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SUMMARY
Hachiman is a broad-spectrum antiphage defense system of unknown function. We show here that
Hachiman is a heterodimeric nuclease-helicase complex, HamAB. HamA, previously a protein of unknown
function, is the effector nuclease. HamB is the sensor helicase. HamB constrains HamA activity during sur-
veillance of intact double-stranded DNA (dsDNA). When the HamAB complex detects DNA damage, HamB
helicase activity activates HamA, unleashing nuclease activity. Hachiman activation degrades all DNA in
the cell, creating ‘‘phantom’’ cells devoid of both phage and host DNA. We demonstrate Hachiman activa-
tion in the absence of phage by treatment with DNA-damaging agents, suggesting that Hachiman responds
to aberrant DNA states. Phylogenetic similarities between the Hachiman helicase and enzymes from eu-
karyotes and archaea suggest deep functional symmetries with other important helicases across domains
of life.
INTRODUCTION

Helicases participate in innate and adaptive immune systems

by ‘‘sensing’’ pathogen-associated molecular patterns

(PAMPs).1–13 Many recently discovered antiviral defense sys-

tems in prokaryotes encode helicases homologous to diverse

immune and regulatory helicases in eukaryotes (Figures 1A

and 1B).14–16 One such system is Hachiman, a two-gene locus

encoding HamA (a protein of unknown function, DUF1837) and

the superfamily 2 (SF2) Ski2-like helicase HamB. Although

present in >5% of prokaryotic genomes and capable of robust

protection against phylogenetically distinct phages,14,17 mo-

lecular mechanisms governing Hachiman and many related

helicase-containing immune systems remain unknown.

Here, we show that despite its homology to RNA helicases,

HamB is a DNA helicase that activates DNase activity of

HamA upon detection of damaged DNA. Cryogenic electron

microscopy (cryo-EM) structures show how the HamAB

complex binds DNA in different modes to facilitate immunity.

Helicase ‘‘ratcheting’’ by HamB upon substrate recognition
6914 Cell 187, 6914–6928, November 27, 2024 ª 2024 The Author(s).
This is an open access article under the CC BY license (http://cr
modulates the HamAB interface, leading to HamA activation

and indiscriminate degradation of DNA. In situ fluorescence mi-

croscopy shows that Hachiman clears both host and phage

DNA simultaneously, creating phantom cells devoid of genetic

material. The observation of Hachiman activation in the

absence of bacteriophage but in the presence of DNA-

damaging agents suggests that Hachiman responds to DNA

damage that accumulates during cell stress. Biochemical and

structural data imply that ATP-bound HamAB contacts intact

DNA, enabling detection of genome integrity and activation of

the HamA effector when DNA damage surpasses a normal

threshold. HamA nuclease activity may create additional sites

for Hachiman binding and activation, leading to amplification

of the immune signal and culminating in restriction of phyloge-

netically diverse phages.

HamB helicase domain organization and its ability to regulate

the HamA effector enables controlled activation that may be a

principle of other helicase-containing defense pathways. Like

Hachiman, other defense systems may act in response to cell

stressors, including, but not limited to, phage infection.
Published by Elsevier Inc.
eativecommons.org/licenses/by/4.0/).
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Figure 1. Hachiman is a two-component defense system that protects against diverse bacteriophages

(A) Overview of SF1/SF2 helicase-containing phage defense systems found in RefSeq genomes in the DefenseFinder database.17

(B) Phylogenetic tree of core helicase domains of 329 helicases from defense systems from (A) and representative SF1/SF2 helicases.12 Helicase superfamily is

provided in the outer track (SF1 in black, SF2 in tan) and representative families demarcated in gray clades with labels. Defense-system-associated helicases are

colored as shown in (A). Details on tree construction and sequence alignment provided in STAR Methods.

(C) Hachiman loci from E. coli strains ECOR04, ECOR28, and ECOR31 tested in this study. HamA genes are shown in purple and HamB genes shown in green.

Additional defense systems identified in PADLOC18 are shown in blue, integrases in yellow, and tRNA genes in red. All other genes are shown in gray.

(D) Overview of phage-defense assays. Native Hachiman loci are cloned under an anhydrotetracycline (aTc)-inducible promoter, pTet, and monitored for pro-

tection against diverse phages.

(E) Representative plaque assays for ECOR31 HamAB against sensitive phages EdH4 and T4, as well as resistant phage T5. Data are presented as the mean of

three biological replicates.

(legend continued on next page)
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RESULTS

Hachiman confers broad-spectrum protection against
diverse bacteriophages
Helicases are common components of immune systems

in eukaryotes.9,19 This is also true for prokaryotic immune

systems. Of the �150 prokaryotic defense systems cataloged

in DefenseFinder,17 18 contain an SF1/SF2 helicase, comprising

nearly 20% of non-restriction-modification (RM) defense loci

identified in RefSeq (Figure 1A).20 Using 95 defense system

helicases and 236 well-characterized representative SF1/SF2

helicases,12 we performed a phylogenetic analysis of the core

helicase domain (Figure 1B; see STAR Methods). We assigned

20 of the 25 helicases to an established helicase subfamily,

spanning 7 subfamilies. Helicases from Shango (SngC), BREX

(BrxHI), Druantia (DruE), and Dpd (DpdJ) formed a potentially

distinct clade of SF2 helicase family defined by antiphage im-

mune functions. A helicase from DISARM (DrmA) also could

not be confidently assigned to a known helicase family. The Ha-

chiman-encoded HamB protein is closely related to SF2 Ski2

helicases, orthologs of which have diverse activities on RNA

and DNA substrates (Figures 1B and S1).21,22

To establish a cell-based assay for assessing Hachiman

function, we identified distinct Hachiman loci in E. coli

strains ECOR04, ECOR28, and ECOR31 using PADLOC

(Figures 1C, S2A, and S2B).18,23 We challenged cells express-

ing Hachiman in plaque assays using E. coli phages represent-

ing twelve distinct genera (Figures 1D, 1E, and S2C; Key re-

sources table).24 HamAB from ECOR31 conferred the

greatest degree of defense, providing 102- to 105-fold reduc-

tion in efficiency of plaquing for eight diverse double-stranded

DNA (dsDNA) phages (Figures 1F and S2C), consistent with the

broad-spectrum activity of Bacillus cereus Hachiman against

Bacillus subtilis phages.14 Hachiman conferred near-complete

defense against sensitive phages at low multiplicity of infection

(MOI < 1), but diminished protection at high viral doses

(MOI > 1) (Figures 1G and S2D–S2F). We confirmed that Hachi-

man limits the production of new phage particles (Figures S2E

and S2F). At low MOI, bacterial growth is unaffected, whereas

at high MOI, no growth is observed (Figure S2D). Nonetheless,

phage production remains limited-to-nonexistent during Hachi-

man-mediated defense (Figures S2E and S2F), meaning that

the interaction between Hachiman and phage leads to cell

death and restriction of phage progeny. These data imply

that Hachiman functions by abortive infection (Abi), a type

of programmed cell death in which infected cells sacrifice

themselves before phage infection matures, preventing viral

spread.25 To control for artifacts arising from overexpression,

we also confirmed that ECOR31 Hachiman defends against

phage while under the control of its native promoter and on a

low-copy plasmid (Figure S2G).
(F) Comparison of different Hachiman loci against 12 diverse phages representin

replicates. Plaque assays without EOP reductions, but a measurable difference

(G) Protection against phage EdH4 is complete at low MOI, but insufficient at hig

For (E)–(G), Hachiman is induced at 20 nM aTc and for (E) and (F) dCas13d targeti

Figure S2D. Data are presented as the mean of three biological replicates ± stan

See also Figures S1 and S2.
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The four phages resistant to tested Hachiman systems (T5,

MS2, M13, and Goslar) possess unique genome properties.

MS2 is an ssRNA phage and lacks a dsDNA genome, whereas

M13 uses rolling-circle replication to produce its single-stranded

DNA (ssDNA) genome.26 The dsDNA genomes of T5 and Goslar

have limited accessibility to defense systems as they are com-

partmentalized before and during infection, respectively.27–29

Overall, phage-challenge experiments suggest that Hachiman

activity protects against diverse dsDNA phages recognizing

and subverting a central feature of dsDNA phage infection.

Structural basis of HamAB complexation
To determine the molecular basis of Hachiman function, we pu-

rified HamA and HamB individually. Only HamB was soluble in

isolation. Coexpression of the complete native Hachiman locus

produced a complex of HamA and HamB (Figures S3A and

S3B). A 2.7-Å cryo-EM structure of the isolated HamAB complex

is a 1:1 heterodimer (HamA1:HamB1; Figures 2A and S3A–S3G;

Table S1). The domain organization of HamB is generally consis-

tent with Ski2/Brr2 helicases, with two stacked RecA-like heli-

case domains, RecA1 and RecA2, comprising the helicase

core.30 A degenerated winged-helix domain (WH*) and C-termi-

nal a-helical region (CAH, C a-helix) form the likely nucleic-acid-

binding cleft (Figure 2B). At the N terminus, an a-helical bundle

(NAH, N a-helical) common to HamB orthologs, but not found

in related Ski2 helicases, contributes to binding HamA. At the

C terminus, a barrel-like fold reminiscent of oligonucleotide-

binding (OB) domains sits on the side of the complex. HamB

folds with intact helicase motifs, including active site DEGH res-

idues (Figures S3H and S3I).

The apo HamAB structure shows how HamA contacts the

HamB NAH, with three AB interface regions contributing to

3,038 Å2 of total buried surface area (Figures 2C and S3J). The

first subregion contains a helix-loop-helix, which stacks with a

HamA helix-loop-helix in the reverse orientation (HamA30–63;

Figure 2D). The second region is in the center of the interface

and includes numerous hydrogen bonds between HamB and

an extended HamA-interacting loop (HamA102–117; Figure 2E).

The third subregion on the HamB N-terminal side is another

instance of helical docking with predicted hydrogen bonding

and nonpolar interactions (HamA159–199; Figure 2F). Structural

and biochemical analyses of the AB interface suggest that

HamB solubilizes HamA (Figures 2C–2F, S3A, and S3B).

HamA DUF1837 encodes a nuclease
The role of HamA is unknown. Alignment of HamA sequences re-

vealed a highly conserved D-E(X)K motif consistent with metal

ion-dependent phosphodiester hydrolysis (Figure 2G).31 Struc-

turally, HamA is most similar to the type IIS restriction endonu-

clease from Paucibacter aquatile,32 with conservation of the

core helix/sheet motif (Figures 2H and S3K). HamA diverges
g 12 unique phage genera. Data shown represent the mean of three biological

in plaque size are denoted with an asterisk.

h MOI.

ng RFP is provided as a negative control. For (G), a negative control is shown in

dard deviation.



Figure 2. Structural basis of Hachiman complexation and identification of the HamA active site

(A) Cryo-EM density of the E. coli ECOR31 apo HamAB complex. The sharpened map is colored, whereas the unsharpened map is overlaid and transparent.

