
1

q [([]@
qi•le�+∪[nil]A1)@

qi•right+∪[nil]B1]. All other existential vari-

ables are instantiated from the assumption.

We note that:

sig(C1

q [[]@
qiA1∪B1]) = sig(C1

q [([]@
qi•le�+∪[nil]A1)@

qi•right+∪[nil].B1])

Case 9. (g-guard-app) The reasoning for this case is similar to (g-guard-val), except

there may be applications of the wrap rule interspersing evaluation of the contracts

on the function argument. We distinguish the cases when the argument contracts are

all value contract contexts, or when there is a reduction.

• C2

q [C
1

p []] = V
2

q [V
1

p []] for some V1,V2
. Performing a wrap essential shu�es

the contracts from the function to the argument and context of the application.

In such a case the equivalence between witness traces and contract context

signatures is preserved.

We distinguish the case when we perform “the last” wrap: V2

q = [] and V1

p =

[]@piA→B. In this case we cannot apply (g-guard-app). However we may

apply (g-guard-val-neg) to N .
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– Pick w′−q =w
′′
−p = ·.

– Pick C−p = C2

−p .

– Pick C′−q = C1

−q .

We may apply (p-guard-term) to the codomain contracts, noting that sig(C3

p )=

sig(C4

[p]
) as sigcod(∆,V′p ) = · and sigcod(∆,V[p]) = ·. We have:

– C2

−p[C
1

−q[V[P
w ]]] by (g-guard-val-neg).

– V (C2

−p[C
1

−q[V[P
w ]]]) by (g-app).

– C4

q [C
3

p [(V (C
2

−p[C
1

−q[V[P
w ]]]))]] by (p-guard-term).

When we are not performing the “the last” wrap, then we are free to apply

(p-guard-app) again.

• C2

q [C
1

p []] contains a reducible contract. When there is a reducible contract in

the contract context for the argument we apply the same reasoning as the case

(g-guard-val), localised to the argument.

Case 10. (g-guard-term-neg), (g-guard-val-neg), (g-guard-app-neg) The three

cases are essentially identical to their non-negated counterparts, except we replace p

for −q, and q for −p. Otherwise the reasoning is the same.

B.3 Contract Soundness

Theorem 4.3.1 (Contract Soundness).

(a) M@
±`[P]A ∈ JAK+

(b) K ◦�@
±`[P]B ∈ JBK−

Proof. Translating from con�gurations into programs with contexts we have:

(a) E[(V@
±`[P]A)@pA] X−→∗ 〈 p〉 for all E.

(b) E[(V@
pB)@±`[P]B] X−→∗ 〈 −p〉 for all V .

We observe that:

(a) E[(V@
±`[P]A)@pA] : ±`[P] guards p.
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(b) E[(V@
pB)@±`[P]B] : ∓`[P] guards −p.

We proceed with a proof by contradiction for each case.

(a) AssumeE[(V@
±`[P]A)@pA] −→∗ 〈 p〉. By induction on−→∗with Lemma B.2.2,

then in the state Φ, where Φ |= p, then Φ |= ±`[P]. By inversion of guards for

the contract that implicated p we know that ±`[P] was implicated in the state

before. However if this were true then the program would reduce to blame + `,

and not evaluate the contract that implicated p, deriving a contradiction that p

was implicated.

(b) We follow the same proof by contradiction, instead claiming that the program

reduces to blame − ` before −p is implicated.

Theorem 4.3.2 (Witness Soundness).

(a) M@
−p�domnA ∈ JAK+

p�codn

(b) K ◦�@
p�codnB ∈ JBK−

−p�domn

Proof. Translating from con�gurations into programs with contexts we have:

1. E[(V@
−p�domiA)@p�codiA] X−→∗ 〈 p � codi〉 for all E.

2. E[(V@
−p�domiB)@p�codiB] X−→∗ 〈 p � domi〉 for all V .

We observe that:

1. E[(V@
−p�domiA)@p�codiA] : −p � domi guards p � codi .

2. E[(V@
−p�domiB)@p�codiB] : −p � codi guards p � domi .

We proceed with a proof by contradiction for each case.

1. Assume E[(V@
−p�domiA)@p�codiA] −→∗ 〈 p � codi〉. By induction on −→∗

with Lemma B.2.2, then in the state Φ, where Φ |=p � codi , then Φ |=−p � domi .

By inversion of guards for the contract that implicated p � codi we know that

−p � domi was implicated in the state before. However we observe:

compat(−p � domi ,−(p � codi))

As the nodes are compatible it cannot be the case that p� codi is ever assigned

blame, contradicting the assumption that

E[(V@
−p�domiA)@p�codiA] −→∗ 〈 p � codi〉
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2. We use similar reasoning to the previous case, arguing that the nodes are com-

patible and so only one can ever be implicated. By inversion of guards we see

that it must be −p � codi and not p � domi .



