
UC Berkeley
UC Berkeley Electronic Theses and Dissertations

Title
Algorithms and Representations for Visual Recognition

Permalink
https://escholarship.org/uc/item/1q4948z2

Author
Maji, Subhransu

Publication Date
2011

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1q4948z2
https://escholarship.org
http://www.cdlib.org/

Algorithms and Representations for Visual Recognition

by

Subhransu Maji

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Computer Science

and the Designated Emphasis

in

Communication, Computation, and Statistics

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Jitendra Malik, Chair
Professor Trevor Darrell

Professor Bruno Olshausen

Fall 2011

Algorithms and Representations for Visual Recognition

Copyright 2011
by

Subhransu Maji

1

Abstract

Algorithms and Representations for Visual Recognition

by

Subhransu Maji

Doctor of Philosophy in Computer Science

and the Designated Emphasis

in

Communication, Computation, and Statistics

University of California, Berkeley

Professor Jitendra Malik, Chair

We address various issues in learning and representation ofvisual object categories. A key compo-
nent of many state of the art object detection and image recognition systems, is the image classifier.
We first show that a large number of classifiers used in computer vision that are based on compari-
son of histograms of low level features, are “additive”, andpropose algorithms that enable training
and evaluation of additive classifiers that offer better tradeoffs between accuracy, runtime memory
and time complexity than previous algorithms. Our analysisspeeds up the training and evaluation
of several state of the art object detection, and image classification methods by several orders of
magnitude.

Many successful object detection algorithms localize an object by simply evaluating a classifier
at multiple locations and scales in an image, and finding peaks in the classifier response. In this
setting, the overall speed of the detector can be improved not only by improving the efficiency
of the classifier, which we addressed earlier, but also by efficient search, which we address next.
We develop a discriminative voting algorithm based on Houghtransform, which cuts down the
complexity of this search.

In the last part of the thesis, we propose a representation for fine scale category recognition
such as, action and pose of people in images, which is aided bymore supervision. Leveraging
on “crowdsourcing”, we collect annotations of various kinds – keypoints, segmentations, attribute
labels, pose, etc., for several tens of thousands of objects. The problem of comparing two instances
visually can then be replaced by a simpler problem of comparing their annotations. The similarity
function over the annotations provides us a flexible notion of correspondence between instances
of a visual category, which we use to learn appearance modelsrelevant to the task. We apply
this framework to build a system for action recognition, that captures salient pose, appearance and
interactions with objects, of people performing various actions in static images.

i

To mom, dad and sister.

ii

Contents

1 Introduction 1
1.1 Outline . 2

2 Evaluation of Additive Kernel SVMs 3
2.1 Support Vector Machines 5
2.2 Fast Exact IKSVMs .. 6
2.3 Approximate Additive Kernel SVMs 8
2.4 Additive Kernels in Computer Vision 9

2.4.1 Comparing Histograms .. 9
2.4.2 Approximate Correspondences 10

2.5 Learning Additive Classifiers 11
2.6 Previous Work .. 14
2.7 Experimental Results 15

2.7.1 Toy Example : Learning a circle 15
2.7.2 MNIST and USPS Digits . 17
2.7.3 INRIA Pedestrians .17
2.7.4 Daimler Chrysler Pedestrians 20
2.7.5 Caltech101 . 22
2.7.6 UIUC Cars . 22

2.8 Conclusion .24

3 Training of Additive Classifiers 25
3.1 Background .26
3.2 Overview . 27
3.3 Encoding . 28

3.3.1 Approximation Quality .. . 30
3.3.2 Sparse Version of Encoding and Regularization 31

3.4 Optimization .. 32
3.5 Experimental Results 34

3.5.1 Caltech-101 . 34
3.5.2 Daimler Chrysler Pedestrian Dataset 35

iii

3.5.3 INRIA Pedestrians .35
3.6 Additive Modeling using Spline Embeddings 38

3.6.1 Additive Kernel Reproducing Kernel Hilbert Space & Spline Embeddings . 39
3.7 Conclusion .41
3.8 Appendix . 41

4 Hough Transforms for Object Detection 43
4.1 Probabilistic Hough Transform 44
4.2 Max-Margin Hough Transform 45

4.2.1 Discriminative Training 46
4.3 Overall Detection Strategy 47

4.3.1 M2HT Detector . 47
4.3.2 Verification Classifier 47

4.4 Experimental Results 48
4.4.1 ETHZ Shape Dataset . 48
4.4.2 UIUC Cars . 50
4.4.3 INRIA Horses . 53

4.5 Conclusion .57

5 Supervised Models for Object Recognition 58
5.1 Supervised Learning of Categories 59
5.2 Pose and Action Recognition from Still Images 60
5.3 Previous Work .. 62
5.4 Poselet Activation Vector 65
5.5 3D Pose Estimation from Still Images 65
5.6 Static Action Classification 67
5.7 Conclusion .74

6 Crowdsourcing for Computer Vision 78
6.1 Figure-ground Masks of Objects 79
6.2 Keypoint Annotation of Objects 83
6.3 3D Pose of Humans .85
6.4 Attributes of People 86
6.5 Conclusion .89

iv

Acknowledgments

Graduate school has been an incredible journey. There are many people I am indebted to for this
wonderful experience. Thanks Jitendra Malik, for being a great advisor, an inspiration and for all
the excitement about research. Thanks Michael Jordan, Dan Klein, Jitendra Malik and Richard
Karp for all the wonderful courses. Thanks Trevor Darrell for a little bit of machine learning and
practical advise. Thanks Ruzena Bajcsy for the big picture and for being so kind.

Thanks to all the members of the computer vision group without which the research would
have been all but boring. Thanks Alex Berg and Michael Maire for showing the way. Thanks
Patrik Sundberg for the all the energy and enthusiasm about everything. Thanks Chunhui Gu,
Lubomir Bourdev, Pablo Arbelaez, Jon Barron, Alle Yang, Thomas Brox and Cees Snoek for
all the discussions, debates and code. Thanks Bharath Hariharan, Georgia Gkioxari and Saurabh
Gupta for all the new excitement.

Berkeley would not have been such a great place were it not forthe outdoors, food, ambience
and all the people to share that with. Thanks Gayane for everything. Thanks Blaine Nelson, Ajith
Warrier and everyone else for all the volleyball outside SODA. Thanks Rhishikesh Limaye for all
the biking and hiking around Berkeley. Thanks Siddharth, Narayanan, Sushmit, Sudeep, Pallavi,
Vivek, Pannag, Nandini and all my friends at Berkeley for thecountless times and things. Thanks
to all my “wingmates” for the wonderful times in India, and everywhere else we met.

Finally all this would not have been possible without the support of my family - my parents
who have made innumerable sacrifices though out their lives for me, my sister for all her support
and enthusiasm, my grandparents for all the love and care. Thank you very much. To everyone
else who has helped me on my journey, I am very grateful.

1

Chapter 1

Introduction

This generation of computer vision researchers are facing anew problem – there is simply too
much training data, and many of our algorithms do not scale tothe sizes of datasets one could
collect. This has come about in the last decade due to a variety of reasons. Proliferation of cheap
sensors, combined with the growth of public repositories ofimages, such as Flickr and Picasa,
has left billions of images at the disposal of computer vision researchers. Often these come with
user generated tags, or can be associated with search terms with the help of search engines like
Google, Yahoo!, MSN, etc., providing training data for millions of visual categories at an unprece-
dented scale. Add to that the emergence of economical “crowdsourcing” services like Amazon
Mechanical Turk, which enable scalable and cheap collection of vast amounts of highly accurate
supervised data. A result of all this is that large datasets like ImageNet, containing millions of
images for hundreds of thousands of categories, and PASCAL VOC datasets, containing few thou-
sand objects of dozens of categories, are becoming the norm for benchmarking computer vision
algorithms. We are forced to think about representations which generalize across categories and
enable sub-ordinate categorization and learning algorithms which are efficient during training and
testing.

In this work we address some of the challenges in learning andrepresentation when dealing
with large datasets, where algorithms that are super-linear are too expensive. Linear classifiers
have been popular in this setting because of their efficiencyduring training and testing, but are
often inferior in terms of accuracy when compared to their non-linear counterparts. We show that
a class of widely used classifiers in computer vision based onnon-linear kernel Support Vector
Machines (SVMs), are actually quite efficient. These class of kernels called “additive” kernels,
often arise when comparing images based on histograms of their low-level features. Our analysis
shows that these classifiers have the same run time memory andtime complexity as linear SVMs
during both training and testing, saving many orders of magnitude over standard implementations,
making them practical for large scale classification or evenreal-time detection tasks.

CHAPTER 1. INTRODUCTION 2

Crowdsourcing has become a practical way of collecting large amounts of annotated data for
various computer vision tasks with the emergence of efficient market places for completing ”micro-
tasks” performed by humans, like Amazon Mechanical Turk (AMT). In the second part of my
thesis, we propose a method to “bootstrap” hard computer vision problems by aiding the learning
algorithms with supervision. We build rich representations and a learning framework which enable
image understanding at multiple levels – categories, sub-categories, attributes, segmentation, pose,
etc. We demonstrate how this representation can be used for the challenging task of estimating the
pose and actions of people in images.

1.1 Outline

Chapters 2, 3 and 4 address various bottlenecks in building an object detector. We focus on variants
of sliding window object detectors, which include many of the current state of the art detection
systems. These detectors are based on an image classifier being evaluated by varying the location,
scale and aspect ratio of the classification window in an image, hence the name. In Chapter 2,
we provide an efficient algorithm which speeds up the evaluation of many non-linear kernel SVM
based classifiers by various orders of magnitude making thempractical for detection tasks. We then
show in Chapter 3, that these classifiers can also be trained efficiently, motivated by the analysis in
the previous chapter. In Chapter 4, we address the complexity of search over pose using a variant of
Hough transformation and propose a discriminative spatialfeature selection algorithm to improve
the overall accuracy and efficiency of detection. These methods have been widely adopted and have
become essential ingredients of various state of the art detection and classification algorithms.

Moving beyond detecting rigid objects such as faces and pedestrians, in Chapter 5, we show
how with appropriate supervision and learning algorithms,one can build rich category models.
Arguably, the fundamental problem in building visual category models is the notion of correspon-
dence between instances. We bootstrap this problem by annotating instances with various attributes
– keypoints, 3D pose, segmentation mask, action labels, etc., and replacing the problem of visual
correspondence by a simpler problem of comparing their annotations. This provides us a flexible
notion of matching which can then be used to learn task specific appearance models. Our approach
based on a novel part based representation called “poselets” can be used not only for detection,
but also to infer the segmentation, pose, action and other attributes of people in images, which is
a highly visually diverse category. Finally, in Chapter 6, we describe our experience in collecting
over250, 000 of the above annotations on Amazon Mechanical Turk which hasenabled this line
of research.

3

Chapter 2

Evaluation of Additive Kernel SVMs

Consider sliding window detection, one of the leading approaches for detecting objects in im-
ages like faces [78, 112], pedestrians [78, 21, 33] and cars [80]. In this approach, first, a classifier
is trained to recognize an object at a fixed “pose” - for example, as shown in Figure 2.1, one may
train a classifier to classify64× 96 pixel pedestrians which are all centered and scaled to the same
size, from background. In order to detect pedestrians at arbitrary location and scale in an image,
the classifier is evaluated by varying the location and scaleof the classification window. Finally,
detections are obtained by finding peaks of the classification score over scales and locations, a
step commonly referred to as non-maximum suppression. Although this approach is simple – the
classifier does not have to deal with invariance – a key drawback of this approach is computa-
tional complexity. On typical images these classifiers can be evaluated several tens of thousands of
times. One may also want to search over aspect ratios, viewpoints, etc., compounding the problem.
Therefore efficient classifiers are crucial for effective detectors.

Discriminative classifiers based on Support Vector Machines (SVMs) and variants of boosted
decision trees are two of the leading techniques used in vision tasks ranging from object detec-
tion [78, 112, 21, 33], multi-category object recognition in Caltech-101 [46, 61], to texture dis-
crimination [123]. Classifiers based on boosted decision trees such as [112], have faster classifi-
cation speed, but are significantly slower to train. Furthermore, the complexity of training can
grow exponentially with the number of classes [107]. On the other hand, given the right feature
space, SVMs can be more efficient during training. Part of theappeal of SVMs is that, non-linear
decision boundaries can be learnt using the “kernel trick” [94]. However, the run-time complexity
of a non-linear SVM classifier can be significantly higher than a linear SVM. Thus, linear kernel
SVMs have become popular for real-time applications as theyenjoy both faster training and faster
classification, with significantly less memory requirements than non-linear kernels.

Although linear SVMs are popular for efficiency reasons, several non-linear kernels are used
in computer vision as they provide better accuracy. Some of the most popular ones are based on
comparing histograms of low level features like color and texture computed over the image and
using a kernel derived from histogram intersection or chi squared distance to train a SVM classifier.
In order to evaluate the classification function, a test histogram is compared to a histogram for

CHAPTER 2. EVALUATION OF ADDITIVE KERNEL SVMS 4

Figure 2.1: A typical “sliding window” detection pipeline.

each of the support vectors. The number of support vectors can often be a significant fraction of
the training data, so this step is computationally very expensive as the test time scales linearly
with the number of support vectors. This paper presents and analyzes a technique to greatly speed
up that process for histogram comparison functions that areadditive - where the comparison is
a linear combination of functions of each coordinate of the histogram. In particular we show
it is possible to evaluate the classifier approximately in time independent of the number of
support vectors – similar to that of a linear SVM.

This more efficient approach makes SVMs with additive kernels – used in many of the current
most successful object detection/recognition algorithms– efficient enough to apply much more
broadly, even possibly to real-time applications. The class of kernels includes the pyramid match-
ing or intersection kernelsused in Grauman & Darell [46] ; and Lazebnik, Schmid & Ponce [61],
and the chi squared kernel used by Varma & Ray [109]; and Chum &Zisserman [18], which to-
gether represent some of the best results in image and objectrecognition on the Caltech [30] and
PASCAL VOC [28] datasets.

Although the results in this paper apply to any additive kernel, we begin by analyzing the
histogram intersectionkernel,Kmin(ha, hb) =

∑

i min (ha(i), hb(i)), that is often used as a mea-
surement of similarity between histogramsha andhb. Because it is positive definite [104] for
non-negative features and conditionally positive definitefor arbitrary features [65], it can be used
as a kernel for discriminative classification using SVMs. Recently, intersection kernel SVMs
(henceforth referred to as IKSVMs), have become popular with the introduction of pyramid match

CHAPTER 2. EVALUATION OF ADDITIVE KERNEL SVMS 5

kernel [46] and spatial pyramid match kernel [61] for objectdetection and image classification.
Unfortunately this success typically comes at great computational expense compared to simpler
linear SVMs, because non-linear kernels require memory andcomputation linearly proportional to
the number of support vectors for classification.

In this chapter we show the following:

• SVMs using the histogram intersection kernel can beexactlyevaluated exponentially faster
than the straight forward implementation used in the previous state of the art, as has been
previously shown in [51], and independently in our own work in [66] (Section 2.2).

• A generalization allowsarbitrary additive kernel SVMs to be evaluated with the same “big
O” computational cost, as linear SVMs (Section 2.3), as wellas significantly reducing the
memory overhead, making them practical for detection and real time applications.

• We show thatadditivekernels arise naturally in many computer vision applications (Sec-
tion 2.4), and are already being used in many state of the art recognition systems.

• Additive kernels, such as histogram intersection are sufficiently general, i.e., the correspond-
ing kernel SVM classifier, can represent arbitrary additiveclassifiers. The difference between
additive kernels can be analyzed mainly in terms of the implied regularization for a particular
kernel. This helps us to understand both the potential benefit and the inherent limitations of
anyadditive classifier, in addition to shedding some light on the trade-offs between choices
of additive kernels for SVMs (Section 2.5).

• Our approach can be computationally more efficient comparedto some of the recently pro-
posed methods and the previous state of the art in kernel classifier evaluation (Section 2.6).

• Combining these efficient additive classifiers with a novel descriptor provides an improve-
ment over the state of the art linear classifiers for pedestrian detection, as well for many other
datasets (Section 4.4).

• These techniques can be applied generally to settings whereevaluation of weighted addi-
tive kernels is required, including kernel PCA, kernel LDA,and kernelized regression and
kernelizedk-means. (Section 2.8).

2.1 Support Vector Machines

We begin with a review of support vector machines for classification. Given labeled training data
of the form{(yi,xi)}Ni=1, with yi ∈ {−1,+1}, xi ∈ R

n, we use a C-SVM formulation [20]. For
the linear case, the algorithm finds a hyperplane which best separates the data by minimizing :

τ(w, ξ) =
1

2
||w||2 + C

N
∑

i=i

ξi (2.1)

CHAPTER 2. EVALUATION OF ADDITIVE KERNEL SVMS 6

subject toyi(w · xi + b) ≥ 1− ξi andξi ≥ 0, whereC > 0, is the tradeoff between regularization
and constraint violation. For a kernel on data points,K(x, z) : Rn × R

n → R, that is the inner
product,Φ(x) · Φ(z), in an unrealized, possibly high dimensional, feature space, one can obtain
the same by maximizing the dual formulation :

W (α) =
N
∑

i=i

αi −
1

2

∑

ij

αiαjyiyjK(xi,xj) (2.2)

subject to: 0 ≤ αi ≤ C and
∑

αiyi = 0 (2.3)

The decision function issign (h(x)), where:

h(x) =

m
∑

l=1

αlylk(x,xl) + b (2.4)

Notice that the dual formulation only requires access to thekernel function and not the features
Φ(.), allowing one to solve the formulation in very high dimensional feature spaces efficiently
– also called thekernel trick. For clarity, in a slight abuse of notation, the features,xl : l ∈
{1, 2, . . . , m}, will be referred to as support vectors. Thus in general,m kernel computations
are needed to classify a point with a kernelized SVM and allm support vector must be stored.
Assuming these kernels can be computed inO(n) time, the overall complexity of the classifier is
O(mn). For linear kernels we can do better because,k(x, z) = x · z, soh(x) can be written as
h(x) = w ·x+b, wherew =

∑m
l=1 αlylxl. As a result, classifying with a linear SVM only requires

O(n) operations, andO(n) memory.

2.2 Fast Exact IKSVMs

We motivate our discussion using the histogram intersection or themin kernel. Often similarity
between images is obtained by comparing their distributionover low level features like edge ori-
entations, pixel color values, codebook entries, etc. These distributions could be represented as
histograms and a similarity measure like the histogram intersection can be used. The histogram in-
tersection kernel is known to be positive definite [104] for histogram based features and hence can
be used with the standard SVM machinery. This representation is popular for the “bag-of-words”
approaches which have led to state of the art results in many object detection and classification
tasks.

We first show that it is possible to speed up classification forintersection kernel SVMs (IKSVMs).
This analysis was first presented in [51] and later independently in our own work [66]. For his-
togram based feature vectorsx, z ∈ R

n
+, the intersection kernelKmin(x, z) is defined as:

Kmin(x, z) =

n
∑

i=1

min (xi, zi) (2.5)

CHAPTER 2. EVALUATION OF ADDITIVE KERNEL SVMS 7

and classification is based on evaluating:

h(z) =
m
∑

l=1

αlylKmin(z,xl) + b (2.6)

=

m
∑

l=1

αlyl

(

n
∑

i=1

min (zi, xl,i)

)

+ b (2.7)

The non linearity ofmin prevents us from “collapsing” the weight vector in a similarmanner for
linear kernels. Thus the complexity of evaluatingh(x) in the standard way isO(mn). The key
property of intersection kernels is that we can exchange thesummations in equation 2.7 to obtain:

h(z) =
m
∑

l=1

αlyl

(

n
∑

i=1

min (zi, xl,i)

)

+ b (2.8)

=
n
∑

i=1

(

m
∑

l=1

αlyl min (zi, xl,i)

)

+ b (2.9)

=

n
∑

i=1

hi(zi) + b (2.10)

Thus the overall functionh(·) can be rewritten as the sum of one dimensional functionshi(·),
where :

hi(s) =
m
∑

l=1

αlyl min (s, xl,i) (2.11)

The complexity of computing eachhi(s) in the naive way is stillO(m) with an overall complexity
of computingh(x) still O(mn). We now show how to compute eachhi in O(logm) time.

Consider the functionshi(s) for a fixed value ofi. Let x̄l,i denote the sorted values ofxl,i in
increasing order with correspondingα’s and labels as̄αl andȳl. If s < x̄1,i thenhi(s) = s

∑

l ᾱl =
0, since

∑

l ᾱl = 0. Otherwise letr be the largest integer such thatx̄r,i ≤ s. Then we have,

hi(s) =

m
∑

l=1

ᾱlȳl min (s, x̄l,i) (2.12)

=
∑

1≤l≤r

ᾱlȳlx̄l,i + s
∑

r<l≤m

ᾱlȳl (2.13)

= Ai(r) + sBi(r) (2.14)

Where we have defined,

Ai(r) =
∑

1≤l≤r

ᾱlȳlx̄l,i, (2.15)

Bi(r) =
∑

r<l≤m

ᾱlȳl (2.16)

CHAPTER 2. EVALUATION OF ADDITIVE KERNEL SVMS 8

Equation 2.14 shows thathi is piecewise linear. Furthermorehi is continuous because:

hi(x̄r+1) = Ai(r) + x̄r+1Bi(r)

= Ai(r + 1) + x̄r+1Bi(r + 1).

Notice that the functionsAi andBi are independent of the input data and depend only on the
support vectors andα. Thus, if we precompute them, thenhi(s) can be computed by first findingr,
the position ofs in the sorted list̄xl,i using binary search and linearly interpolating betweenhi(x̄r)
andhi(x̄r+1). This requires storing thēxl as well as thehi(x̄l) or twice the storage of the standard
implementation.Thus the runtime complexity of computingh(x) is O(n logm) as opposed to
O(nm), a speed up ofO(m/ logm). This can be significant if the number of support vectors is
large.

2.3 Approximate Additive Kernel SVMs

It is possible to compute approximate versions of the classifier even faster. Traditional function
approximation quickly breaks down as the number of dimension increase. However for the inter-
section kernel SVMs we have shown that the final classifier canbe represented as a sum of one
dimensional functions. As long as the kernel is “additive”,i.e., the overall kernelK(x,y) can be
written as,

K(x,y) =
n
∑

i=1

Ki(xi, yi) (2.17)

the resulting kernel SVM classifier is also additive, i.e.,h(s) can be written as,

h(s) =

n
∑

i=1

hi(si) + b (2.18)

where,

hi(si) =
m
∑

l=1

αlylKi(si, xl,i) (2.19)

andxl,i denotes thei’th dimension of thel’th support vector.
This decomposition allows us to approximate the final classifier by approximating each dimen-

sion independently. The simplest of these is a piecewise polynomial approximation in which we
represent the function in each dimension as a piecewise polynomial function usingb sections, each
of degreek. This requiresb × (k + 1) floating points per dimension. Classification requires table
lookup followed by the evaluation of ak degree polynomial, which requires2(k+1) floating point
operations using Euler’s method. Two special cases are the piecewise constant and piecewise lin-
ear approximations corresponding to degreek = 0 andk = 1 respectively. In our experiments we

CHAPTER 2. EVALUATION OF ADDITIVE KERNEL SVMS 9

restrict ourselves to these cases, as one can approximate any function arbitrary well. The final clas-
sifier corresponds to a lookup table of sizem× (b+ 1). The overall complexity of the classifier
then isO (2(k + 1)n) – essentially the same as that of a linear SVM classifier.

In our MATLAB/C++ implementation the speed of the piecewiselinear approximations is
about5.5× slower than the linear classifier. The more expensive table lookups can be avoided
by rewriting the piecewise linear interpolation as a dot product of a dense vector of function values
and a sparse vector indicating the bin indices, for e.g. see [65] or [82]. These implementations are
essentially as fast as the linear classification method, especially, when there are a large number of
classes and the encoding time can be amortized over the number of classes.

