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Abstract

The discovery of a kilonova (KN) associated with the Advanced LIGO (aLIGO)/Virgo event GW170817 opens up
new avenues of multi-messenger astrophysics. Here, using realistic simulations, we provide estimates of the
number of KNe that could be found in data from past, present, and future surveys without a gravitational-wave
trigger. For the simulation, we construct a spectral time-series model based on the DES-GW multi-band light curve
from the single known KN event, and we use an average of BNS rates from past studies of - -10 Gpc yr3 3 1,
consistent with the one event found so far. Examining past and current data sets from transient surveys, the number
of KNe we expect to find for ASAS-SN, SDSS, PS1, SNLS, DES, and SMT is between 0 and 0.3. We predict the
number of detections per future survey to be 8.3 from ATLAS, 10.6 from ZTF, 5.5/69 from LSST (the Deep
Drilling/Wide Fast Deep), and 16.0 from WFIRST. The maximum redshift of KNe discovered for each survey is
=z 0.8 for WFIRST, =z 0.25 for LSST, and =z 0.04 for ZTF and ATLAS. This maximum redshift for WFIRST

is well beyond the sensitivity of aLIGO and some future GW missions. For the LSST survey, we also provide
contamination estimates from Type Ia and core-collapse supernovae: after light curve and template-matching
requirements, we estimate a background of just two events. More broadly, we stress that future transient surveys
should consider how to optimize their search strategies to improve their detection efficiency and to consider similar
analyses for GW follow-up programs.

Key words: stars: neutron

1. Introduction

The first detection by aLIGO/Virgo of a gravitational-wave
(GW) signal from a binary neutron star coalescence (Abbott
et al. 2017a, 2017b) and the identification of the optical
counterpart (Coulter et al. 2017; Soares-Santos et al. 2017;
Valenti et al. 2017) marks the beginning of an exciting era of
joint electromagnetic (EM) and GW studies. Optical counter-
parts from the mergers of a binary containing a neutron star are
called “kilonova” (KN; see Metzger 2017 for a review and
references therein). Theoretical studies predict that outflows of
neutron-rich material during the merger enable r-process
nucleosynthesis and that the decay of these r-process elements
results in isotropic thermal emission. As KN events result in
visible transients in the optical and infrared, with timescales of
hours to days, Metzger & Berger (2012) have predicted that
nearby KNe may be bright enough to find with modern optical
telescopes. These predictions have been confirmed.

Optical observations of KNe can constrain theories about
neutron star mergers, in particular identifying them as the
progenitors of short gamma-ray bursts (GRBs). These events
can also be used to measure the current expansion rate of the
universe if there is a GW signal and the associated host galaxy
redshift can be measured (e.g., Schutz 1986; Dalal et al. 2006).
Additionally, untriggered KN discoveries in the optical would
help LIGO re-evaluate past marginal signals and improve their
detection algorithms.

To date, there have been a small number of inconclusive KN
detections (e.g., Berger et al. 2013; Tanvir et al. 2013; Jin et al.
2016), none of which were triggered by a transient survey.
With an optical counterpart of a GW event having been
discovered, this event can be used to estimate the volumetric
rate of KN events. Making the simplistic assumptions that all
KN events are the same and that the volumetric rate is constant
with redshift, we can predict how many of these events can be
found in past, present, and future surveys. This is a follow-up
of the work by Doctor et al. (2017), who considered a wide
range of KN models and examined two seasons of data from
the Dark Energy Survey Supernova Program (DES-SN). Here,
we examine a single model, but a wide range of surveys. Other
studies (e.g., Rosswog et al. 2017) have considered the
detectability of KNe with future surveys based on estimated

search depths, but here we consider depth, cadence, and area of
the surveys using realistic observation libraries.
In this Letter, we use simulations to assess the capabilities of

photometric surveys to discover KNe without a GW trigger.
This is different from the follow-up mode for GW170817 and
for past EM searches (Abbott et al. 2016b; Annis et al. 2016;
Cowperthwaite et al. 2016; Soares-Santos et al. 2016) that
followed a GW trigger from LIGO (Abbott et al. 2016b, 2016c,
2017a). Over the last decade there has been a large effort in
predicting biases for SN Ia distance measurements that are used
as cosmological probes (e.g., Scolnic et al. 2017), and this
effort has resulted in increasingly realistic simulations. The
SNANA (Kessler et al. 2009) software used for these studies
has been applied to many cases beyond Type Ia supernovae,
including core-collapse SNe, superluminous SNe and kilo-
novae (Doctor et al. 2017). All simulation and analysis tools
used here are publicly available.51

In Section 2, we briefly review the KN discovery and use
companion works to model the light curve and KN rate. In
Section 3, we describe 11 optical surveys and our simulation
methods. Results are presented in Section 4, along with
estimates of the background contamination from SNe. Finally,
in Section 5, we discuss future analyses to optimize these
surveys and present conclusions in Section 6.