Appendix C

Monitoring Properties

C.1 Commuting

De�nition C.1.1 (Node Abbreviation). We write p · · · for a blame node with zero or

more branches stemming from parent p. We write p · · ·n to indicate that there are exactly

n branches. As a consequence p = p · · ·0.

De�nition C.1.2 (Root Equality for Blame States). We write Φ = Φ
′ for equality be-

tween blame states, de�ned as:

Φ = Φ
′ def= ∀q. q ∈ Φ⇔ q ∈ Φ

′

We write Φ =p Φ
′ for root equality between blame states, de�ned as:

Φ =±`[ci/P] Φ
′ def

= Φ = Φ
′

Φ =±`[nil] Φ
′ def

= ∀(P1,q , ±`[P1]). (q ∈ Φ⇔ q ∈ Φ
′) ∧

(∃P . ± `[P] ∈ Φ⇔ ∃P ′. ± `[P ′] ∈ Φ
′)

Φ =p1•d
±
� [ci/P]

Φ
′ def
= Φ = Φ

′

Φ =p1•d
+
∩[nil] Φ

′ def
= ∀(P1,q , p1 •d

+
∩[P1]). (q ∈ Φ⇔ q ∈ Φ

′) ∧

(∃P . p1 •d
+
∩[P] ∈ Φ⇔ ∃P ′. p1 •d

+
∩[P
′] ∈ Φ

′)

Φ =p1•d
+
∪[nil] Φ

′ def
= ∀(P1,q , p1 •d

+
∪[P1]). (q ∈ Φ⇔ q ∈ Φ

′) ∧

(∃P . p1 •d
+
∪[P] ∈ Φ⇔ ∃P ′. p1 •d

+
∪[P
′] ∈ Φ

′)

Φ =p1•d
−
∪[nil] Φ

′ def
= ∀(P1,q , p1 •d

−
∪[P1]). (q ∈ Φ⇔ q ∈ Φ

′) ∧

∀i . (∃ci/P . p1 •d
−
∪[ci/P] ∈ Φ⇔ ∃c′i/P ′. p1 •d

−
∪[c
′
i/P
′] ∈ Φ

′)

Φ =p1•d
−
∩[nil] Φ

′ def
= ∀(P1,q , p1 •d

−
∩[P1]). (q ∈ Φ⇔ q ∈ Φ

′) ∧

∀i . (∃ci/P . p1 •d
−
∩[ci/P] ∈ Φ⇔ ∃c′i/P ′. p1 •d

−
∩[c
′
i/P
′] ∈ Φ

′)

168
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We motivate De�nition C.1.2 as follows. We use the de�nition Φ =p Φ
′
when con-

sidering whether blame for branch nodes with parent p commute. We observe that

the resulting blame states may not be exactly equal. This occurs when p has an empty

blame path and resolving blame for the children of p will hoist blame paths. In this

case the order of the nodes can a�ect which path is chosen to hoist. With this de�ni-

tion we show that the choice does not matter.

When p does not have an empty path we expect the resulting blame states to

match because we do not hoist paths and always blame p directly.

When p is a root node with an empty path the paths in the blame state do not

matter. We have already assigned blame to a root node with same label. No further

blame assignment depends upon the path.

When p is a branch node with an empty path we consider the polarity and branch

type. We observe that any sequence of nested intersection or union (denoted by empty

paths) will always have the same polarity, this is why the positive intersection and

union cases, and negative intersection and union cases, match.

In the positive case the paths may di�er, but we note that paths do not matter both

for positive intersection blame (we always resolve), and positive union blame (there

is no constraint on paths).

In the negative case the paths must start with a matching elimination context.

For negative union this does not matter, but for negative intersection we inspect the

�rst element. However from the de�nition we are guaranteed a path that will start

with a matching element, so the choice does not matter and consequently any nested

intersection that contains p will match in either Φ or Φ
′
.

To clarify presentation we assume a version of assign(p,Φ) that only returns a

modi�ed blame state (and not a truth value).

De�nition C.1.3 (Assignment without judgement).

assign
def
= fst◦assign

It should be clear that the truth value is not important because the blame state de-

termines the truth value; we can reconstruct the truth value by looking at the presence

or absence of a root in the resulting blame state. For Lemma C.1.4 and Lemma C.1.5

we use the de�nition of assign given in De�nition C.1.3.
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The following lemma states that blame assignment commutes for blame nodes

that are in the same branch of an intersection or union.

Lemma C.1.4 (Blame Assignment Commutes for Di�erent Paths).

assign(p •d±� [P],assign(p •d
±
� [P
′],Φ)) = assign(p •d±� [P

′],assign(p •d±� [P],Φ))

Proof. By induction on the structure of blame nodes. We observe that the two nodes

have the same polarity up to the root, so they cannot a�ect assignment for each other.

We also observe that they will have the same branch directions (all the way up), so

they cannot a�ect resolution for each other. The assignments are therefore indepen-

dent and commute.