Although these one dimensional functions can be precomputed once for each classifier – this
could become a bottleneck if the number of classes are large,or if the classifier needs to be up-
dated often for example during training. To approximate these one dimensional functions using
a piecewise linear approximation, one has to sample these functions at a fixed set of points. The
complexity of evaluating these one dimensional functionshi(si) =

∑m
l=1 αlylKi(si, xl,i) at b loca-

tions isO(bm). Whenb is large, i.e.b >> logm, for the intersection kernel one can sample these
functions faster using the exact IKSVM evaluation presented in Section 2.2 inO((m + b) logm)
time, making it the approach of choice for certain applications.

2.4 Additive Kernels in Computer Vision

We identify several naturally arising additive kernels in computer vision applications, though we
note that variants of these kernels also arise in natural language processing, such as text classifica-
tion, etc. There are two important classes of additive kernels used in the computer vision, which
we describe next.

2.4.1 Comparing Histograms

Often similarity between images is obtained by comparing their distribution over low level features
like edge orientations, pixel color values, codebook entries, textures, etc. These distributions are
typically represented as histograms and a similarity measure like the histogram intersection or the
negativeχ2 or l2 distance is used. Both the histogram intersection kernel [104], and theχ2 kernels
are known to be positive definite for histogram based features and hence can be used with the
standard SVM machinery. See [9, 77] for a proof that the histogram intersection kernel and its
variants are positive definite and [4] for a proof for theχ2 kernel.

The histogram intersection kernel,Kmin, and theχ2 kernel,Kχ2 , for normalized histograms
are defined as follows:

Kmin(x, z) =
n
∑

i=1

min (xi, zi) , Kχ2(x, z) =
n
∑

i=1

2xizi
xi + zi

(2.20)

CHAPTER 2. EVALUATION OF ADDITIVE KERNEL SVMS 10

Figure 2.2 visualizes these additive kernels. We also note that the intersection kernel is condi-
tionally positive definite for all features and hence can be used with SVMs even when the features
are not histograms, i.e. they need not be positive or normalized. For proof see paper [65]. A special
case worth mentioning is the generalized histogram intersection kernel [9] defined by :

K(x, z) =
n
∑

i=1

min
(

|xi|β, |zi|β
)

(2.21)

This is known to be positive definite for allβ > 0. Chappelle et al. [17] observe that this remapping
of the histogram bin values byx → xβ , improves the performance of linear kernel SVMs to become
comparable to RBF kernels on an image classification task over the Corel Stock Photo Collection.
Simply square-rooting the features with linear kernel, which is also called the Bhattacharyya ker-
nel, has also shown to provide significant improvements, when used with “bag-of-words” style
features, for various image classification and detection tasks [110, 82]. This representation also
arises in text classification setting where the histograms represent counts of words in a document.

2.4.2 Approximate Correspondences

Another class of additive kernels are based on the matching sets of features between images. Two
popular variants are thepyramid matchand thespatial pyramid matchkernels. We describe each
of them briefly.

Pyramid Match Kernel. Introduced by Grauman and Darell [46, 44], who proposed a wayto
measure similarity between sets of features using partial correspondences between the elements in
the sets. The similarity measure reduces to a weighted histogram intersection of features computed
in a multi-resolution histogram pyramid, hence the name. This approach builds on Indyk and
Thaper’s [54] approximation to matching costs usingl1 embeddings. An attractive feature of this
method is that the matching has linear time complexity in thefeature dimension, and naturally
forms a Mercer kernel which enables it to be used with discriminative learning frameworks like
kernel SVMs. This kernel has been used in various vision tasks like content-based-image-retrieval,
pose estimation, unsupervised category discovery [45] andimage classification. This kernel is
additive because the overall kernel is simply a weighted histogram intersection.

Spatial Pyramid Match Kernel. Lazebnik, Schmid and Ponce [61] introduced a similarity
based on approximate global geometric correspondence of local features of images. Instead of a
global histogram of features one creates histograms of features over increasingly fine sub-regions
of the image in a “spatial pyramid” representation. Like thepyramid match kernel, the spatial
matching is now approximated by the weighted histogram intersection of the multi-resolution spa-
tial pyramid. This remarkably simple and computationally efficient extension of an orderless bag-
of-features has proved to be extremely useful, and has become a standard baseline for various tasks
which require image to image similarity like object detection, image classification, pose estimation,

CHAPTER 2. EVALUATION OF ADDITIVE KERNEL SVMS 11

K
linear

(x,y) = xy

0

0.5

1

0

0.5

1
0

0.5

1

K
min

(x,y) = min(x,y)

0

0.5

1

0

0.5

1
0

0.5

1

Kχ2 = 2xy/(x+y)

0

0.5

1

0

0.5

1
0

0.5

1

Figure 2.2: Visualization of linear, intersection andχ2 kernels for one dimensional features. One
can see that theχ2 kernel is a smoother version of the intersection kernel and is twice differentiable
on the interior.

action recognition, etc. Many state of the art object detection and image classification results on
PASCAL Visual Object Challenge [28], ImageNet [55] and TRECVID [102] challenge are based
on variants of the kernel where the underlying features change. Nevertheless this kernel is also
additive as the overall kernel is once again a weighted histogram intersection of the underlying
features.

2.5 Learning Additive Classifiers

Additive classifiers are based on functions of the form:

f(x) =
∑

i=1

fi(xi) (2.22)

i.e., the overall functionf is a sum of one dimensional functions. Additive functions were popular-
ized by Hastie and Tibshirani [49], for fitting statistics ofdata. Linear classifiers are the simplest
additive classifiers where eachfi(xi) = wixi. By allowing arbitraryfi, additive models can pro-
vide better fits to the training data than linear models. Our key insight in Section 2.3, was to

CHAPTER 2. EVALUATION OF ADDITIVE KERNEL SVMS 12

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

y

K
(x

,y
)

x = 0.1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

y

K
(x

,y
)

x = 0.2

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

y

K
(x

,y
)

x = 0.3

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

y

K
(x

,y
)

x = 0.4

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

y

K
(x

,y
)

x = 0.5

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

y

K
(x

,y
)

x = 0.6

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

y

K
(x

,y
)

x = 0.7

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

y

K
(x

,y
)

x = 0.8

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

y

K
(x

,y
)

x = 0.9

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

y

K
(x

,y
)

x = 1.0

K
linear

(x,y)

K
min

(x,y)

Kχ2(x,y)

y > x

Figure 2.3: Visualization of the basis functions of linear,intersection,χ2 kernels and decision
stumps for one dimensional features.

observe that if the kernelK is additive, then the learned SVM classifier is also additive. Thus the
standard SVM training machinery provides an efficient way totrain additive classifiers compared
to the traditionalbackfittingalgorithm [40]. Additive classifiers also arise in boostingwhen the
weak-learners are functions of one dimension, for example,decision stumps,(xi > c). Hence the
standard AdaBoost algorithm [93], is yet another way of training additive classifiers.

We now show that the additive classifiers based on histogram intersection kernel are general,
i.e., can represent any additive function on the input features as a linear combination of intersection
kernel of the features as shown by the next theorem.

Theorem 2.5.1.Let x1,x2, . . . ,xn be points inRd ≥ 0 andf(xi) = f1(xi,1) + f2(xi,2) + . . . +
fd(xi,d), be an additive function, wherexi,j denotes the value ofj’th dimension of thei’th point.
Then there existsα1, α2, . . . , αn such thatf(xi) =

∑

j αjKmin(xi,xj), ∀i = 1, 2 . . . , n.

Proof. We prove this by showing that there exists a weight vectorw, in the Reproducing Kernel
Hilbert Space of the intersection kernel,Kmin, such thatw·φ(xi) = f(xi). First we show that there
is a weight vectorwk, for eachfk, such thatwk ·φ(xj,k) = fk(xj,k). This follows immediately from
the fact that the gram matrixGk, consisting of entriesGk

ij = min(xi,k, xj,k) is full rank for unique
xi,k, and the system of equations,αGk = fk, has a solution (if the values are not unique, one can
remove the repeated entries). Since the overall function isadditive, we can obtain the weight vector
w with the required property by stacking the weight vectors,wk, from each dimension. Thus by
representer theorem, there existsα such thatw · φ(xi) =

∑

j αjKmin(xi,xj) = f(xi).

Note that theα is shared across dimensions and this proof may be applied to any additive

CHAPTER 2. EVALUATION OF ADDITIVE KERNEL SVMS 13

0 0.2 0.4 0.6 0.8 1
−1.5

−1

−0.5

0

0.5

1

1.5

si
n(

2π
y)

y
0 0.2 0.4 0.6 0.8 1

0.75

0.8

0.85

0.9

0.95

1

1
−

 (
y

−
 0

.5
)2

y

0 0.2 0.4 0.6 0.8 1
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

0.
25

 <
 y

 <
 0

.7
5

y
0 0.2 0.4 0.6 0.8 1

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

ex
p(

−
10

0(
y

−
 0

.3
)2)

+
 e

xp
(−

10
0(

y
−

 0
.6

)2)

y

True
K

lin
K

min

Kχ2

y > x

Figure 2.4: Approximations of various one dimensional functions by linear, intersection,χ2 kernels
and decision stumps as the basis functions.

kernel which satisfies the property that the kernel in each dimension is full rank, for example the
χ2 kernel.

Thus the SVM classifier represents the overall function as a linear combination of kernel func-
tions in each dimension. The one dimensional functionsKi(si, xl,i) for a fixed value ofxl,i can be
thought of as a basis function for each dimension of the classifier. Figure 2.3 shows these basis
functions for the intersection andχ2 kernels. Figure 2.4 shows several one dimensional functions
approximated by a linear combination of10 basis functions centered at0.1, 0.2, . . . 1.0 and a con-
stant. The linear combination coefficients were found usinglinear least-squares regression. The
decision stumps(xi > c), gives us a piecewise constant approximation while the histogram in-
tersection gives a piecewise linear approximation andχ2 kernel gives smoother polynomial like
approximation. Compared to linear case, kernels like the intersection,χ2 kernel and decision
stumps are able to approximate these functions much better.

CHAPTER 2. EVALUATION OF ADDITIVE KERNEL SVMS 14

2.6 Previous Work

There are several approaches for speeding up classificationusing kernel SVM classifiers, which
we discuss briefly next.

Approximate Kernel SVMs For the histogram intersection kernel, Herbster [51] first proposed
the fast evaluation algorithm we presented in Section 2.2. In our earlier work [66] we indepen-
dently proposed the same method for exact classification along with the approximate method
described in Section 2.3, which is more general and applies to arbitrary additive kernels. Re-
cently, Rahimi and Recht [83], propose embeddings that approximate shift-invariant kernels, i.e.,
K(x,y) = f(|x − y|), using a feature mapΦ, such thatK(x,y) ∼ Φ(x) · Φ(y). Based on this
analysis and our own work [66, 65], Vedaldi and Zisserman [110] propose embeddings which ap-
proximate a class of additive kernels that are “homogeneous”. This allows one to use the explicit
form of the classifierf(x) = w · Φ(x), instead of the kernelized version, which can be more
efficient in some settings. We discuss some of these methods in the next chapter.

However during classification for additive kernels, the piecewise linear approximation we pro-
posed can be much faster. To see this observe that the piecewise linear approximation can be
written as a dot product of a weight vector corresponding to the values of the function sampled at
uniformly spaced points, with a sparse vector corresponding to the projection of the data on to a
uniformly spaced linear B-Spline basis centered at these points (also see [65]). In this represen-
tation, evaluating the classifier requires only two multiplications and one addition per dimension,
which can be much smaller compared to the approximate embeddings of [110].

Another line of approach applicable to Gaussian kernels is the work of Yang et al. [118] who
use the fast Gauss transform to build efficient classifiers – however this is applicable when the
feature dimension is very small, typically less than ten.

Reduced Set Methods. For general kernels, a class of methods, known as “reduced set meth-
ods”, approximate the classifier by constructing representations using a small subset of data points,
typically much smaller than the number of support vectors. These set of points can be the set of
input points themselves as in the work of [15, 79], where the most representative support vectors
are kept as a post processing step. Instead of having a singleapproximation, one can have a series
of approximations with more and more points to obtain a cascade of classifiers, an idea which has
been used in [89] to build fast face detectors. Another classof methods build classifiers by having
a regularizer in the optimization function which encourages sparseness, (eg.l1-normon the alphas)
or pick support vectors in a greedy manner till a stopping criteria is met [57]. These methods may
be able to reduce the number of support vectors by a order of magnitude, but are still significantly
slower than a linear SVM. Often this come at the expense of classification accuracy. Thus, these
approaches are not competitive when the kernel is additive compared to our approach.

CHAPTER 2. EVALUATION OF ADDITIVE KERNEL SVMS 15

Coarse to Fine methods. The coarse to fine approach for speeding up the classificationis pop-
ular in many realtime vision applications. Simpler features and classifiers are used to reject easy
examples quickly in a cascade. This idea has been applied to face [50, 10] and pedestrian de-
tection [116] to achieve an order of magnitude speedup in theoverall detection time. Methods
like branch and bound [58], context [52], bottom-up regions[92], Hough transformation [69, 62],
etc., improve efficiency by reducing the number of classifierevaluations. This paper improves
the efficiency of the underlying discriminative classifier,allowing more powerful classifiers to be
evaluated exponentially faster – in practice up to several thousand times faster than naive imple-
mentations and entirely complementary to the techniques mentioned for reducing the number of
classifier evaluations.

2.7 Experimental Results

Since its introduction, our ideas for efficiently computingweighted combination for additive ker-
nels has been applied to many applications like image-classification on Caltech-101 [31], PASCAL
Visual Object Challenge [28], handwritten digits [68], video retrieval (TRECVID [102]), near-
duplicate image detection [99], pedestrian detection frameworks combining static image features
and optical flow [114], efficient classifiers for training large scale data [65, 110, 115], etc. We
summarize some of these applications in Section 2.8.

We present experiments on several image classification and detection datasets and compare the
performance of linear, intersection as well as a non-linearkernel, such as radial basis, or polyno-
mial kernel. We also report the speedup obtained by the piecewise linear approximation compared
to the naive method of evaluating the classifier. Table 2.1 contains a summary of our results. The
piecewise linear approximations are as accurate as the exact additive classifier classifier with about
100 pieces on all datasets.On various datasets the intersection kernel SVM is significantly
better than the linear SVM and often comparable to rbf-kernel SVM, while offering up to
three orders of magnitude speedup. The details of each dataset and the features are presented
below.

2.7.1 Toy Example : Learning a circle

We illustrate the additive kernel approximation using a toyexample. The data is generated by
sampling points from a two dimensional Gaussian and all points within a certain radius of the
center belong to one class and the points outside belong to the other class as seen in Figure 2.5
(top-left).

A linear classifier works poorly in this case as no two dimensional line can separate the points
well. However, the intersection kernel SVM is able to achieve an accuracy of99.10% on this data.
This is because it is able to approximate the circle which is an additive function (x2 + y2 ≤ r),
using two one-dimensional curves,x2 andy2. Figure 2.5 shows the learned classifier represented
with varying number of bins using a piecewise linear approximation as well as the classification

CHAPTER 2. EVALUATION OF ADDITIVE KERNEL SVMS 16

Dataset Linear SVM IKSVM Kernel SVM Kernel Type

Toy Dataset (Raw features)
Accuracy 51.9% 99.10% 99.50% rbf, γ = 0.5

22×

MNIST Digits (OV-SPHOG)
Error Rate 1.44% 0.77% 0.56% poly, d = 5

1200×

USPS Digits (Raw Pixels)
Error Rate 11.3% 8.7% 4.0% poly, d = 3

24×

USPS Digits (OV-SPHOG)
Error Rate 3.4% 3.4% 3.2% poly, d = 5

26×

INRIA Pedestrian (SPHOG)
Recall at2 FPPI 43.12% 86.59% -

2594×

DC Pedestrians (SPHOG)
Accuracy 72.19± 4.40% 89.03± 1.39% 88.13± 1.43% rbf, γ = 175

2253×

Caltech 101 (SPHOG)
Accuracy (15 examples) 38.79± 0.94% 50.10± 0.65% 44.27± 1.45% rbf, γ = 250

37×
Accuracy (30 examples) 44.33± 1.33% 56.59± 0.77% 50.13± 1.19% rbf, γ = 250

62×

UIUC Cars (SPHOG)
Precision at EER 89.8% 98.5% 93.0% rbf, γ = 2.0

65×

Table 2.1: Summary of our results. We show the performance using a linear, intersection and non-
linear kernel as well as the speedup obtained by a piecewise linear approximation of the intersection
kernel classifier on each dataset. Therbf kernel is defined asK(x,y) = exp (−γ(x− y)2) and
thepoly kernel of degreed, is defined asK(x,y) = (1+γ(x·y))d. All the kernel hyper-parameters
were set using cross-validation.

CHAPTER 2. EVALUATION OF ADDITIVE KERNEL SVMS 17

accuracy as a function of the number of approximation bins. The accuracy saturates with10
bins. On more realistic datasets the number of bins requiredfor a good approximation depends
on of smoothness of the underlying function, but empirically 100 bins were sufficient for a good
approximation in all our experiments.

2.7.2 MNIST and USPS Digits

The MNIST dataset1 was introduced by Yann LeCun and Corinna Cortes and contains60, 000
examples of digits0 − 9 for training and10, 000 examples for testing. As before we construct
features based on histograms over oriented responses computed by convolving the image with a
Gaussian derivative filter withσ = 2 and bin the response in12 orientations. The images in
this dataset are28 × 28 pixels and we collect histograms over blocks of sizes28 × 28, 14 × 14
, 7 × 7 and4 × 4 pixels. We also found that adding overlapping blocks which overlap by half
the block size improves performance at the expense of increasing the feature vector dimension by
a factor of about four. This is similar in spirit of the overlapping blocks in the HOG descriptor
in the pedestrian detector of [21]. These features with an IKSVM classifier achieves an error rate
of 0.79%, compared to an error rate of1.44% using linear and0.56% using polynomial kernel.
Similar features and IKSVM achieves an error rate of3.4% on the much harder USPS dataset.
We refer the readers to [68], for a complete set of experiments for the task of handwritten digit
classification. Figure 2.6 shows the errors made by our digitrecognition system on the MNIST
dataset.

A key advantage is that the resulting IKSVM classifier is veryfast. The estimated number of
multiply-add operations required by the linear SVM is about40K while the intersection kernel
requires about125K operations including the time to compute the features. This is significantly
less than about14 million operations required by a polynomial kernel SVM reported in the work
of [23]. The reduced set methods [16](1.0% error) requires approximately650K operations, while
the neural network methods like LeNet5 (0.9% error) requires 350K and the boosted LeNet4 (0.7%
error) requires450K operations. For a small cost for computing features we are able to achieve
competitive performance while at the same time are faster atboth training and test time.

2.7.3 INRIA Pedestrians

The INRIA pedestrian dataset [21] was introduced as an alternate to the existing pedestrian datasets
(eg. MIT Pedestrian Dataset) and is significantly harder because of wide variety of articulated
poses, variable appearance/clothing, illumination changes and complex backgrounds. Linear ker-
nel SVMs with Histograms of Oriented Gradients (HOG) features achieve high accuracy and speed
on this dataset [21]. We use the multi-scale HOG features introduced in [66] and train a intersec-
tion kernel SVM on these features. The single scale HOG used in the original paper [21] when
used with IKSVM provides small improvements over the linearkernel, similar to those observed

1http://yann.lecun.com/exdb/mnist/

CHAPTER 2. EVALUATION OF ADDITIVE KERNEL SVMS 18

−5 0 5
−5

−4

−3

−2

−1

0

1

2

3

4

5
Training Data

x

y

−1 0 1 2
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

x value

f x(x
)

learned function: x−axis

−2 −1 0 1 2
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

y value

f y(y
)

learned function: y−axis

1 2 4 8 25 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

cl
as

si
fic

at
io

n
ac

cu
ra

cy

number of bins

approximation accuracy

1

2

4

8

25

100

Figure 2.5: Toy example. (Top Left) The training data (Bottom Left) Accuracy of the learned
classifier approximated by a piecewise linear function of varying number of bins. (Top Right and
Top Left) Learned functions on x and y dimensions respectively as well as the piecewise linear
approximations using a varying number of bins.

CHAPTER 2. EVALUATION OF ADDITIVE KERNEL SVMS 19

4 → 9

116

2 → 7

322

5 → 3

341

6 → 0

446

3 → 5

450

8 → 2

583

4 → 9

741

3 → 5

939

8 → 9

948

1 → 3

957

6 → 0

1015

4 → 6

1113

7 → 2

1227

9 → 4

1233

9 → 5

1248

7 → 1

1261

8 → 2

1365

5 → 3

1394

8 → 7

1531

9 → 5

1710

5 → 2

1738

8 → 3

1879

9 → 4

1902

5 → 3

2036

4 → 9

2054

2 → 0

2099

6 → 0

2119

4 → 9

2131

9 → 8

2294

9 → 1

2388

9 → 4

2407

2 → 0

2463

2 → 4

2489

5 → 3

2598

6 → 1

2655

8 → 0

2897

9 → 5

2940

3 → 5

2954

6 → 0

3031

8 → 9

3290

6 → 0

3423

6 → 4

3521

5 → 0

3559

8 → 9

3728

4 → 6

3781

7 → 8

3809

1 → 3

3907

7 → 1

4028

9 → 8

4079

1 → 7

4202

2 → 7

4206

9 → 7

4225

7 → 3

4239

2 → 8

4249

9 → 5

4285

3 → 2

4444

6 → 8

4572

3 → 5

4741

9 → 8

4762

8 → 0

4808

6 → 0

4815

8 → 6

4880

8 → 2

5750

5 → 3

5938

3 → 8

5956

3 → 0

6012

8 → 9

6556

1 → 8

6573

7 → 1

6577

8 → 3

6626

2 → 1

8060

8 → 5

8409

7 → 2

9010

7 → 2

9016

6 → 4

9680

9 → 7

9693

5 → 6

9730

4 → 9

9793

2 → 7

9840

Figure 2.6: All the errors made by the classifier on the MNIST dataset. On each imagea → b
means that the digita was misclassified asb.

CHAPTER 2. EVALUATION OF ADDITIVE KERNEL SVMS 20

Classification Method Detection Rate (2 FPPI) Speedup
Linear SVM 43.12 % -
IKSVM (binary search) 86.59 % 473×
IKSVM (piecewise linear) 86.59 % 2594×
IKSVM (piecewise constant) 86.59 % 3098×
Dalal & Triggs [21] 79.63 % -
Dalal & Triggs [21]* 82.51 % -

Table 2.2: Detection rate at2 FPPI on INRIA person dataset. The last run of [21] is obtained
by running the detector using a finer “scaleratio” of1.05 between successive layers of the image
pyramid, instead of the default1.1.

by using the rbf-kernel. We also found that the HOG withl1-normalization of the gradient based
features works better with the intersection kernel. The multi-scale HOG however outperformsl1-
normalized HOG. Results are shown in Table 2.2 using100 bin approximation. Figure 2.7 shows
sample detections on this dataset.

2.7.4 Daimler Chrysler Pedestrians

We use the Daimler Chrysler pedestrian benchmark dataset, created by Munder and Gavrila [74].
The dataset is split into five disjoint sets, three for training and two for testing. Each training set
has5000 positive and negative examples each, while each test set has4900 positive and negative
examples each. We report results by training on two out of three training sets at a time and testing
on each of the test sets to obtain six train-test splits. Due to small size of the images (18 × 36),
we only compute the multi-level features with only three levels (L = 3) of pyramid with cell sizes
18× 18, 6 × 6 and3 × 3 at levels1, 2 and3 respectively. The block normalization is done with a
cell size ofwn × hn = 18 × 18. The features at levell are weighted by a factorcl = 1/4(L−l) to
obtain a656 dimensional vector, which is used to train an IKSVM classifier.