(B) Orthogonal views of the HamAB structure, with domains colored according to the key above. Walker motifs are annotated in the HamB RecA1 and RecA2

domains.

(C) Overview of the HamA-HamB NAH interface, with surfaces involved in the interaction shown.

(D–F) Detail of three subregions, HamA30–63 (D), HamA102–117 (E), and HamA159–199 (F), contributing to the AB interface. Residues contributing to hydrogen

bonding interactions are shown as sticks and are labeled with colors corresponding to the key above each view and in (B).

(G) Sequence logo resulting from alignment of HamA DUF1837 ORFs. The ECOR31 HamA sequence and corresponding positions are shown below each residue

logo.

(H) Structural superimposition of the nuclease domain from the P. aquatile type IIS restriction modification system with HamA.

(I) Plaque assays demonstrating the ability of HamAB and various mutants to confer defense against phage EdH4. Individual data points of three independent

biological replications are shown along with the mean and standard deviation. The (�) symbol indicates a reduction in plaque size.

See also Figure S3.
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from the P. aquatile nuclease in regions of DUF1837 that facili-

tate binding to HamB (Figures 2C–2H).

Cell-based phage defense assays showed that deletion of

HamA or HamB, or mutation of their putative active site residues

to create HamAE138A,K140AB (HamA*B, nuclease-deficient) or
HamABD431A (HamAB*, helicase-deficient), ablated defense

(Figure 2I). Although single-interface mutations failed to impact

defense, double mutation of a conserved interface motif (R/K)

XX(R/K), or deletion of entire helix-loop-helix motifs in HamA,

blocked Hachiman function. However, these cells were still
Cell 187, 6914–6928, November 27, 2024 6917
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viable, suggesting that HamA must be activated by HamB to

trigger effector function. Together, these results show that Ha-

chiman requires both nuclease (HamA) and helicase (HamB) ac-

tivities for function and that complexation of HamA and HamB is

essential for activation of phage defense.

HamB is a DNA helicase
Despite its functional requirement for phage defense, the identity

of theHamBhelicasesubstrate isunclear.Usingamalachite green

assay that detects orthophosphate release during NTP hydroly-

sis,33 we found strong HamB ATPase activity in the presence of

ssDNA (Figure 3A). To test HamB DNA helicase activity, we per-

formedDNA unwinding assays by incubating HamBwith DNA du-

plexes of varying lengths and single-stranded overhangs. HamB

was capable of ATP-dependent unwinding of a 15-bp duplex

with a 15-nt 30 overhang (Figure 3B). In addition, HamB unwinds

forked, 50 overhang and blunt DNA duplexes, albeit with lower ef-

ficiency compared with 30 overhang-containing substrates, sug-

gesting promiscuous substrate acceptance (Figures 3C–3E and

S4A–S4F). Longerduplex lengths are notwell tolerated (Figure3F).

Testing ofdifferentDNAduplex andoverhang lengths showed that

HamB processes a range of DNA substrates but prefers longer 30

overhangs (Figures S4A–S4F).

HamAB degrades plasmids in vitro

HamB unwinds DNA substrates, and HamA is a putative

nuclease. To determine whether HamA cuts DNA, and to ascer-

tain the combined functions of the HamAB complex, we tested

activity against purified plasmid DNA. Titration of the wild-type

(WT) HamAB complex, but not HamA*B, in reactions with super-

coiled plasmid DNA show initial plasmid nicking followed by a

ladder of degradation products, which converged to sizes be-

tween 50 and 200 bp, irrespective of input plasmid topology

(Figures 3G, S4G, and S4H). We also observed cleavage of short

dsDNA and ssDNA substrates (Figures S4I and S4J). Our obser-

vations are consistent with HamA acting as a nuclease effector in

Hachiman immunity, though the exact nature of HamA cleavage

remains unclear owing to its insolubility in vitro (Figure S3A).

Although HamA*B cannot cleave DNA, it forms a low-mobility

species upon addition of ATP, which may represent a different

state captured only when the HamA nuclease is catalytically de-

activated (Figure 3G).

To assess the possible influence of phage-encoded single-

stranded binding (SSB) protein, which has been implicated in

activating Hachiman and other antiphage defense systems,34–36

we incubated reactions with either E. coli SSB (EcSSB) or phage

T4 gp32 (T4SSB) prior to addition of Hachiman components.

Both types of SSB induced complete ATP-dependent plasmid

degradation, arguing against direct recognition of phage SSB

in Hachiman activation (Figures 3H, S4K, and S4L). In time-

course experiments, addition of either EcSSB or T4SSB acceler-

ated the rate of plasmid interference (Figures S4K and S4L). SSB

also facilitates complete ATP-dependent degradation of a 75-bp

dsDNA, though ssDNA substrates are protected by excess SSB

(Figures S4I and S4J). EcSSB did not have an observable effect

in HamA*B time courses (Figure S4M), implying that HamA

nuclease activity is required for subsequent DNA unwinding

in vitro (Figure 3I). SSB stimulates HamAB DNA unwinding and
6918 Cell 187, 6914–6928, November 27, 2024
cleavage independent of SSB type, potentially by preventing re-

annealing of nascent ssDNA (Figure 3H).37

We noted that the low mobility species observed in HamA*B-

plasmid reactions accumulate in an ATP-dependent manner

(Figure 3I). ATPase assays with HamB, HamAB, and HamA*B

in the presence of plasmid DNA reveal that, unlike HamAB,

both HamB and HamA*B suppress ATPase activity upon sub-

strate addition (Figure 3J). The low mobility species may there-

fore represent a state in which HamA*B ATP-binding enables as-

sociation with, but not cleavage of, intact dsDNA. These data

imply not only that plasmid destruction requires DNA cleavage

by HamA but also that this activity may be coupled with HamB

ATPase activity (Figure 3J). Considering that HamAB does not

require ATP to degrade plasmid DNA in the absence of SSB,

we postulate that HamAB loads DNA ends induced by HamA

nicks generated in vitro by high relative concentrations of com-

plex (Figure S4G). Nicking triggers ATP hydrolysis, which, in

turn, activates further HamA-mediated degradation (Figure 3K).

When the HamA nuclease is inactivated, HamB does not load

DNA ends but can nonetheless bind intact DNA in an ATP-

dependent manner (Figure 3J).

Structural basis of HamB DNA binding
Our biochemical studies suggest two modes of DNA binding,

one that triggers ATP hydrolysis and cleavage (Figure 3I) and

one that enables binding of HamAB to intact dsDNA (Figure 3J).

We observed ATPase activity upon incubation of HamB with a

mixed base ssDNA substrate. We performed cryo-EM analysis

on a complex of HamB and ssDNA with ATP added during

complexation. In the resulting 2.8 Å reconstruction, HamB re-

tains the general domain organization observed in the apo

HamAB structure (Figures 4A, 4B, and S5A–S5I; Table S1) but

lacks the extended helix-loop-helix motif that contributes to

HamA binding (Figures 2D and 4B). Disorder of this region in

the HamB-DNA structure further supports its important role in

complexation. Surprisingly, despite the addition of only ssDNA

to HamB during sample preparation, we observed duplex DNA

in the cryo-EMdensity. The duplex, which is 8 bp in length, arises

from a partially palindromic region of the DNA substrate. The

duplex appears partially unwound, with one 30 end bound within

the HamB nucleic-acid-binding pocket (Figure 4C). Several res-

idues, including, but not limited to, canonical Walker motifs,

contribute to ssDNA binding in the helicase core (Figures 4D,

S3H, and S3I). In the midsection of the duplex, a ‘‘pin’’ reminis-

cent of the strand unwinding wedge in the PriA primosomal heli-

case lies in the center of the duplex and pries the strands apart

by pi-stacking and physical occlusion (Figure S5J).38,39 Obser-

vation of a 30 end in the entry site of the helicase is consistent

with the 30 to 50 polarity determined in vitro (Figure 3B). When

wemutagenized a conserved threonine, which forms a hydrogen

bond with the 30 hydroxyl (Figure 4C), Hachiman lost antiphage

activity (Figure S5K). Recognition of a 30 DNA end is important

for immune activation.

Helicase ratcheting may activate HamAB
We noticed significant conformational variability in the HamB-

DNA particle ensemble. Using three-dimensional (3D) variability

analysis and 3D classifications, we resolved an alternative



Figure 3. HamAB is a DNA nuclease/helicase that degrades plasmids in vitro

(A) Malachite green ATPase assays of HamB against a panel of nucleic acid substrates. Individual data points of three independent biological replicates and the

mean and standard deviation are shown.

(B–E) HamB DNA unwinding assays on substrates with a 15-bp duplex and a 15-nt 30 OH (B), forked 15-nt OH (C), 15-nt 50 OH (D), and no overhang (E). DNA

substrates are labeled with 50 FAM. Gels are representative of three independent biological replicates.

(F) Normalized percent unwinding of DNA substrates with 15 bp (circles), 25 bp (squares), and 50 bp (triangles) duplex lengths, all labeled with 50 FAM and with a

15-nt 30 OH. Individual data points shown are quantifications of replications of unwinding assays in the format of (B)–(E) normalized against basal unwinding (see

STAR Methods).

(G) In vitro plasmid clearance assay after 90 min at 37�C with ATP using MBP-HamA, HamB, HamAB, and HamA*B visualized on a 0.75% agarose gel.

(H) Time course of HamAB plasmid clearance with addition of ATP or E. coli SSB, visualized on a native agarose gel.

(I) Time course assay as in (H) with mutant HamA*B.

(J) ATPase activity of HamB, HamAB, and HamA*B, with or without supercoiled plasmid substrates. Individual data points of three independent biological

replicates and the mean and standard deviation are shown.

(K) Cartoon depicting a model for HamAB-mediated plasmid degradation.

See also Figure S4.
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conformation (conformation 2) of HamB to a nominal resolution

of 2.9 Å (Figures S5A–S5I; Table S1; STARMethods). In the alter-

nate conformation, we observe repositioning of the RecA2, NAH,

and CAH domains, coupled with pitching of the DNA duplex

by approximately 10� (Figure 4E, left). DNA contacts and the

RecA1, WH*, and OB folds remain virtually unchanged. Viewed

from the HamA direction, the NAH and CAH rotate clockwise,

whereas RecA2 moves counterclockwise (Figure 4E, right).
Large-scale movement of the NAH-RecA2 interface involves re-

modeling of interface regions. For example, Tyr525 and Trp521

residues on a distal RecA2 sheet contacting the NAH shift

�9 Å between the two conformations (Figure S5L). We propose

that dynamic switching between HamB conformations repre-

sents helicase ratcheting upon entry of the DNA substrate into

the active site and triggering of ATPase activity. Motion of the

RecA2 domain upon helicase ratcheting transduces to the
Cell 187, 6914–6928, November 27, 2024 6919



Figure 4. Structural basis of HamB-DNA binding and helicase ratcheting

(A) Cryo-EM density of the 2.8-Å HamB-DNA density. The sharpened map is colored according to domain, whereas the unsharpened map is overlaid and

transparent.