The following lemma states that blame assignment commutes for blame nodes

that are in di�erent branches of the same intersection or union.

Lemma C.1.5 (Blame Assignment Commutes for Di�erent Branches).

assign(p • le�±� [P] · · ·m ,assign(p • right
±
� [P
′] · · ·n ,Φ)) =p

assign(p • right±� [P
′] · · ·n ,assign(p • le�±� [P] · · ·m ,Φ))

Proof. By simultaneous induction on the number of branches denoted bym and n.

We split the proof into cases for positive and negative, intersection and union. For

brevity we let L = p • le�±� [P] · · ·m and R = p • right±� [P
′] · · ·n.

Case 1. + and ∩.

assign(p • le�+∩[P] · · ·m ,assign(p • right
+
∩[P
′] · · ·n ,Φ)) =p

assign(p • right+∩[P
′] · · ·n ,assign(p • le�+∩[P] · · ·m ,Φ))

• Suppose that blame is not assigned for p • right+∩[P
′] · · ·n because there is some

q ∈ Φ such that compat(q,−(p • right+∩[P
′] · · ·n)).

Then assign(p • right+∩[P
′] · · ·n ,Φ) = Φ.

Let assign(p • le�+∩[P] · · ·m ,Φ) = Φ∪Φ
′
. Then we have:

1.

assign(p • le�+∩[P] · · ·m ,assign(p • right
+
∩[P
′] · · ·n ,Φ))

= assign(p • right+∩[P
′] · · ·n ,assign(p • le�+∩[P] · · ·m ,Φ))
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2.

assign(p • le�+∩[P] · · ·m ,Φ) = assign(p • right
+
∩[P
′] · · ·n ,Φ∪Φ

′)

3. Φ∪Φ
′ = assign(p • right+∩[P

′] · · ·n ,Φ∪Φ
′)

4. Φ∪Φ
′ = Φ∪Φ

′
as q ∈ (Φ∪Φ

′).

• Suppose that blame is not assigned for p • le�+∩[P] · · ·m because there is some

q ∈ Φ such that compat(q,−(p • le�+∩[P] · · ·m)).

Then assign(p • le�+∩[P] · · ·m ,Φ) = Φ.

Let assign(p • right+∩[P
′] · · ·n ,Φ) = Φ∪Φ

′
. Then we have:

1.

assign(p • le�+∩[P] · · ·m ,assign(p • right
+
∩[P
′] · · ·n ,Φ))

= assign(p • right+∩[P
′] · · ·n ,assign(p • le�+∩[P] · · ·m ,Φ))

2.

assign(p • le�+∩[P] · · ·m ,Φ∪Φ
′) = assign(p • right+∩[P

′] · · ·n ,Φ)

3. assign(p • le�+∩[P] · · ·m ,Φ∪Φ
′) = Φ∪Φ

′

4. Φ∪Φ
′ = Φ∪Φ

′
as q ∈ (Φ∪Φ

′).

In the following cases we know that blame is assigned to both nodes. We consider

the lengths ofm and n.

• m and n are non-zero. The proof proceeds by considering whether blame re-

solves for the left and right, observing that resolution is independent because

both branches do not share a parent (as m and n are greater than 0). That is,

we can lift additions L and R to the blame state out because they do not a�ect

resolution for the other branch.

– Both resolve.

1.

assign(p • le�+∩[P] · · ·m ,assign(p • right
+
∩[P
′] · · ·n ,Φ))

=p assign(p • right+∩[P
′] · · ·n ,assign(p • le�+∩[P] · · ·m ,Φ))

2. assign(L,assign(p • right+∩[P
′] · · ·n−1 ,Φ ∪ {R})) =p assign(R,assign(p •

le�+∩[P] · · ·m−1 ,Φ∪ {L}))

3. assign(L,assign(p • right+∩[P
′] · · ·n−1 ,Φ)) ∪ {R} =p assign(R,assign(p •

le�+∩[P] · · ·m−1 ,Φ))∪ {L}
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4.

assign(p • right+∩[P
′] · · ·n−1 ,assign(L,Φ))∪ {R}

=p assign(p • le�+∩[P] · · ·m−1 ,assign(R,Φ))∪ {L}

by IH.

5. assign(p•right+∩[P
′] · · ·n−1 ,assign(p• le�+∩[P] · · ·m−1 ,Φ∪{L}))∪{R} =p

assign(p • le�+∩[P] · · ·m−1 ,assign(p •right+∩[P
′] · · ·n−1 ,Φ∪{R}))∪{L} as

L and R both resolve.

6. assign(p•right+∩[P
′] · · ·n−1 ,assign(p• le�+∩[P] · · ·m−1 ,Φ))∪{L}∪{R} =p

assign(p • le�+∩[P] · · ·m−1 ,assign(p •right+∩[P
′] · · ·n−1 ,Φ))∪{R}∪{L} as

L and R do not share a parent.

7. Apply IH.

– L does not resolve, R does.