The classification results using the exact methods and approximations are shown in Table 2.3.
Our results are comparable to the best results for this task [74]. The IKSVM classifier is comparable
in accuracy to the rbf-kernel SVM, and significantly better than the linear SVM. The speedups
obtained for this task are significant due to large number of support vectors in each classifier. The
piecewise linear with30 bins is about2000× faster and requires200× less memory, with no loss
in classification accuracy. The piecewise constant approximation on the other hand requires about
100 bins for similar accuracies and is even faster.

Our unoptimized MATLAB implementation for computing the features takes about about17ms
per image and the time for classification (0.02ms) is negligible compared to this. Compared to
the 250ms required by the cascaded SVM based classifiers of [74], our pipeline is15× faster.
Figure 2.8 shows some of the errors made by our classifier.

CHAPTER 2. EVALUATION OF ADDITIVE KERNEL SVMS 21

Figure 2.7: Sample pedestrian detections on the INRIA person dataset using spHOG + IKSVM
classifier.

Classification Method Accuracy(%) Speedup
Linear SVM 72.19± 4.40 -
IKSVM (binary search) 89.06± 1.42 485×
IKSVM (piecewise linear) 89.03± 1.39 2253×
IKSVM (piecewise constant) 88.83± 1.39 3100×
RBF-SVM 88.85± 1.13 –

Table 2.3: Accuracy on Daimler Crysler Pedestrians datasetfor various methods.

Figure 2.8: (Top Row) False negatives and (Bottom Row) falsepositives of the classifier on the
Daimler-Chrysler pedestrian dataset.

CHAPTER 2. EVALUATION OF ADDITIVE KERNEL SVMS 22

15 examples,115.2± 15 SVs 30 examples,185.0± 26 SVs
Classification Method Accuracy(%) Speedup Accuracy(%) Speedup
Linear SVM 38.79± 0.94 - 44.33± 1.33 -
IKSVM (binary search) 50.15± 0.61 11× 56.49± 0.78 17×
IKSVM (piecewise linear) 50.10± 0.65 37× 56.59± 0.77 62×
IKSVM (piecewise constant) 49.83± 0.62 45× 56.11± 0.94 76×

Table 2.4: Classification accuracy of various methods on Caltech-101 dataset using15 and 30
training examples per category. The piecewise linear classifiers are up to60× faster without loss
in accuracy over the exact method.

2.7.5 Caltech101

Our next set of experiments are on Caltech-101 [31]. The aim here is to show that existing methods
can be made significantly faster, even when the number of support vectors in each classifier is
small. We use the framework of [61] and use our own implementation of their ”weak features”
and achieve an accuracy of56.49% (compared to their54%), with 30 training and test examples
per class and one-vs-all classifiers based on IKSVM. The performance of a linear SVM using the
same features is about44.33%, while that of a rbf kernel is50.13%. The IKSVM classifiers on
average have185 support vectors and a piecewise linear approximation with60 bins is62× faster
and the piecewise constant approximation is76× faster than a standard implementation, with no
loss in accuracy (see Table 2.4).

It is interesting to note the performance of one-vs-one classifiers as they are faster to train. With
15 training and50 test examples per category, one-vs-one classifiers give an accuracy of47.43 ±
0.37 for intersection, compared to39.58 ± 0.78 for linear kernel, with5-fold cross validation.
Increasing with number of training examples to30, improves the performance to53.80± 2.43 for
intersection kernel compared to45.66± 2.63 for linear kernel.

2.7.6 UIUC Cars

This dataset was collected at UIUC [1] and contains images ofside views of cars. The training
set consists of550 car and500 non-car images. We test our methods on the single scale image
test set which contains170 images with200 cars. The images are of different sizes themselves
but contain cars of approximately the same scale as in the training images. Results are shown in
Table 4.7. Once again the IKSVM classifier outperforms both the linear and the rbf kernel SVM
and is comparable to the state of the art. Figure 2.9 shows some of the detections and mis-detections
on this dataset.

CHAPTER 2. EVALUATION OF ADDITIVE KERNEL SVMS 23

Classification Method Performance(%) Speedup

Linear SVM 89.8 -
IKSVM (binary search) 98.5 23×
IKSVM (piecewise linear) 98.5 65×
IKSVM (piecewise constant) 98.5 83×
RBF-SVM 93.0 -

Agarwal & Roth [1] 79.0 -
Garget al. [41] 88.0 -
Freguset al. [35] 88.5 -
ISM [62] 97.5 -
Mutch & Lowe [76] 99.6 -
Lampertet al. [58] 98.5 -

Table 2.5: Performance at Equal Error Rate on UIUC cars dataset.

Figure 2.9: Example detections (green) and mis-detections(red) on UIUC cars dataset.

CHAPTER 2. EVALUATION OF ADDITIVE KERNEL SVMS 24

2.8 Conclusion

In this paper we showed that a class of non linear kernels called additivekernels lead to SVM
classifiers which can be approximately evaluated very efficiently. Additive kernels are strictly
more general than linear kernels and often lead to significant improvements and our technique
brings down the memory and time complexity of classificationusing additive kernels to only a
small constant multiple of that of a linear SVM. Additive kernels are widely used in computer
vision and our technique has found wide spread applicationsin many classification/detection tasks.

In addition our technique has lead to efficient training algorithms for additive classifiers which
we discuss in the next chapter, and has sped up many applications involving histogram based com-
parison, like multiple kernel learning based detectors [111] and kernel methods likek-means [117],
PCA/LDA/regression, etc.

25

Chapter 3

Training of Additive Classifiers

Too much training data can make learning a bottleneck. Quitesuddenly this is becoming a
real danger for computer vision research. Efficient marketplaces for small increments of human
labeling effort such as Mechanical Turk [2, 103] are making possible huge collections of im-
ages labeled and verified by real people at a rate of multiple images per penny as exemplified by
image-net.org [55] a repository of millions of image examples of the wordnet [32] hierarchy.
This complements a range of dataset collection efforts fromsemi-automatic [6, 63, 95, 19, 85] with
10, 000-600, 000+ images to fully manual but unpaid [91] with50, 000+ labeled objects to more
traditional datasets [30, 47]. All of which means that thousands to millions of training examples
may become the norm for object recognition.

In a sense this is already the case for training object detectors. It is inexpensive to collect many
positive images of, say, pedestrians and images of non-pedestrians. Training for a high quality
detector typically proceeds in rounds of training a detector and then evaluating the detector on
datasets to identify additional false positives to use for future training rounds. When detectors are
run using a sliding window at multiple scales in a large imagethere can easily be100, 000 or more
potential negative training examples per image.

This large amount of data dictates the algorithms that are used. Approximate nearest neighbor
techniques in (relatively) high dimensional feature spaces that require no training but may learn
parameters for hashing [108, 54, 97, 56] have been applied toimage classification. Even these are
too slow for detection where boosted decision trees and linear classifiers are the default [21, 112].
Contrast this with the most accurate systems for object recognition in settings where efficiency is
less critical, usually obtained using kernelized support vector machines (SVMs) that must compare
a test image (or region) to each support vector [8, 109, 61, 46, 20].

In the earlier chapter, we pointed out that many of these SVMswere based on additive kernels
and had a classification function with an additive form that could be efficiently approximated and
evaluated nearly as fast as a linear classifier. We did not however address the problem of efficiently
training classifiers, relying on standard training for kernelized SVM classifiers and then fitting their
fast additive classifier to match the SVM classifier.

Our main contribution is to show that classifiers based on additive models can be trained di-

image-net.org

CHAPTER 3. TRAINING OF ADDITIVE CLASSIFIERS 26

rectly in a max margin framework extremely efficiently, and achieve approximately the same ac-
curacy as first training an SVM and then fitting an additive classifiers to the resulting decision
function as was done in [66] while taking as little as1% of the training time. We achieve this
remarkable speedup by a special encoding of the learning problem that allows us to take advantage
of (our own modification of) recent techniques for training linear classifiers [98, 29].

The result is something of a “free lunch” (or at least very inexpensive) for computer vision
researchers because the combination of our fast training techniques with fast evaluation make
training and testing an additive classifier only a small (constant factor) slower than training a linear
classifier. At the same time the additive classifiers produceerror rates that are almost always
significantly lower than those for a linear classifier on computer vision data.

In addition our optimization method is derived from PEGASOS[98] and uses stochastic sub-
gradient descent which allows us to present an “on-line” version of our approach streaming data
from out of core and a very efficient interactive training approach for classifiers used in detection.

We report experimental results quantifying training time and accuracy on on image classifica-
tion tasks and pedestrian detection, including detection results better than the best previous on the
INRIA dataset.

3.1 Background

In this paper we train parametric additive classifiers directly, but some of our choices for repre-
sentation and embedding are motivated by considering SVMs both with linear and non-linear but
additive kernels.

The history of the features and kernels used for pedestrian detection and image classification
is quite complex we round up the most closely related work. Embeddings that allow sub-linear
search for similar distributions of features with respect to the Earth Mover’s distance were intro-
duced by Thaper & Indyk [54] and later combined with the intersection kernel (aka min-kernel) by
Grauman et al. [46] to train accurate image classifiers. Lazebnik et al. [61] refined the embedding
by using multiple levels for spatial bins, but not for other dimensions of features. One level of
Lazebnik’s simple features are very similar to the Histogram of Oriented Gradient (HOG) feature
from Dalal and Triggs [21] which was carefully developed to work well with a linear kernel for
pedestrian detection and has also been used as the basis of a structured prediction approach to
pedestrian detection [33]. The mutli-scale features used by Maji et al. [66] fall between those of
[61] and [21].

Earlier Viola & Jones [112] developed their very successfulboosting algorithm for training
a cascade for face detection. Boosting may seem unrelated tothe kernel discussion above, but
recent work demonstrates random approximations to boosting using linear SVM training as an
intermediate procedure [84]. Furthermore if the weak learners are additive so is a boosted function.
Using a random selection of weak learners and our approach may be an effective alternative to [84].

Additive models are well known in the machine learning community [49, 26], and efficient
evaluation for non-parametric kernelized SVMs with additive kernels is addressed exactly in [51,

CHAPTER 3. TRAINING OF ADDITIVE CLASSIFIERS 27

66] and approximately in [66] which motivates much of our analysis of the encodings we use to
transform our problem to a form suitable for efficient optimization.

The data encoding strategy used in Sparse Network of Winnows(SNoW) [119], can be seen as a
special case of our own and we include experiments that verify advantages of the SNoW encoding
strategy over linear in some cases, while showing analytically and empirically that our approach
provides significantly better performance.

Our own optimization procedure generalizes that of the veryimpressive PEGASOS [98] and
in comparison experiments we use LIBLINEAR based on [29]. Both represent amazing progress
in training efficiency. While the stochastic nature of PEGASOS may be reminiscent of neural
network approaches, differences are the max margin formulation, and one key to its efficiency,
the renormalization at each step based on the regularization parameter. This is what moves its
convergence from1

λ2 of other stochastic gradient descent methods to1
λ
.

3.2 Overview

We are interested in learning classifiers based on additive models. The decision functions are
sign(f(x)) where

f(x) =
∑

i

fi(xi) (3.1)

We call fi the ith “coordinate function”, it operates on theith coordinate ofx. Although addi-
tive models are often non-parametric, here we are specifically interested in parametric coordinate
functions that can be learned efficiently. For labeled training data{(xk, yk)}k=1...n with the labels
yk ∈ {−1,+1} and the dataxk ∈ R

d learning involves finding thef that minimizes a cost function
measuring both the training error or lossℓ and a regularization penaltyR

f ∗ = argminfR(f) +
1

n

∑

k

ℓ(yk, f(xk)) (3.2)

In the rest of the paper we will use the hinge lossℓ(yk, f(xk)) = max(0, 1−ykf(xk))motivated
by the generalization advantages of large margins, and by the interpretation off as the decision
function of an SVM with additive kernel.

We explore representations that transform Equation 3.2 into an efficiently solvable optimiza-
tion. If w is a vector of parameters specifying the parametric function fw then we want to encode
w as ŵ and a data pointx as x̂ so thatfw(x) ≈ ŵ′x̂ where we emphasize that this may be
approximate. After encoding we can write the optimization in Equation 3.2 as

fw∗

= argminfwR(ŵ) +
1

n

∑

k

max(0, 1− yk(ŵ′x̂k)) (3.3)

CHAPTER 3. TRAINING OF ADDITIVE CLASSIFIERS 28

If each coordinate functionfi(xi) = wixi andR(w) = w′w thenŵ = w andx̂ = x and this
is simply a linear support vector machine (without bias). More generally we can use this formu-
lation if thefi are a linear combination of a finite number of basis functions. In our experiments
fi are piecewise linear with uniformly spaced breaks. This choice is motivated by simplicity and
the analysis in the earlier chapter, showing that decision functions with that form could effectively
approximate the decision function of SVMs using the min kernel while being very efficient to eval-
uate, but we emphasize that other spline functions can be used easily. The choice of representations
can be thought of as a change of basis or regularization. We discuss this in Section 3.6.

Depending on the form of the regularization functionR we can use different approaches for
optimization. For instance whenR(ŵ) = λŵ′ŵ we can use an “off the shelf” SVM package on
the encoded data{(x̂k, yk)}. On the other hand, for the “full” version of our approach – motivated
by regularization for kernelized SVMs – we present a modifiedversion of the the PEGASOS [98]
stochastic sub-gradient descent (with careful normalization) linear SVM solver that can handle
R(ŵ) = w′Hw for positive definiteH. Only the case ofH = I, the identity, is addressed by [98].

Section 3.3 goes into options for piecewise linear encodingin detail, including analysis of rep-
resentation error and the implications for choices of regularizationR. Then Section 3.4 presents
our modified version of PEGASOS. In Section 3.6, we connect our learning algorithm to the addi-
tive model learning literature. In particular we adapt apenalized splineformulation due to Eilers
and Marx [26], to train additive classifiers efficiently. We show interesting connections between
B-Spline basis and histogram intersection kernel and show that for a particular choice of regu-
larization and degree of the B-Splines, our proposed learning algorithm closely approximates the
histogram intersection kernel SVM.

3.3 Encoding

We will consider the encoding process described in Section 3.2 as an approximation to the em-
bedding implied by a specific additive kernel, themin or histogram intersection kernel,Kmin, also
known as the intersection kernel or min kernel:

Kmin(x, z) =
n
∑

i=1

min (x(i), z(i)) (3.4)

The Reproducing Kernel Hilbert Space (RKHS) of themin kernel is universal with respect to
additive functions, i.e. any additive function on the inputfeatures can be expressed as dot product
of a weight vector and the features in the RKHS. This is analogous to the fact that weighted
sum of (possibly infinite) decision stumps can universally express any one dimensional function.
This coupled with the fact themin kernel is conditionally positive definite (CPD) for real valued
x allows one to usemin kernels to learn general additive models on real valued features. CPD
kernels are a set of kernels which satisfy a weaker set of conditions than positive definite kernels,
but can be easily modified to yield a PD kernel. For themin kernel this corresponds to adding a

CHAPTER 3. TRAINING OF ADDITIVE CLASSIFIERS 29

large positive constant. Other additive kernels like the−χ2 induce RKHS which can also express
arbitrary functions, but we often find that these differences in the set of basis functions tend to not
matter on large training datasets, which is our focus.

First we show explicitly that any SVMh(x) with support vectors{vk} and additive kernel
K(x,y) =

∑

i Ki(xi, yi) is additive:

h(x) =
∑

j

αjK(x,vj) + b (3.5)

=
∑

j

αj

∑

i

Ki(xi, v
j
i) + b (3.6)

=
∑

i

∑

j

αjKi(xi, v
j
i) + b (3.7)

=
∑

i

fi(xi) + b (3.8)

wherefi(xi) =
∑

j αjKi(xi, v
j
i). For the histogram intersection kernelKi is simplymin. It is

sufficient to consider encoding for each dimension separately (as theh is additive) so consider
encoding two coordinate valuesx andy both in [0, 1] for simplicity. In this case the goal of an
encoding for the two is thatmin(x, y) = x̂ŷ

One straight forward encoding is to choose a fixed discretization scale and represent the fea-
tures in the “unary”. LetN denote the number discrete levels andU(n), n ∈ Z denote the unary
representation of the numbern, i.e. U(3) = 1, 1, 1, 0, 0, 0, U(6) = 1, 1, 1, 1, 1, 1, etc, andR(.)
denote the rounding function, then we define our first featureencoding:

φ1(x) =

√

1

N
U (R (Nx)) (3.9)

Intuitively this encoding discretizes the feature into a fixed set of levels and represents each feature
using the unary representation. The kernel can then be defined by

min(x, y) ≈ < φ1(x), φ1(y) >

= <

√

1

N
U (R (Nx)) ,

√

1

N
U (R (Ny)) >

=
1

N
< U (R (Nx)) , U (R (Ny)) >

An alternate representation is to use an encoding which instead of rounding to the nearest bin,
keeps more detailed information about the values. We define the alternate representationU ′(r)
for any real numberr >= 0 as the unary representation, but replacing the first zero in the unary
representation ofU(⌊r⌋) by α(r) = r − ⌊r⌋. As an exampleU ′(3.5) = 1, 1, 1, 0.5, 0, 0

φ2(x) =

√

1

N
U ′ (Nx) (3.10)

CHAPTER 3. TRAINING OF ADDITIVE CLASSIFIERS 30

The dot product then becomes:

min(x, y) ≈ < φ2(x), φ2(y) >

=
1

N
< U ′(Nx), U ′(Ny) >

We consider the approximation quality for both these linearencodings in the next section.

3.3.1 Approximation Quality

We will present the worst case and average approximation errors for both these embeddings. In
both cases :

Emax
φ (x, y) = |min(x, y)− < φ(x), φ(y) > | < 1

N
(3.11)

However we can be more precise about these errors for each of the kernels. Themin operation is
symmetric so we need only consider the case whenx ≤ y andmin(x, y) = x.

φ1 : Sincex ≤ y we haveR(Nx) ≤ R(Ny). So< U(R(Nx)), U(R(Ny)) >= R(N(x)).
Therefore the max approximation error

Emax
φ1

(x, y) = max |x− R(Nx)/N | = 1

2N
(3.12)

φ2 : Sincex ≤ y, there can only be two cases:

1. ⌊Nx⌋ < ⌊Ny⌋ : In which case the embedding is exact because:

< φ2(x), φ2(y) > = < U ′(Nx), U ′(Ny) >

=
1

N
(⌊Nx⌋ + α(Nx))

=
1

N
(⌊Nx⌋ +Nx− ⌊Nx⌋)

= x

= min(x, y)

2. ⌊Nx⌋ = ⌊Ny⌋ = Nm: Denoteα(Nx) by a andα(Ny) by b. Then we havemin(x, y) =
x = m+ a

N
, and

< φ2(x), φ2(y) > = < U ′(Nx), U ′(Ny) >

=
1

N
(⌊Nx⌋ + ab)

=
1

N
(Nm+ ab)

= m+
1

N
ab

= min(x, y) +
1

N
(ab− a)

CHAPTER 3. TRAINING OF ADDITIVE CLASSIFIERS 31

Figure 3.1: From left to rightmin(x, y), φ1(x)φ1(y) andφ2(x)φ2(y) with N = 10. Note that the
φ2 encoding is very close tomin.

First notice that in this the dot product is always an underestimate ofmin value asab−a ≤ 0
with a, b ∈ [0, 1]. Also the max approximation error is :

Emax
φ2

(x, y) = max
a≤b,a,b∈[0,1]

1

N
|ab− a| = 1

4N

If we assume thatx, y are distributed uniformly in[0, 1] × [0, 1], then we can also compute
the expected error,Eavg

φ1
= 1

4N
, whileEavg

φ2
= 1

12N2 . This shows that the encoding error decreases
with the number of bins and theφ2 encoding is twice as accurate as theφ1 encoding in terms of
max error, and significantly better if we care about the average error under a uniform distribution.
Figure shows the kernel function formin, φ1 andφ2 for N = 10.

3.3.2 Sparse Version of Encoding and Regularization

We saw that themin kernel can be approximated to withinǫ usingO(1/ǫ) bins forφ1 andO(1/
√
ǫ)

bins forφ2. Hypothetically we could train a linear SVM on those encodings which would be an
approximation the the SVM on the original data using an intersection kernel. However these rep-
resentations are dense, and training a linear SVM on such dense representations become infeasible
as the number of dimensions become large. Instead we proposea sparse representation for each of
the embeddings given by:

φs
2(x) =

1√
N
(i : 1− a, i+ 1 : a) (3.13)

(a vector of all zeros except1√
N
(1−a) at positioni and 1√

N
a at positioni+1) wherea = α(Nx) as

defined earlier, andi = ⌈Nx⌉ and features are represented byindex : value pairs. The transform
for φs

1 is the same except both1−a anda are rounded to0 or 1, resulting in an encoding similar to
that of SNoW [119] where they train a linear SVM on these sparse features. The SNoW encoding
however does not preserve the underlyingmin based similarity measure. We now propose an
encoding forw (as in Equation 3.3) that is compatible with usingφs

{1,2} to encodex.
If w ∈ R

N is a weight vector (for instance found by fitting an SVM) on encoded dataφ2(x) ∈
R

N andws ∈ R
N+1 a weight vector on the same data encoded asφs

2(x) ∈ R
N+1. We wantw such

CHAPTER 3. TRAINING OF ADDITIVE CLASSIFIERS 32

thatw · φ2(x) = ws · φs
2(x). The required relationship is

ws(i+ 1) = ws(i) + w(i), andws(1) = 0 (3.14)

An important point is how to compute the regularization penalty on ws. Again if we were
hypothetically training a linear SVM on the denseφ2 encodings of the data the regularization
penalty would bew′w.

The corresponding regularization penalty forws is then:

w′w =
N
∑

i=1

w(i)2 =
N
∑

i=1

(ws(i+ 1)− ws(i))2 (3.15)

This can expressed asws′Hws whereH is tridiagonal, with the form:

H =

1 −1 0
−1 2 −1

−1 2 −1
. . .
−1 2 −1
0 −1 1

So far our discussion has dealt with only a single coordinate. All encodings are done on a coor-
dinate by coordinate basis and appended. For instance if we useN = 20 divisions per coordinate
and have 100 dimensional featuresx ∈ R

100 thenφs
2(x) ∈ R

2000 but has at most2× 100 non-zero
entries. SimilarlyH is 2000 × 2000 and all zeros except for100 blocks as described above along
the diagonal. In what follows we only use the sparse encodings, soφ1 will meanφs

1 andφ2 will
meanφs

2.

3.4 Optimization

Once encoding the data is done and we have chosen a regularization penalty of the formR(ŵ) =
ŵ′Hŵ as described above we need to find parametersŵ∗ that minimize the cost functionc,

c(ŵ) =
λ

2
ŵ′Hŵ +

1

n

∑

k=1...n

max(0, 1− yk(ŵ′x̂k)) (3.16)

whereλ is the regularization vs loss tradeoff. WhenH is the identity this is simply optimization
to fit a linear SVM. In that case a standard linear SVM solver can be used although ideally one that
can efficiently utilize a sparse representation forx̂ such as [29, 98].

For our regularization motivated by the min kernel,H is the tri-diagonal matrix described in
Section 3.3.2. And we use our modified version of the PEGASOS algorithm for fitting linear
SVMs [98]. The original analysis of PEGASOS depends on two aspects of the objective function

CHAPTER 3. TRAINING OF ADDITIVE CLASSIFIERS 33

c – first thatc be strongly convex which is true in our case as long asH is positive definite1, and
second that the optimum̂w∗ has normŵ∗′ŵ∗ ≤ 1

λ
, in our casêw∗′Hŵ∗ ≤ 1

λ
.

Next we show our modification of PEGASOS in its entirety in Algorithm 1. Note that ifH is
replaced with the identity matrix then this is exactly the PEGASOS algorithm. When we use the
tri-diagonalH and either encoding,φ2 or φ2 for x̂ as described in Sec. 3.3.2 we call the algorithm
“piecewise linear sub-gradient descent” (PWLSGD).