(B) Orthogonal views of the 2.8-Å HamB-DNA structure.

(C) Detail of the 30 end of the DNA buried within the DNA entry site of HamB. Hydrogen bonds and contributing residues are shown with a dashed line.

(D) Detail of the DNA duplex-interacting RecA2 loop.

(E) Left, superimposed conformers of HamB-DNA viewed from the DNA side, with conformation 1 (2.8 Å) colored teal and conformation 2 (2.9 Å) colored bur-

gundy. Right, conformations 1 and 2 viewed from the NAH side and transparent, with vectors colored according to domain representing motion between the two

conformations. Vectors are scaled 23 and are calculated using modevectors.

(F) Representative disruption of the predicted AB interface between the two HamB conformations. AB interactions disrupted by HamB motion are shown and

labeled.

(G) Native PAGE of reactions of the HamAB complex with the DNA where ratcheting was observed in cryo-EM. ATP and DNA appear to dissociate the AB

complex.

(H) Model for HamB signal transduction to the NAH and concomitant release of HamA.

See also Figure S5.
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NAH (Figure 4E). The NAH is responsible for binding the HamA

nuclease (Figures 2C–2F and 2I).We superimposed each confor-

mation of HamB bound to DNA with HamB in the apo complex

structure. In conformation 1, HamB is in approximately the

same position as HamB in the AB complex. Changes in confor-

mation 2 appear to disrupt predicted interactions with HamA

(Figure 4F), including hydrogen bonds in HamA159–199, a region

shown to be essential for defense (Figure 2I).

Structural evidence suggests that helicase ratcheting

transduces motion to the NAH. To test whether helicase mo-

tions disrupt the complex, we incubated HamAB with the

mixed base ssDNA seen in HamB-DNA structures. Addition

of ATP and DNA modulates the HamAB complex, suggesting

that ATP hydrolysis upon substrate recognition provides input

energy to allosterically activate HamAB, potentially by releasing

HamA (Figure 4G). We observed ATP-dependent disassembly

of the complex via size exclusion chromatography (Figure S5M).

Together, these data support a model in which structural

changes in HamB may release HamA upon entrance of

ssDNA into the helicase active site (Figure 4H). In further sup-
6920 Cell 187, 6914–6928, November 27, 2024
port of this model, plasmid assays show that nicked DNA

triggers ATPase activity, whereas intact DNA untouched by

HamA nucleolytic activity does not activate ATP hydrolysis

(Figure 3J).

Hachiman degrades phage and host DNA
simultaneously during infection
Hachiman binds and degrades DNA. To connect the proposed

HamAB structural states with cellular activities, we visualized

Hachiman responding to phage infection in vivo using time-

course fluorescence microscopy. In uninfected cells, neither

WT nor inactivated HamAB affected nucleoid morphology

(Figures 5A and 5B). When we challenged the control strain lack-

ing Hachiman with sensitive phage EdH4 (Figure 1F), we

observed that decondensed DNA begins to appear 10 min

post infection (mpi; Figure 5A). There was no significant differ-

ence in the development of this phenotype compared with cells

expressing inactive HamAB mutants (Figure 5B, HamA*B or

HamBA*). However, when we infected cells expressing WT

HamAB, the nucleoids significantly decreased in size by 30



Figure 5. Hachiman defends against bacteriophage by nonspecific DNA clearance

(A) EdH4 infection time course in E. coli expressing wild-type HamAB, HamAB* (HamABD431A), or HamA*B (HamAE138A,K140AB) or lacking the Hachiman system (-

control). Cell membranes were stained with FM4-64 (red) and DNA was stained with DAPI (cyan). Scale bar, 3 mm. MOI z 2.

(B) Quantification of intracellular DAPI-stained DNA cross-sectional area over the course of EdH4 infection. Dots represent individual medians from three bio-

logical replicates. ** p < 0.01 by Dunnett’s test. n >225 in total across all replicates for each condition (see STAR Methods).

(C) Time-to-lysis of EdH4 infecting the control strain based on time-lapse bright-field microscopy under the same growth and infection conditions as the time

course in (A) and (B). Black points represent the mean cumulative percentage of total lysed cells that have burst at 10 min intervals over the course of EdH4

infection, measured in triplicate. Shaded region represents the standard deviation.
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mpi. By late infection (50 mpi), most cells are ‘‘phantom cells,’’

containing only a small punctum or no visible DNA (Figure 5B).

Across three biological replicates, at 50 mpi, the median DNA

cross-sectional area was <0.2 mm2 in our HamAB strain. In

contrast, the median DNA cross-sectional area was >1.5 mm2

at 50 mpi in the absence of HamAB or during expression of an

inactive mutant.

As determined by time-lapse bright-field microscopy, the

average time-to-lysis for EdH4 infecting the control strain under

our imaging conditions is �75 mpi (Figure 5C). Hachiman is

activated and degrades DNA well before host-cell lysis under

WT conditions, preventing the release of phage progeny at the

expense of cellular viability.25 These observations are consistent

with the Abi phenotype observed in phage production assays

(Figures 1G and S2D–S2F) and agree with biochemical and

structural data identifying Hachiman as a DNA-degrading de-

fense system.

DNA damage activates Hachiman
Hachiman responds to phage infection by clearing cells of DNA.

TheHamBhelicase recognizes 30 ssDNA ends and activates ATP

hydrolysis (Figures 2B–2F and 2J), which, in turn, activates the

HamA nuclease (Figures 4E–4H). Because Hachiman defends

against diverse bacteriophage genera with little or no protein ho-

mology, we considered the possibility that Hachiman does not

directly recognize a conserved phage component such as

phage-encoded SSB.34 Instead, Hachiman could sense general

changes in host physiology.
We reasoned that small molecules that interfere with DNA

metabolismmight differentially engage Hachiman and elicit bac-

terial toxicity if it responds to changes in host genome integrity.

To test this hypothesis, we treated cells expressing Hachiman

with minimum inhibitory concentrations of DNA-damaging anti-

biotics. To control for confounding factors arising from potential

drug-induced excision of endogenousMGEs, we used the E. coli

MDS42 strain background, which is devoid of cryptic prophage

and insertion sequence elements.40,41 We first showed that Ha-

chiman retains antiphage activity in this strain background

(Figures S6A and S6B), confirming that Hachiman activity is

not dependent on known cryptic prophages and insertion

sequence elements. We next treated cells with nalidixic acid

(nal), a quinolone inhibitor of DNA gyrase and topoisomerase

IV (topo IV).42,43 Aberrant persistence of the protein-DNA link-

ages during topoisomerase inhibition by nal results in DNA nicks,

replication fork arrest, and double-strand breaks (DSBs).44–47 In

the absence of bacteriophage, we observed growth inhibition in

response to minimum inhibitory amounts of nal when WT

Hachiman was present compared with HamA- and HamB-inac-

tivated mutants (Figures 6A and S6C). Novobiocin (novo) is an

aminocoumarin that also interferes with gyrase and topo IV,

but by an orthogonal mechanism which subverts direct DNA

damage.48,49 In growth experiments, WT HamAB had minimal

differential effects after novo treatment (Figures 6B and S6D).

Rather than inhibit an essential enzyme regulating DNA topology,

the polyketide/peptide bleomycin directly induces ss- and

dsDNA breaks by generation of radical intermediates.50 WT
Cell 187, 6914–6928, November 27, 2024 6921



Figure 6. DNA damage activates Hachiman

(A–E) Cell growth of E. coliMDS42 expressing wild-type HamAB, HamA*B, and

HamAB* at 20 nM aTc in the absence or presence of minimum inhibitory

concentrations of nalidixic acid (A), novobiocin (B), bleomycin (C), mitomycin C

(D), and gentamycin (E). Growth curves are colored according to condition.

See Figure S6 for complete minimum inhibitory concentration determinations.

Data are presented as the mean of three biological replicates ± standard

deviation.

See also Figure S6.
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Hachiman caused elevated toxicity during bleomycin treatment

compared with HamA and HamB mutants (Figures 6C and

S6D). Cultures treated with mitomycin C, an alkylating agent

that causes interstrand DNA crosslinks and subsequent DSBs,

also enhanced toxicity of WT Hachiman compared with mutants

(Figures 6D and S6E).51 In both mitomycin C and bleomycin

treatment conditions, we noticed that strains expressing mutant

HamB were consistently more sensitive than HamA mutants. As

a control, we treated cultures with gentamycin, an aminoglyco-

side that inhibits translation by binding to the 30S ribosomal sub-

unit.52 Consistent with DNA-damage-dependent activation, we

observed near-equivalent responses to all Hachiman constructs

to gentamycin exposure (Figures 6E and S6F). Our results

demonstrate that Hachiman can reliably be triggered in the

absence of bacteriophage, that activation follows direct DNA

damage, and that activation requires the combined catalytic ac-

tivities of HamA and HamB.

Hachiman associates with intact dsDNA
Our data are consistent with a model in which Hachiman triggers

Abi when 30 ssDNA enters the HamB active site. Although the

exactmechanism of DNA damage sensing byHamB remains un-

clear, we observed formation of ATP-dependent HamA*B-DNA

complexes in vitro (Figure 3I). We used cryo-EM to visualize

this state. HamA*B was incubated with plasmid DNA and ATP
6922 Cell 187, 6914–6928, November 27, 2024
for 30 min of reaction, after which the specimen was frozen (Fig-

ure 7A). In the resulting micrographs, many particles can be seen

binding intact plasmid DNA (Figure 7B). In two-dimensional (2D)

class averages of plasmid-bound particles, complete HamA*B

complexes are seen, with duplex DNA spanning the protein

and bending slightly at the point of contact (Figures 7C and

S7A). The angle of the DNA in this ‘‘scanning’’ state is orthogonal

to DNA resolved in the ‘‘loading state’’ in HamB-DNA structures

(Figure 7D). Masked 3D classification and unbiased alignments

produced a map with a 3.2-Å nominal resolution, with lower res-

olutions (5–7 Å) for the plasmid DNA, although the major and mi-

nor grooves in the central region are apparent (Figures 7E, 7F,

and S7A–S7E; Table S1). The dsDNA interacts with the RecA2

loop region (Figure 7E). There are few differences between the

rest of the complex and the apo HamAB structure (Figure 2B).

In the molecular model, duplex DNA occupies the same location

as RecA2 loop—we could not find an alternate conformation of

the loop structure, leading us to conclude that it becomes disor-

dered once DNA is bound (Figure 7F). ATP occupies the binding

pocket, consistent with biochemical results (Figures 3I and 3J).

Contacts made with ATP are in agreement with predictions for

HamB Walker and helicase motifs (Figures 7G, S3H, and S3I).