1.

assign(p • le�+∩[P] · · ·m ,assign(p • right
+
∩[P
′] · · ·n ,Φ))

=p assign(p • right+∩[P
′] · · ·n ,assign(p • le�+∩[P] · · ·m ,Φ))

2. assign(L,assign(p • right+∩[P
′] · · ·n−1 ,Φ∪ {R})) =p assign(R,Φ∪ {L})

3. assign(L,assign(p • right+∩[P
′] · · ·n−1 ,Φ))∪ {R} =p assign(R,Φ)∪ {L}

4. assign(p • right+∩[P
′] · · ·n−1 ,assign(L,Φ))∪ {R} =p assign(R,Φ)∪ {L}

by IH on LHS.

5. assign(p • right+∩[P
′] · · ·n−1 ,Φ)∪ {L} ∪ {R} =p assign(R,Φ)∪ {L}

as L does not resolve and does not a�ect resolution for R.

6.

assign(p • right+∩[P
′] · · ·n−1 ,Φ)∪ {R} ∪ {L}

=p assign(p • right+∩[P
′] · · ·n−1 ,Φ)∪ {L} ∪ {R}

as R resolves.

– R does not resolve, L does. Same as previous case.

– L does not resolve and R does not resolve.

1.

assign(p • le�+∩[P] · · ·m ,assign(p • right
+
∩[P
′] · · ·n ,Φ))

=p assign(p • right+∩[P
′] · · ·n ,assign(p • le�+∩[P] · · ·m ,Φ))

2. assign(L,Φ∪ {R}) =p assign(R,Φ∪ {L})

3. assign(L,Φ)∪ {R} =p assign(R,Φ)∪ {L}

4. Φ∪ {L} ∪ {R} =p Φ∪ {R} ∪ {L} as neither resolve in Φ.
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• n = 0 andm > 0, then R = p • right+∩[P
′]. We consider whether L resolves or not

(which is independent of R).

– L resolves.

1.

assign(p • le�+∩[P] · · ·m ,assign(p • right
+
∩[P
′],Φ))

=p assign(p • right+∩[P
′],assign(p • le�+∩[P] · · ·m ,Φ))

2.

assign(p • le�+∩[P] · · ·m ,assign(p • right
+
∩[P
′],Φ))

=p assign(p • right+∩[P
′],assign(p • le�+∩[P] · · ·m−1 ,Φ∪ {L}))

by resolving 1 step on RHS.

3.

assign(p • le�+∩[P] · · ·m ,assign(p • right
+
∩[P
′],Φ))

=p assign(p • right+∩[P
′],assign(p • le�+∩[P] · · ·m−1 ,Φ))∪ {L}

as L is independent of R

4.

assign(p • le�+∩[P] · · ·m ,assign(p • right
+
∩[P
′],Φ))

=p assign(p • le�+∩[P] · · ·m−1 ,assign(p • right+∩[P
′],Φ))∪ {L}

by IH on RHS.

5.

assign(p • le�+∩[P] · · ·m ,Φ∪ΦR)

=p assign(p • le�+∩[P] · · ·m−1 ,Φ∪ΦR)∪ {L}

where assign(p • right+∩[P
′],Φ) = Φ∪ΦR .

6.

assign(p • le�+∩[P] · · ·m−1 ,Φ∪ΦR)∪ {L}

=p assign(p • le�+∩[P] · · ·m−1 ,Φ∪ΦR)∪ {L}

by assumption that L resolves in Φ, and ΦR does not prevent resolu-

tion.

– L does not resolve.

1.

assign(p • le�+∩[P] · · ·m ,assign(p • right
+
∩[P
′],Φ))

=p assign(p • right+∩[P
′],assign(p • le�+∩[P] · · ·m ,Φ))
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2.

assign(p • le�+∩[P] · · ·m ,assign(p • right
+
∩[P
′],Φ))

=p assign(p • right+∩[P
′],Φ∪ {L})

as L is assigned blame but does not resolve.

3.

assign(p • le�+∩[P] · · ·m ,assign(p • right
+
∩[P
′],Φ))

=p assign(p • right+∩[P
′],Φ)∪ {L}

as L does not a�ect R (they share no parent).

4.

assign(p • le�+∩[P] · · ·m ,Φ∪ΦR)

=p Φ∪ΦR ∪ {L}

where assign(p • right+∩[P
′],Φ) = Φ∪ΦR .

5. Φ∪ΦR ∪ {L} =p Φ∪ΦR ∪ {L} observing that L does not resolve even

with the addition of ΦR because it contains no nodes with a matching

parent, and all nodes have the same polarity as L.

• m = 0 and n > 0. Same as previous case.

• m = n = 0.

1.

assign(p • le�+∩[P],assign(p • right
+
∩[P
′],Φ))

=p assign(p • right+∩[P
′],assign(p • le�+∩[P],Φ))

Blame for positive intersection branches always resolves, so both sides

resolve blame to the parent p. By Lemma C.1.4 the order of the blame for

the parents does not matter.