Algorithm 1 Our modification of PEGASOS (PWLSGD)
Require: S, T, λ > 0 andk > 0

initialize ŵ1 randomly, such that̂w′
1Hŵ1 ≤ 1

λ

for t = 1 to T do
ChooseAt ⊂ S, where|At| = l
SetA+

t = {(x̂, y) ∈ At : y 〈ŵ, x̂〉 < 1}
Setηt = 1

λt

Setŵt+ 1

2

= ŵt − ηt

(

λŵtH+ 1
l

∑

(x,y)∈A+
t

yx̂
)

Setŵt+1 = min

(

1, 1/
√
λ

ŵ
t+1

2

′Hŵ
t+1

2

)

ŵt+ 1

2

end for

HereS = {(xk, yk)}k=1...n is all of the training data,At is a random subset ofk chosen for
the tth iteration, andA+

t is the subset of these which violate the margin constraint using estimate
of weight vectorŵt in stept. From [98] the error|c(ŵt) − c(ŵ∗)|∞ ≤ ǫ after Õ(1

δǫλ
) steps with

probability1 − δ whenk = 1 and afterÕ(1
ǫλ
) steps whenk = n. Intermediate values ofk fall

between these bounds. In practice the convergence depends on the number of margin violations –
basically the difficulty of the classification problem.

We mention briefly some differences in computational complexity from the original PEGA-
SOS. Our variation requires computingH′ŵt andŵ′

t
Hŵt for each update. For tridiagonalH this

costs roughly3 times the computation forH = I, hence the small multiple in computation time. It
is possible that more efficient implementations than our current one, using loop unrolling and other
techniques, might be able to hide some of this added complexity. In addition for the particular en-
codingsφ1 andφ2 the encoding pattern in our datâx is known and fixed (exactly one or exactly
two coefficients can be non-zero in each coordinate block) sowe can avoid using linked lists for
representing the data.

On-line and Interactive Learning: One significant benefit of basing optimization on a stochas-
tic sub-gradient descent method such as PEGASOS is that we can perform learning in stages. For

1Our tri-diagonalH is not positive definite. Adding a small constant (e.g. 0.01)to the first diagonal entry in each
coordinate block the diagonal makes it positive definite without effecting the accuracy on experiments. Except for
smallk <= 3 using the original semidefiniteH has no effect on the convergence rate.

CHAPTER 3. TRAINING OF ADDITIVE CLASSIFIERS 34

instance in the process of training a detector it is evaluated on many images, false positives (or
missed detection) are added to a new training set. After evaluating several hundred or thousand of
these a new classifier is trained [21]. We can actually updatethe classifier by running additional
steps of stochastic gradient descent using the new data fromeach image. As long as the distribution
of images is randomized the convergence estimates are very similar. This approach also avoids the
memory bottle-neck reported by [21].

The above assumes a priori labeled data, but this does not need to be the case. A human
could mark false positives and missed detections in each successive image in an interactive setting.
Running a few iterations of training per image can be done faster than humans can label.

3.5 Experimental Results

We present training time and testing accuracy numbers for each of the proposed methods. We have
a choice of encoding: identity,φ1, andφ2, and a choice of learning algorithm: linear (w′w reg-
ularization) using an off the shelf SVM solver, or a piecewise linear classifier (w′Hw regulariza-
tion) using our PWLSGD algorithm on the encoded features. Wepresent results on Caltech-101,
Daimler-Crysler dataset and INRIA pedestrian dataset and show that all encodings outperform
linear classifiers on the non-encoded features by significant amount, and that the encoding and
training can be done in a small time compared to training a kernel SVM.

3.5.1 Caltech-101

Our first set of experiments are on the Caltech-101 dataset [30]. We use this dataset to show that
the accuracy using spatial pyramid match kernel introducedin [61] can be matched using our
embeddings. For each category we select either15 or 30 random examples for training and test
it random set of at most50 training examples as some categories have fewer than50 remaining
for test. We report numbers by averaging the class accuracy for 101 categories using5-fold cross
validation. All the parameters for the models are obtained using by optimizing the performance on
a fixed set of15 training and15 test examples per category and we use the same parameters for
both15 and30 training images. We use our own implementation of the “weak features” introduced
in [61] and achieve an accuracy of50.15% and56.49% , with 15 and30 training examples per class
and one-vs-all SVM classifiers based on the spatial pyramid match kernel. This kernel reduces to
a min (or intersection) kernel on histograms of oriented gradients obtained from each level of a
spatial pyramid, concatenated together after suitable weighting. Table 3.1 shows the cumulative
training time and accuracies of various methods on this dataset. Linear SVMs are the fastest
but also perform the worst. Theφ2 encoding with our piecewise linear training algorithm achieves
accuracy similar to the intersection kernel SVM at lower training times. Even a linear SVM trained
on theφ2 encoded features offers a good accuracy improvement over a linear SVM trained on the
raw features at the cost of a small increase in training time.The accuracy using snow encoding
(φ1) is quite worse possibly because of quantization.

CHAPTER 3. TRAINING OF ADDITIVE CLASSIFIERS 35

15 examples 30 examples
Encoding Training Algorithm Training Time(s) Accuracy(%) Training Time(s) Accuracy(%)
identity LIBLINEAR 18.57 (0.87) 41.19 (0.94) 40.49 (0.80) 46.15 (1.33)
identity LIBSVM (int kernel) 844.13 (2.10) 50.15 (0.61) 2686.87 (4.30) 56.49 (0.78)

snow=φ1 LIBLINEAR 45.22 (1.17) 46.02 (0.58) 89.68 (0.93) 51.64 (1.02)
φ2 LIBLINEAR 42.31 (1.43) 48.70 (0.61) 101.97 (1.09) 54.79 (1.24)
φ2 PWLSGD 238.98 (2.49) 49.89 (0.45) 291.30 (1.98) 55.35 (0.72)

Table 3.1: Cumulative training time in seconds(stdev)and mean class accuracy(stdev)for various
encodings and algorithms on Caltech 101 dataset using5 fold cross validation.

Encoding Training Algorithm Training Time(s) Accuracy(%)
identity LIBLINEAR 1.89 (00.10) 72.98 (4.44)
identity LIBSVM (int. kernel) 363.10 (27.85) 89.05 (1.42)

snow=φ1 LIBLINEAR 2.98 (00.33) 85.71 (1.43)
φ2 LIBLINEAR 1.86 (00.04) 88.80 (1.62)
φ2 PWLSGD 3.18 (00.01) 89.25 (1.58)

Table 3.2: Training time in seconds (stdev) and accuracy (stdev) of various algorithms on the
Daimler Chrysler Pedestrian dataset. Each training set has20, 000 features of656 dimensions and
it takes about1.84(0.006) seconds to encode them.

3.5.2 Daimler Chrysler Pedestrian Dataset

Our second set of experiments are on the Daimler Chrysler pedestrian benchmark dataset, created
by Munder and Gavrila [74]. The dataset is split into five disjoint sets, three for training and two
for testing. Each training set has5000 positive and negative examples each, while each test set has
4900 positive and negative examples each. We report the trainingtimes and accuracies by training
on two out of three training sets at a time and testing on each of the test sets. We use the same
spatial pyramid of histograms of oriented gradients features as before. Once again we optimize the
parameters on one split and keep the parameters fixed for all the remaining runs. Table 3.2, shows
the performance of various algorithms on this dataset. Onceagain theφ2 encoded features with
the piecewise linear training obtains accuracy similar to the intersection kernel SVM at requiring
only about1% of its training time.

3.5.3 INRIA Pedestrians

We present further results on the INRIA pedestrian dataset using two slightly different features.
This is the largest dataset we experiment on training on up toabout50, 000 features of about4000

CHAPTER 3. TRAINING OF ADDITIVE CLASSIFIERS 36

Encoding Training Algorithm Training Time (HOG) Training Time (spHOG)
identity LIBLINEAR 40s 20.12s
identity LIBSVM (lin. lernel) >180 min 140 min
identity LIBSVM (int. kernel) >180 min 148 min

snow=φ1 LIBLINEAR 35.52s 121.81s
φ2 LIBLINEAR 22.45s 26.76s
φ2 PWLSGD 99.85s 76.12s

Table 3.3: (HOG) 47, 327 features of3780 dimension. Encoding Time87.22s. Dalal and Triggs
use a modified SVMLIGHT which is faster than LIBSVM, but stilltakes several minutes to train,
slower than our PWLSGD onφ2 encoding which produces both better classification using either
HOG or spHOG (below) and better detection (Fig. 3.2 using spHOG). (spHOG) : Training39K
features of2268 dimension using PWLSGD on theφ2 encoding takes only about1% of the time
taken to train a kernel SVM, and performs as well for classification (see below).

dimensions. We describe how we collect our training/test sets below.

Hard Training Data (HOG). We use the Dalal and Triggs implementation and collect all the
“hard” training examples after the first round of training ofa linear SVM. The dataset consists of
47, 327 features of3780 dimension each, which is the largest dataset we test our algorithms on.
We report accuracies by testing on random split of20% of the dataset consisting of20% of each of
positive examples.

Hard Training Data (spHOG). We use the spatial pyramid HOG (spHOG) from Maji et al. [66]
to train a SVM classifier. The primary goal was to see if we could approximate the classifier
learned by the expensive SVM learning framework using our fast approximation. There are about
39K features of2268 dimension. We set aside10% of the data for cross validation optimization of
the hyperparameters.

Figure 3.2, shows the classification accuracy of various methods and features on this dataset.
Linear SVM on the HOG features performs quite well, and the intersection kernel SVM offers a
slight improvement in accuracy. On the spHOG features the performance of the linear SVM is
quite poor and there is a significant improvement in accuracyobtained by using the intersection
kernel. In both these datasets the performance is closely matched by theφ2 encoding with the
piecewise linear training method. Table 3.3 shows the training times taken by the various training
algorithms. Training a kernel SVM classifier on the entire dataset using LIBSVM can take several
hours, while our technique takes less than two minutes.

Final detection actually showing our performance on detection in the INRIA data are in Figure
3.2. In order to produce these, the classifier was run on a sliding window and non max suppression
to the results was applied according to the same procedures described by Dalal and Triggs.

CHAPTER 3. TRAINING OF ADDITIVE CLASSIFIERS 37

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

False Positive Rate

D
et

ec
tio

n
R

at
e

INRIA Pedestrians, Hard Training Data (HOG)

lin. + LIBSVM
int. + LIBSVM
φ

1
, LIBLINEAR

φ
2
, LIBLINEAR

φ
2
, PWLSGD

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

False Positive Rate
D

et
ec

tio
n

R
at

e

INRIA Pedestrians, Hard Training Data (pHOG)

lin. + LIBSVM
int. + LIBSVM
φ

1
, LIBLINEAR

φ
2
, LIBLINEAR

φ
2
, PWLSGD

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

False Pos Per Image

D
et

ec
tio

n
R

at
e

INRIA Pedestrian Detections

φ
2
 + PWLSGD

spHOG + (min) LIBSVM
HOG + (lin) LIBSVM

Figure 3.2: Cross Validation Plots on INRIA Pedestrian HardTraining Data. (left) HOG, (middle)
spHOG features. Linear SVM works very well with HOG featuresas these features were designed
with linear SVM in mind. We still observe a slight boost in performance. However with the
pHOG features the linear SVM does very poorly and the intersection kernel does the best. The
performance is closely matched by ourφ2 embedding with PWLSGD algorithm. (right)Detection
Plots on the INRIA benchmark. We compare our detector with the Dalal and Triggs, HOG + (lin.)
LIBSVM. All the detectors are run at a stride of8 × 8 pixels, and scaleratio of21/8. The correct
detection criteria is ratio of bounding box intersection tounion above 50%.

2.53

1.49

0.09

5.31

1.35

2.66

1.54

3.34

3.992.15

3.50
2.59

2.13

4.14

3.61
3.87

2.59

2.90

1.96
2.46

1.19 1.20
1.61

3.22
3.82

1.13

3.65

3.72

2.93
3.23

2.66 3.78

4.923.46

Figure 3.3: Sample detections on the INRIA Pedestrian dataset usingφ2 + PWLSGD algorithm.

CHAPTER 3. TRAINING OF ADDITIVE CLASSIFIERS 38

3.6 Additive Modeling using Spline Embeddings

Eilers and Marx [26] proposed a practical modeling approachfor GAMs. The idea is based on the
representing the functions in each dimension using a relatively large number of uniformly spaced
B-Spline basis. The smoothness of these functions is ensured by penalizing the first or second
order differences between the adjacent spline coefficients. Letφ(xk) denote the vector with entries
φi(x

k), the projection ofxk on to theith basis function. The P-Spline optimization problem for the
classification setting with the hinge loss function consists of minimizingc(w):

c(w) =
λ

2
w′D′

dDdw +
1

n

∑

k

max
(

0, 1− yk
(

w′φ(xk)
))

(3.17)

The matrixDd constructs thedth order differences ofα:

Ddα = ∆dα (3.18)

The first difference ofα, ∆1α is a vector of elementsαi − αi+1. Higher order difference matrices
can be computed by repeating the differencing. For an dimensional basis, the difference matrix
D1 is a(n− 1)× n matrix withdi,i = 1, di,i+1 = −1 and zero everywhere else. The matricesD1

andD2 are as follows:

D1 =

1 −1
1 −1

. . .
1 −1

;D2 =

1 −2 1
1 −2 1

. . .
1 −2 1

To enable a reduction to the linear case we propose a slightlydifferent difference matrixD1. We
letD1 be an×n matrix withdi,i = 1, di,i−1 = −1. This is same as the first order difference matrix
proposed by Eilers and Marx, with one more row added on top. The resulting difference matrices
D1 andD2 = D2

1 are bothn× n matrices:

D1 =

1
−1 1

−1 1
. . .
−1 1

−1 1

;D2 =

1
−2 1

1 −2 1
1 −2 1

. . .
1 −2 1

The first row inD1 has the effect of penalizing the norm on the first coefficient of the spline basis,
which plays the role of regularization in the linear setting(e.g. ridge regression, linear SVMs,
etc). Alternatively one can think of this as an additional basis at left most point with its coefficient
set to zero.The key advantage is that the matrixD1 is invertible and has a particularly simple
form which allows us to linearize the whole system. We will also show in Section 3.6.1 that the

CHAPTER 3. TRAINING OF ADDITIVE CLASSIFIERS 39

derived embeddings also approximate the learning problem of kernel SVM classifier using themin
kernel (Kmin) for a particular choice of spline basis.

Kmin(x,y) =
∑

i

min(xi, yi) (3.19)

Given the choice of the regularization matrixDd which is invertible, one can linearize the
whole system by re-parametrizingw byD−1

d w, which results in :

c(w) =
λ

2
w′w +

1

n

∑

k

max
(

0, 1− yk
(

w′D
′−1
d φ(xk)

))

(3.20)

Therefore the whole classifier is linear on the featuresφd(xk) = D
′−1
d φ(xk), i.e. the optimization

problem is equivalent to

c(w) =
λ

2
w′w +

1

n

∑

k

max
(

0, 1− yk
(

w′φd(xk)
))

(3.21)

The inverse matricesD
′−1
1 andD

′−1
2 are both upper triangular matrices. The matrixD

′−1
1 has

entriesdi,j = 1, j ≥ i andD
′−1
2 = D

′−2
1 has entriesdi,j = j − i+ 1, j ≥ i and look like:

D
′−1
1 =

1 1 1 . . . 1 1
1 1 . . . 1 1

1 . . . 1 1
.

1 1
1

;D
′−1
2 =

1 2 3 . . . n− 1 n
1 2 . . . n− 2 n− 1

1 . . . n− 3 n− 2
.

1 2
1

We refer the readers to [27] for an excellent review of additive modeling using splines. Figure 3.4
shows theφd for various choices of the regularization degreed = 0, 1, 2 and B Splines basis,
linear, quadratic and cubic.

3.6.1 Additive Kernel Reproducing Kernel Hilbert Space & Spline Embed-
dings

We begin by showing the close resemblance of the spline embeddings to themin kernel. To
see this, let the features in[0, 1) be represented withN + 1 uniformly spaced linear spline basis
centered at0, 1

N
, 2
N
, . . . , 1. Let r = ⌊Nx⌋ and letα = Nx− r . Then the featuresφ(x) is given by

φr(x) = 1− α, φr+1(x) = α and the featuresφ1(x) for D1 matrix is given byφ1
i (x) = 1, if i ≤ r

andφ1
r(x) = α. It can be seen that these features closely approximates themin kernel, i.e.

1

N
φ1(x)′φ1(y) ≈ min(x, y) + 1 (3.22)

CHAPTER 3. TRAINING OF ADDITIVE CLASSIFIERS 40

Linear B-Spl ine

φ 0

φ 1

φ 2

Quadrati c B-Spl ine

φ 0

φ 1

φ 2

φ 3

Cubic B-Spl ine

φ 0

φ 1

φ 2

φ 3

φ 4

Figure 3.4: Local basis functions for linear (left), quadratic (middle) and cubic (right) for various
regularizations degreesd. In each figureφd refers to the dense featuresD

′−1
d φ. Whend = 0, the

function shown in the local basis of B-Splines. Whend = r+1, wherer is degree of the B-Spline
basis, thenφd are truncated polynomials basis,(x− τi)

r
+ (see Section 3.6.1).

The featuresφ1(x) = D
′−1
1 φ(x) constructs a unary like representation where the number of ones

equals the position of the bin ofx. One can verify that for a B-spline basis of degreer (r = 1, 2, 3),
the following holds:

1

N
φ1(x)′φ1(y) = min(x, y) +

r + 1

2
, if |x− y| ≥ r

N
(3.23)

DefineKr
d the kernel corresponding to a B-Spline basis of degreer and regularization matrixDd

as follows:

Kr
d(x, y) =

1

N
φd(x)′φd(y)− r + 1

2
=

1

N
φ(x)′D−1

d D
′−1
d φ(y)− r + 1

2
(3.24)

Figure 3.5 showsK1
r for r = 1, 2, 3 corresponding to a linear, quadratic and cubic B-Spline basis.

In a recent paper, Maji and Berg [65], propose to use linear spline basis and aD1 regularization, to
train approximate intersection kernel SVMs, which in turn approximate arbitrary additive classi-
fiers. Our features can be seen as a generalization to this work which allows arbitrary spline basis
and regularizations.

B-Splines are closely related to the truncated polynomial kernel [113, 81] which consists of
uniformly spaced knotsτ1, . . . , τn and truncated polynomial features:

φi(x) = (x− τi)
p
+ (3.25)

However these features are not as numerically stable as B-Spline basis (see [27] for an experimen-
tal comparison). Truncated polynomials of degreek corresponds to a B-Spline basis of degreek
andDk+1 regularization, i.e, same asKk+1

k kernel, when the knots are uniformly spaced. This
is because B-Splines are derived from truncated polynomialbasis by repeated application of the
difference matrixD1[22]. As noted by the authors in [27], one of the advantages ofthe P-Spline
formulation is that is decouples the order of regularization and B Spline basis. TypicallyD1 regu-
larization provides sufficient smoothness in our experiments [64].

CHAPTER 3. TRAINING OF ADDITIVE CLASSIFIERS 41

Kmin K1
1 Kmin −K1

1 K1
2 Kmin −K1

2 K1
3 Kmin −K1

3

Figure 3.5: Spline Kernels. Kmin(x, y), x, y ∈ [0, 1] along withK1
r for r = 1, 2, 3 corresponding

to linear, quadratic and cubic B-Spline basis. Using uniformly spaced basis separated by0.1, these
kernels closely approximate themin kernel as seen in the difference image. The approximation is
exact when|x− y| > 0.1r.

3.7 Conclusion

We have shown how to train additive classifiers motivated by our analysis in our earlier chapter,
very efficiently – within a small multiple of the time required by the very fastest linear SVM
training algorithms, shown both theoretically and in experiments. Our resulting additive classifiers
consistently perform better than linear classifiers on vision tasks. In particular we can train our
piece-wise linear additive classifier for pedestrian detection (based on spHOG features) which
produces better results than than Dalal & Trigg’s linear detector (based on HOG) in only76.13
seconds, more than100× faster than the standard training. The proposed algorithm,as we show
is similar to a P-Spline formulation and can also be used to derive learning algorithms for training
classifiers in the max-margin and hinge loss framework.

3.8 Appendix

Min Kernel is Conditionally Positive Definite
A kernel (x, y) ∈ A × A 7→ k(x, y) ∈ R is said to be conditionally positive definite if it is
symmetric (i.e.,k(x, y) = k(y, x)) and

n
∑

i=1

n
∑

j=1

cicjk(xi, xj) ≥ 0 (3.26)

wheren ≥ 1, x1, x2, . . . , xn are points inA and(c1, c2, . . . , cn) is a vector inRn such that

n
∑

i=1

ci = 0; (3.27)

CHAPTER 3. TRAINING OF ADDITIVE CLASSIFIERS 42

Proof: Clearlyk(x, y) = min(x, y) is symmetric, and we know thatmin(x, y) is positive defi-
nite [77] whenx, y ∈ R

+. Let t = mini xi. Then we can write the sum as :

n
∑

i=1

n
∑

j=1

cicj (min(xi − t, xj − t) + t) (3.28)

=
n
∑

i=1

n
∑

j=1

cicj min(xi − t, xj − t) + t
n
∑

i=1

n
∑

j=1

cicj (3.29)

=
n
∑

i=1

n
∑

j=1

cicj min(x′
i, x

′
j) + t

(

n
∑

i=1

ci

)2

(3.30)

=

n
∑

i=1

n
∑

j=1

cicj min(x′
i, x

′
j) ≥ 0 , as∀i, x′

i ≥ 0 (3.31)

43

Chapter 4

Hough Transforms for Object Detection

A major bottleneck for a sliding window detectors we described in the first chapter, is the num-
ber of locations one has to look in an image to find the object. Even with the fastest classifier, we
are limited in terms of speed because of the complexity of thesearch over pose. Various techniques
have been proposed in the literature which try to alleviate the complexity issue, including looking
at salient regions, coarse to fine search, branch-and-bound[58], etc.

The Hough transform [24] provides another way of dealing with the complexity issue and
has been used for various pose estimation problems including shape detection [3]. The idea is
to let easy to detect local parts vote for possible transformations of the object like translation,
scale and aspect variation – one can use the peaks of the voting space for importance sampling
of windows for further evaluation. Of particular interest is the implicit shape model [62] which is
a formulation of the Hough transform where local parts probabilistically vote for locations of the
objects. Combined with verification step, this approach hasbeen used successfully for detection of
objects like cars and pedestrians by [62]. In this setting, any technique that causes the voting space
to better reflect the presence of the object has a direct impact on the speed and accuracy of this two
stage classifier.

In this chapter we cast the Hough transform in a discriminative framework where each lo-
cal part casts a weighted vote for the possible locations of the object center. We show that the
weights can be learned in a max-margin framework which directly optimizes the classification
performance. Compared to other approaches, including a naive-bayes weighing scheme based on
how “representative” the local part is, the discriminativetraining framework leads to a significant
reduction in the false positive rate on various datasets while simultaneously learning the important
parts of the object. We call our approach max-margin hough transform or M2HT.

On the ETHZ shape dataset [37] the M2HT detector has a detection rate of60.9% at 1.0
false positive per image compared to52.4% using uniform weights and54.2% using naive-bayes
weights. On UIUC car dataset [1] the M2HT detector has half the false positive per image rate
at 90% recall compared to the Hough detector based on both uniform and naive-bayes weights.
The performance of M2HT is also better than both on the INRIA horse dataset [39]. The voting
step is fast and scales well with respect to pose variations.We combine this with a verification

CHAPTER 4. HOUGH TRANSFORMS FOR OBJECT DETECTION 44

step using a standard SVM classifier, which then finds the location of the objects by doing a local
search around the proposed regions. Our two stage classifierachieves a detection rate of91.9%
at 0.3 false positive per image (FPPI) on the ETHZ shape dataset, a significant improvement over
the state of the art, while running the verification step on two orders of magnitude fewer windows
than in a sliding window approach. On UIUC cars we obtain a performance of97.5% at equal
error rate, while having to run the verification step on only10 windows per image. On INRIA
horse dataset [37] the overall detector has a recall of85.27% at 1.0 FPPI, almost the same as slid-
ing window detector while having to consider up to two ordersof magnitude fewer windows per
image.