Our observations suggest that HamAB surveys DNA in an alter-

native scanning mode that may enable monitoring of dsDNA. In

this mode, which is facilitated by the RecA2 DNA loop, DNA is

restrained from the nuclease active site (Figure 7H). Upon phage

infection, or conditions that cause elevated levels of DNA dam-

age, HamAB activates by loading of a DNA end, or potentially

by recognition of specific DNA structures involved in damage re-

sponses such as displacement loops (Figure 7I). Entrance of

ssDNA into the helicase active site triggers ATPase activity, lead-

ing to structural rearrangements enabling HamA activation

(Figure 7J).

DISCUSSION

Our results reveal that the Hachiman prokaryotic defense system

is a nuclease-helicase complex, HamAB, which responds to

changes in genome integrity. Upon contact with a free ssDNA

end, the end inserts into the HamB active site to induce ATP

hydrolysis, HamB ratcheting and activation of the HamA

nuclease. Activated Hachiman catalyzes DNA degradation,

creating phantom cells cleared of both phage and host DNA,

reminiscent of NucC-mediated clearing in some type III

CRISPR-Cas systems.53 That Hachiman separates its nuclease

and helicase components between two subunits, HamA and

HamB, may be intrinsically linked to its robust Abi phenotype.

Trans nuclease activity from HamA activation could initiate a

positive feedback loop. Elevated DNA damage due to HamA

activation may then enable other Hachiman complexes to detect

new sites of DNA damage, amplifying the immune response. We

propose that major changes in genome integrity, such as host

genome degradation or recombination-dependent replication

by dsDNA phages,26 result in accumulated damage. Extensive

damage ‘‘tips the scales’’ toward Hachiman activation, leading

to Hachiman-induced DNA damage and phage restriction

through Abi. Our results implicate genome integrity as an impor-

tant battleground during viral infection.



Figure 7. Hachiman scans intact dsDNA

(A) HamA*B-plasmid +ATP specimen preparation.

(B) Representative motion-corrected, dose-weighted cryo-EM micrograph from the HamA*B-plasmid DNA dataset. Plasmid DNA and bound particles are

indicated with white arrows.

(C) Representative 2D classes of particles bound to plasmid DNA.

(D) Cartoon depicting the scanning state resolved here and comparison with the loading state resolved in the HamB-DNA dataset.

(E) Composite cryo-EM density colored according to domain. Protein regions are from the 3.2-Å deepEMhancer-sharpened map, whereas DNA is from the 3.2-Å

sharp map masked and B-factor refined to display helical features.

(F) Orthogonal views of the HamA*B-plasmid DNA structure. The DNA sequence is unknown.

(G) Detail of ATP in HamB, with residues and hydrogen bonds shown. The density is masked to ATP.

(H) Cartoon showing separation of intact dsDNA from the HamA active site.

(I) Model of threshold activation of Hachiman.

(J) Proposed mechanism of Hachiman activation.

See also Figure S7.
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The spread of ‘‘selfish’’ mobile genetic elements significantly

alters nucleic acid metabolism in the cell. For instance, phage

T4 degrades the host genome to preferentially replicate and sup-

press antiphage activities.54,55 However, viral teleonomy in-

volves tradeoffs: rapid replication leads to higher error rates,56

increasing the frequency of lesions and stalled replication forks.

This is compounded by damage inflicted on the phage genome
by other defense systems.57 Phages engage in orthogonal ho-

mologous recombination to compensate, a process that univer-

sally involves a free 30 ssDNA end and displacement-loop inter-

mediates.58,59 We propose that Hachiman senses and activates

in response to motifs associated with stress on the integrity of

host or phage DNA,60 enabling viral sensing across a range

of infection strategies. This explains the broad-spectrum
Cell 187, 6914–6928, November 27, 2024 6923
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protection conferred by Hachiman. The exact identity of 30 end-
containing DNA structures that activate Hachiman during phage

infection is an area of future interest. We imagine that Hachiman

is evolutionarily tuned to activate only when DNA damage is too

severe for the host DNA repair machinery to remedy, or if

invading entities undergo uncontrolled replication.26,58

A recent study proposed that phage-encoded SSB activates

B. cereus Hachiman.34 However, our data suggest that this

mode of activation is a proxy for the true activator of Hachiman

encoded in DNA structure. One parsimonious explanation is

that expression of phage SSB is incompatible with host replica-

tion and recombinationmachinery, while the phage preferentially

replicates its own genome. This could result in DNA damage or

produce structures such as displacement loops that appear as

DNA damage to Hachiman. In vitro activation of ECOR31 Ha-

mAB activity did not require SSB, nor was a differential effect

seen when comparing phage and host SSB, consistent with ob-

servations in the XPD SF2 helicase.61 Considering the minimal

sequence and structural homology between the two stimulatory

SSBs, we consider it unlikely that either activates HamB by pro-

tein-protein interactions. Our results imply that other defense

systems believed to be SSB-activated may be stimulated by

DNA damage.36,62

As Hachiman both senses and induces DNA damage, Hachi-

man must be regulated during normal cell activities. We find

ectopic Hachiman expression to be mildly toxic (Figure S7F), in

line with prior work,34 as a fitness cost of carrying a potent and

general immune system. During normal cell activities, DNA dam-

age is likely limited and transient thanks to proofreading activities

of the native DNA repair machinery (Figure 7I).63 How Hachiman

interfaces with evolutionarily conserved DNA repair pathways to

limit premature activation is of future interest. Cells harboring

Hachiman wield broad-spectrum defense, but at the risk of

autoimmunity.

We identify HamA, previously DUF1837, as the effector

nuclease responsible for DNA clearance. Compared with struc-

tural homologs in type IIS RM systems, HamA contains inser-

tions that mediate interactions with HamB. Considering the

HamA interaction domain (NAH) is present in all HamBs, and

that this interaction domain is absent in close relatives in the

Ski2 subfamily (Figure S5M),64,65 we propose HamA insertions

were acquired during Hachiman evolution to enable nuclease

regulation and allosteric activation. Another distinguishing

feature of HamB is the loop on the crown of the RecA2 domain

that both facilitates scanning of intact dsDNA and forms con-

tacts with DNA during loading into the helicase active site. Com-

parison with predicted structures of HamB orthologs confirms

that either the RecA2 loop or a highly positively charged patch

exists at this position, suggesting that dsDNA sliding or binding

may be a common feature in Hachiman defense (Figure S7G).

Other immune helicases have been proposed to ‘‘scan’’ DNA

or RNA for pathogenic signatures.13,66 Future studies should

address the nature of HamAB DNA surveillance with single-

molecule techniques.

The AbpAB antiphage defense system was described before

the identification of Hachiman.67 AbpAB encodes a nuclease

(AbpA) and a Ski2-like helicase (AbpB) with combined activity

against DNA. The N-terminal domain of AbpA is similar to the
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Cap4 endonuclease domain from CBASS systems.68 The C-ter-

minal domain of AbpA is remarkably genetically and structurally

similar to HamA, but contains catalytically inactive residues

within the HamA active site (Figures 2, S2A, and S7H). AbpAB

was recently shown to activate in response to mitomycin

C-induced DNA damage, in agreement with our data.36 Based

on structural and functional homology, we propose AbpAB is a

Hachiman variant with an N-terminal fusion in the HamA homo-

log AbpA (Figures S2A and S2B). Why AbpAB would encode a

catalytically inactive form of the HamA nuclease while carrying

an additional, distinct endonuclease remains enigmatic.

Beyond antiphage immunity, Ski2-like helicases variably

accept RNA or DNA substrates.30 Our biochemical results

demonstrate that HamB is more functionally similar to the

Ski2-like DNA helicase Hel308 than Ski2 RNA helicases involved

in RNA regulatory processes such as splicing and mRNA decay.

Hel308 is conserved in archaea and metazoans, but is absent

in bacteria and fungi.69,70 Like HamB, Hel308 has a wide sub-

strate scope, with a preference for 30 to 50 DNA unwinding.21,65

Human Hel308 (HELQ) is involved in DNA repair and was shown

to localize to sites of DNA damage induced by mutagens

in vivo.71–73 We observed an analogous response to DNA dam-

age induced by drugs in cells harboring Hachiman. Genetic sim-

ilarities and functional symmetries between HamB and Hel308

suggest an evolutionary relationship.

This study provides structural and biochemical analyses of

Hachiman function that extend our understanding of prokaryotic

immunemechanisms. The Hachiman sensor helicase HamB has

surprising functional similarities to the archaeal and metazoan

DNA repair helicase Hel308, which may explain its general activ-

ity against DNA damage. Genome integrity sensing may be a

more general role of helicases in immune systems beyond

Hachiman.
Limitations of the study
In this study, we propose a mechanism for Hachiman immunity,

but several questions remain. We resolved only partial strand un-

winding in HamB-DNA structures, though complete melting was

observed for short duplexes in vitro (Figure 3F). The role of HamB

translocation, and whether it contributes to immunity beyond

sensing DNA damage and releasing HamA, is unclear. Relatedly,

whether HamB actively ‘‘passes’’ HamA to loaded DNA (cis

cleavage) or simply releases the nuclease for degradation (trans

cleavage) is an open question. The relative proportion of cis

to trans cleavage is probably salient to the level of defense

conferred by Hachiman. Structural views of HamA alone and

bound to target DNA could further elucidate the molecular

mechanism. Phage-encoded peptide inhibitors of Hachiman

were recently reported, though the mechanism of action is

mysterious.74 Structural data from this work will guide future

studies exploring how phages counteract Hachiman defense.
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Materials availability

Plasmids for wild-type Hachiman loci, protein purification, and select mutants

of Hachiman generated in this study have been deposited to Addgene (ID:

223362–223372). This study did not generate new unique reagents.