Case 2. − and ∩.

assign(p • le�−∩[P] · · ·m ,assign(p • right
−
∩[P
′] · · ·n ,Φ))

=p assign(p • right−∩[P
′] · · ·n ,assign(p • le�−∩[P] · · ·m ,Φ))

The proof is similar to the previous case. The only signi�cant di�erence is the

base case, that is when: m = n = 0 and L and R are assigned blame.

We split the case depending on whether the nodes comes from matching elim-

ination contexts (and may a�ect each other), or if they do not (and are therefore

independent).

• elim(P ,P ′)
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1.

assign(p • le�−∩[ci/P],assign(p • right
−
∩[c
′
i/P
′],Φ))

=p assign(p • right−∩[c
′
i/P
′],assign(p • le�−∩[ci/P],Φ))

It should be clear that blame will always propagate to the parent because

a matching elimination context has been found. It remains to show that

blame assignment for the parent remains the same.

We note that the latter node is chosen to resolve the blame upwards, so we

must show that the order does not matter. That is, parent(L) and parent(R)

are assigned blame in unison. By case analysis there are two cases:

– parent(L) = parent(R) =p: when the path of the parent p is not empty.

This case is immediate as the parent node is the same regardless of

order.

– When the path of the parent is empty and either P or P ′ are hoisted

upwards. The only way this could matter is if there was a (comple-

mented) path compatible with one, but not the other. This is not pos-

sible; there is no such node that could be compatible with either.

We observe that if there were, it would have to come from a node that

was also hoisted upwards, however in this case then there would be

a (complemented) node compatible with L or R, which we know not

to be true by assumption.

• ¬elim(P ,P ′)

1.

assign(p • le�−∩[ci/P],assign(p • right
−
∩[c
′
j/P
′],Φ))

=p assign(p • right−∩[c
′
j/P
′],assign(p • le�−∩[ci/P],Φ))

Blame resolves for the two nodes independently. They have matching parents

therefore any blame that extends up cannot cause interference between the two

nodes. The most interesting case is when they both resolve, in which case we

appeal to Lemma C.1.4.

Case 3. + and ∪.

assign(p • le�+∪[P] · · ·m ,assign(p • right
+
∪[P
′] · · ·n ,Φ))

=p assign(p • right+∪[P
′] · · ·n ,assign(p • le�+∪[P] · · ·m ,Φ))

The case is similar to negative intersection. The only di�erence is that we do not

need to distinguish the cases for elim(P ,P ′) and ¬elim(P ,P ′) as this constraint does

not appear in blame resolution.
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Case 4. − and ∪.

assign(p • le�−∪[P] · · ·m ,assign(p • right
−
∪[P
′] · · ·n ,Φ))

=p assign(p • right−∪[P
′] · · ·n ,assign(p • le�−∪[P] · · ·m ,Φ))

This case is identical to positive intersection as blame resolution for negative union

branches is the same as positive intersection branches.

Lemma C.1.6 (Branch Contracts Commute). Ordering of intersection and union con-

tracts does not a�ect blame for the parent.

1. 〈Φ,∆,K , (V@
p•le�±� [nil]A)@p•right±� [nil]B〉 −→∗ 〈 ±p〉

i� 〈Φ,∆,K , (V@
p•right±� [nil]B)@p•le�±� [nil]A〉 −→∗ 〈 ±p〉

2. 〈Φ,∆,K , (V@
p•le�±� [nil]A)@p•right±� [nil]B〉 −→∗ 〈 ∓p〉

i� 〈Φ,∆,K , (V@
p•right±� [nil]B)@p•le�±� [nil]A〉 −→∗ 〈 ∓p〉

Proof. • We �rst observe that during execution of a program the blame state Φ
′

is determined by a sequence of blame assignments. This sequence can be char-

acterised by a witness trace of the form:

w ; (pi , ι,Φi ,x)

where all witnesses fail, and Φi was the blame state at the failure. The blame

state can be constructed by traversing the trace and assigning blame to each pi

in state Φi , with an initial state ∅.

• We can group contracts from an intersection or union into a contract context

with a common parent. For example: (V@
p•le�+∩[nil]A)@p•right+∩[nil]B = Cp[V ], and

(V@
p•right+∩[nil]B)@p•le�+∩[nil]A = C′p[V ]. Consider the forms during evaluation

that such contexts take, they are:

1. Cp[M] where M is a non-value.

2. Cp[V[P
w ++ w ′p ]] where the contracts in the context are under evaluation.

3. C′p[Vp[(V (C−p[V[P
w ++ w ′−p ]]))]] where we are wrapping function con-

tracts that were in the intersection or union, alternating between perform-

ing a wrap, and evaluating a contract in the domain.
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Consider when the contexts denoted by C andV are commuted in some form

to C′ andV′.