The rest of the chapter is structured as follows. We present an overview of the probabilistic
Hough transform in Section 4.1. In Section 4.2, we cast the voting process in a discriminative
framework and outline the max-margin formation of the problem. The overall detection strategy is
described in Section 4.3. In section 4.4 we present our experiments on various datasets. Conclu-
sions and directions of future work are presented in Section4.5.

4.1 Probabilistic Hough Transform

Let fi denote the feature observed at a locationli, which could be based on the properties of the
local patch aroundli. LetS(O,x) denote the score of objectO at a locationx. Herex denotes pose
related properties like position, scale, aspect ratio, etc. LetCi denotes thei’th codebook entry of the
vector quantized space of featuresf . The implicit shape model [62] framework obtains the overall
scoreS(O,x) by adding up the individual probabilitiesp(O,x, fj, lj) over all observations, i.e.,

S(O,x) =
∑

j

p(O,x, fj , lj)

=
∑

j

p(fj , lj)p(O,x|fj, lj)

Assuming a uniform prior over features and locations and marginalizing over the codebook entries
we get,

S(O,x) ∝
∑

j

p(O,x|fj, lj)

=
∑

i,j

p(Ci|fj, lj)p(O,x|Ci, fj , lj)

One can simplify this further using that fact thatp(Ci|fj , lj) = p(Ci|fj) because the codebook
entries are matched based on appearance only and the distributionp(O,x|Ci, lj, fj) depends only

CHAPTER 4. HOUGH TRANSFORMS FOR OBJECT DETECTION 45

on the matched codebook entryCi andlj .

S(O,x) ∝
∑

i,j

p(Ci|fj)p(O,x|Ci, lj)

=
∑

i,j

p(Ci|fj)p(x|O, Ci, lj)p(O|Ci, lj)

The first term is the likelihood that the codebook entryCi generated the featuref . We base this on
the distance of the codebook entry to the feature as follows:

p(Ci|f) =
{

1
Z
exp(−γd(Ci, f)) if d(Ci, f) ≤ t

0 otherwise

WhereZ is a constant to makep(Ci|f) a probability distribution andγ, t are positive constants. The
second term is the probabilistic Hough vote for the locationof the object, which can be estimated
during training time by observing the distribution of the locations of the codebook activations rel-
ative to the object center. In our experiments we maintain a binned estimate ofp(x|O, Ci, lj) by
discretizing the space of relative locations of the object.The third term is the weight of the code-
book entry emphasizing how confident we are that the codebookentryCi at locationlj matches
the object as opposed to background. Assuming that the probability p(O|Ci, l) is independent of
the location (location invariance) we have a simple way of estimating this using both positive and
negative examples as follows :

p(O|Ci, l) = p(O|Ci)

∝ p(Ci|O)

p(Ci)

Here,p(Ci|O) is the relative frequency of the codebook entryCi on the object features , while
P (Ci) is the relative frequency on both negative and positive training images. We refer to this as
naive-bayes weights, as the weight is set independently foreach codebook entry.

4.2 Max-Margin Hough Transform

The overall procedure in the previous section can be seen as aweighted vote for object locations
over all codebook entriesCi. In this section we will show how to learn these weightswi in a
discriminative manner which directly optimizes the classification performance. The key idea is to
observe that the score of theS(O, x) is a linear function ofp(O|Ci) (making the similar location

CHAPTER 4. HOUGH TRANSFORMS FOR OBJECT DETECTION 46

invariance assumption thatp(O|Ci, l) = p(O|Ci)). One can see this readily from the following :

S(O, x) ∝
∑

i,j

p(x|O, Ci, lj)p(Ci|fj)p(O|Ci, lj)

=
∑

i,j

p(x|O, Ci, lj)p(Ci|fj)p(O|Ci)

=
∑

i

p(O|Ci)
∑

j

p(x|O, Ci, lj)p(Ci|fj)

=
∑

i

wi × zi

= wTz

Wherezi is given by the following equation:

zi =
∑

j

p(x|O, Ci, lj)p(Ci|fj) (4.1)

For a given object location and identity, the summation overj is a constant and is only a function
of the observed features, locations and the estimated distribution over the centers for the codebook
entryCi. Thus suggests a discriminative training algorithm that finds weights that maximize the
scoreS on correct object location over incorrect ones. Unlike the earlier method of estimating
wi based just on codebook activations, we have the ability to additionally use the conditional
distribution of the object centers to learn the weights. We formalize our training algorithm in the
next section as well as present experiments to validate our approach.

4.2.1 Discriminative Training

Given a set of training examples, a set of positive object locations and negative ones{(yi, li)}Ni=1,
whereyi ∈ {+1,−1} is the label andli is the location of thei’th training instance. Typically we
pick the negative instances by finding the peaks in the votingspace on negative training images.
The first stage corresponds to the feature computation whichcomputes the contributionzk of each
codebook centerCk to the score of the object location. This is done by carrying forward the voting
process and adding up the votes forlj from each featurefj according to the Equation 4.1. Let
ai = [z1z2 . . . zK], denote the vector of these coefficients. Thus the score assigned by the model to
the instancei is wTai. Weights are learned by maximizing this score on correct locations of the
object over incorrect ones. In order to to be robust to outliers and avoid over-fitting, we propose a
max-margin formulation of the problem leading to the following optimization problem,

CHAPTER 4. HOUGH TRANSFORMS FOR OBJECT DETECTION 47

min
w,b,ξ

1

2
wTw + C

T
∑

i=1

ξi

s.t. : yi(w
Tai + b) ≥ 1− ξi, ξi ≥ 0, ∀i = 1, 2, . . . , N

w � 0

The optimization is similar to optimization problem of a linear Support Vector Machine [20],
with the additional positivity constraint on the weights. We use a standard off the shelf optimization
package calledCVX [43] for carrying out the optimization.

4.3 Overall Detection Strategy

The overall detector works in two stages, first the M2HT detector is run on the image and a small
set of regions most likely to contain the object of interest is found. Next a verification classifier
based on a SVM finds the true location and score of the object bydoing a local search around each
region by sampling nearby scales and translations. Insteadof densely sampling windows all over
the image, the Hough step lets us concentrate around the regions most likely to contain the object
and at the same time allowing us to implicitly sample a wider set of transforms including aspect
ratio. We briefly describe the details of both the steps in thenext two sections.

4.3.1 M2HT Detector

Weights are learned on codebooks generated usingk-means clustering of Geometric Blur (GB)
features [5] sampled uniformly along the edges in an image. We choose four orientation directions
and the outer radius of the GB feature typically as20% of the object height, giving us a good
tradeoff between the repeatability and discriminativeness of the features. On the positive set of
training images, the relative locations of the center of theobject is recorded during training time
and a binned approximation of this distribution is maintained. We perform a second iteration
over the positive and negative images and compute the contribution of each cluster center to the
score of the true location of the object. Negative examples are obtained by first running the hough
detector on negative images and finding the peaks in the voting space above a threshold. Once
again the contributions of the cluster centers to score of these negative locations are computed.
These contributions, which are the features (ai) in the previous section, are then used to learn the
weights of the codebook entries using our max-margin formulation.

4.3.2 Verification Classifier

We train a SVM classifier using the pyramid match kernel [46, 61] on histograms of oriented
gradients as features. Gradients are computed using response to[−1 0 1] and[−1 0 1]T filters and

CHAPTER 4. HOUGH TRANSFORMS FOR OBJECT DETECTION 48

histograms in9 orientations are computed. The image is divided into grids of increasing resolutions
for 4 levels, and histograms from each level are weighted according to the equationwl = 2l−1 ,
l = 1 being the coarsest scale, and concatenated together to fromone long feature vector. A SVM
is trained by using histogram intersection as the kernel on these features. We refer to this as the
IKSVM classifier. On all datasets training is done by scalingthe positive instances of the category
to the median aspect ratio and a number of windows sampled from negative training images serve
as negative examples. To detect an instance of an object in the sliding window mode the classifier
is run at various location and scales by keeping the aspect ratio of the image fixed. Search over
aspect ratio adds another factor to the run time, so we do not do it. A simpler baseline would have
been to use a linear kernel, but others[37] have noticed thaton ETHZ shape dataset, linear SVM
does not give full recall. We use the speedup method for IKSVMclassification proposed in [66]
which makes the runtime of the classifier essentially equivalent to a linear SVM.

4.4 Experimental Results

In all our experiments we would like to verify two things:(1) The M2HT detector should have a
better performance compared to Houghtransform detector using uniform weights or naive-bayes
weights. Quantitatively this means a lower false positive rate for the same recall.(2) The perfor-
mance of the two stage M2HT + IKSVM detector should be comparable to the IKSVM detector in
the sliding window mode, while having to evaluate the IKSVM detector on a significantly fewer
locations. Additionally, if the Houghtransform votes for pose parameters we would like to see
that the two stage detector is robust to these pose changes. Finally the overall approach should
compare favorably to other approaches in the literature both in terms of accuracy and space-time
complexity. To validate our claims, we present our experiments on the ETHZ shape, UIUC cars
and INRIA horses dataset.

4.4.1 ETHZ Shape Dataset

The first dataset we report our results on is the ETHZ Shape Dataset. It contains255 test images and
featuring five shape-based classes (apple logos, bottles, giraffes, mugs, and swans). For training
we use half the positive examples and an equal number of negative examples equally distributed
among the rest of the categories. All the remaining examplesare used for testing. We use the same
training and test splits used by authors of [37] for a fair comparison.

M 2HT Detector Training: For the hough training step all ground truth bounding boxes of a par-
ticular category are scaled to a height of96 pixels, while keeping the aspect ratio fixed. A separate
codebook is learned for each category usingk-means clustering withk = 400 centers. For cate-
gories like mugs and giraffes the aspect ratio varies widelyso we train the hough detector to vote
for both the center and aspect ratio of the object. We maintain a binned approximation of distri-
bution of the location of the center with bin width=10px, bin height=10px and aspect width=0.1.

CHAPTER 4. HOUGH TRANSFORMS FOR OBJECT DETECTION 49

Figure 4.1: Learned weights on various categories of the ETHZ shape dataset.(top row) naive-
bayes weights,(bottom row) M2HT weights. In each image, the most important part is circled
with radius equal to the outer radius of the gb descriptor. Notice how the salient parts like the
handles on mugs, the neck and leg region of the giraffe are assigned high weights, while the
background clutter is ignored. The naive-bayes weights arestrongly affected by rare structures in
the background. For each category the colors represent the strength of the weights (red is higher)
and are on the same scale for both naive-bayes and M2HT.

We then run the max-margin training procedure described in Section 4.3.1 to learn the weights for
the codebook entries. Figure 4.1, shows the learned weightsfor various categories. The learning
framework assigns high weights to parts of the object which are both characteristic and are good
predictors of the object location, while simultaneously ignoring the background clutter in images.
Notice that we only use the ground truth bounding box for training, which includes a significant
amount of background clutter for categories like giraffes and swans. The naive-bayes weights are
strongly affected by rarely occurring structures in the background.

M 2HT Detector Results: Table 4.4 shows the detection rate at1.0 FPPI for various weights.
The M2HT detector alone has a detection rate of60.9% at 1.0 false positive per image (FPPI)
compared to54.2% using naive bayes and52.4% using uniform weights. In our experiments, in-
creasing the number of codebook entries improves the performance of the max-margin weights,
but due to the small number of training examples (as low as16 for swans), the conditional distribu-
tion of the center over both scale and aspect ratio cannot be reliably computed, so we do not train
with more cluster centers. At about30 windows per image we have almost full recall for using any
of the hough detectors, and the performance of the overall detector is similar with all the methods.
This is at least two orders of magnitude less than the number of windows considered by a sliding

CHAPTER 4. HOUGH TRANSFORMS FOR OBJECT DETECTION 50

Figure 4.2: Sample detections where the bounding box predicted by the M2HT+IKSVM detec-
tor (blue) is closer to the groundtruth (red) than the IKSVM detector when used in the sliding
window mode (green).

window detector
Overall Detector Results : Figure 4.5 compares the results of the IKSVM detector used in

the sliding window mode at a fixed aspect ratio v.s. the M2HT + IKSVM detector. Performance
are reported using the PASCAL criterion, i.e., a detection is counted as correct if the intersection
over union of the detection rectangle and ground truth rectangle is greater than0.5. The IKSVM
baseline is quite good and achieves a detection rate of87.7% (0.3 FPPI) and88.48% (0.4 FPPI).
Sampling the nearby scales and locations around the regionsproposed by the hough transform leads
to an improved detection rate of91.9%(0.3 FPPI) and93.2% (0.4 FPPI). Including the windows
of the local search is still at least two orders of magnitude less than a sliding window detector for
a similar dense sampling. Additionally we implicitly sample over aspect ratios because the hough
detector proposes regions of various aspect ratios. This leads to a significant improvement over the
baseline IKSVM detector for the giraffe and mugs category, where the aspect ratio varies widely.
Figure 4.2 show some images where the bounding box of the two stage classifier fits the object
better than that of the sliding window classifier. Figure 4.3shows examples of detections and
missed detections for various categories. Our results are significant improvement over previous
best results61.4% of KAS [37] and67.1% of TPS-RPM [38] at0.3 FPPI as shown in Figure 4.4.
The results of TPS-RPM are not directly comparable as the authors report numbers using a five-
fold cross validation, but still is better considering thatthe average variation in accuracy over trials
is about9% as observed by the authors.

4.4.2 UIUC Cars

This database was collected at UIUC [1] and contains images of side views of cars. The training
set consists of550 car and500 non-car images. We test our methods on the single scale image
test set which contains170 images with200 cars. The images are of different sizes themselves but
contain cars of approximately the same scale as in the training images.

CHAPTER 4. HOUGH TRANSFORMS FOR OBJECT DETECTION 51

Figure 4.3: (Rows 1-2)Example detections on the ETHZ shape dataset using M2HT+IKSVM
detector (blue), IKSVM detector used in sliding window mode(green) overlaid with
groundtruth (red).(Row 3)Example images where at least one of the two detectors fails.

Hough Detector (1.0 FPPI) Overall Detector (0.3/0.4 FPPI)
Category uniform nbayes max-m IKSVM M2HT + IKSVM KAS TPS-RPM*
Applelogos 70.0 70.0 85.0 90.0/90.0 95.0/95.0 50.0/60.0 77.7/83.2

Bottles 62.5 71.4 67.0 96.4/96.4 92.9/96.4 92.9/92.9 79.9/81.6
Giraffes 47.1 47.1 55.0 79.1/83.3 89.6/89.6 49.0/51.1 40.0/44.5
Mugs 35.5 35.5 55.0 83.9/83.9 93.6/96.7 67.8/77.4 75.1/80.0
Swans 47.1 47.1 42.5 88.2/88.2 88.2/88.2 47.1/52.4 63.2/70.5

Average 52.4 54.2 60.9 87.5/88.4 91.9/93.2 61.4/66.9 67.1/71.9

Figure 4.4: Performance of various algorithms. All the results are reported using the PASCAL
criterion (Intersection/Union≥ 0.5). The hough detector alone has a detection rate of60.9% at 1
false positive per image (FPPI) an improvement of6.7% over the naive bayes weights and8.5%
over uniform weights. The IKSVM classifier when used in sliding window mode has a average
detection rate of87.5% at 0.3 FPPI. By combining with the hough detector, the performanceim-
proves to91.9% at0.3 FPPI. There are significant improvements in the giraffe and mugs category,
which have high variation in aspect ratio. This is a significant improvement over previous best
results61.4% of KAS [37] and67.1% of TPS-RPM [38] at0.3 FPPI.The results of TPS-RPM are
not directly comparable as the authors report numbers usinga 5-fold cross validation.*

CHAPTER 4. HOUGH TRANSFORMS FOR OBJECT DETECTION 52

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Pos Per Image

D
et

ec
tio

n
R

at
e

ETHZ Shape Dataset [IKSVM]

Applelogos
Bottles
Giraffes
Mugs
Swans

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Pos Per Image

D
et

ec
tio

n
R

at
e

ETHZ Shape Dataset [M2HT + IKSVM]

Applelogos
Bottles
Giraffes
Mugs
Swans

(a) (b)

Figure 4.5: Detection plots using the IKSVM detector and M2HT + IKSVM on ETHZ shape
dataset. All results are reported using the PASCAL criterion. (a) The IKSVM baseline achieves
a detection rate of87.7% (0.3 FPPI) and88.48% (0.4 FPPI).(b) Sampling densely on the regions
proposed by the M2HT detector leads to an improved detection rate of91.9%(0.3 FPPI) and93.2%
(0.4 FPPI).

M 2HT Detector Training: Similar to the ETHZ dataset we compute GB features on both the
positive and negative windows by uniformly sampling pointson the edges and learn a codebook
usingk-means withk = 100. For every cluster the conditional distribution of the center of the
object is maintained as binned approximation with a bin width=4 and bin height=4. This is a fairly
dense sampling given that the training images are100 × 40, so we spatially smooth the bins to
avoid any artifacts. A second loop over the training images is done to compute the features for
the max-margin training. Figure 4.6 shows the learned weights on this dataset using max-margin
training and naive bayes. Notice how the learning frameworkemphasizes the regions near the
bottom of the car, which are both repeatable and good predictors of the object center.

M 2HT Detector Results: Figure 4.8 plots the recall as a function of the false positive per
image on for various learning schemes. At90% recall the M2HT detector has about half as many
false positives per image than the hough detector using uniform weights and naive bayes weights.
Considering only the top10 windows per image and running the IKSVM verification step leads to
performance of97.5% at equal error rate an improvement of1.74% over IKSVM detector using
the sliding window detector alone, while having to consider10× fewer regions per image. The
increased precision is because the IKSVM classifier denselysamples windows near the most likely
locations of the object, while being able to discard a large fraction of the regions in the image not
containing an object. Our method compares favorably to other methods in the literature as shown

CHAPTER 4. HOUGH TRANSFORMS FOR OBJECT DETECTION 53

Figure 4.6: Learned weights on UIUC car dataset :(left) naive-bayes weights(right) M2HT
weights (red is higher). In each image the most important part is circled with radius equal to the
outer radius of the gb descriptor. Notice how the features atthe bottom of the car and near the
wheels are emphasized which are both repeatable and good predictors of the object center. Both
weights are on the same scale.

in Figure 4.7.

4.4.3 INRIA Horses

The INRIA horse dataset collected by Jurie and Ferrari, consists of170 images with one or more
side-views of horses and170 images without horses. Horses appear at several scales, andagainst
cluttered backgrounds. We use the same training and test split of [37] consisting of50 positive and
50 negative examples for training and the rest for testing.

M 2HT Detector Training: We learn a codebook withk-means withk = 500 and learn weights
for each cluster center. Figure 4.10 shows the weights learned for various features using the max-
margin training and naive-bayes scheme. The IKSVM classifier is trained by scaling all the ground
truth bounding boxes to the median aspect ratio of all horsesin this dataset.

M 2HT/Overall Detector Results: Figure 4.11 shows the performance of the M2HT detector
and the overall detector. The M2HT detector outperforms both the naive-bayes and the uniform
weights. The overall performance of the M2HT + IKSVM detector is same as the IKSVM detector
while having to consider only25 windows per image, which is up to two orders of magnitude
fewer than the sliding window classifier. At1.0 false positive per image we have a detection rate
of 85.27% for M2HT + IKSVM and 86% for IKSVM compared to previously published results
of 80.77%[37] and73.75% [38]. The results of [38] are however not directly comparable as the
authors report results using5-fold cross validation.

CHAPTER 4. HOUGH TRANSFORMS FOR OBJECT DETECTION 54

Method Performance

IKSVM 95.76 %
M2HT + IKSVM 97.5 %

Agarwal & Roth [1] 79 %
Garg et al. [41] 88 %

Fregus et al. [35] 88.5 %
ISM [62] 97.5 %

Mutch & Lowe [76] 99.6 %
Lampert et al. [58] 98.5 %

Figure 4.7: Performance at Equal Error Rate on UIUC Single Scale Cars for various methods.
The M2HT + IKSVM detector has an improvement of1.74% over the IKSVM baseline in the
sliding window mode, while having to consider only10 windows per image. Our method compares
favorably to other methods in the literature.

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

false pos per image

re
ca

ll

Single Scale UIUC Cars

uniform
naive−bayes
C=25.00
C=50.00
C=75.00

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1−precision

re
ca

ll

Single Scale UIUC Cars

IKSVM [4.24]

M2HT + IKSVM [2.50]

(a) (b)

Figure 4.8: (a) Detection plots on UIUC car dataset for various values of the learning parameter
C using the max-margin hough training. At90% recall the false positive rate is only about half
compared to both uniform weights and naive bayes weights. (b) Combining with the verification
step using the IKSVM classifier. Only the top10windows per image are considered, which is about
10× fewer than the number of windows considered by a sliding window detector. By sampling
around the regions proposed by the hough detector there is animprovement of1.74% over the
sliding window detector.

CHAPTER 4. HOUGH TRANSFORMS FOR OBJECT DETECTION 55

Figure 4.9: Example detections using the M2HT + IKSVM detector on UIUC cars dataset. Correct
detections are shown in green and incorrect detections are show in red.

Figure 4.10: Learned weights on INRIA horses dataset.(left) naive bayes weights,(right) M2HT
weights (red is higher). In each image, the most important part is circled with radius equal to the
outer radius of the gb descriptor.

CHAPTER 4. HOUGH TRANSFORMS FOR OBJECT DETECTION 56

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

false positive per image

re
ca

ll

INRIA Horses (Hough Detector)

uniform
naive−bayes
C=1.00
C=5.00
C=10.00
C=50.00

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

false positive per image

re
ca

ll

INRIA Horses (Overall Detector)

IKSVM

M2HT + IKSVM
KAS
TPS−RPM

Figure 4.11: Detection plots on INRIA horse dataset using the PASCAL criterion. (left) Com-
parison of M2HT detector for various choices of the learning parameterC vs. uniform weights
and naive-bayes weights. The M2HT detector consistently outperforms both.(right) Overall de-
tections results using IKSVM and two stage M2HT + IKSVM. Performance of M2HT + IKSVM
is similar to IKSVM while having to consider only25 windows per image on average, which is
up to two order of magnitude fewer than in sliding window approach. At1.0 false positive per
image we have a detection rate of85.27% for M2HT + IKSVM and 86% for IKSVM compared
to previously published results of80.77% (KAS) [37] and73.75%(TPS-RPM) [38] (Note that the
results of TPS-RPM are not directly comparable as the authors report numbers using5-fold cross
validation.)

CHAPTER 4. HOUGH TRANSFORMS FOR OBJECT DETECTION 57

4.5 Conclusion

We cast Hough transform in discriminative framework to learn weights on local parts that partici-
pate in a voting based detection scheme. The learned weightsoutperform both the “uniform” and
“naive-bayes” weights on various datasets. Our max-marginproblem formulation is convex and
can be optimized using off the shelf optimization packages such as CVX.

In addition we show that the two stage M2HT + IKSVM detector has better runtime complexity
than a sliding window detector and at the same time is more robust to pose variations. Our approach
leads to the state the art results on ETHZ shape dataset and competitive results on the UIUC car
and INRIA horse dataset.

Although in this chapter we focus on local parts that are generic, i.e., obtained byk-means
clustering of local patches, this need not be the case. We introduce more semantic parts in the next
chapter based on a novel representation called “poselets”,which are trained discriminatively using
additional annotations. These parts can be used for person detection [13], as well as predicting
the location of various joints [12] using the Hough voting framework. For these problems, the
proposed max-margin formulation has led to improvements inaccuracy.

58

Chapter 5

Supervised Models for Object Recognition

Describing visual categories is at the heart of most recognition systems. The notion of cate-
gories itself has been the topic of debate among psychologists for centuries and there are many
competitive theories – exemplar based models [71], prototypes [90] and the classical one based on
a list of attributes which dates back to Aristotle (see [75],for a pleasant overview). For the task
of visual categorization one has to deal with the additionalvariation because of the non-invertible
camera projection (or the eye). Computer vision techniquesthat are based on variants of template
matching have proved to the most robust approach to identifyvisual categories, but the question of
what should one train a template of still remains.