Data and code availability

Structure coordinates and corresponding density maps have been deposited

at the Protein Data Bank (PDB) and Electron Microscopy Database

(EMD), respectively, under the following accessions: E. coli ECOR31 apo

HamAB, PDB: 8VX9, EMD-43613; E. coli ECOR31 HamB-DNA (conformation

1), PDB: 8VXA, EMD-43615; E. coli ECOR31 HamB-DNA (conformation 2),

PDB: 8VXC, EMD-43616; and E. coli ECOR31 HamA(E138A,K140A)B-plasmid

DNA, PDB: 8VXY, EMD-43643. Additional raw data have been deposited at

Figshare and are publicly available (Figshare project: 217540). This paper

does not report original code. Any additional information required to reanalyze

the data reported in this paper is available from the lead contact upon request.
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E. (2023). Concerted structural rearrangements enable RNA channeling

into the cytoplasmic Ski238-Ski7-exosome assembly. Mol. Cell 83,

4093–4105.e7. https://doi.org/10.1016/j.molcel.2023.09.037.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Bacterial and virus strains

E.coli dh10b Intact Genomics Cat#1284-24

E.coli BL21-AI Fisher Scientific Cat#C607003

E.coli BW25113 Coli Genetic Stock Center CGSC#7636

E.coli dh5a F’ New England Biolabs Cat#C2992

E.coli DSM103255 Deutsche Sammlung von Mikroorganismen DSM103255

E.coli MC1000 Coli Genetic Stock Center CGSC#6647

E.coli ECOR47 V. Mutalik (Patel et al.23) 1432555081

E.coli ECOR04 V. Mutalik (Patel et al.23) 1205536237

E.coli ECOR28 V. Mutalik (Patel et al.23) 1432650029

E.coli ECOR31 V. Mutalik (Patel et al.23) 1205377838

E. coli MDS42 V. Mutalik (Umenhoffer et al.41 GCA_000350185.1

Phage EdH4 DSMZ MK327930

Phage G17 DSMZ MK327931

Phage Goslar J. Pogliano NC_048170

Phage M13 ATCC NC_003287

Phage MM02 DSMZ MK373784

Phage MS2 V. Mutalik NC_001417

Phage N4 V. Mutalik NC_008720

Phage PTXU04 DSMZ NC_048193

Phage SUSP1 S. Adhya NC_028808

Phage T4 V. Mutalik NC_000866

Phage T5 V. Mutalik NC_005859

Phage T7 V. Mutalik NC_001604

Chemicals, peptides, and recombinant proteins

SM Buffer Teknova Cat#S0249

Chloramphenicol Sigma Cat#Cu378

Kanamycin sulfate Sigma Cat#60615

Carbenicillin Goldbio Cat#C-103-100

Ampicillin Fisher Scientific Cat#BP1760-25

Anhydrotetracycline hydrochloride Sigma Cat#37919

Nalidixic acid Sigma Cat#N8878

Novobiocin Sigma Cat#N1628

Bleomycin Sigma Cat#B8416

Mitomycin C (MMC) Sigma Cat#M4387

4-Nitroquinoline N-Oxide Sigma Cat#N8141

Gentamycin Sigma Cat#345814-M

isopropyl b-D-thiogalactoside (IPTG) Goldbio Cat#I-902

L-(+)-arabinose Research Products International Cat#A51000

cOmplete EDTA

(ethylenediaminetetraacetic acid)-free

protease inhibitor

Roche Cat#11697498001

MBPTrap HP column GE Healthcare Cat#28918780

Superdex 200 10/300 GL column Cytiva Cat#28990944

(Continued on next page)
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REAGENT or RESOURCE SOURCE IDENTIFIER

Superose 6 increase 10/300 GL column Cytiva Cat#29091598

Isothermal Amplification Buffer New England Biolabs Cat#B0537S

E. coli single-stranded DNA binding

protein (SSB)

QIAGEN Cat#Y9030L

Phage T4 single-stranded DNA

binding protein (SSB)

New England Biolabs Cat#M0300S

Adenylyl-imidodiphosphate (AMPPNP) Roche Cat#10102547001

BamHI-HF New England Biolabs Cat# R3136T

Nt.BspQI New England Biolabs Cat#R0644S

Proteinase K New England Biolabs Cat#P8107S

FM4-64 Fisher Scientific Cat#T13320

4’,6-diamidino-2-phenylindole,

dihydrochloride (DAPI)

Fisher Scientific Cat#D1306

Critical commercial assays

DNeasy Blood & Tissue Kit Qiagen Cat#69504

Malachite Green Phosphate Assay Kit BioAssay Systems Cat#POMG-25H

Deposited data

E. coli ECOR31 apo HamAB This paper PDB 8VX9; EMD-43613

E. coli ECOR31 HamB-DNA

(conformation 1)

This paper PDB 8VXA; EMD-43615

E. coli ECOR31 HamB-DNA

(conformation 2)

This paper PDB 8VXC; EMD-43616

E. coli ECOR31 HamA

(E138A,K140A)B-plasmid DNA

This paper PDB 8VXY; EMD-43643

Oligonucleotides

Oligonucleotides for ATPase assays, see

Table S3.

N/A N/A

Oligonucleotides for unwinding and

nuclease activity assays, see Table S4.

N/A N/A

Recombinant DNA

Plasmids for phage defense assays and

protein purifications, see Table S2.

N/A N/A

Software and algorithms

DefenseFinder v1.2.2 Tesson et al.17 https://defensefinder.mdmlab.fr/

ColabFold v1.4.0 Mirdita et al.75 https://colab.research.google.com/github/

sokrypton/ColabFold/blob/main/

AlphaFold2.ipynb

MUSCLE v5 Edgar et al.76 N/A

Geneious Prime v2023.2.1 Kearse et al.77 https://www.geneious.com/

ClustalOmega v1.2.4 Sievers et al.78 http://www.clustal.org/omega/

IQ-TREE v2.3.4 Nguyen et al.79 http://www.iqtree.org/

UFBoot2 (in IQ-TREE) Hoang et al.80 N/A

MMseqs2 release 15-6f452 Steinegger and Söding81 https://github.com/soedinglab/MMseqs2

dna_features_viewer v3.1.3 Zulkower and Rosser82 https://github.com/Edinburgh-Genome-

Foundry/DnaFeaturesViewer

PADLOC v2.0.0 Payne et al.18 https://github.com/padlocbio/padloc

GraphPad Prism v10.0 GraphPad Software https://www.graphpad.com/

SerialEM v3.8.7 Matronarde83 https://bio3d.colorado.edu/SerialEM/

cryoSPARC v4.2.0, v4.3.0 Punjani et al.84 https://cryosparc.com/

(Continued on next page)
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REAGENT or RESOURCE SOURCE IDENTIFIER

DeepEMhancer Sanchez-Garcia et al.85 https://github.com/rsanchezgarc/

deepEMhancer

UCSF ChimeraX v1.6 Goddard et al.86 https://www.rbvi.ucsf.edu/chimerax/

Coot v0.9.8.93 Emsley et al.87 https://www2.mrc-lmb.cam.ac.uk/

personal/pemsley/coot/

ISOLDE v1.6 Croll88 https://tristanic.github.io/isolde/index.html

Phenix v1.19.2-4158 Afonine et al.89 https://phenix-online.org/download/

DeltaVision SoftWoRx v6.5.2 Cytiva https://download.cytivalifesciences.com/

cellanalysis/download_data/softWoRx/7.0.

0/SoftWoRx.htm

FIJI v2.3.0/1.53q Schindelin et al.90 https://imagej.net/downloads

Adobe Photoshop v12.2.0 Adobe https://www.adobe.com/

Adobe Illustrator v24.2 Adobe https://www.adobe.com/
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EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Bacterial strains and bacteriophages
For standard cultivation, E. coli strains listed in the key resources table were grown in LB media at 37 �C at 250rpm. Whenever appli-

cable, media was supplemented with carbenicillin (100 mg mL-1), chloramphenicol (20 mg mL-1) or kanamycin (50 mg mL-1) to ensure

plasmid maintenance. For bacterial assays, strains were maintained as 25% (v/v) glycerol stocks at -80�C.
Phage propagation was performed using commonly employed protocols. In general, phages were propagated at 37�C in LB Len-

nox media using an initial MOI of 0.1 and host E. coli BW25113 (F- DE(araD-araB)567 lacZ4787(del)::rrnB-3 LAM- rph-1 DE(rhaD-

rhaB)568 hsdR514). Phage G17 was propagated on E. coli DSM 103255. Phage Goslar was propagated on E. coliMC1000. Phages

MS2 andM13were propagated on E. coli dh5a F’ cells with added 1mMCaCl2. All phage titers were determined on their assay hosts

harboring a negative control plasmid (pBA635). Infections were carried out as detailed in each section. Bacteriophages used in this

study are listed in the key resources table.

METHOD DETAILS

Helicase and Hachiman phylogenetic analysis
Proteins chosen for phylogenetic analysis were from DefenseFinder RefSeq db with a RefSeq Protein ID.16,17 Proteins from non-Re-

striction-Modification (RM) defense systems encoding a SF1/SF2 helicase domain were further selected for phylogenetic compar-

ison: AbiR (AbiRc), Azaca (ZacC), BREX (BrxHI, BrxHII), DISARM (DrmA, DrmD), Dpd (DpdE, DpdF, DpdJ), Druantia (DruE),

Gabija (GajB), Gao_RL (RL), Hachiman (HamB), Hhe (HheA), Hna (Hna), Mokosh (MkoA, MkoC), Nhi (Nhi), PsyrTA (PsyrT), Rst Hel-

icase+DUF2290 (Helicase), Shango (SngC), Type I CRISPR-Cas (Cas3), Type IV CRISPR-Cas (Csf4/DinG), and Zorya (ZorD). Heli-

case proteins without RefSeq protein IDs or not tracked in DefenseFinder (ex. Hma) and from RM defense systems (ex. Type I

(Type_II_REases) and Type III RM (Type_III_REases)) were not included in the analysis.

For analysis of SF1 and SF2 helicases, 4 randomly chosen examples of the above defense-associated SF1/SF2 helicases were

selected and compared to a curated set of SF1/SF2 helicase core domains.12 To focus our analysis on the helicase core domain,

we manually curated the helicase core domain of defense-associated helicases through structural alignment followed by sequence

alignment. First, a predicted AlphaFold2 structure of each defense-associated helicase was aligned to the core helicase domain of

HamB (PDB ID: 8VXA, this work, residues 286-472, 500-731)17,75,91 within the core helicase domain were inferred. Next, for each

helicase type, representative helicases were aligned to the corresponding annotated reference using MUSCLE (default parameters),

core helicase annotation extracted and insertions removed in Geneious Prime v2023.2.177,78To build the helicase tree, sequences

were concatenated with a curated set of SF1/SF2 core helicase domains,12 aligned using ClustalOmega (default parameters), phy-

logenized using IQ-TREE (-bb 1000, -m MFP (optimal model: LG+R8)), bootstraps inferred using UFBoot2 and visualized using

iTOL.78–80,92 Clades were inferred by using bootstrap values R 85 followed by analysis of associated sequences.