2. The Optical Counterpart to LV G298048

2.1. Discovery of Counterpart

Just over 11 hr after the aLIGO trigger (Abbott et al. 2017a,
2017b), the optical counterpart was found (Coulter et al. 2017;
Soares-Santos et al. 2017; Valenti et al. 2017). The counterpart
was identified as a point source located near NGC 4993. This
galaxy is 40 Mpc away, with redshift =z 0.0098 (Kourkchi &
Tully 2017). In a companion paper by Soares-Santos et al.
2017, we use our DECam (Flaugher et al. 2015) search data to
show the likelihood that the transient is in fact directly
connected to the GW event is>99%. We therefore rely on this
event for our analysis.

51 http://snana.uchicago.edu
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2.2. KN Light Curve and Modeling

We model UV to NIR to allow for a broad range of analysis.
While Doctor et al. (2017) showed that an NIR model is
sufficient (e.g., i and z bands) for estimating KN detections, the
bluer bands can be used to reject backgrounds from super-
novae. Our KN model is determined using ugrizYHK
photometry from the DES-GW papers (Cowperthwaite et al.
2017; Soares-Santos et al. 2017). To build a spectral model for
simulations, we take the smoothed light curves from

Cowperthwaite et al. (2017) in ugrizYHK and “mangle”
(Hsiao et al. 2007) a spectral time series to match the observed
photometry. The mangling uses wavelength-dependent splines
with knots at the effective wavelengths of the eight photometric
filters. Our model has peak - ~i z 0.0 and fades roughly 5
magnitudes over 7 days, in agreement with the data.
Cowperthwaite et al. (2017) show that this KN includes both

a blue and red component, resulting in early time colors that are
bluer than most models that predict - ~i z 1 mag (e.g.,
Barnes et al. 2016). While our observed KN may not reflect the

Figure 1. Display of key characteristics for transient surveys used in our analysis. Left panel: the depth per night per filter. Middle panel: the mean gap between repeat
observations in a single filter. Right panel: the survey area covered each observing year. Numbers for each panel are given explicitly in Table 1.

Table 1
Summary Information for Each Survey

Survey Filters Depths Cadencesa Areab Durationc Citationd

( s5 mag) (Days) (Deg2) (Years)

SDSS ugriz 21.8, 22.9, 22.5, 22. 2.2, 2.2, 2.2, 2.2 300 2 Frieman et al. (2008)
SNLS griz 26.1, 25.4, 24.8, 23.8 8.8, 6.3, 5.3, 8.5 4 5 Astier et al. (2006)
PS1 griz 23.4, 23.2, 23.4, 22.8 8.8, 8.7, 8.2, 6.3 70 4 Scolnic et al. (2014)
DES griz 24.0, 23.9, 23.7, 23.5 6.8, 6.4, 6.3, 6.5 27 5 Kessler et al. (2015)
ASAS-SN V 17.5 2 15000 5 Shappee et al. (2014)
SMT gr 20.6, 20.4 17.4, 14.9 11000 5 Scalzo et al. (2017)
ATLAS co 20.3, 20.3 1.3, 1.3 11000 5 Tonry (2011)
ZTF gr 20.5, 20.5 3.0, 3.0 15000 5 Bellm (2014)
LSST DDF ugrizy 24.8, 25.4, 25.6, 25.1, 24.7, 23.3 5, 6, 7, 7, 7, 7 40 10 LSST Science Collaboration et al. (2009)
LSST WFD ugrizy 23.2, 24.8, 24.5, 23.8, 22.5, 21.7 30, 35, 18, 19, 21, 18 18000 10 LSST Science Collaboration et al. (2009)
WFIRST RZYJHF 26.2, 25.7, 25.6, 25.5, 25.4, 24.9 5, 5, 5, 5, 5 45 2 Hounsell et al. (2017)

Notes.
a Mean duration between return visits in each filter.
b Total amount of sky area covered per year.
c Total number of years per survey.
d Describes observation history or characteristics.
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general population, we do not attempt to speculate about the
population properties.