In the object detection setting one has seen tremendous progress in detecting a rigid object from
a fixed viewpoint, for example frontal faces [112], or pedestrians [21], but the general problem of
detecting a category such as person is still far from being solved. For example, the current best
method for person detection on the challenging PASCAL VOC dataset achieves an mean average
precision of only about50%. Part of the problem is that there is a significant variance inappearance
not only because of changing viewpoint, but also because people appear in variety of clothing, are
occluded and interact with objects around them in a variety of poses.

One may try to build templates each of the cases we wish to detect, but there are two prob-
lems with this approach, in the spirit of the exemplar model [71]. First, these templates have to
be learned which subjects them to the usual bias-variance tradeoffs – more data is good, simple
models are better. Second, during test one is reduced to a nearest neighbor like search, the com-
plexity of which is high. Thus the exemplar model of visual recognition is at a disadvantage both
from computational and model estimation point of view, though has recently been tried somewhat
successfully recently for detection in [70].

The second approach is to build a representation which is of sufficiently high dimension that a
classifier can learn the highly non-linear model of the appearance variation – more along the lines
of a single prototype view [90]. Popularly known as multiplekernel learning [109], it has seen
reasonable success in many object detection [111] and imageclassification benchmarks. In this
setting it typical to have features of several thousand dimensions to learn a classifier for a visual
category. This approach is extremely attractive – one does not have to deal with the invariances,

CHAPTER 5. SUPERVISED MODELS FOR OBJECT RECOGNITION 59

Figure 5.1: Most similar examples of the source image using (Top Row) pose only, (Middle Row)
pose and action label, (Bottom Row) pose, action and subcategory label. From top to bottom the
visual similarity increases at the expense of more supervision.

or describe the properties of the class as long as the featurespace is sufficiently rich, and there is
enough training data. However, where it fails is in providing interpretability of the learned model,
making it harder to engineer richer models of categories. For example, if one were to now ask for
the pose, or camera viewpoint or the kind of clothing of an instance, it would be hard to infer that
from the classification function.

5.1 Supervised Learning of Categories

It appears that a middle ground between the prototype theoryand exemplar theory of categories
might be a good choice. Instead of having one prototype, we could have a few, much smaller
than the number of instances. This may not suffer from the computational complexity issues of
the exemplar model. At the same time because one of the prototypes could be thought of as an
“average” of some number instances, one could benefit because the learning algorithm has more
examples to look at.But what should the prototypes be?

The key question of finding the set of prototypes then becomesone of visual correspondence.

CHAPTER 5. SUPERVISED MODELS FOR OBJECT RECOGNITION 60

Any instance of a visual category can be thought to be in correspondence with at least one of the
prototypes. As good as it may sound, the idea of visual correspondence is hard, subjective and task
dependent. Categories form a hierarchy - at one level one maydescribe an object as a car, but at a
finer level one could say the car is a Beetle or a Mini, or a red Mini at an even finer level.

Given the subjective and task dependent nature of problem, we aim to bootstrap the visual
correspondence problem with additional supervision. We annotate a set of keypoints on all the
objects within the category which provides us the coarsest level of correspondence. Prototypes
can be thought of as representation of instances which sharea common configuration of keypoints.
To have a flexible, task dependent notion, we collect attribute labels which could correspond to
say, the kind of clothing, action labels, or subcategories.These enable one to refine the notion of
correspondence using both the keypoint correspondence andthe attribute label.

As an example, Figure 5.1 top-row, shows examples of people sharing the same pose as the
source image. It might be hard to learn an appearance model for all these instances because of the
variety in the action type, interaction with objects, etc.,which change the appearance. Figure 5.1
middle-row, shows examples that share the same pose and action, namely, playing instrument. The
examples are more visually coherent but not as much as the thebottom row, since there are many
kinds of musical instruments. Learning an appearance template here might be easiest in the last
case, at the expense of more supervision and potentially more templates or prototyptes to recognize
the category.

Collecting such annotation can be time consuming, but this has become increasingly efficient
and cost effective due to “crowdsourcing”. Services like Amazon Mechanical Turk, which matches
workers to micro tasks, makes it easy to collect large amounts of annotations relatively quickly.
In the next chapter I’ll describe how we collected annotations of various kinds ranging from key-
points, segmentation masks, 3D pose to attribute labels.

The idea of using keypoints for aligning examples using 3D keypoint annotations was proposed
by Bourdev and Malik [12] and subsequently modified to deal with simpler 2D keypoint annota-
tions by Bourdev, Maji and Malik, in [13], leading to the state of the art person detector on the
PASCAL VOC challenge at the time of publication. Subsequently, models of segmentation [14],
pose estimation, action recognition [67] and attribute recognition [11], have been built on top of
that framework. In this chapter we focus on the task of pose estimation and action recognition of
people from static images.

5.2 Pose and Action Recognition from Still Images

We can say a fair amount about the people depicted in Figure 5.2 – the orientations of their heads,
torsos and other body parts with respect to the camera, whether they are sitting, standing, running
or riding horses, their interactions with particular objects, etc. And clearly we can do it from single
image, video is helpful but not essential, and we do not need to see the whole person to make these
inferences.

A classical way to approach the problem of action recognition in still images is to recover the

CHAPTER 5. SUPERVISED MODELS FOR OBJECT RECOGNITION 61

Figure 5.2: Pose and action is revealed from all these patches.

underlying stick figure [34, 86]. This could be parameterized by the positions of various joints, or
equivalently various body parts. In computer graphics thisapproach has been a resounding success
in the form of various techniques for “motion capture”. By placing appropriate markers on joints,
and using multiple cameras or range sensing devices, the entire kinematic structure of the human
body can be detected, localized and tracked over time [101].But when all we have is a single
image of a person, or a part of a person, not necessarily at high resolution, in a variety of clothing,
the task is much harder. Research on pictorial structures [34, 86] and other techniques [88] for
constructing consistent assemblies of body parts has made considerable progress, but this is very
far from being a solved problem.

We take the position that recovering the precise geometric locations of various body parts
is trying to solve a harder intermediate problem than necessary for our purposes. We advocate
instead the use of a representation, the “poselet activation vector”, which implicitly represents the
configuration of the underlying stick figure, and inferencessuch as head and torso pose, action
classification, can be made directly from the poselet activation vector.

We can motivate this by a simpler example. Consider the problem of inferring the pose of a
face with respect to camera. One way of doing it is as an explicit 2D to 3D geometric problem by
finding the locations of the midpoints of the eyes, nose etc, and solve for the pose. Alternatively
one can consider the outputs of various face detectors - one tuned to frontal faces, another to
three-quarter view faces, another to faces in profile. The responses of these detectors provide a
distributed representation of the pose of the face, and one can use an “activation vector” of these
responses as the input to a regression engine to estimate pose. In biological vision, strategies

CHAPTER 5. SUPERVISED MODELS FOR OBJECT RECOGNITION 62

such as these are common place. Color is represented by a response vector corresponding to three
cone types, line orientation by the responses of various simple cells in V1, and indeed neurons
have been found in macaque inferotemporal cortex which showdifferential responses to faces at
different orientations, suggesting a distributed representation there as well.

In order to generalize this strategy to the human body, we must deal with its articulated nature.
Different parts can be in different configurations, and occlusion can result in only some parts being
visible. In addition one needs to deal with the variation in aspect due to changes in camera direc-
tion. Poselets, introduced by Bourdev and Malik [12] and further developed in Bourdev et al. [13]
for person detection and segmentation provide a natural framework.

We show that the poselet activation vector, which represents the degree to with each poselet is
present in the image of a person, provides a distributed representation of pose and appearance. We
use it to estimate the 3D orientation of the head and torso of people in the challenging PASCAL
VOC 2010 person detection dataset [28]. This dataset is significantly hard where the current state
of the art methods achieve detection performance only about50%. Our approach achieves an error
of 26.3◦ across views for the head yaw and matches the “human error rate” when the person is
front facing.

Action recognition from still images can benefit from this representation as well. Motion and
other temporal cues which have been used for generic action recognition from videos [96, 100, 42,
25], are missing in still images which makes it a difficult problem. In this setting the pose and
appearance of the person provides valuable cues for inferring the action. For example as seen in
Figure 5.3, certain actions like walking and running are associated with specific poses while people
riding bikes and horses have both a distinctive pose and appearance.

Actions often involve interactions with other objects and one can model these interactions
to disambiguate actions [121]. In addition context based onactions of other agents in the scene
can provide valuable cues as well [59]. For example, certainactivities like marathon events or
musicians playing in a concert, are group activities and it is likely that everyone in the scene is
performing the same action.

The rest of the paper is structured as follows: we begin with areview of work in the area of
action recognition and pose estimation in Section 5.3. In Section 5.4, we describe how we construct
the poselet activation vector for a given person in an image.We present experiments on 3D pose
estimation of people in the PASCAL VOC2010 people detection dataset in Section 5.5. Finally
we report results on the recently introduced PASCAL VOC2010 action classification dataset in
Section 5.6 and conclude in Section 5.7.

5.3 Previous Work

The current work draws from the literature of two active areas in the computer vision – pose
estimation and action recognition. We briefly describe somewithout any hope of doing justice to
either of the areas.

CHAPTER 5. SUPERVISED MODELS FOR OBJECT RECOGNITION 63

Figure 5.3: Pose and appearance variation across actions.

Figure 5.4:Our distributed representation of pose using poselets.Each image is shown with
the top9 active poselets consistent with the person in the image (shown by their average training
examples). Occlusion, variations in clothing, clutter, lack of resolution in images makes the pose
estimation a hard problem and our representation is robust to these.

CHAPTER 5. SUPERVISED MODELS FOR OBJECT RECOGNITION 64

Human pose estimation from still images. Pictorial structures based algorithms like that of [34,
88, 86, 36] deal with the articulated nature of humans by finding body parts like limbs and torsos
and constructing the overall pose using the prior knowledgeof human body structure. Though
completely general, these methods suffer when the parts arehard to detect in images. Another class
of methods work by assuming that the humans appear in backgrounds which are easy to remove,
and in such cases the contour carries enough information about the pose. This includes the shape-
context based matching of silhouettes in the work of [73], the work of [97] where approximate
nearest neighbor techniques are used to estimate the pose using a large dataset of annotated images.

A common drawback of all these approaches is that they treat the task of pose estimation
and detection separately. Pictorial structure based models often assume a rough localization of
the person and fail when there is significant occlusion or clutter. In such a two-stage pipeline it
would be helpful if the detector provides a rough estimate ofthe pose to guide the next step. We
also believe that the detection algorithms need to have a crude treatment of pose in them. This is
reflected by the fact that some of the best people detectors onthe PASCAL VOC challenge namely
the detector of Felzenszwalb et al. [33] and Bourdev et al. [13] are part based detectors which have
some treatment of pose.

Action Recognition from video. Actions in this setting are described by some representation
of its spatio-temporal signature. This includes the work ofBlank et al. [7] and Shechtman and
Irani [42], who model actions as space-time volumes and classification is based on similarity of
these volumes. Schuldt et al. [96] and Laptev [60] generalize the notion of interest points from
images to space-time volumes and use it to represent actions. Actions as motion templates has
been explored in the work of Efros et al. [25], where actions are described as series of templates of
optical flow. Other methods like [87, 122] are based on representations on the 2D motion tracks of
a set of features over time.

Action recognition from still images. Humans have a remarkable ability to infer actions from
a still image as shown in Figure 5.2. In this setting it is natural to build representations on top the
output of a pose estimation algorithm. Due to the drawbacks of the current pose estimation algo-
rithms, several approaches build pose representations that are more robust – Ikizler and Pinar [53]
represent pose using a “histogram of oriented rectangle” feature which is the probability distribu-
tion of the part locations and orientations estimated usingpart detectors. Thurau and Hlavac [106]
represent pose as a histogram of pose primitives. These methods inherit most if not all of the
problems of pose estimation.

The closest in spirit to our approach is the work of Yang et al.[120], who also use a represen-
tation based on poselets to infer actions. Pose representedas a configuration of body part locations
is expressed as a latent variable which is used for action recognition. Training and inference in
the model amount to reasoning over these latent poses which are themselves inferred using a tree
like prior over body parts and poselet detections. Unlike their approach we don’t have an explicit
representation of the pose and use the “poselet activation vector” itself as a distributed represen-

CHAPTER 5. SUPERVISED MODELS FOR OBJECT RECOGNITION 65

tation. In addition, our poselets encode information from multiple scales and are not restricted to
parts like legs and arms. In our experiments we found that such an over-complete representation
greatly improves the robustness of the system. We show that linear classifiers trained on top of
the poselet activation vector can be used for both 3D pose estimation of people in the challenging
PASCAL VOC 2010 dataset and static image action recognition demonstratingthe effectiveness
of our representation.

5.4 Poselet Activation Vector

Our framework is built on top of poselets [12, 13] which are body part detectors trained from an-
notated data of joint locations of people in images. The annotations are used to find patches similar
in pose space to a given configuration of joints. A poselet is aSVM classifier trained to recognize
such patches. Along with the appearance model one can also obtain the distributions of these joints
and person bounding boxes conditioned on each poselet from the annotations. Figure 5.11 shows
some example poselets.

Given the bounding box of a person in an image, our representation, called the poselet activa-
tion vector, consists of poselets that are consistent with the bounding box. The vector has an entry
for each poselet type which reflects the degree to which the poselet type is active in that person.
This provides a distributed representation of the high dimensional non-linear pose space of humans
as shown in Figure 5.4. Notice that the pose and appearance information is encoded at multiple
scales. For example, we could have a part which indicates just the head or just the torso or the full
pedestrian. We use this representation for both action recognition and 3D pose estimation from
still images.

5.5 3D Pose Estimation from Still Images

First we quantitatively evaluate the power of the poselet activation vector representation for esti-
mating pose. Our task is to estimate the 3D pose of the head andtorso given the bounding box
of the person in the image. Current approaches for pose estimation based on variants of pictorial
structures are quite ill suited for this task as they do not distinguish between a front facing and back
facing person. Some techniques can estimate the 3D pose of the head by first detecting fiducial
points and fitting it to a 3D model of the head, or by regressingthe pose from the responses of face
detectors trained to detect faces at different orientations [72]. These methods are not applicable
when the face itself is occluded or when the image is at too lowa resolution for a face detector, a
common occurrence in our dataset.

The pose/aspect of the person in encoded at multiple scales and often one can roughly guess the
3D pose of the person from various parts of the person as seen in Figure 5.2 and our representation
based on poselets are an effective way to use this information. Our results show that we are able to
estimate the pose quite well for both profile and back facing persons.

CHAPTER 5. SUPERVISED MODELS FOR OBJECT RECOGNITION 66

−180 −135 −90 −45 0 45 90 135 180
4

5

6

7

8

9

10

True yaw

A
ve

ra
ge

 e
rr

or

Average human error in degrees (6.66 head, 7.07 torso)

head
torso

 200

 400

 600

 800

30

210

60

240

90

270

120

300

150

330

180 0

Head Yaw

 200

 400

 600

 800

30

210

60

240

90

270

120

300

150

330

180 0

Torso Yaw

 500

 1000

 1500

30

210

60

240

90

270

120

300

150

330

180 0

Head Yaw − Torso Yaw

(a) AMT interface (b) Human Error (c) Head Yaw (d) Torso Yaw (e) Head-Torso Yaw

Figure 5.5: (a) Interface for annotating the 3D pose on Amazon Mechanical Turk. (b) Human error
rate across view for estimating the pose of the head and torso. (c, d, e) Distribution of the yaw of
head, torso and torso relative to the head, on our 3D pose dataset.

A Dataset of 3D Pose Annotations. Since we wanted to study the problem of pose estimation
in a challenging setting, we collected images of people fromthe validation subset of PASCAL
VOC 2010 dataset not marked as difficult. We asked the users on Amazon Mechanical Turk [2], to
estimate the rotations around X,Y and Z of the head and torso by adjusting the pose of two gauge
figures as seen in Figure 6.7(a). We manually verified the results and threw away the images where
there was high disagreement between the annotators. These typically turned out to be images of
low resolution or severe occlusion.

Our dataset has very few examples where the rotation along X and Z axes is high, as is typical of
consumer photographs, hence we removed images which have rotations along X and Z> 30◦ and
focus on estimating the rotation around Y (Yaw) only. In the end we have1620 people annotations
that along with their reflections result in3240 examples. The distribution of the yaw across the
dataset is shown in Figure 6.7(c, d, e).

Figure 6.7(b) shows the human error in estimating the yaw across views of the head and torso.
This is measured as the average of standard deviation of the annotations on a single image in the
view range. The error is small for people in canonical views,i.e. when the person is facing front,
back, left or right, whereas it is high when the person in facing somewhere in between. Overall
the annotators are fairly consistent with one another with amedian error of6.66◦ for the head and
7.07◦ for the torso across views.

Experiments. Similar to [13], we train1200 poselets on the PASCAL train2010 + H3D trainval
dataset. Instead of all poselets having the same aspect ratio, we used four aspect ratios:96 × 64,
64 × 64, 64 × 96 and128 × 64 and trained300 poselets of each. In addition we fit a model of
bounding box prediction for each poselet. We construct the poselet activation vector by considering
all poselet detections whose predicted bounding box overlaps the bounding box of the person,
defined by the intersection over union> 0.20 and adding up the detection scores for each poselet
type. We use this1200 dimensional vector to estimate the pose of the person.

We estimate the pose of the head and torso separately. We discretize the yaw∈ [−180◦, 180◦]

CHAPTER 5. SUPERVISED MODELS FOR OBJECT RECOGNITION 67

into 8 discrete bins and train one-vs-all linear classifiers for predicting the discrete label. The
angle is obtained by parabolic interpolation using the highest predicted bin and its two adjacent
neighbors. We optimize our parameters on one split of the data and report results using10 fold
cross validation. We split the training and test set equallyensuring both the image and its reflection
are both either in the training or the test set.

Figure 5.6(a, b) show the confusion matrix for the task of predicting the discrete view, one
of front, left, right and back, for the head and torso. The average diagonal accuracy is62.1%
for the head and61.71% for the torso. The median errors in predicting the real valued view are
shown in Figure 5.6(c). We report results by averaging the error for predicting view across8
discrete views. Since the dataset is biased towards frontalviews, this error metric gives us a better
idea of the accuracy of the method. Across all views the erroris about26.3◦ and23.4◦ for the
head and torso respectively, while across the front views, i.e. yaw∈ [−90◦, 90◦], the error is
lower: 20.0◦ and19.6◦ respectively. In particular, the error when the person is facing front, i.e.
yaw∈ [−22.5◦, 22.5◦] matches the human error rate. Our method is able to recognizethe pose of
back facing people, i.e. yaw∈ [157.5◦,−157.5◦], a45◦ range around the back facing view, with an
error of about20◦ error for the head and torso. Approaches based on face detection would fail but
our representation benefits from information at multiple scales like the overall shape of the person,
as shown in Figure 5.7. The error is smaller when the person isfacing exactly left, right, front and
back while it is higher when the person is facing somewhere inbetween, qualitatively similar to
humans.

At roughly 25◦ error across views, our method is significantly better than the baseline error of
90◦ for the method that always predicts the view as frontal (It gets 0◦ error for frontal view, but
180◦ error for back view). Figure 5.8 shows some example images inour dataset with the estimated
pose. We believe this is a good result on this difficult dataset demonstrating the effectiveness of
our representation for coarse 3D pose estimation.

5.6 Static Action Classification

In this section we present our method for action classification and report results on the newly intro-
duced PASCAL VOC2010 action classification benchmark. The input is a set of bounding boxes
on images and the task is to score each of these with respect tonine action categories namely :phon-
ing, playinginstrument, reading, ridingbike, ridinghorse, running, takingphoto, usingcomputerand
walking. Figure 5.3 shows examples from various action categories.

Action specific poselets. There are608 training examples for all the action categories. To train
poselet models we first annotate each person with 2D joint locations on Amazon Mechanical Turk.
Five independent annotators were asked to annotate every image and the results were averaged with
some outlier rejection. Similar to the approach of [13] we randomly sample windows of various
aspect ratios and use the joint locations to find training examples each poselet.

CHAPTER 5. SUPERVISED MODELS FOR OBJECT RECOGNITION 68

57.96

52.00

87.48

50.91

90 −180 −90 0 90 −180

−180

−90

0

90

59.23

50.95

83.99

52.67

90 −180 −90 0 90 −180

−180

−90

0

90

(a) Head Yaw:62.10% (b) Torso Yaw:61.71%

−180 −135 −90 −45 0 45 90 135 −180
0

10

20

30

40

50

True Yaw

E
rr

or
 in

 P
re

di
ct

ed
 Y

aw

Yaw Prediction Error Rates

head
torso
head − human error
torso − human error

(c) Error in predicting yaw across views

Figure 5.6: (a, b) Average confusion matrix over10-fold cross validation, for predicting four views
left, right, frontandback. The mean diagonal accuracy is62.10% and61.71% for predicting the
head and the torso respectively. (c) Error in predicting theyaw averaged over8 discrete views using
10-fold cross validation. Across all views the error is about26.3◦ and23.4◦ for the head and torso
respectively, while across the front views, i.e. yaw∈ [−90◦, 90◦], the error is lower20.0◦, 19.6◦. In
particular the error when the person is facing front, i.e. yaw ∈ [−22.5◦, 22.5◦] matches the human
error rate.

CHAPTER 5. SUPERVISED MODELS FOR OBJECT RECOGNITION 69

yaw = −180◦

yaw = −90◦

yaw = 0◦

yaw = +90◦

Figure 5.7:Poselets with the highest weights for discrete view classification of the head.Note
that information from multiple scales is used to infer the view. When the person is back-facing,
i.e. yaw= −180◦, poselets corresponding to pedestrians and upper-body areselected where as for
the frontal view face poselets are selected.

Figure 5.8: Left to right are examples images in our 3D pose dataset of increasing prediction error.
Under each image the plot shows the true yaw for the head (left) and torso (right) in green and the
predicted yaw in red. We are able to estimate the pose even when the face, limbs and other body
parts are hard to detect.

CHAPTER 5. SUPERVISED MODELS FOR OBJECT RECOGNITION 70

Figure 5.9 shows that pose alone cannot distinguish betweenactions and the appearance infor-
mation is complimentary. For example we would like to learn that people riding bikes and horses
often wear helmets, runners often wear shorts, or that people taking pictures have their faces oc-
cluded by a camera.To model this, we learn action specific appearance by restricting the training
examples of a poselet to belong to the same action category.

Many poselets like a “face” poselet may not discriminate between actions.The idea illustrated
in Figure 5.10, is windows that capture salient pose specificto certain actions are likely to be
useful for action discrimination. We measure “discriminativeness” by the number of within class
examples of the “seed” windows in the topk = 50 nearest examples for the poselet. The idea is that
if a pose is discriminative then there will be many examples of that poselet from within the same
class. Combined with the earlier step this gives us a way to select poselets which detect salient pose
and appearance for actions as shown in Algorithm 2. Appearance models are based on HOG [21]
and linear SVM. We learn1200 action specific poselets. Figure 5.11 shows representativeposelets
from four action categories.

Algorithm 2 Action specific poselet selection.
Require: 2D keypoint/action labels on training images.

1: for i = 1 to n do
2: Pick a random seed window and find the nearest examples in configuration space based on

the algorithm of [13].
3: Compute the number of within class examples in thek = 50 nearest examples.
4: end for
5: Select the topm seed windows which have the highest number within class examples.
6: For each selected window, restrict the training examples towithin the class and learn an ap-

pearance model based on HOG and linear SVM.

Remarks:
• Steps1− 5 learn action specific pose, while step6 learns action specific appearance.

• We ensure diversity by running steps1 − 6 in parallel. We setm = 60, n = 600 across20 nodes to
learn 1200 poselets.