For analysis of full-length HamA and HamB, proteins were combined and clustered using mmseqs2 (80% coverage, 80%

sequence identity).81 HamA nucleases and HamB helicases investigated in this study from ECOR04, ECOR28, and ECOR31 and

from prior work14,36 were spiked into this collection of non-redundant protein sequences for in-group analysis. Sequences were

aligned with ClustalOmega (default parameters), phylogenized using IQ-TREE (-bb 1000, -m MFP (optimal model: LG+F+R8

(HamA), LG+F+R10 (HamB))) and visualized using iTOL.78,79,92 Clades were inferred by using bootstrap values R 85 in the HamB

followed by analysis of spiked-in in-groups.
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Identification and visualization of Hachiman-containing loci
Hachiman loci and nearby defense systems were identified in ECOR04 (NZ_QOWP01000021), ECOR28 (NZ_QOXN01000003) and

ECOR31 (NZ_QOXQ01000009) using PADLOC.18 Gene annotations were visualized and represented using dna_features_viewer.82

Plasmid and strain construction
All newplasmids in this studywere constructed through PCR, gel extraction (ZymoD4001) and throughGibson assembly93 or Golden

Gate assembly.94 DNAPCR templates for wildtype andmutantHachiman loci originated from isolated gDNA (QiagenDNeasyBlood&

Tissue Kit, 69504) fromECOR04, ECOR28 and ECOR31. Formost E. coli assays, Hachiman loci were cloned under pTet control into a

p15a vector with chloramphenicol (Cm, Sigma) resistance. For E. coli assays involving low-copy vectors, Hachiman loci were cloned

under pJEX control into a SC101 vector with Kanamycin (Kan, Sigma) resistance. For protein expression and purification, Hachiman

loci were cloned under T7 control in a high copy vector with carbenicillin resistance. In general, plasmids were propagated in dh10b

genotype E. coli (F – mcrA D(mrr-hsdRMS-mcrBC) endA1 recA1 f80dlacZDM15 DlacX74 araD139 D(ara, leu)7697 galU galK rpsL

(StrR) nupG l-) (Intact Genomics). For subsequent phage assays, some plasmids were transferred to E. coli MC1000, E. coli

ECOR47 or E. coli dh5a F’ where indicated. For protein expression and purification, plasmids were transformed into BL21 AI geno-

type E. coli (F- ompT hsdSB (rB-mB-) gal dcm araB::T7RNAPtetA). Plasmids used in this study are listed in Table S2. All plasmids

used in this study were sequenced-confirmed by full-plasmid sequencing services using Primordium.

Plaque assays
Phage plaque assays were performed using a double agar overlay protocol. Briefly, cultures were grown overnight at 37 �C and

250 rpm. To form overlays, 100 mL of saturated culture was mixed with molten LB Lennox agar (0.7% w/v agar, 60�C). For assays
involving G17 or Goslar a less-dense agar concentration was used (0.35% w/v). The agar-bacterial mixture was supplemented

with Cm to a final overlay concentration of 34 mg/mL and anhydrotetracycline (aTc) (Sigma) concentration of 20 nM. For phages

M13 and MS2 an CaCl2 was added to a final concentration of 1 mM. The top agar and bacterial mixture was poured onto a 5 mL

LB Agar and Cm plate and left to dry under microbiological flame for 15 minutes. For plaque assays involving low copy Hachiman

loci (strains containing pBA1558 or pBA1747), the agar-bacterial mixture was supplemented with Kan to a final overlay concentration

of 50 mg/mL and no inducers were added. Phages were diluted 10X in SM buffer (Teknova) and 2 mL of each dilution were spotted

onto the top agar and left to dry under microbiological flame. Once dry, plates were incubated at 30�C for 12-16 hours. Plates were

scanned in a standard photo scanner and plaque forming units (p.f.u) were enumerated, keeping note of changes in plaque size rela-

tive to a negative control. During assays where ‘‘lysis from without’’95 phenotypes were observed, we interpreted these as a lack of

productive phage infection and were approximated as 1. p.f.u. at that concentration. Efficiency of plaquing (EOP) calculations were

calculated as mean(p.f.u.condition)/ mean(p.f.u.negativecontrol) in Python. The negative control is defined as catalytically deacti-

vated RfxCas13d under pTet control using an RFP-targeting guide.96 All plaque assays were performed in biological triplicate. Visu-

alizations were performed using GraphPad Prism or Seaborn in Python.

Bacteriophage liquid growth assays and phage production estimation
Liquid phage experiments were performed in a Biotek plate reader using LB +Cm+20 nMaTcmedia. Strains containing aHachiman-

expressing plasmid (pBA1370) or negative control (pBA1467) were grown overnight at 37 �C and 250 rpm. Strains were seeded into a

96-well microplate reader plate (Corning 3903) at a cfu of �8e6 cfu per well in 200 mL media. For phage experiments, EdH4 was

diluted to maximal concentration of 2e10 PFU/mL in assay media,subsequently diluted and 4mL of phage was added to achieve

defined MOIs during infection. Growth was monitored in a Biotek Cytation 5 plate reader for 10 hours at 800 rpm shaking at 37�C
with OD600 readings every 5 minutes. To estimate free phage particle production at the end of liquid phage assays, wells from in-

fections at defined MOIs were pelleted and the supernatant collected. Phage titers were enumerated via plaque assay on E. coli

harboring pBA635 and free phages were determined by dividing by the effective titer at time 0. All liquid phage assays were per-

formed in biological triplicate, sourcing strains from independent overnights. Data were plotted using the matplotlib and seaborn

package in Python.

To estimate free phage particle production from a single round of infection, 5 mL cultures were inoculated with �2e8 cfu of E. coli

harboring either a Hachiman-expressing plasmid (pBA1370) or negative control (pBA1467) in LB + Cm +20nM aTc media. Cultures

were incubated at 37�C, 250 rpm for 15 min. Following incubation, �5e6 pfu of phage EdH4 was added to each culture to achieve a

low MOI of �0.025. Infections were allowed to proceed at 37�C, 250 rpm. At 0, 30, 60 and 90 minutes post infection, 200mL of infec-

tion was sampled, pelleted, supernatant extracted and stored on ice until all samples were collected. Phage titers were enumerated

via plaque assay on E. coli harboring pBA635 and free phages were determined by dividing by the effective titer at time 0. Low MOI

liquid infection was performed in biological triplicate, sourcing strains from independent overnights. Data were plotted using the

matplotlib and seaborn package in Python.

Bacterial liquid growth assays
For Hachiman toxicity-profiling experiments, ig10b strains containing a Hachiman- (pBA1370) or a Hachiman mutant- (pBA1464,

pBA1465, pBA1467, pBA1469) expressing plasmid were grown overnight at 37�C. Strains were seeded into a 96-well microplate
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reader plate (Corning 3903) at a cfu of�8e6 cfu per well in 200mL LB +Cmmedia. A concentrated stock of aTcwas diluted 10X in LB+

Cm media and 4 mL added to each well to achieve concentrations of 0, 2, 20 and 200 nM aTc.

For antibiotic sensitivity experiments, an E. coli strain lacking transposable elements including prophages (MDS42, key resources

table) was employed. Strains containing a Hachiman- (pBA1370) or a Hachiman mutant- (pBA1467, pBA1468 or pBA1469) express-

ing plasmid or a vector control (pBA1801) were grown overnight at 37�C. Strains were seeded into a 96-well microplate reader plate

(Corning 3903) at a cfu of �8e6 cfu per well in 200mL LB + Cm + 20 nM aTc media. Antibiotics (nalidixic acid (Sigma), novobiocin

(Sigma), gentamycin (Sigma), mitomycin C (Sigma) and bleomycin (Sigma)) experiments, antibiotics were diluted 2X in LB + Cmme-

dia and 4 mL added to each well to achieve final, maximal concentrations of 30 mg/mL, 1000 mg/mL, 40 mg/mL, 2 mg/mL or 40 mg/mL,

respectively. Growth wasmonitored in a Biotek Cytation 5 plate reader for 16 hours at 800 rpm shaking at 37�Cwith OD600 readings

every 5 minutes. Minimum inhibitory concentrations of antibiotic were determined by investigating the lowest concentration of anti-

biotic that consistently grew to a lower carrying capacity in the vector control than the untreated condition.

All assays were performed in biological triplicate, sourcing strains from independent overnights. Data were plotted using the sea-

born package in Python.

DNA Substrate Preparation
Oligonucleotides were synthesized by Integrated DNA Technologies (Coralville, IA). Substrates used in unwinding assays were pre-

pared by mixing the fluorescent or larger strand with a 1.5-fold excess of the non-fluorescent strand in hybridization buffer (20 mM

Tris-HCl (pH 7.5), 25 mM KCl, 10 mMMgCl2), and heating to 95 �C followed by slow cooling to room temperature for at least an hour.

Annealed substrates were purified on an 8% native PAGE gel.

Protein expression and purification
All Hachiman purification constructs were N-terminally tagged with 10xHis-MBP-TEV. For complex purification vectors in the native

locus format, only HamA was tagged with 10xHis-MBP-TEV. After transformation into BL21-AI E. coli, cells were grown to an optical

density of �0.6 then induced overnight at 16�C with 0.5 mM isopropyl-b-D-thiogalactopyranoside (IPTG) and 0.1% L-arabinose.

Cells were harvested and resuspended in lysis buffer (20 mM HEPES, pH 8, 500 mM NaCl, 10 mM imidazole, 0.1% Triton X-100,

1 mM Tris (2-carboxyethyl)phosphine (TCEP), Complete EDTA (ethylenediaminetetraacetic acid)-free protease inhibitor (Roche),

0.5 mM phenylmethylsulfonyl fluoride (PMSF) and 10% glycerol). Cells were lysed by sonication, then clarified by centrifugation.

The clarified lysate was incubated with Ni-NTA resin for 1 hr. The resin was washed with wash buffer (20 mM HEPES, pH 8, KCl mM

NaCl, 10 mM imidazole, 1 mM TCEP, and 5% glycerol), then bound protein was eluted with wash buffer supplemented with 300 mM

imidazole. Eluate was then run over anMBPTrap column (GE Healthcare), washed with MBP/SEC wash buffer (20 mMHEPES, pH 8,

150 mM KCl, 1 mM TCEP, and 5% glycerol), and eluted with MBP/SEC buffer supplemented with 10 mM maltose. Eluted protein

from the MBPTrap column was treated with TEV protease overnight. Protease-treated samples were concentrated and run on either

a Superdex 200 10/300 GL column (Cytiva) for HamA or HamB solo constructs, or a Superose 6 increase 10/300 (Cytiva) for HamAB

complex preparations. Aliquots were snap-frozen in liquid nitrogen for later use.

Cryo-EM sample preparation and data acquisition
The apo HamAB complex sample was rerun over a Superose 6 increase 10/300 (Cytiva) column in Cryo-EM buffer (20 mM HEPES,

pH 8,100 mMKCl, 1 mM TCEP, and 0.5% glycerol). The HamB-DNA complex sample was prepared by combining 15 mMHamBwith

20 mMDNA in Cryo-EM buffer supplemented with 1 mMATP and 2mMMgCl2 and reacting for 30 min at room temperature. Samples

were then purified over a Superdex 200 10/300 GL column (Cytiva) in Cryo-EM buffer. The HamA*B-plasmid DNA sample was pre-

pared by combining HamA*B with 1 mg plasmid in cryo-EM buffer supplemented with 1 mM ATP and 2 mMMgCl2. The reaction was

incubated at 37�C for 5 min, after which the sample was frozen. Samples were frozen in liquid ethane using a FEI Vitrobot Mark IV

cooled to 8 �C at 100% humidity on 2/2 200mesh UltrAuFoil gold grids (ElectronMicroscopy Sciences) glow discharged at 15mA for

25 s (PELCO easyGLOW). In all cases, 4 ul of specimen was applied to the grid and immediately blotted for 5 s with a blot force of

8 units.