2.3. Estimate of Volumetric Rate

We use a constant volumetric KN rate of - -10 Gpc yr3 3 1 as a
conservative estimate based on a compilation of rates by
Abbott et al. (2016a). This estimate is consistent with the fact
that the LIGO O1 upper limit is ´ - -1.2 10 Gpc yr4 3 1 (Abbott
et al. 2016a), and O2 surveyed ∼10 times more volume
than O1, suggesting a rate of ~ - -10 Gpc yr3 3 1. Furthermore,
this rate is broadly consistent with the aLIGO search time
(<2 years) and search volume ~( )100 Mpc 3.

3. Simulation of Transient Surveys

For this analysis, we have selected large surveys with the
following criteria: they operate as rolling searches and have
(or expect to have) discovered at least 100 SNe, an arbitrary
limit. The compilation of surveys is listed in Table 1 and
includes that from The Sloan Digital Sky Survey-II (SDSS;
Frieman et al. 2008), Panoramic Survey Telescope and Rapid
Response System (PS1; Kaiser et al. 2010,) Supernova Legacy
Survey (SNLS; Astier et al. 2006), Dark Energy Survey (DES;
Dark Energy Survey Collaboration et al. 2016), Skymapper
Telescope (SMT; Scalzo et al. 2017), Wide-Field Infrared
Survey Telescope (WFIRST; Spergel et al. 2015; Hounsell
et al. 2017), The Large Synoptic Survey Telescope (LSST;
LSST Science Collaboration et al. 2009), The Asteroid
Terrestrial-impact Last Alert System (ATLAS; Tonry 2011),
Zwicky Transient Facility (ZTF52; Bellm 2014),53 and All-Sky
Automated Survey for Supernovae (ASAS-SN; Shappee
et al. 2014).

We use the SNANA simulation and analysis package
(Kessler et al. 2009) to simulate each survey using filter

transmission functions and a cadence library with a list of
observation dates, where each date includes the observed zero
point, sky noise, and point-spread function (PSF) measured
from images. For SDSS, PS1, SNLS, and DES,54 each cadence
library has been created from the actual survey observations,
and therefore includes genuine fluctuations from weather and
operational issues. For LSST, the cadence library is com-
puted55 from the baseline cadence published by LSST using the
Operations Simulator (Delgado et al. 2014), which uses
historical weather data near Cerro Pachon to make realistic
estimates of observational conditions and cadence. For
WFIRST and SMT, we use the observation libraries based on
Hounsell et al. (2017) and Scalzo et al. (2017), respectively.

Figure 2. (Left) Example simulated KN light curves from LSST and WFIRST that pass our selection requirements. The vertical axis flux unit is defined such that
= - ( )mag 27.5 2.5 log Flux . (Right) KN redshift distributions for all events in the survey footprint (solid histogram) and for events passing selection requirements

(shaded histogram). Green vertical line shows the KN redshift ( =z 0.0098), and black vertical lines show the sensitivity of future GW experiments.

Table 2
Expected Number of KNe Found in Each Sample

Survey # KNea Survey
Years

KN Redshift
Range

SDSS 0.13 2 –0.02 0.05
SNLS 0.11 4 –0.05 0.20
PS1 0.22 4 –0.03 0.11
DES 0.26 5 –0.05 0.20
ASAS-SN <0.001 3 L
SMT 0.001 5 –0.01 0.01
ATLAS 8.3 5 –0.01 0.03
ZTF 10.6 5 –0.01 0.04
LSST WFD 69 10 –0.02 0.25
LSST DDF 5.5 10 –0.05 0.25
WFIRST 16.0 2 –0.1 0.8

Note.
a Total for the entire duration of the survey.

52 https://www.ptf.caltech.edu/page/ztf
53 PTF does not have set cadence/depth so is not included here.