1. In this case the witness trace generated by evaluating M is una�ected.

2. In this case we observe the witness trace for the program will bew ++w′p

for context C, and will be w ++ w′′p for context C′. We note that w′p and

w′′p will be in a di�erent order, but will contain the same set of witnesses.

That is, there is a re-ordering of w′p and w′′p such that they correspond to

the same trace.

3. This case is similar to the previous, except the witness trace is for−p rather

than p. The same reasoning applies: the witnesses may be in a di�erent

order when commuting the contracts, but the set of witnesses remain the

same.

• When commuting intersection or union contracts we observe that the witness

traces induced by the two programs will be of the form:

· · ·w ++w±p ++w1 · · ·

· · ·w ++w′±p ++w1 · · ·

where the set of witness in the w±p and w′±p are the same, and that all nodes in

the sub-traces are of the form ±p •d±� [P] · · ·n. By appealing to Lemma C.1.5 we

argue that if one of the sub-traces is su�cient to assign blame to ±p, then the

other sub-trace will also assign blame to ±p as it blames the same set of nodes

but in a di�erent order. As all the nodes are children of ±p the order does not

matter when assigning blame to ±p. That is, if Φ1 is the blame state the results

from blaming tracew±p , and Φ2 is the blame state the results from blaming trace

w′±p , then Φ1 =±p Φ2.

LemmaC.1.7 (Satisfaction Commutes). Commuting of∩ and∪ extends to satisfaction.

1. V ∈ JA�BK+ i� V ∈ JB �AK+

2. K ∈ JA�BK− i� K ∈ JB �AK−
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Proof. Proof of 1 and 2 appeals to the same case in Lemma C.1.6. The proof of each

case is nearly identical; we consider the positive case.

• We are required to show that:

〈Φ,∆,K , (V@
p•le�+� [nil]A)@p•right+� [nil]B〉 −→∗ 〈 +p〉

i�

〈Φ,∆,K , (V@
p•le�+� [nil]B)@p•right+� [nil]A〉 −→∗ 〈 +p〉

• By Lemma C.1.6(1) we have:

〈Φ,∆,K , (V@
p•le�+� [nil]A)@p•right+� [nil]B〉 −→∗ 〈 +p〉

i�

〈Φ,∆,K , (V@
p•right+� [nil]B)@p•le�+� [nil]A〉 −→∗ 〈 +p〉

• By the freshness constraint on p we know that this is the only contract that

mentions p. Informally we argue that we may �ip the direction in both branch

nodes without a�ecting semantics. This is justi�ed as our de�nition of blame

is parametric in branch direction d . Speci�cally:

〈Φ,∆,K , (V@
p•le�+� [nil]B)@p•right+� [nil]A〉 −→∗ 〈 +p〉

i�

〈Φ,∆,K , (V@
flip(p•le�+� [nil])B)@flip(p•right+� [nil])A〉 −→∗ 〈 +p〉

C.2 Sound Monitoring

Lemma C.2.1. V : ι⇒V ∈ JιK+

Proof. We wish to show that 〈Φ,∆,K ,V@
pι〉 X−→∗ 〈 p〉 for all K .

• By assumption 〈Φ,∆,K ,V@
pι〉 −→ 〈Φ,∆,K ,V 〉

• By assumption p # 〈Φ,∆,K ,V 〉.

• 〈Φ,∆,K ,V 〉 X−→∗ 〈 p〉 by Lemma 4.2.3.

• Therefore 〈Φ,∆,K ,V@
pι〉 −→ 〈Φ,∆,K ,V 〉 X−→∗ 〈 p〉 as required.
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Lemma C.2.2. K ∈ JιK−

Proof. We wish to show that 〈Φ,∆,K ,V@
pι〉 X−→∗ 〈 −p〉 for all V .

• Suppose that the contract fails and terminates, then it does so with blame on p

and can therefore never implicate −p.

• If evaluation of the contract does not raise blame then we have:

〈Φ,∆,K ,V@
pι〉 −→ 〈Φ∪Φ

′,∆,K ,V 〉

where Φ
′

includes p and some possible pre�xes (but not −p). By assumption

we know that p # 〈Φ,∆,K ,V 〉, and by Lemma 4.2.3 the resulting term can never

implicate −p. The state Φ
′

is irrelevant because there will be no subcontract

mentioning −p with which to interact.

Lemma C.2.3. V ∈ JanyK+

Proof. We wish to show that 〈Φ,∆,K ,V@
pany〉 X−→∗ 〈 p〉 for all K .

• By de�nition of reduction 〈Φ,∆,K ,V@
pany〉 −→ 〈Φ,∆,K ,V 〉

• By assumption p # 〈Φ,∆,K ,V 〉.

• 〈Φ,∆,K ,V 〉 X−→∗ 〈 p〉 by Lemma 4.2.3.

• Therefore 〈Φ,∆,K ,V@
pany〉 −→ 〈Φ,∆,K ,V 〉 X−→∗ 〈 p〉 as required.