For apoHamAB andHamA*B-plasmid datasets, micrographs were collected on a Titan Krios G3 equippedwith aGATANK3Direct

Electron Detector in CDS mode and a BIO Quantum energy filter operated at 300 kV and 81,000x nominal magnification in super-

resolution mode (0.465 Å/pix). For the HamB-DNA dataset, micrographs were collected on a Talos Arctica equipped with GATAN

K3 Direct Electron Detector operated at 200 kV and x36,000 magnification in super-resolution. All cryo-EM data was collected using

SerialEM v3.8.7 software.83 Images were obtained in a series of exposures generated by the microscope stage and beam shifts. For

theHamAB apo andHamA*B-plasmid datasets, movies were acquired in an 11x11 pattern. For theHamB-DNA dataset, movieswere

acquired in a 7x7 pattern.

Cryo-EM data processing
All Cryo-EM data processing was performed in cryoSPARC (v4.2.0 or v4.3.0).84 For the HamAB apo specimen, 4,796 movies were

collected and 23 binned to a calibrated pixel size of 1.05 Å. 3,314 exposures were accepted after patch motion correction and patch

contrast transfer functions (CTF). First, 5,538,550 particles from blob picking were subjected to 2D classification and ab initio recon-

struction of 3 classes, yielding a density consistent with a complete heterodimeric AB complex. The initial ab initio volume was used
Cell 187, 6914–6928.e1–e7, November 27, 2024 e5
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to create 100 evenly spaced projection-based templates for further template picking. The 3,505,636 particles from template picking

were subjected to 4 class ab initio reconstruction, which gave a HamAB density of 865,990 particles. Further 2D classification and 2D

rebalancing (with 9 superclasses) were used to mitigate orientation bias and remove rod-shaped particles missing multiple HamB

domains, leading to a final set of 309,630 particles. Single-class ab initio reconstruction followed by non-uniform refinement with

on-the-fly defocus and CTF refinement steps gave the final 2.65 Å map,85 which was sharpened using DeepEMhancer.97

For the HamB-DNA specimen, 9,133 movies were collected and 23 binned to a calibrated pixel size of 1.12 Å. A total of 8,906

exposures were accepted after patch motion correction and patch CTF. Template picker using templates generated from the

HamB AF2 prediction gave the best results and were used to isolate 18,254,957 particles at a box size of 256 pix. Reasonable

2D classes were used to train deep picker, which was used to infer 1,125,114 particles at a larger box (512 pix). Ab initio recon-

struction followed by non-uniform refinement gave a consensus 2.76 Å density with considerable heterogeneity. Then, 3D Vari-

ability Analysis (3DVA) with 3 modes using the ‘simple’ output was used to visualize continuous motion.98 3D classification with

5 classes was used to resolve densities representing the maxima of motion resolved in 3DVA. Class 1 of the 3D classification

gave HamB-DNA confirmation 1, which was refined (non-uniform refinement with on-the-fly defocus and CTF optimization) to

2.79 Å and sharpened with DeepEMhancer. Class 0 was refined and sharpened in the same manner, giving HamB-DNA confor-

mation 2 at 2.93 Å.

For the dataset containing HamA*B incubated with plasmid DNA, 3724 movies were corrected for beam-induced motion us-

ing patch motion correction, then 23 binned to a calibrated pixel size of 1.05 Å. Contrast transfer function parameters were

calculated using patch CTF. Initially, 16,398,369 particles were picked using blob picker from all 3724 micrographs. Multiple

rounds of reference-free 2D classification were subsequently performed to remove ‘‘bad’’ particles (i.e., particles in 2D classes

with fuzzy or uninterpretable features) yielding 87,084 particles with clear protein characteristics. The particles were then sub-

mitted for Topaz training, and the resulting Topaz model was used to pick particles from all 3724 micrographs,99 giving a total of

1,322,669 particles. Multiple rounds of reference-free 2D classification were subsequently performed to remove junk particles.

After selecting the best classes, 317,540 particles were used for ab initio reconstruction of 3 classes. Of the 3 classes, 2 classes

were selected for subsequent heterogeneous refinement. Heterogeneous refinement yielded a good class with 205,538 parti-

cles, and non-uniform refinement was performed with the particles from this class, yielding a reconstruction at 2.86 Å resolution.

Afterward, multiple rounds of reference-free 2D classification were performed again to select for good particles which pre-

sented resolvable features from 2D classification, resulting in 103,451 particles selected. Then, ab initio reconstruction was per-

formed on the selected particles, and subsequently non-uniform refinement, which resulted in a 2.96 Å reconstruction. Then, a

focused 3D classification with 4 classes was performed on the predicted DNA binding region of HamA*B, based on views seen

in 2D classification, to classify for DNA-bound HamA*B. To generate the focus mask, an atomic model of B-form DNA was built

at the predicted DNA binding region, and then a mask of the predicted DNA binding region was artificially simulated using Chi-

meraX’s molmap function with subsequent binarization and softening. The solvent mask was generated to contain both the pro-

tein and predicted DNA densities. The best class containing 29,904 particles yielded a classification that was enriched for DNA-

bound HamA*B. Then non-uniform refinement was performed on those particles, which resulted in a 3.2 Å reconstruction, which

was then sharpened with deepEMhancer. For visualization, a composite map of protein regions from the 3.2 Å deepEMhancer-

sharpened map and DNA regions from the 3.2 Å sharp map with B-factor adjustment was made by the color zone segmentation

function in ChimeraX.

Model building
The initial model of HamAB was obtained with the ColabFold.75 To build the model, we fit the Colabfold prediction into the experi-

mental HamAB apo density with the fitmap tool in UCSF ChimeraX v1.6.1.86 There were significant differences in nearly every region

of the structure which required iterative manual refinement with a combination of Coot v0.9.4.1,87 ISOLDE v1.6.0,88 and Phenix

1.20.1-4487.89 The HamAB apo structure served as the initial model for all other models. The HamB-DNA and HamA*B-plasmid

DNA models were built in the manner described above. DNA was built de novo. In the HamA*B-plasmid DNA dataset, the DNA

sequence could not be determined, so DNAwasmodeled as a 31-mer of A-T tomaintain base pair interactions duringmodel building.

All models were subjected to a final round of Phenix real-space refinement.

NTPase assays
Orthophosphate liberation was determined with a Malachite Green Phosphate Assay kit (BioAssay Systems, Hayward, CA, USA)

according to the manufacturer protocol. Briefly, HamB reactions were run in Isothermal Amplification Buffer (henceforth IAB, New

England Biolabs, 20mMTris-HCl, 10mM (NH4)2SO4, 50mMKCl, 2 mMMgSO4, and 0.1% Tween� 20 (pH 8.8 at 25 �C). HamBwas

diluted to 40 nM, and nucleic acid substrates listed in Table S3 were diluted to 100 nM, or 4 ng/ml for plasmid reactions, in a total

reaction volume of 80 ul in a clear bottom, flat, black 96-well assay plates (Corning Costar). Reactions were allowed to sit for at

least 15 min at ambient temperature before initiation with addition of ATP to 1 mM and incubation at 37�C. Reactions were

quenched after 30min with the addition of activatedmalachite green reagent. The absorbance values of wells weremeasured after

20 min of color development at ambient temperature with a Biotek plate reader at 620 nm. Orthophosphate liberation was inter-

polated against a standard curve with known concentrations of free phosphate. Oligonucleotide substrates are modified from

Domgaard et al.33
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HamAB activity assays
Plasmid interference assays were conducted in IAB. Plasmids were diluted to 4 ng/ml, while other dsDNA and ssDNA substrates were

diluted as indicated. Nicked and cut plasmid were generated by treatment with Nt.BspQI (New England Biolabs) and BamHI-HF (New

England Biolabs), respectively. After DNA addition, ATP was added to a final concentration of 1 mM where indicated. In cases where

E. coli (QIAGEN) or phage T4 SSB (gp32, NewEngland Biolabs) were diluted directly from concentrated stock to a final concentration of

400 nM, then the SSB-DNAmixture was allowed to rest for 15 min on ice. Reactions were started with addition of MBP-HamA, HamB,

HamAB, or HamA*B to a final concentration of 500 nM, unless otherwise noted, andwere incubated at 37�C. Reactions were quenched

with addition of EDTA to 10 mM at various time points and were imaged on 0.75% TBE agarose gels in the case of plasmids, or 2%

agarose gels for ssDNA and short dsDNA experiments. Gels were stained with SYBR-safe and imaged on a ChemiDoc MP (BioRad).

Complex disassembly size exclusion chromatography experiments were run with elevated concentrations of HamAB (10 mM), ATP

or AMPPNP (2 mM) and ssDNA (20 mM) in IAB for a total reaction volume of 100 ml. Buffer was supplemented with KCl for a final con-

centration of 500 mM. Reactions were incubated at 37 �C for 60 min and were then loaded on a Superose 6 increase 10/300 (Cytiva)

run with modified SEC buffer (20 mM HEPES, pH 8, 500 mM KCl, 1 mM TCEP, and 5% glycerol).

Gel-shift helicase unwinding assays and quantification
Unwinding reactions were carried out at 30 �C in IAB buffer. 100nM of HamB was incubated with 20 nM DNA substrate for 5 min (sub-

strates listed inTable S4), and the reactionswithproteinwere initiated byaddition of ATPorAMPPNP toa final concentration of 1mM.At

either1min, 5min, or 20min, reactionswerequenchedon icewithSTOPBuffer (0.4UproteinaseK (NewEnglandBiolabs), 18mMEDTA,

0.36%SDS, and 9%glycerol. Boiled substrateswere incubated at 95 �C for 5minutes before immediate loading. Sampleswere electro-

phoresed until separation in an 8%TBE polyacrylamide gel at 4 �C. Fluorescent bands were imaged using a Typhoon FLA scanner and

quantifiedusingFiji.87The fractionofunwoundsubstratebyHamBwasestimatedbydividing the intensityof theunwoundstrandover the

sumof the intensities of the unreacted duplex and unwound strand,minus the fraction of unwound substrate fromspontaneous unwind-

ingwithoutHamBat20minutes, thennormalized to the fractionofunreactedduplexwithoutHamBat20minutes.Thenormalized fraction

unwound by HamB at time t is given below, where d is the fraction of IssDNA,20 unwound spontaneously without HamB:

t =

IssDNA;t
IssDNA;t+IssDNA;t

� d

1 � d

Live single-cell time-lapse and static time-course fluorescence microscopy
Microscopy experiments were performed in biological triplicate. Host cells were grown to OD600 0.3 in LB (+chloramphenicol 30 mg/

mL) at 30 �C. 12 mL were spotted and spread on the surface of 1% agarose, 25% LB imaging pads containing 30 mg/mL chloram-

phenicol and 0.05 nM aTc on single-well concavity glass slides, then incubated for 2-2.5 hours at 30�C without coverslips in a

humidor. At this stage, 5 mL of �2 x 1010 PFU/mL EdH4 lysate was spotted and spread onto the imaging pads and the pads were

incubated at 30�C without coverslips in a humidor until the desired infection time point. MOI �2 is estimated based on these initial

inocula and infection dose after 2 hrs of incubation before infection and a 30 minute bacterial generation time.