54 Includes Deep and Shallow Fields, numbers listed here are average over all
fields.
55 Observations coadded nightly in Biswas et al. (2017) from
“MINION_1016.”
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For ZTF,56 ATLAS,57 and ASAS-SN,58 we use average
quantities for the cadence, zero point, sky noise, and PSF.
The resulting average-cadence libraries do not account for
fluctuations from weather, but they are still useful for making
forecasts. Global survey characteristics (depth, cadence, area,
duration) are shown in Table 2 and illustrated in Figure 1.
There is a dynamic range of 9 magnitudes between the
shallowest (ASAS-SN) and deepest (SNLS, WFIRST) surveys,
and the survey wavelengths extend from the ultraviolet
(u band) to the infrared (F band—central wavelength of 1.8
μm). Figure 1 expresses the cadence as the average gap in time
between observations with the same filter. We also show the
amount of sky area covered, ranging from 4deg2 (SNLS) to
18,000deg2 (LSST).

We simulate KN detections in two steps. The first step is the
trigger simulation, requiring two detections that are separated
by at least 30 minutes to reject asteroids. A detection is
characterized by the efficiency versus signal-to-noise ratio
(S/N), and the efficiency is typically 50% at S/N=5. The
second step is the analysis, which uses the following selection
requirements designed to reject supernova backgrounds.

1. At least two filter bands have at least one observation
with >S N 5. This requirement is largely redundant
with the trigger.

2. The time period when transient measured with >S N 5
is less than 25 days (30 days for WFIRST).

3. There is at least one observation within 20 days prior to
the first >S N 5 observation.

4. There is at least one observation within 20 days after the
last >S N 5 observation.

The second requirement explicitly rejects long-lived light
curves. The last two requirements reject events that peak before
or after the survey time window.

4. Results

The predicted number of KN detections for each survey is
given in Table 2. In all of the existing data samples (SDSS,
SNLS, PS1, DES, SMT), the expected number of events is well
below unity, although the expected number is ∼0.7 if the KN
totals from these four surveys are combined. Despite the wide
variety of area, cadence, and depth, the predicted number of
detections in SDSS, SNLS, PS1, and DES are all within a
factor of ∼2.
For future surveys, the estimated rate is larger. As shown in

Table 2, the number of KN discoveries from ATLAS and ZTF
is ∼1–2 per year, due to their depth and rapid cadence. The
number of discoveries from LSST WFD is ∼7 per year and
from LSST DDF is ∼0.5 per year. Figure 2 (left) shows a
discovered KN light curve for LSST WFD. Figure 2 (right)
shows that LSST WFD can discover~0.8% of the KNe events
in their footprint out to z= 0.25.
WFIRST has a shorter transient survey duration (2 years), but

still finds as many KNe per season as LSST. This KN
discovery potential is from a combination of depth, medium-
sized area, and high red sensitivity. We find that the WFIRST
efficiency is as high as ~30% in its survey volume. Most
interestingly, as shown in Figure 2, we see that WFIRST will
discover KNe out to z= 0.8. Since WFIRST includes observa-
tions in the H and F bands, a KN with peak luminosity in the
rest-frame z band can still be discovered at ~z 0.5 in these red
filters.
To illustrate the interplay between depth, rate, and sky

coverage, we show in Figure 3 the r and Y detection limits of
multiple surveys overlaid on our KN light curve as it would
appear at discrete redshifts.

4.1. Background Contamination from Supernovae

With 69 KN events expected for the LSST WFD survey, we
now switch to simulating the background from supernova
(SNe). We include Type Ia SNe (SN Ia) based on the SALT2-II
spectral model (Betoule et al. 2014), and core-collapse (CC)
SNe based on a library of 43 templates (Kessler et al. 2010).

Figure 3. Synthetic KN light curves at different redshifts (see the legend) for LSST r band (left) and Y band (right). Horizontal lines indicate search depth for the
labeled survey.

56 The ZTF simulation done here is for the public survey (P. Nugent, private
communication).
57 J. Tonry, private communication.
58 www.asas-sn.osu.edu
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In addition to the trigger and analysis requirements in
Section 3, we use the PSNID fitting program (Sako et al. 2008)
to select KN-like objects via light curve template matching.
The templates include SN Ia, Type II SNe, Type Ib/c SNe, and
our KN event. For a given simulated CC template, the
corresponding template is removed from the PSNID fit so that
we don’t match a simulated CC template to itself. This PSNID
analysis uses bands at all wavelengths, and thus even a KN flux
limit in the bluer bands add useful information.