Lemma C.2.4. K ∈ JanyK−

Proof. We wish to show that 〈Φ,∆,K ,V@
pany〉 X−→∗ 〈 −p〉 for all V .

• By de�nition of reduction 〈Φ,∆,K ,V@
pany〉 −→ 〈Φ,∆,K ,V 〉

• By assumption p # 〈Φ,∆,K ,V 〉.

• 〈Φ,∆,K ,V 〉 X−→∗ 〈 p〉 by Lemma 4.2.3.

• Therefore 〈Φ,∆,K ,V@
pany〉 −→ 〈Φ,∆,K ,V 〉 X−→∗ 〈 −p〉 as required.
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Lemma C.2.5. ∀N ∈ JAK+
p�codi

. V N ∈ JBK+
p�codi

∧

∀K ∈ JBK−
−p�domi

. K ◦V � ∈ JAK−
−p�domi

⇒V ∈ JA→BK+p

Proof. We wish to show that 〈Φ,∆,K ,V@
pA→B〉 X−→∗ 〈 p〉 for all K . Proceed with

a proof by contradiction.

• Assume 〈Φ,∆,K ,V@
pA→B〉 −→∗ 〈 p〉 for some K ,p.

• By assumption we know:

〈Φ,∆,K ,V@
pA→B〉 −→∗ 〈Φ′,∆′,K′, (V (W@

−p�domiA))@p�codiB〉 −→∗ 〈 p〉 for

some K′,W ,i

• There are two cases

1. 〈K′, (V (W@
−p�domiA))@p�codiB〉 −→∗ 〈 p � domi〉

– Expanding reductions for (1) we have:

〈K′, (V (W@
−p�domiA))@p�codiB〉 −→

〈K′ ◦�@
p�codiB, (V (W@

−p�domiA))〉 −→

〈K′ ◦�@
p�codiB ◦V �,W@

−p�domiA〉 −→∗ 〈 p � domi〉

– By Theorem 4.3.2 we know that K′ ◦�@
p�codiB ∈ JBK−

−p�domi
.

– By assumption K′ ◦�@
p�codiB ◦V � ∈ JAK−

−p�domi
.

– Therefore 〈K′ ◦�@
p�codiB ◦V �,W@

−p�domiA〉 X−→∗ 〈 p � domi〉

for allW . We derive a contradiction with (1) that witnesses blame.

2. 〈K′, (V (W@
−p�domiA))@p�codiB〉 −→∗ 〈 p � codi〉

– By Theorem 4.3.2 we know thatW@
−p�domiA ∈ JAK+

p�codi
.

– By assumption V (W@
−p�domiA) ∈ JBK+

p�codi
.

– Therefore 〈K1, (V (W@
−p�domiA))@p�codiB〉 X−→∗ 〈 p � codi〉 for all

K1. We derive a contradiction with (2) that witnesses blame.

Lemma C.2.6. (∀K′,N . K −→∗�K′ ◦�N ⇒ N ∈ JAK+∧K′ ∈ JBK−) ⇒ K ∈ JA→BK−

Proof. We wish to show that 〈Φ,∆,K ,V@
pA→B〉 X−→∗ 〈 −p〉 for allV . Proceed with

a proof by contradiction.

• Assume 〈Φ,∆,K ,V@
pA→B〉 −→∗ 〈 −p〉 for some V ,p.
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• By assumption we know:

〈Φ,∆,K ,V@
pA→B〉 −→∗ 〈Φ′,∆′,K′, (V (N@

−p�domiA))@p�codiB〉 −→∗ 〈 −p〉

for some K′,N ,i

• There are two cases

1. 〈K′, (V (N@
−p�domiA))@p�codiB〉 −→∗ 〈 −p � domi〉

– Expanding reduction for (1) we have:

〈K′, (V (N@
−p�domiA))@p�codiB〉 −→

〈K′ ◦�@
p�codiB, (V (N@

−p�domiA))〉 −→

〈K′ ◦�@
p�codiB ◦V �,N@

−p�domiA〉 −→∗ 〈 −p � domi〉

– By assumption we know that if for someV1 〈K ,V1〉 −→
∗ 〈K′◦V1�,N 〉

then N ∈ JAK+.

– Pick V1 =V@
pA→B.

– By assumption that N ∈ JAK+ then 〈K2,N@
p1A〉 X−→∗ 〈 p1〉 for all

K2,p1.

– We derive a contradiction that N ∈ JAK+ picking p1 = −p � domi ,

K2 = K
′ ◦�@

p�codiB ◦V �.

2. 〈K′, (V (N@
−p�domiA))@p�codiB〉 −→∗ 〈 −p � codi〉

– Expanding reduction for (2) we have:

〈K′, (V (N@
−p�domiA))@p�codiB〉 −→

〈K′ ◦�@
p�codiB,V (N@

−p�domiA)〉 −→∗

〈K′ ◦�@
p�codiB,W1〉 −→

〈K′,W1@
p�codiB〉 −→∗ 〈 −p � codi〉

– By assumption we know that if for someV1 〈K ,V1〉 −→
∗ 〈K′◦V1�,N 〉

then K′ ∈ JBK−.