All live cell microscopy was performed on a DeltaVision Elite Deconvolution microscope (Applied Precision, Issaquah, WA, USA).

For time-course fluorescencemicroscopy, imaging pads were stained with 8 mL of dyemix (25 mg/mL DAPI, 3.75 mg/mL FM4-64) and

a glass coverslip was placed on top of the pad immediately before imaging at room temperature. For each image, 8 slices in the

Z-axis at 0.2 mm increments were collected in each imaging channel (DAPI, FM4-64, brightfield). Exposure times: DAPI = 15 ms,

FM4-64 = 150 or 300 ms, brightfield = 80 ms. For time-lapse microscopy, unstained cells were imaged at 5 minute intervals from

5 to 125mpi at 30�Cwithin the environmental control unit enclosing the microscope stage. 8 slices in the Z-axis at 0.2 mm increments

were collected only in the brightfield channel (exposure = 8 ms). Dunnett’s test was performed after repeated-measures one-way

ANOVA comparing strains expressing Hachiman (active or inactive) to the control strain at each time point.

Images were deconvolved in DeltaVision SoftWoRx (version 6.5.2). Image analysis was performed using raw images in FIJI (version

2.3.0/1.53q) and GraphPad Prism (version 10.0.0). Figure panels were created in Adobe Photoshop (21.2.0), GraphPad Prism

(version 10.0.0), and Adobe Illustrator (24.2). The following are ‘n’ values are the total DAPI-stained DNA cross-sectional area mea-

surements for each condition during time-course fluorescence microscopy (with between 46 and 206 measurements per condition

per replicate depending on cell density in individual microscopy fields). - control: Uninfected = 525, 10 mpi = 258, 30 mpi = 254, 50

mpi = 249; HamAB: Uninfected = 261, 10 mpi = 229, 30 mpi = 274, 50 mpi = 240; HamAB*: Uninfected = 264, 10 mpi = 272, 30 mpi =

252, 50mpi = 285; HamA*B: Uninfected = 230, 10mpi = 255, 30mpi = 356, 50mpi = 277. For time-lapsemicroscopy, the total number

of cells lysed across all three replicates = 121, with 37-44 cells per replicate.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical details for each experiment are found in the figure legend and the accompanying method details. Unless otherwise stated,

bar graphs represent the mean of independent biological replicates.
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Figure S1. Helicases and Hachiman phylogenetic analysis, related to Figure 1

(A) Annotated phylogenetic tree of phage-defense-system-associated helicase core domains and reference helicases shown in Figure 1B. Bootstrapping values

determined by UFBoot280 are shown.

(B) Zoomed-in view focusing on represented Ski2 helicases.
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Figure S2. Function and phylogeny of tested HamAB proteins, related to Figure 1

(A andB) Phylogenetic tree of (A) HamA and (B) HamB fromDefenseFinder17 with HamA andHamB sequences from thismanuscript and AbpAB36 are labeled.We

assign three potential clades of HamB and their corresponding HamA clades as I–III.

(C) Representative plaque assays for ECOR31 HamAB and phages tested in this study.

(D) Growth curves of E. coli expressing ECOR31 Hachiman (left) or HamB mutant (right) during EdH4 infection at specified MOI. Data are shown as mean ±

standard deviation across three independent biological replicates.

(E) Phage production assay for EdH4 infection of E. coli expressing wild-type Hachiman (red) or HamBmutant Hachiman (green). EdH4 titers were estimated over

time by sampling endpoint supernatants of infections from (D). Free plaque-forming unit (PFU) was calculated by dividing the infection titer by the phage titer at

0 min post infection (mpi). Data are shown as mean ± std across three independent biological replicates with individual data points shown.

(legend continued on next page)
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(F) Phage replication assay for EdH4 infection of E. coli expressing wild-type Hachiman (red) or HamB mutant Hachiman (gray). EdH4 titers were estimated over

time by sampling from the supernatant of MOI 0.02 infections. Free PFU was calculated by dividing the infection titer by the phage titer at 0 min post infection

(mpi). Data are shown as mean ± std across three independent biological replicates with individual data points shown.

(G) Efficiency of plaquing for EdH4 infection of ECOR31 Hachiman expressed from a low-copy (sc101) plasmid under its native promoter. Data are shown as

mean ± std across three independent biological replicates with individual data points shown.
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Figure S3. Cryo-EM structure of the HamAB apo complex, related to Figure 2

(A) Size exclusion chromatography traces of MBP-HamA pre-TEV treatment, post-TEV treatment, and HamB alone.

(B) Left, size exclusion chromatography trace of MBP-HamAB and corresponding peaks run on a Coomassie PAGE gel. Right, size exclusion chromatography

trace of HamAB after TEV protease treatment, with elution fractions run on Coomassie PAGE gel shown above.

(legend continued on next page)
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(C) Particle picking, classification, and refinement strategy to generate the final apo HamAB density.

(D) Orientation distribution of the final particle set.

(E) Gold-standard FSC curve.

(F) Sharpened map colored by local resolution.

(G) Example model-to-map fit.

(H and I) Sequence logos of helicase motifs in the RecA1 (H) and RecA2 (I) domains calculated from the HamB MSA. The residue number and identity of the

corresponding sequence in ECOR31 HamB is shown below start and end motif positions.

(J) Secondary structure diagram depicting the HamAB interaction interface.

(K) Comparison of secondary structures of HamA and the P. aquatile type IIS restriction endonuclease.
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(legend on next page)
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Figure S4. Analysis of HamAB biochemical activities in vitro, related to Figure 3

(A–D) HamBDNA unwinding assays on substrates with a 50-bp duplex and a 15-nt 30 OH (A), 15-bp duplex, and 15-nt 30 OH (B), 15-nt duplex with a 5-nt 30 OH (D),

and 15-nt duplex with a 35-nt 30 OH (E). DNA substrates are labeled with 50 FAM. Gels are representative of three independent biological replicates.

(E and F) Normalized percent unwinding of DNA substrates with varying OH lengths (E) and different OHs (F). All substrates are labeled with 50 FAM. Shown are the

mean and standard error of quantifications of three replications of unwinding assays in the format of (A)–(D) normalized against basal unwinding (see STAR

Methods).

(G) Left, titration of HamAB WT and HamA*B complexes with plasmid DNA. Right, controls of 40 ng plasmid and 500 nM HamAB and HamA*B, demonstrating

small amounts of contaminating DNA in protein preparations.

(H) Time courses of HamAB degradation of supercoiled, nicked, and cut plasmid.

(I) HamAB degradation of a 75-bp dsDNA PCR product, with or without EcSSB.

(J) HamAB degradation of a 50 FAM-labeled 75-nt ssDNA, with or without EcSSB.

(K) Comparison of Hachiman protein and complex plasmid activities, with or without phage T4gp32 (T4SSB).

(L) Time course comparison of Hachiman-mediated plasmid clearance with or without EcSSB or T4SSB.

(M) Time course of plasmid degradation by HamA*B, with or without ATP and l EcSSB. Conditions in absence of E. coli SSB are also shown in Figure 3H.
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Figure S5. Cryo-EM structure of two HamB-DNA complex conformations, related to Figure 4

(A) Particle picking, classification, and refinement strategy to generate the final HamB-DNA densities for conformations 1 and 2.

(B) Orientation distribution of the final conformation 2 particle set.

(C) Gold-standard FSC curve for conformation 2.

(D) Conformation 2 Sharpened map colored by local resolution.

(E) Orientation distribution of the final conformation 1 particle set.

(F) Gold-standard FSC curve for conformation 1.

(G) Conformation 1 sharpened map colored by local resolution.

(H) Example model-to-map fit for conformation 2.

(I) Example model-to-map fit for conformation 1.

(J) Molecular detail of the PriA-like strand unwinding pin in HamB-DNA conformation 1.

(legend continued on next page)
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(K) Efficiency of plaquing for a Hachiman mutant (T407A) deficient in the ability to form a hydrogen bond with the 30 hydroxyl of ssDNA. Data are shown asmean ±

std across three independent biological replicates with individual data points shown.

(L) Detail of the HamB RecA2-NAH interface and comparison of conformational changes.

(M) SEC traces showing ATP-dependent disassembly of HamAB upon addition of ssDNA. Corresponding Coomassie PAGE gel is shown to the right. 10 mM of

HamAB are added in both experiments. ssDNA co-elutes with HamB and MBP. Experiments are run in 500 mM KCl.

(N) Comparison of HamB-DNAwith other related helicases bound to their substrates. Middle,A. flugidusHel308 (PDB: 2P6R). Right, Ski2:RNA from a structure of

the Ski2-exosome complex (PDB: 8QCF). The exosome complex was hidden for clarity.
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(legend on next page)
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Figure S6. Drug-induced DNA damage activates Hachiman, related to Figure 6

(A and B) Efficiency of plaquing for E. coli MDS42 expressing wild-type HamAB or a negative control (dCas13d) against phages T4 (A) and EdH4 (B). Data are

shown as mean ± std across three independent biological replicates, with individual data points shown.

(C–G) Cell growth of E. coliMDS42 expressing a vector control (left), wild-type HamAB (second from left), nuclease-deficient HamA*B (middle), helicase-deficient

HamAB* (second from right), and HamAD119AB (HamA**B) (right) at 20 nM aTc in the presence of variable concentrations of nalidixic acid (C), novobiocin (D),

bleomycin (E), mitomycin C (F), and gentamycin (G). Growth curves are colored according to condition. The minimum inhibitory concentration without the

confounding effects of gene expression determined by a vector control used in Figure 6 is denoted with a star. All growth curves performed in biological triplicate.

The mean and standard deviation of each condition are plotted.
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(legend on next page)
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Figure S7. Cryo-EM structure of a HamAE138A,K140AB-plasmid DNA complex, related to Figure 7

(A) Particle picking, classification, and refinement strategy to generate the final HamAE138A,K140AB-plasmid DNA density.

(B and C) Final densities at low (B) and high (C) thresholds colored by local resolution. An inner surface slice is shown to the right.

(D) Orientation distribution of the final particle set.

(E) Gold-standard FSC curve.

(F) Toxicity from different levels of Hachiman induction (aTc). All growth curves performed in biological triplicate. The mean and standard deviation of each

condition are plotted.

(G) Comparison of ECOR31 HamB from this study with ECOR04 HamB, ECOR28 HamB, and Bacillus cereus HamB colabfold predictions.

(H) Electrostatic surface potential representations of the structures from (F), in the same orientation and scale. The DNA entry channel and RecA2 DNA loop/

positively charged patch are indicated.

(I) HamA and Cap4 structural superimpositions with AbpA.
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