Poselet Activation Vector. The action poselets are run in a scanning window manner and we
collect poselet detections whose predicted bounds overlapthe given person bounds, defined by the
intersection over union of the area> 0.15. Thei’th entry of the poselet activation vector is the sum
of the scores of all such detections of poselet typei.

Spatial Model of Object Interaction. Interaction with other objects often provides useful cues
for disambiguating actions [121]. For example, images of people riding horses have the person
and the horse in certain spatial configurations. We model theinteraction with four object cate-
gories :horse, motorbike, bicycleandtvmonitor. We learn a mixture model of the relative spatial

CHAPTER 5. SUPERVISED MODELS FOR OBJECT RECOGNITION 71

seed all examples within class examples

Figure 5.9: The middle image shows the nearest examples matching the seed using the pose alone,
while the image on right shows the top examples within thetakingphotocategory. This allows us
to learn appearance and pose specific to that action.

location between the person bounding box and the object bounding box in the image as shown in
Figure 5.12. For detecting these objects we use the detectorbased on poselets trained on these
object categories presented in the PASCAL VOC 2010 object detection challenge. For each object
type we fit a two component mixture model of the predicted bounding box to model the various
aspects of the person and objects.

Given the object detections we find all the objects whose predicted person bounds overlap the
bounds of the given person> 0.3. Similar to the poselet activation vector we construct an ”object
activation vector” by taking the highest score of the detection for each object type among these.

Action context. Often the action of a person can be inferred based on what others are doing in
the image. This is particularly true for actions likeplayinginstrumentandrunningwhich are group
activities. Our action context for each person is a9 dimensional vector with an entry for each
action type whose value is the highest score of the action prediction among all the other people in
the image. Overall the second stage classifier is a separate linear SVM for each action type trained
on10 features: self score for that action and9 for action context.

Experiments. Table 5.1 shows the performance of various features on the test and validation set.
All the parameters described were set using a10-fold cross validation on the trainval subset of the
images.

The poselet activation vectoralone achieves a performance of59.8 on the validation subset
of images and does quite well in distinguishing classes likeridinghorse, running, walkingand
phoning. Adding the object model boosts the performance of categories likeridingbikeandusing-
computersignificantly, improving the average AP to65.3. These classes either have the widely
varying object types and poselets are unable to capture the appearance variation. Modeling the
spatial interaction explicitly also helps for classifyingusingcomputerclass as the interaction is
often outside the bounding box of the person. Finally the context based re scoring improves the

CHAPTER 5. SUPERVISED MODELS FOR OBJECT RECOGNITION 72

seed Top36 training examples

seed Top36 training examples

Figure 5.10: The top row shows a seed window that captures a salient pose for thetakingphoto
category. The36 nearest examples in configuration space for the top seed window has7 examples
from thetakingphotocategory while the bottom seed has only2.

CHAPTER 5. SUPERVISED MODELS FOR OBJECT RECOGNITION 73

phoning running

walking ridinghorse

Figure 5.11: Example poselets shown by their top5 training examples for various action categories.
These capture both the pose and appearance variation acrossthe action categories.

motorbike bicycle horse tvmonitor

Figure 5.12: Spatial model of the object person interaction. Each image shows the modes of the
bounding boxes of the person (blue) relative to the boundingbox of the object (red). Forhorse,
motorbikeandbicyclecategory the two modes capture front and side views of the object while for
thetvmonitorit captures the fact that TV monitors are often at the left or right corner of the person
bounding box.

CHAPTER 5. SUPERVISED MODELS FOR OBJECT RECOGNITION 74

Validation Test
category PAV w/ OAV w/ C w/ C
phoning 63.3 62.0 62.0 49.6

playinginstrument 44.2 44.4 45.6 43.2
reading 37.4 44.4 44.3 27.7

ridingbike 62.0 84.7 85.5 83.7
ridinghorse 91.1 97.7 97.5 89.4

running 82.4 84.1 86.0 85.6
takingphoto 21.1 22.9 24.6 31.0

usingcomputer 54.2 64.9 64.3 59.1
walking 82.0 83.6 80.8 67.9
average 59.8 65.3 65.6 59.7

Table 5.1: Average precision on the action validation and test set using various features. PAV is
the performance using just theposelet activation vector. Column w/OAV shows the performance
by including theobject activation vectoras features and column w/C shows the performance by
including action context. The object features help in theridingbike, ridinghorseandusingcom-
puter categories, while the context improves the performance onplayinginstrumentandrunning
categories. Our methods achieves an average AP of59.7 on the test set which is comparable to the
winning techniques in PASCAL VOC2010.

performance ofplayinginstrumentandrunningclass as these are often group activities.
Figure 5.13 shows the confusion matrix of our classifier. Some high confusion pairs are

{reading, takingphoto} → playinginstrumentand running→ walking. Figure 5.14 shows mis-
classified examples for several pairs of categories. Overall our method achieves an AP of65.6 on
the validation and59.7 on the test set which is comparable to the winning techniquesin PASCAL
VOC 2010 challenge, for example,60.1 for “INRIA SPM HT” and 60.3 for “CVC BASE”. We
refer the readers to the challenge website1 for details and results of other entries.

5.7 Conclusion

We demonstrate the effectiveness of the poselet activationvector on the challenging tasks of 3D
pose estimation of people and static action recognition. Contrary to the traditional way of rep-
resenting pose which is based on the locations of joints in images, we use the poselet activation
vector to capture the inherent ambiguity of the pose and aspect in a multi-scale manner. This is
well suited for estimating the 3D pose of persons as well as actions from static images. In the
future we would like to investigate this representation forlocalizing body parts by combining top

1http://pascallin.ecs.soton.ac.uk/challenges/VOC

http://pascallin.ecs.soton.ac.uk/challenges/VOC

CHAPTER 5. SUPERVISED MODELS FOR OBJECT RECOGNITION 75

ph
on

in
g

pl
ay

in
gi

ns
tr

um
en

t

re
ad

in
g

rid
in

gb
ik

e

rid
in

gh
or

se

ru
nn

in
g

ta
ki

ng
ph

ot
o

us
in

gc
om

pu
te

r

w
al

ki
ng

phoning

playinginstrument

reading

ridingbike

ridinghorse

running

takingphoto

usingcomputer

walking
0

5

10

15

20

25

30

35

Figure 5.13: Confusion matrix for our action classifier. Each row shows the distribution of the
true labels of the top50 ranked examples for each action category on the validation subset of the
images. Some high confusion pairs are{reading, takingphoto} → playinginstrumentandrunning
→ walking.

CHAPTER 5. SUPERVISED MODELS FOR OBJECT RECOGNITION 76

phoning→ takingphoto takingphoto→ phoning

reading→ usingcomputer usingcomputer→ reading

walking→ running running→ walking

ridingbike→ running running→ ridingbike

Figure 5.14:Pairwise confusions between several classes on the PASCAL 2010 validation set.
Each A→ B shows the top4 images of class A ranked by classifier of class B. Confusion isoften
caused when the person has similar pose or failures of the object detector.

CHAPTER 5. SUPERVISED MODELS FOR OBJECT RECOGNITION 77

down pose estimates with bottom-up priors and exploit pose-to-pose constraints between people
and objects to estimate pose better.

Most of the other high performing methods on the PASCAL VOC 2010 action classification
task use low-level features based on color and texture together with a SVM classifier, without
any explicit treatment of pose. We believe that such methodsbenefit from the fact that one is
provided with accurate bounding boxes of the person in the image. This is quite unrealistic in an
automatic system where one has to estimate the bounds using anoisy object detector. We on the
other hand use the bounding box information quite loosely byconsidering all poselet detections
that overlap sufficiently with the bounding box. In addition, the poselet activation vector provides
a compact representation of the pose and action, unlike the high dimensional features typical of
“bag-of-words” style approaches.

The annotations and code for estimating the yaw of the head and torso in images, as well as the
keypoint annotations and code for static image action classification can be downloaded from the
author’s website.

78

Chapter 6

Crowdsourcing for Computer Vision

We describe our experience of collecting roughly250, 000 image annotations on Amazon Me-
chanical Turk (AMT) [2]. The annotations we collected rangefrom location of keypoints and figure
ground masks of various object categories, 3D pose estimates of head and torsos of people in im-
ages and attributes like gender, type of hair and clothing, etc. We describe the setup and strategies
we adopted to automatically approve and reject the annotations. Such automation is necessary
for large scale annotations since the task of verification can itself be tedious and time consuming.
These annotations were used to train algorithms for detection/segmentation [13], semantic bound-
ary extraction [48], pose estimation/action recognition [67] and attribute recognition of people in
images [11], some of which we described in the previous chapter.

Collecting annotations in a cost effective manner has become possible due to emergence of effi-
cient marketplaces like AMT. Services like AMT serve as marketplace, where “workers” complete
Human Intelligence Tasks (HITs), as illustrated in Figure 6.1. The large pool of available workers
enables completion of large scale visual annotation tasks in a time and cost effective manner. There
are three ingredients for constructing a HIT (Human Intelligence Task) which “workers” on AMT
can complete :

1. User Interface. This is the front-end which enables the user to do the task inside their web
browsers. Some of our tasks required users to draw the boundaries or mark the locations
of various keypoints of objects. All our GUIs (Graphical User Interfaces) were written in
Java/JavaScript + HTML.

2. Instructions. Contains the task description, with examples of completed task as well as GUI
usage instructions.

3. Verification. A method to approve/reject the HITs. This becomes importantfor large scale
annotations as this step also has to be done automatically. One can have a task done by
multiple workers followed by outlier rejection or a secondary HIT to verify the results to
automatically select the right answers. We adopt the first approach for all our tasks.

CHAPTER 6. CROWDSOURCING FOR COMPUTER VISION 79

Figure 6.1: Amazon mechanical turk serves as a marketplace for workers to complete “Human
Intelligence Tasks” (HITs).

An interesting aspect of collecting annotations on AMT is that we can measure the inherent
hardness of these tasks. Many of these tasks don’t require specific training and human performance
of even a casual annotator is quite good. The agreement between various workers on a given
problem can provide us a sense of the hardness of the task and an upper bound on the performance
one might expect from an automatic system. In the 3D pose estimation problem, we see that the
humans are not perfect, with an average error of6◦ across views.

We describe the three ingredients, i.e. the interface, instructions and verification method for
the each of the tasks we set up on AMT in the next few sections.

6.1 Figure-ground Masks of Objects

We collect figure ground masks for various object categories. We focus on the categories and
images from the PASCAL VOC 2010 dataset [28]. The dataset has23, 374 objects in the train-
ing/validation set from20 categories. The statistics of the dataset are show in the Table 6.1.

Interface & Instructions. Our interface was as simple polygon outline tool which allows the
user to draw a closed polygon and then move the vertices around to adjust the polygon. The
advantage of this interface is that it is quite simple and intuitive to use. On the other hand, it only
allows the user to draw one closed polygon which does not workwell for objects with holes. An
alternate interface was one which allows the user to paint the pixels belonging to the figure. This
interface is too time consuming if done at the pixel level andtoo inaccurate on the boundaries if
done at a “superpixel” (or a coarser quantization) level.

CHAPTER 6. CROWDSOURCING FOR COMPUTER VISION 80

(a) (b) (c)

Figure 6.2: The user interface for annotating the outer boundary of the objects. (a) The user sees
this inside the Amazon Mechanical Turk environment. (b) Partial annotation by the user. (c) The
user closes the polygon and edits the boundary if needed, andclicks the submit button.

Figure 6.2 shows our interface for marking the outer boundaries of the objects. We provide
instructions and sample segmentations, to describe the task to the user. Below that we display the
image to be segmented. To avoid confusion when there are multiple overlapping objects in the
image, we draw a bounding box to indicate which object we are interested in.

The interface is written in Javascript + HTML5. It uses the “canvas” tag [105] which is cur-
rently supported in the latest Internet Explorer, Firefox and Safari browsers. We did not have any
users complaining that the interface was not working properly for them. This switch was partly
motivated by the difficulties we had in porting our keypoint labeling tool (next section) written in
JAVA to various browsers. At the time of writing the “canvas”tag was only partly supported on IE,
in particular they had no support for displaying text. We would like to port the keypoint labeling
tool to Javascript + HTML5 in the future once text is supported by them1.

Verification. We collect5 independent annotations per object. For approving the HITsautomat-
ically, we compute the pairwise overlap between the masks ofan object, and find the one which
overlaps the maximum with everyone else. We consider all masks which overlap with this mask
greater than a threshold as correct. The threshold is chosenmanually based on how flexible the
object category is. For example for rigid objects like “bottles” and “tv-monitors” the we choose a
threshold of0.75 while for less rigid objects like cats and dogs we choose a lower threshold of0.65
or even lower. In general the quality of segmentations submitted by the users are pretty good and
only about10% of the submitted hits were rejected. Figure 6.3 shows the distribution of submit
times for the “aeroplane” and “cat” categories. Figure 6.4 shows some of the submitted results by
the workers. Figure 6.5 shows some outliers which are rejected automatically by our algorithm.

1canvas text is now supported on most browsers, and the keypoint tool has been ported to HTML5

CHAPTER 6. CROWDSOURCING FOR COMPUTER VISION 81

Category Number of Objects Reward (cents) Submit Time (seconds)
Aeroplane 738 2 77/59

Bicycle 614 2 87/69
Bird 971 1 72/57
Boat 687 1 47/36
Bottle 1014 1 47/36
Bus 498 1 55/41
Car 1774 1 55/42
Cat 1132 1 70/57

Chair 1890 1 60/44
Cow 464 2 70/58

Diningtable 468 1 50/36
Dog 1416 1 70/57

Horse 621 2 95/77
Motorbike 611 2 80/65

Person 7296 1 55/43
Pottedplant 821 1 65/50

Sheep 701 2 67/50
Sofa 451 1 65/51
Train 524 1 59/46

Tvmonitor 683 1 32/25
Total 23374

Table 6.1: Statistics of PASCAL VOC 2010 trainval set. For each image we collected5 indepen-
dent annotations. We paid them either1 or 2 cents (US currency), based on the how complex we
thought the boundaries of the class were, as shown in the “Reward” column. This is more or less
also reflected in the mean/median submit time of the HITs shown in the last column.

CHAPTER 6. CROWDSOURCING FOR COMPUTER VISION 82

0 100 200 300 400 500 600
0

50

100

150

200

250

300
Category : aeroplane

time spend in seconds

nu
m

be
r

of
 H

IT
s

0 100 200 300 400 500 600
0

50

100

150

200

250

300

350

400

450
Category : cat

time spend in seconds

nu
m

be
r

of
 H

IT
s

Figure 6.3: Histogram of submit times for the “aeroplane” (left) and “cat” (right) categories.

Figure 6.4: Example results submitted by workers.

CHAPTER 6. CROWDSOURCING FOR COMPUTER VISION 83

Figure 6.5: Outliers in the submitted boundaries by the workers on several images. These are
automatically rejected as they do not have high overlap withthe best answer.

6.2 Keypoint Annotation of Objects

Our goal here was to mark the locations of various keypoints of objects in images. The first
challenge is deciding which keypoints to use. This is fairlystraightforward for animal categories,
where one can base them on anatomical parts, but becomes non trivial for categories such as a
chair, a boat and an airplane, whose examples have large structural variations. For example, there
are chairs with four legs or one stem and a wide base. Some chairs have armrests, and others don’t.
Military airplanes look very different from commercial ones, and sail boats have little in common
with cruise ships. Our approach was to split the categories into a few sub-categories and each of
which has its own set of keypoints. This allows us to train separate “poselets”, which we described
in the previous chapter with more supervision. For example one could train poselets for pointed
front of a military airplane, the round tip of a commercial airliner and the propeller blades of a
propeller plane.

The second challenge is that some categories do not have a principal orientation, which makes
it difficult to assign keypoints in the reference frame of theobject. For example, it is clear what the
front left leg is in the case of a horse, but what is the front left leg of a table? Other categories have
round parts and thus have no extrema points, such as the base of a bottle or a potted plant. Our
solution in these cases is to introduce view-dependent keypoints. For example, we have a keypoint
for the bottom left corner of a bottle, and we define the front left leg of a table based on the current
camera view. The number of keypoints and the sub-categoriesare shown in Table 6.2.

Interface & Instructions. Figure 6.6 shows the interface we have for annotating the keypoints.
Each user is shown an image within a bounding box and a list of keypoints. The user drags and
drops these to their locations in the image. The user is instructed not to mark the points which are
not visible due to occlusion, truncation etc. If a user accidentally moves a point then he/she can
click on it to move it back to its initial position. Once the user is done he/she can press submit.

CHAPTER 6. CROWDSOURCING FOR COMPUTER VISION 84

Class # Keypoints # Subcategories
Aeroplane 16 3

Bicycle 11 1
Bird 12 2
Boat 11 2

Bottle 8 1
Bus 8 1
Car 14 1
Cat 16 1

Chair 10 1
Cow 16 1

Dining table 8 1
Dog 16 1

Horse 19 1
Motorbike 10 1

Person 20 1
Potted plant 6 1

Sheep 16 1
Sofa 12 1
Train 7 1

TV monitor 8 1

Table 6.2: Class-specific variations in the keypoint annotations. #Keypoints is the number of
keypoints and#Subcategoriesis the number of subcategories.

CHAPTER 6. CROWDSOURCING FOR COMPUTER VISION 85

(a)cat (b)bottle (c)pottedplant

Figure 6.6: The user interface for annotating the keypointsof the objects. An image inside the
bounding box is shown along with the list of keypoints on the right. The user can move the points
and place them on their locations in the image or leave them atuntouched if the point is not visible.

Verification. Each object was annotated by5 independent users. We assume that a keypoint is
visible if at least2 annotators have marked its location. To determine the location of each keypoint,
we find the closest pair of annotations and average all the annotations which are within a certain
radius of them. We also get an estimate of the variance of keypoints and optionally can fix points
which have large variance.

6.3 3D Pose of Humans

We construct a dataset of people annotated with the 3D pose ofthe head and torso. One may
try to estimate the 3D pose from the 2D keypoints, but this is nontrivial because of occlusions,
truncations and variations of head/torso sizes across people. Hence we asked users to estimate
the rotations around X, Y and Z directly. Our research goal was to study the task of human pose
estimation in a challenging setting, hence we collect images of people from thevalidationsubset
of PASCAL VOC2010 dataset, but remove the person annotations which are markeddifficult or
truncated.

Interface & Instructions. The interface in Figure 6.7(a), shows an image on the left andtwo
gauge figures corresponding to the head and the torso on the right. They are asked to adjust the
pose of the gauge figures to match the 3D pose of the shown person in the image. Different keys
rotate the figures along predefined axis. Other possible waysto manipulate such objects in 3D

CHAPTER 6. CROWDSOURCING FOR COMPUTER VISION 86

−180 −135 −90 −45 0 45 90 135 180
4

5

6

7

8

9

10

True yaw
A

ve
ra

ge
 e

rr
or

Average human error in degrees (6.66 head, 7.07 torso)

head
torso

Figure 6.7: (a) The user interface for 3D pose annotation on AMT. (b) Human error rate across
views.

are well known to the design and graphics community, but our interface was easiest to implement
using Javascript.

Verification. Each person was annotated by4 different annotators for outlier rejection and esti-
mate of variance. We manually verified the results and discarded the images, where there was high
disagreement between the annotators. These typically turned out to be images of low resolution or
severely occluded ones. Our dataset has very few examples where the rotation along X and Z axes
is high which is natural in consumer photographs of people. We collected a total of1620 people
annotations.

Figure 6.7(b) shows the human error in estimating the yaw across views of the head and torso.
This is measured as the average of standard deviation of the annotations on a single image in the
view range. The error is small when the person is facing front, back, left or right whereas it is high
when the person in facing somewhere in between. Overall the annotators are fairly consistent with
one another with a median error of6.66◦ for the head and7.07◦ for the torso across views.

6.4 Attributes of People

About9000 images of people were taken from the H3D and PASCAL VOC2010 dataset for which
we collect several attributes.

CHAPTER 6. CROWDSOURCING FOR COMPUTER VISION 87

Figure 6.8: User interface for marking the ”lower-clothes”attribute.

Interface & Instructions. Each person is shown a set of images and asked to mark the attribute
for each image (Figure 6.8). If the attribute is not clear because of occlusion, truncation, etc, the
user was asked not to mark any option. The users were also shown examples for each attribute kind,
as shown in Figure 6.9. Table 6.3 shows the list of attributeswe annotated. Instead of showing
the entire person we only show the region of interest, for example, upper bodies for hair-type and
gender and lower bodies for lower-clothes. We are able to do this using the keypoint annotations
we obtained earlier on the same dataset. This makes it much more easier for the users to annotate
them and there were many more images which were marked with some attribute compared to an
earlier run we did using the entire person shown as the same sized images. We typically paid the
workers1 cent for marking16 attributes per HIT.

Verification. We collected labels for all attributes on all annotations byfive independent annota-
tors. A label was considered as ground truth if at least4 of the5 annotators agreed on the value of
the label. We discarded501 annotations in which less than two attributes were specifiedas ground
truths which left us with8035 images. We paid the workers who got at least half the marked
annotations right.

CHAPTER 6. CROWDSOURCING FOR COMPUTER VISION 88

Figure 6.9: Instructions for marking the ”lower-clothes” attribute. Examples of each choice of
”lower-clothes”, such as jeans, shorts etc are shown to helpthe annotator identify these. The user
is also shown examples which may be left unmarked.

Attribute Choices
gender male, female
race white, black, asian, indian
age baby(0-2), child(2-10), adult, old(65+)
hair-type long, short, no-hair
glasses regular, sunglasses, no-glasses
shoes barefoot, sneaker/shoe, sandal
sleeve-type short-sleeve, long-sleeve, no-sleeve
upper-clothes t-shirt, shirt, noclothes, bikini, tanktop, bikerwear, other
headgear cap/hat, full-helmet, half-helmet, other, none
lower-clothes shorts, skirt, jeans, pants, other
hair-color black, blonde, white, no-hair, other

Table 6.3: List of attributes we annotated on Amazon Mechanical Turk.

CHAPTER 6. CROWDSOURCING FOR COMPUTER VISION 89

6.5 Conclusion

Services like AMT have enabled us to collect large amounts ofannotations in a cost effective
manner. Although there are many advantages there are some disadvantages too. The quality of the
annotations is a subject of concern sometimes and is a function of the difficulty of the task, amount
of time spend by the “workers” which in turn is a function of the “reward”, etc. Sometimes the
task is ill posed, for example, how does one label wings of airplanes with multiple wings, leading
to inconsistencies in annotations. For classes where the structure varies a lot, creating detailed
instructions for various special cases or curating the annotations manually as a post processing
step can take the same order of time as manually annotating the images, defeating the advantages
of AMT. In such cases one may want to adopt other strategies, for example, have a small set of
trained, but highly paid workers, or subject workers to a carefully designed qualification test.

90

Bibliography

[1] Shivani Agarwal and Dan Roth. “Learning a sparse representation for object detection”.
In: European Conference on Computer Vision (ECCV). 2002.

[2] Amazon Mechanical Turk. http://www.mturk.com.

[3] D. H. Ballard. “Generalizing the Hough transform to detect arbitrary shapes”. In:Pattern
Recognition13 (1981).

[4] Serge Belongie et al. “Spectral Partitioning with Indefinite Kernels Using the Nystrom
Extension”. In:European Conference on Computer Vision (ECCV). 2002.

[5] Alexander C. Berg and Jitendra Malik. “Geometric Blur for Template Matching”. In:Com-
puter Vision and Pattern Recognition (CVPR). 2001.

[6] T. L. Berg et al. “Names and faces in the news”. In:Computer Vision and Pattern Recog-
nition (CVPR). 2004.

[7] Moshe Blank et al. “Actions as Space-Time Shapes”. In:International Conference on Com-
puter Vision (ICCV). 2005.

[8] A. Bosch, A. Zisserman, and X. Munoz. “Representing shape with a spatial pyramid ker-
nel”. In: International Conference on Image and Video Retrieval (ICIVR). 2007.