For the full 10 year survey, we generated nearly 200 million
SNe (16% Ia, 84% CC), and find that 9 events are identified as
a KN by PSNID. However, only 2 of these events have a
reasonable fit-probability, >P 0.001fit , where Pfit is computed
from the c2 and number of degrees of freedom. This
background is 2.9% of the number of KNe detected. We also
calculate the frequency that KNe in our simulations are
misclassified as SNe and find this happens only 0.05% of the
time, though this number is likely optimistic because we use
the same KN in our simulation and classification.

5. Discussion

None of the surveys discussed here have been optimized to
find KNe, so the KN yields are expected to be low. SDSS, PS1,
SNLS, LSST DDF, and WFIRST are all partially optimized for
measurement of SN Ia light curves, which have typical
durations of 60 days. While we expect ∼1 KNe in past data
sets, we note that it is unlikely to find such an event in light
curve catalogs. Instead, a search for KNe in old data requires a
re-analysis of all single-epoch detections to make less strict
trigger cuts than those applied during past surveys. As
improved volumetric KN rate estimates become available, all
of our KN predictions can be re-scaled.

We have performed a preliminary study of SN background,
and while this small (3%) background is encouraging, we note
a few caveats that require further study. First, our simulations
do not include potential contaminants from rare SN types,
moving objects (asteroids), and non-SN transients such as
orphan afterglows of GRBs (e.g., Singer et al. 2013) and
M-dwarf flares (e.g., Hawley et al. 2014).

The second caveat is that we have implicitly assumed that all
KN are the same, which is very unlikely to be correct. Ideally,
our single KN template should be expanded to accept a wide
range of KNe, perhaps with the aid of theoretical models such
as Barnes et al. (2016). However, the challenge is to keep the
SN backgrounds low while accepting a broader class of KN
events.

Another caveat is that we have used the full end-of-survey
light curves, but to get crucial follow-up observations with
other instruments, KN events need to be efficiently identified
within a few days of the merger event. Partial light curve
studies will be needed to optimize KN target selection.

The final caveat is related to the KN host galaxies. In a recent
search of DES-SN data (without a GW trigger), Doctor et al.
(2017) found that image-subtraction artifacts increase the flux
scatter well beyond what is expected from Poisson noise, and
thus reduce the search sensitivity by a factor of 3 if all KNe
occur inside their host galaxy. For KN events like this one, the
event is well away from the galaxy center, as is expected for the
majority of short GRBs (Fong et al. 2013). Therefore, image-
subtraction artifacts are likely to be a subdominant issue,
though the impact on expected KN should still be quantified.

One of the most interesting findings of this analysis is the
ability for WFIRST to discover high-redshift KNe. This is
particularly exciting because it would probe the cosmic history
of NS mergers. Furthermore, it could provide an absolute
distance scale to ~z 0.5, which could be the first absolute
distance measurement in between the local and cosmic
microwave background (CMB) Hubble constant measure-
ments. What is also illuminating is that WFIRST may detect
KNe at higher redshift than the sensitivity of future GW
missions. H.-W. Chen et al. (in preparation), based on
methodology from Chen et al. (2017), estimate the sensitivity
of next-generation gravitational-wave detectors, and we mark
these sensitivities on Figure 2. We find that the LIGO upgrade
A+design, the future detector LIGO Voyager, and the planned
Einstein Telescope all have sensitivity to GW triggers below
the depth of WFIRST to KN events. Furthermore, theoretical
models consistent with Cowperthwaite et al. (2017) suggest
that the blue component depends on viewing angle, while the
red component is isotropic. The IR capability of WFIRST may
therefore have the additional advantage of better sensitivity to
all viewing angles. There is an ongoing effort to design a joint
GW and WFIRST program, called GWFIRST, optimized for
NIR follow-up of GW detections.
Finally, this analysis only looks at survey detections without

a GW trigger, whereas the most likely mode for most
telescopes will be follow-up of announced GW events. With
estimates of area, cadence, and observing conditions, all of the
simulation tools used here can be used to optimize follow-up
strategies.

6. Conclusion

We have used simulations to predict the number of KNe that
can be found in past, present, and future data sets. The
simulation uses a KN model that matches our DECam light
curve data, and for each survey it uses realistic observation
histories. We find that the expected number of events for every
past survey is ~ –0 0.3 due to the small area, shallow depth, or
sparse cadence, though combined can be up to ∼1 event. For
future surveys like LSST and WFIRST, we expect tens of KN
discoveries. In particular, we find that WFIRST can find KNe at
redshifts past planned GW sensitivities of future projects,
opening up new possibilities of cosmological KN and NS
science.
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