– Pick V1 =V@
pA→B.

– By assumption that K′ ∈ JBK+ then 〈K′,W@
p1B〉 X−→∗ 〈 −p1〉 for all

W ,p1.

– We derive a contradiction that K′ ∈ JBK+ picking p1 = p � codi ,W =

W1.

Lemma C.2.7. V ∈ JAK+∧V ∈ JBK+⇒V ∈ JA∩BK+
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Proof. By contrapositive.

• Assume 〈K ,V@
pA∩B〉 −→∗ 〈 p〉 for some K ,p.

• There are two cases:

1. 〈K ,V@
pA∩B〉 −→∗ 〈 p • le�+∩[nil]〉

– Expanding reduction for (1):

〈K ,V@
pA∩B〉 −→

〈K , (V@
p•le�+∩[nil]A)@p•right+∩[nil]B〉 −→

〈K ◦�@
p•right+∩[nil]B,V@

p•le�+∩[nil]A〉 −→∗ 〈 p • le�+∩[nil]〉

– Pick K = K ◦�@
p•right+∩[nil]B, p = p • le�+∩[nil] to show that V < JAK+

2. 〈K ,V@
pA∩B〉 −→∗ 〈 p • right+∩[nil]〉

– By Lemma C.1.6 then 〈K , (V@
p•right+∩[nil]B)@p•le�+∩[nil]A〉 −→∗ 〈 p〉

– We observe that (positive) contracts from right branch (B) are evalu-

ated before the left, so we will still get blame on the right:

〈K , (V@
p•right+∩[nil]B)@p•le�+∩[nil]A〉 −→∗ 〈 p • right+∩[nil]〉

– Perform one step of reduction:

〈K , (V@
p•right+∩[nil]B)@p•le�+∩[nil]A〉 −→

〈K ◦�@
p•le�+∩[nil]A,V@

p•right+∩[nil]B〉 −→∗ 〈 p • right+∩[nil]〉

– Pick K = K ◦�@
p•le�+∩[nil]A, p = p • right+∩[nil] to show that V < JBK+

Lemma C.2.8. K ∈ JAK−∨K ∈ JBK−⇒ K ∈ JA∩BK−

Proof. By contrapositive.

• Assume 〈K ,V@
pA∩B〉 −→∗ 〈 −p〉 for some V ,p.

• There is one case:

– 〈K ,V@
pA∩B〉 −→ 〈K , (V@

p•le�+∩[nil]A)@p•right+∩[nil]B〉

−→∗

〈 −p • le�−∩[ci/P]〉

and
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– 〈K ,V@
pA∩B〉 −→ 〈K , (V@

p•le�+∩[nil]A)@p•right+∩[nil]B〉

−→∗

〈 −p • right−∩[c
′
i/P
′]〉.

• By Lemma C.1.6 then:

– 〈K , (V@
p•right+∩[nil]B)@p•le�+∩[nil]A〉 −→∗ 〈 −p • le�−∩[cj/P]〉 and

– 〈K , (V@
p•right+∩[nil]B)@p•le�+∩[nil]A〉 −→∗ 〈 −p • right−∩[c

′
j/P
′]〉.

• To show K < JAK−:

〈K , (V@
p•right+∩[nil]B)@p•le�+∩[nil]A〉 −→

〈K ◦�@
p•le�+∩[nil]A,V@

p•right+∩[nil]B〉 −→∗

〈K ◦�@
p•le�+∩[nil]A,W 〉 −→

〈K ,W@
p•le�+∩[nil]A〉 −→∗ 〈 −p • le�−∩[c′j/P

′]〉.

Pick V =W ,p = p • le�+∩[nil]

• To show K < JBK−:

〈K ,V@
pA∩B〉 −→

〈K , (V@
p•le�+∩[nil]A)@p•right+∩[nil]B〉 −→

〈K ◦�@
p•right+∩[nil]B,V@

p•le�+∩[nil]A〉 −→∗

〈K ◦�@
p•right+∩[nil]B,W 〉 −→

〈K ,W@
p•right+∩[nil]B〉 −→∗ 〈 −p • right−∩[c

′
j/P
′]〉.

Pick V =W ,p = p • right+∩[nil]

Lemma C.2.9. V ∈ JAK+∨V ∈ JBK+⇒V ∈ JA∪BK+

Proof. Essentially the same as negative intersection.

Lemma C.2.10. K ∈ JAK−∧K ∈ JBK−⇒ K ∈ JA∪BK−

Proof. Essentially the same as positive intersection.

Theorem 4.4.1 (Monitoring Properties). λ∩∪ satis�es the properties in Figure 4.3.

Proof. Using each lemma from Section C.
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