[9] S. Boughorbel, J.-P. Tarel, and N. Boujemaa. “Generalized Histogram Intersection Kernel
for Image Recognition”. In:IEEE Conference on Image Processing (ICIP). 2005.

[10] Lubomir Bourdev and Jonathan Brandt. “Robust Object Detection via Soft Cascade”. In:
Computer Vision and Pattern Recognition (CVPR). 2005.

[11] Lubomir Bourdev, Subhransu Maji, and Jitendra Malik. “Describing People: Poselet-Based
Attribute Classification”. In:International Conference on Computer Vision (ICCV). 2011.

[12] Lubomir Bourdev and Jitendra Malik. “Poselets: Body Part Detectors Trained Using 3D
Human Pose Annotations”. In:International Conference on Computer Vision (ICCV).
2009.

[13] Lubomir Bourdev et al. “Detecting People Using Mutually Consistent Poselet Activations”.
In: European Conference on Computer Vision (ECCV). 2010.

http://www.mturk.com

BIBLIOGRAPHY 91

[14] Thomas Brox et al. “Object Segmentation by Alignment ofPoselet Activations to Image
Contours”. In:Computer Vision and Pattern Recognition (CVPR). 2011.

[15] Christopher J. C. Burges. “Simplified Support Vector Decision Rules”. In:International
Conference on Machine Learning (ICML). 1996.

[16] C.J.C. Burges and B. Schölkopf. “Improving the accuracy and speed of support vector
machines”. In:Neural Information Processing Systems (NIPS). 1997.

[17] O. Chapelle, P. Haffner, and V.N. Vapnik. “Support vector machines for histogram-based
image classification”. In:Neural Networks, IEEE Transactions on10.5 (1999), pp. 1055–
1064.

[18] Ondej Chum and Andrew Zisserman. “Presented at PASCAL Visual Recognition Chal-
lenge Workshop”. In: 2007.

[19] B. Collins et al. “Towards scalable dataset construction: An active learning approach”. In:
European Conference on Computer Vision (ECCV). 2008.

[20] Corinna Cortes and Vladimir Vapnik. “Support-Vector Networks”. In:Machine Learning
20.3 (1995), pp. 273–297.

[21] N. Dalal and B. Triggs. “Histograms of oriented gradients for human detection”. In:Com-
puter Vision and Pattern Recognition (CVPR). 2005.

[22] C. De Boor.A practical guide to splines. Springer Verlag, 2001.

[23] Dennis Decoste and Bernhard Schölkopf. “Training Invariant Support Vector Machines”.
In: Machine Learning46.1-3 (2002), pp. 161–190.ISSN: 0885-6125.

[24] Richard O. Duda and Peter E. Hart. “Use of the Hough transformation to detect lines and
curves in pictures”. In:Commun. ACM15.1 (1972), pp. 11–15.ISSN: 0001-0782.DOI:
http://doi.acm.org/10.1145/361237.361242.

[25] Alexei A. Efros et al. “Recognizing Action at a Distance”. In: International Conference on
Computer Vision (ICCV). 2003.

[26] P.H.C. Eilers and B.D. Marx. “Generalized linear additive smooth structures”. In:Journal
of Computational and Graphical Statistics11.4 (2002), pp. 758–783.

[27] P.H.C. Eilers and B.D. Marx. “Splines, knots, and penalties”. In: Wiley Interdisciplinary
Reviews: Computational Statistics(2005).

[28] M. Everingham et al. “The Pascal Visual Object Classes (VOC) Challenge”. In:Interna-
tional Journal of Computer Vision (IJCV)88.2 (2010), pp. 303–338.

[29] R.E. Fan et al. “LIBLINEAR: A library for large linear classification”. In:Journal of Ma-
chine Learning Research (JMLR)9 (2008), pp. 1871–1874.

[30] L. Fei-Fei, R. Fergus, and P. Perona. “Learning generative visual models from few training
examples: an incremental Bayesian approach tested on 101 object categories”. In:Com-
puter Vision and Pattern Recognition (CVPR). 2004.

http://dx.doi.org/http://doi.acm.org/10.1145/361237.361242

BIBLIOGRAPHY 92

[31] Li Fei-Fei, Rob Fergus, and Pietro Perona. “One-Shot Learning of Object Categories”. In:
IEEE Transaction of Pattern Analysis and Machine Intelligence (PAMI)28.4 (2006).

[32] C. Fellbaum.WordNet: An electronic lexical database. MIT Press, 1998.

[33] P. Felzenszwalb, D. McAllester, and D. Ramanan. “A discriminatively trained, multiscale,
deformable part model”. In:Computer Vision and Pattern Recognition (CVPR). 2008.

[34] Pedro F. Felzenszwalb and Daniel P. Huttenlocher. “Pictorial Structures for Object Recog-
nition”. In: International Journal of Computer Vision (IJCV)61 (1 2005), pp. 55–79.ISSN:
0920-5691.DOI: 10.1023/B:VISI.0000042934.15159.49. URL: http://portal.acm.org/citation

[35] R. Fergus, P. Perona, and A. Zisserman. “Object class recognition by unsupervised scale-
invariant learning”. In:Computer Vision and Pattern Recognition (CVPR). 2003.

[36] V. Ferrari, M. Marin-Jimenez, and A. Zisserman. “Progressive Search Space Reduction for
Human Pose Estimation”. In:Computer Vision and Pattern Recognition (CVPR). 2008.

[37] V. Ferrari et al. “Groups of Adjacent Contour Segments for Object Detection”. In:IEEE
Transaction of Pattern Analysis and Machine Intelligence (PAMI) 30.1 (2008), pp. 36–51.
ISSN: 0162-8828.DOI: http://dx.doi.org/10.1109/TPAMI.2007.1144.

[38] Vittorio Ferrari, Frederic Jurie, and Cordelia Schmid. “Accurate Object Detection with
Deformable Shape Models Learnt from Images”. In:Computer Vision and Pattern Recog-
nition (CVPR). 2007.

[39] Vittorio Ferrari, Tinne Tuytelaars, and Luc Van Gool. “Object Detection by Contour Seg-
ment Networks”. In:European Conference on Computer Vision (ECCV). 2006.

[40] J.H. Friedman and W. Stuetzle. “Projection pursuit regression”. In:Journal of the American
statistical Association(1981), pp. 817–823.

[41] Ashutosh Garg, Shivani Agarwal, and Thomas S. Huang. “Fusion of Global and Local
Information for Object Detection”. In:International Conference on Pattern Recognition
(ICPR). 2002.

[42] Lena Gorelick et al. “Actions as Space-Time Shapes”. In: IEEE Transaction of Pattern
Analysis and Machine Intelligence (PAMI)29 (2007).

[43] M. Grant and S. Boyd. “CVX: Matlab software for disciplined convex programming (web
page and software). http://stanford.edu/∼ boyd/cvx”. In: (2008).

[44] K. Grauman and T. Darrell. “The pyramid match kernel: Efficient learning with sets of
features”. In:Journal of Machine Learning Research (JMLR)8 (2007), pp. 725–760.

[45] K. Grauman and T. Darrell. “Unsupervised Learning of Categories from Sets of Partially
Matching Image Features”. In:Computer Vision and Pattern Recognition (CVPR). 2006.

[46] Kristen Grauman and Trevor Darrell. “The Pyramid MatchKernel: Discriminative Classifi-
cation with Sets of Image Features”. In:Computer Vision and Pattern Recognition (CVPR).
2005.

http://dx.doi.org/10.1023/B:VISI.0000042934.15159.49
http://portal.acm.org/citation.cfm?id=1024426.1024429
http://dx.doi.org/http://dx.doi.org/10.1109/TPAMI.2007.1144

BIBLIOGRAPHY 93

[47] G. Griffin, AD. Holub, and P Perona. “The Caltech-256”. In: Caltech Technical Report.
2006.

[48] B. Hariharan et al. “Semantic Contours from Inverse Detectors”. In:International Confer-
ence on Computer Vision (ICCV). 2011.

[49] Trevor Hastie and Robert Tibshirani.Generalized Additive Models. Chapman & Hall/CRC,
1990.

[50] B Heisele et al. “Hierarchical classification and feature reduction for fast face detection
with support vector machines”. In:Pattern Recognition36 (September 2003).

[51] M. Herbster. “Learning additive models online with fast evaluating kernels”. In:Computa-
tional Learning Theory. Springer. 2001, pp. 444–460.

[52] Derek Hoiem, Alexei Efros, and Martial Hebert. “Putting Objects in Perspective”. In:In-
ternational Journal of Computer Vision80.1 (2008), pp. 3–15–15.ISSN: 0920-5691.DOI:
10.1007/s11263-008-0137-5. URL: http://dx.doi.org/10.1007/s11263-008-0137-

[53] Nazli Ikizler and Pinar Duygulu. “Histogram of oriented rectangles: A new pose descriptor
for human action recognition”. In:Image Vision Computation27 (10 2009).ISSN: 0262-
8856.

[54] Piotr Indyk and Nitin Thaper. “Fast Image Retrieval viaEmbeddings”. In:3rd Interna-
tional Workshop on Statistical and Computational Theoriesof Vision. 2003.

[55] W. J. Deng et al. “ImageNet: A Large-Scale HierarchicalImage Database”. In:Computer
Vision and Pattern Recognition (CVPR). 2009.URL: http://www.image-net.org.

[56] P. Jain, B. Kulis, and K. Grauman. “Fast image search forlearned metrics”. In: 2008.

[57] S. Sathiya Keerthi, Olivier Chapelle, and Dennis DeCoste. “Building Support Vector Ma-
chines with Reduced Classifier Complexity”. In:Journal of Machine Learning Research
(JMLR)7 (2006), pp. 1493–1515.ISSN: 1533-7928.

[58] C. H. Lampert, M. B. Blaschko, and T. Hofmann. “Beyond sliding windows: Object lo-
calization by efficient subwindow search”. In:Computer Vision and Pattern Recognition
(CVPR). 2008.

[59] Tian Lan et al. “Beyond Actions: Discriminative Modelsfor Contextual Group Activities”.
In: Neural Information Processing Systems (NIPS). 2010.

[60] Ivan Laptev. “On Space-Time Interest Points”. In:International Journal of Computer Vi-
sion (IJCV)64 (2-3 2005).

[61] S. Lazebnik, C. Schmid, and J. Ponce. “Beyond Bags of Features: Spatial Pyramid Match-
ing for Recognizing Natural Scene Categories”. In:Computer Vision and Pattern Recogni-
tion (CVPR). 2006.

http://dx.doi.org/10.1007/s11263-008-0137-5
http://dx.doi.org/10.1007/s11263-008-0137-5
http://www.image-net.org

BIBLIOGRAPHY 94

[62] Bastian Leibe, Ales Leonardis, and Bernt Schiele. “Combined object categorization and
segmentation with an implicit shape model”. In:In ECCV workshop on statistical learning
in computer vision. 2004, pp. 17–32.

[63] L.-J. Li, G. Wang, and L. Fei-Fei. “OPTIMOL: automatic Object Picture collecTion via In-
cremental MOdel Learning”. In:Computer Vision and Pattern Recognition (CVPR). 2007.

[64] Subhransu Maji.Linearized Additive Classifiers. 2011. eprint:arXiv:1110.0879.

[65] Subhransu Maji and Alexander C. Berg. “Max Margin Additive Classifiers for Detection”.
In: International Conference on Computer Vision (ICCV). 2009.

[66] Subhransu Maji, Alexander C. Berg, and Jitendra Malik.“Classification using intersection
kernel support vector machines is efficient”. In:Computer Vision and Pattern Recognition
(CVPR). 2008.

[67] Subhransu Maji, Lubomir Bourdev, and Jitendra Malik. “Action Recognition from a Dis-
tributed Representation of Pose and Appearance”. In:Computer Vision and Pattern Recog-
nition (CVPR). 2011.

[68] Subhransu Maji and Jitendra Malik.Fast and Accurate Digit Classification. Tech. rep.
UCB/EECS-2009-159. EECS Department, University of California, Berkeley, 2009.URL:
http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-159.html.

[69] Subhransu Maji and Jitendra Malik. “Object detection using a max-margin Hough trans-
form”. In: Computer Vision and Pattern Recognition (CVPR). 2009.

[70] Tomasz Malisiewicz, Abhinav Gupta, and Alexei A. Efros. “Ensemble of Exemplar-SVMs
for Object Detection and Beyond”. In:International Conference on Computer Vision (ICCV).
2011.

[71] D.L. Medin and M.M. Schaffer. “Context theory of classification learning.” In:Psycholog-
ical review85.3 (1978), p. 207.

[72] K. Mikolajczyk, R. Choudhury, and C. Schmid. “Face detection in a video sequence–a
temporal approach”. In:Computer Vision and Pattern Recognition (CVPR). 2001.

[73] G. Mori and J. Malik. “Recovering 3d Human Body Configurations Using Shape Con-
texts”. In: IEEE Transaction of Pattern Analysis and Machine Intelligence (PAMI)28.7
(2006).

[74] S. Munder and D. M. Gavrila. “An Experimental Study on Pedestrian Classification”. In:
IEEE Transaction of Pattern Analysis and Machine Intelligence (PAMI)28.11 (2006).

[75] Gregory L. Murphy.The Big Book of Concepts (Bradford Books). The MIT Press, 2002.

[76] Jim Mutch and David G. Lowe. “Multiclass Object Recognition with Sparse, Localized
Features”. In:Computer Vision and Pattern Recognition (CVPR). 2006.

[77] F. Odone, A. Barla, and A. Verri. “Building kernels frombinary strings for image match-
ing”. In: IEEE Transactions on Image Processing14.2 (2005), pp. 169–180.

arXiv:1110.0879
http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-159.html

BIBLIOGRAPHY 95

[78] Edgar Osuna, Robert Freund, and Federico Girosi. “Training Support Vector Machines: an
Application to Face Detection”. In: 1997.

[79] Edgar E. Osuna and Federico Girosi. “Reducing the run-time complexity in support vector
machines”. In:Advances in kernel methods: support vector learning(1999), pp. 271–283.

[80] Constantine Papageorgiou and Tomaso Poggio. “A Trainable System for Object Detec-
tion”. In: International Journal of Computer Vision (IJCV)38.1 (2000), pp. 15–33.ISSN:
0920-5691.

[81] N.D. Pearce and M.P. Wand. “Penalized splines and reproducing kernel methods”. In:The
american statistician60.3 (2006), pp. 233–240.

[82] F. Perronnin, J. S andnchez, and Yan Liu. “Large-scale image categorization with explicit
data embedding”. In:Computer Vision and Pattern Recognition (CVPR). 2010.

[83] A. Rahimi and B. Recht. “Random features for large-scale kernel machines”. In:Neural
Information Processing Systems (NIPS). 2007.

[84] Ali Rahimi and Benjamin Recht. “Weighted Sums of RandomKitchen Sinks: Replacing
minimization with randomization in learning”. In:Neural Information Processing Systems
(NIPS). 2009.

[85] D. Ramanan, S. Baker, and S Kakade. “Leveraging Archival Video for Building Face
Datasets”. In:International Conference on Computer Vision (ICCV). 2007.

[86] D. Ramanan and D.A. Forsyth. “Finding and tracking people from the bottom up”. In:
cvpr. 2003.

[87] Cen Rao, Alper Yilmaz, and Mubarak Shah. “View-Invariant Representation and Recogni-
tion of Actions”. In: International Journal of Computer Vision (IJCV)50 (2 2002).ISSN:
0920-5691.

[88] Xiaofeng Ren, A.C. Berg, and J. Malik. “Recovering human body configurations using
pairwise constraints between parts”. In:International Conference on Computer Vision
(ICCV). 2005.

[89] Sami Romdhani et al. “Computationally Efficient Face Detection”. In: International Con-
ference on Computer Vision (ICCV). 2001.

[90] E. Rosch et al. “Basic objects in natural categories”. In: Cognitive psychology8.3 (1976),
pp. 382–439.

[91] B.C. Russell et al. “LabelMe: a database and web-based tool for image annotation”. In:
International Journal of Computer Vision (IJCV)77.1 (2008), pp. 157–173.

[92] K.E.A. Van de Sande et al. “Segmentation as Selective Search for Object Recognition”. In:
International Conference on Computer Vision (ICCV). 2011.

[93] R.E. Schapire. “A brief introduction to boosting”. In:International Joint Conference on
Artificial Intelligence. 1999.

BIBLIOGRAPHY 96

[94] Bernhard Scholkopf and Alexander J. Smola.Learning with Kernels: Support Vector Ma-
chines, Regularization, Optimization, and Beyond. Cambridge, MA, USA: MIT Press,
2001.ISBN: 0262194759.

[95] F. Schroff, A. Criminisi, and A Zisserman. “HarvestingImage Databases from the Web”.
In: International Conference on Computer Vision (ICCV). 2007.

[96] C. Schuldt, I. Laptev, and B. Caputo. “Recognizing human actions: a local SVM ap-
proach”. In:International Conference on Pattern Recognition (ICPR). 2004.

[97] G. Shakhnarovich, P. Viola, and T. Darrell. “Fast pose estimation with parameter-sensitive
hashing”. In:International Conference on Computer Vision (ICCV). 2003.

[98] S. Shalev-Shwartz, Y. Singer, and N. Srebro. “Pegasos:Primal estimated sub-gradient
solver for svm”. In:International Conference on Machine Learning (ICML). 2007.

[99] Lifeng Shang et al. “Real-time Large Scale Near-duplicate Web Video Retrieval”. In:ACM
Multimedia. 2010.

[100] Eli Shechtman and Michal Irani. “Space-Time BehaviorBased Correlation OR How to tell
if two underlying motion fields are similar without computing them?” In:IEEE Transaction
of Pattern Analysis and Machine Intelligence (PAMI)29 (2007), pp. 2045–2056.

[101] Leonid Sigal, Alexandru Balan, and Michael Black. “HumanEva: Synchronized Video and
Motion Capture Dataset and Baseline Algorithm for Evaluation of Articulated HumanMo-
tion”. In: International Journal of Computer Vision (IJCV)87 (1 2010). 10.1007/s11263-
009-0273-6, pp. 4–27.ISSN: 0920-5691.URL: http://dx.doi.org/10.1007/s11263-009-027

[102] Alan F. Smeaton, Paul Over, and Wessel Kraaij. “Evaluation campaigns and TRECVID”.
In: MIR ’06: Proceedings of the 8th ACM International Workshop on Multimedia Informa-
tion Retrieval. 2006, pp. 321–330.ISBN: 1-59593-495-2.

[103] A. Sorokin and D. A. Forsyth. “Utility data annotationwith Amazon Mechanical Turk”.
In: 1st Internet Vision Workshop. 2008.

[104] Michael J. Swain and Dana H. Ballard. “Color indexing”. In: International Journal of
Computer Vision (IJCV)7.1 (1991).ISSN: 0920-5691.

[105] The Canvas Element.http://www.w3.org/TR/html5/the-canvas-element.html.

[106] C. Thurau and V. Hlavac. “Pose primitive based human action recognition in videos or still
images”. In:Computer Vision and Pattern Recognition (CVPR). 2008.

[107] A. Torralba, K. Murphy, and W. Freeman. “Sharing features: efficient boosting procedures
for multiclass object detection”. In:Computer Vision and Pattern Recognition (CVPR).
2004.

[108] Antonio Torralba, Rob Fergus, and Yair Weiss. “Small Codes and Large Image Databases
for Recognition”. In:Computer Vision and Pattern Recognition (CVPR). 2008.

http://dx.doi.org/10.1007/s11263-009-0273-6
http://www.w3.org/TR/html5/the-canvas-element.html

BIBLIOGRAPHY 97

[109] M. Varma and D. Ray. “Learning The Discriminative Power-Invariance Trade-Off”. In:
International Conference on Computer Vision (ICCV). 2007.

[110] A. Vedaldi and A. Zisserman. “Efficient Additive Kernels via Explicit Feature Maps”. In:
Computer Vision and Pattern Recognition (CVPR). 2010.

[111] A. Vedaldi et al. “Multiple Kernels for Object Detection”. In: International Conference on
Computer Vision (ICCV). 2009.

[112] Paul Viola and Michael J. Jones. “Robust Real-Time Face Detection”. In:International
Journal of Computer Vision (IJCV)57.2 (2004), pp. 137–154.

[113] G. Wahba.Spline models for observational data. Vol. 59. Society for Industrial Mathemat-
ics, 1990.

[114] Stefan Walk et al. “New Features and Insights for Pedestrian Detection”. In:Computer
Vision and Pattern Recognition (CVPR). 2010.

[115] Gang Wang, Derek Hoiem, and David Forsyth. “Learning Image Similarity from Flickr
Groups Using Stochastic Intersection Kernel Machines”. In: International Conference on
Computer Vision (ICCV). 2009.

[116] Gregory J. Zelinsky Wei Zhang and Dimitris Samaras. “Real-time accurate object detec-
tion using multiple resolutions”. In:International Conference on Computer Vision (ICCV).
2007.

[117] Jianxin Wu and James M. Rehg. “Beyond the Euclidean distance: Creating effective vi-
sual codebooks using the histogram intersection kernel”. In: International Conference on
Computer Vision (ICCV). 2009.

[118] Changjiang Yang et al. “Improved Fast Gauss Transformand Efficient Kernel Density
Estimation”. In:International Conference on Computer Vision (ICCV). 2003.

[119] Ming-Hsuan Yang, Dan Roth, and Narendra Ahuja. “A Taleof Two Classifiers: SNoW
vs. SVM in Visual Recognition”. In:European Conference on Computer Vision (ECCV).
2002.

[120] Weilong Yang, Yang Wang, and G. Mori. “Recognizing human actions from still images
with latent poses”. In:Computer Vision and Pattern Recognition (CVPR). 2010.

[121] Bangpeng Yao and Li Fei-Fei. “Modeling Mutual Contextof Object and Human Pose
in Human-Object Interaction Activities”. In:Computer Vision and Pattern Recognition
(CVPR). 2010.

[122] Alper Yilmaz and Mubarak Shah. “Actions sketch: a novel action representation”. In:Com-
puter Vision and Pattern Recognition (CVPR). 2005.

[123] J. Zhang et al. “Local Features and Kernels for Classification of Texture and Object Cat-
egories: A Comprehensive Study”. In:International Journal of Computer Vision (IJCV)
(2007).

	Introduction
	Outline

	Evaluation of Additive Kernel SVMs
	Support Vector Machines
	Fast Exact IKSVMs
	Approximate Additive Kernel SVMs
	Additive Kernels in Computer Vision
	Comparing Histograms
	Approximate Correspondences

	Learning Additive Classifiers
	Previous Work
	Experimental Results
	Toy Example : Learning a circle
	MNIST and USPS Digits
	INRIA Pedestrians
	Daimler Chrysler Pedestrians
	Caltech 101
	UIUC Cars

	Conclusion

	Training of Additive Classifiers
	Background
	Overview
	Encoding
	Approximation Quality
	Sparse Version of Encoding and Regularization

	Optimization
	Experimental Results
	Caltech-101
	Daimler Chrysler Pedestrian Dataset
	INRIA Pedestrians

	Additive Modeling using Spline Embeddings
	Additive Kernel Reproducing Kernel Hilbert Space & Spline Embeddings

	Conclusion
	Appendix

	Hough Transforms for Object Detection
	Probabilistic Hough Transform
	Max-Margin Hough Transform
	Discriminative Training

	Overall Detection Strategy
	M2HT Detector
	Verification Classifier

	Experimental Results
	ETHZ Shape Dataset
	UIUC Cars
	INRIA Horses

	Conclusion

	Supervised Models for Object Recognition
	Supervised Learning of Categories
	Pose and Action Recognition from Still Images
	Previous Work
	Poselet Activation Vector
	3D Pose Estimation from Still Images
	Static Action Classification
	Conclusion

	Crowdsourcing for Computer Vision
	Figure-ground Masks of Objects
	Keypoint Annotation of Objects
	3D Pose of Humans
	Attributes of People
	Conclusion

