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ABSTRACT OF THE DISSERTATION 

 

Patterning of the cardiac inflow tract in zebrafish 
 

by 

 

Hannah Knight 

 

Doctor of Philosophy in Biology 

 

University of California, San Diego, 2017 

 

Professor Deborah Yelon, Chair 

 

The mature heart is comprised of multiple types of specialized 

cardiomyocytes, each with distinct functional attributes. However, the 

mechanisms that specify discrete populations of cardiac progenitors are not 

well understood. For example, it is clear that cardiac pacemaking activity is 
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confined to a specialized population of cells in the cardiac venous pole, but the 

signals that create the appropriate number of pacemaker cardiomyocytes 

remain unknown. We have therefore sought to understand how pacemaker 

cells develop in the zebrafish embryo. First, we have investigated pacemaker 

cells in the inflow tract (IFT) of wild-type zebrafish embryos. We have 

observed that IFT cardiomyocytes express a suite of molecular markers that 

are reminiscent of mammalian pacemaker cells and that confer attributes 

specific to this population. Furthermore, we have determined that IFT 

progenitors are localized to discrete areas at the edges of the heart fields, 

prior to their differentiation. Next, we have shown that the specification of this 

IFT progenitor population is influenced by opposing inputs from two signaling 

pathways: Hedgehog (Hh) signaling and Bmp signaling. Given our prior finding 

that Hh signaling promotes cardiomyocyte production, we were surprised to 

discover that Hh signaling also acts to delimit the number of IFT 

cardiomyocytes. Using both genetic and pharmacological manipulations of the 

Hh pathway, we have shown that loss of Hh signaling results in dramatically 

expanded expression of IFT markers. Conversely, Bmp signaling drives IFT 

formation, as embryos with reduced Bmp signaling have a diminished IFT. 

Timed manipulations of Hh and Bmp activity have demonstrated that both 

signals act during early steps of cardiac patterning to define IFT size. 

Intriguingly, reducing both Hh and Bmp signaling restores a nearly normal 

number of IFT cells. We therefore propose a model in which IFT specification 



	

	 xiii	

relies on both limited amounts of Hh signaling and robust levels of Bmp 

signaling, which together set appropriate boundaries for the IFT progenitor 

population. Our findings reveal novel mechanisms of cardiac patterning; in the 

long term, these studies could contribute to our understanding of congenital 

heart disease and improve efforts to generate pacemaker cells in vitro for use 

in regenerative medicine. 
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Chapter 1: Inflow tract development 
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The inflow tract contains specialized cardiomyocytes 

In order to create a functional heart, cardiac progenitor cells must give 

rise to a diverse array of specialized cardiac cell types. These distinct 

populations arise during cardiac patterning, a process that incorporates 

multiple signals in order to specify a variety of lineages in the appropriate 

ratios and locations. This patterning process occurs very early in embryonic 

development, yet it is the foundation of a lifetime of efficient circulation. 

Though the field has made remarkable progress in understanding multiple 

aspects of cardiac development, early cardiac patterning remains relatively 

mysterious. 

As part of our ongoing efforts to understand cardiac patterning, we have 

investigated the mechanisms responsible for establishing one specific cardiac 

cell type: the pacemaker cell. Pacemaker cells initiate the action potentials that 

generate the heartbeat, and they are further distinguished from other 

cardiomyocytes by both their location and their expression of molecular 

markers (Liang et al., 2017; van Weerd and Christoffels, 2016). The unique 

conductive properties of pacemaker cells allow them to control conduction in 

the rest of heart (Choudhury et al., 2015; Monfredi et al., 2010). As a result, 

pacemaker cells are responsible for maintaining synchronized, rhythmic 

contractions of the cardiac chambers. 

In mammals, pacemaker cells are located in a tight bundle of cells 

known as the sinoatrial node (SAN). Located at the junction of the right atrium 



	

	

3	

with the sinus venosus, the SAN spontaneously generates action potentials 

that set the pace for the entire cardiac conduction system (Mangoni and 

Nargeot, 2008). SAN action potentials are rapidly conducted through the atria, 

then delayed at the atrioventricular node before moving into the ventricular 

conduction system (Mangoni and Nargeot, 2008). 

When pacemaker cells malfunction due to congenital malformation, 

disease, or aging, it can result in arrhythmia, insufficient circulation, or even 

sudden cardiac death (Choudhury et al., 2015; Dobrzynski et al., 2007). 

Currently, the only effective treatment is costly implantable electronic 

pacemakers (Mulpuru et al., 2017). The search for biological alternatives is in 

progress and has focused on generating pacemaker-like cells through directed 

differentiation of stem cells or through reprogramming of quiescent 

cardiomyocytes (Bakker et al., 2012; Hu et al., 2014; Jung et al., 2014; Kapoor 

et al., 2013; Nam et al., 2014; Protze et al., 2017; Scavone et al., 2013). 

However, these approaches have failed to yield efficient induction of 

pacemaker cells that are functionally equivalent to endogenous pacemaker 

cardiomyocytes (Boink et al., 2015; Nam et al., 2014). To improve the efficacy 

of these efforts, additional insight is necessary; in particular, it would be highly 

informative to elucidate the genetic regulation of pacemaker cells development 

in vivo so that this can be recapitulated in vitro. Furthermore, understanding 

how the pacemaker population develops during embryonic stages may shed 

light on the etiology of congenital arrhythmias. Therefore, it is worthwhile to 
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investigate open questions that concern the specification and differentiation of 

SAN cardiomyocytes. 

It is unclear how pacemaker cells are specified in the early embryo, 

when pacemaker specification occurs, and where pacemaker progenitors 

arise. Fate mapping experiments in avian embryos suggest that pacemaker 

progenitors reside in a location posterior to the heart fields (Bressan et al., 

2013). However, these data are inconsistent with genetic lineage tracing 

studies in mice that suggest that the SAN originates from the lateral portion of 

the heart fields (Christoffels, 2006; Mommersteeg et al., 2007b; Wiese et al., 

2009), so the location of pacemaker progenitors cannot yet be precisely 

defined. Additional fate mapping could help resolve open questions regarding 

the origins of pacemaker cells, but the technical limitations of mammalian fate 

mapping have precluded investigation into the spatial organization of SAN 

progenitors at very early stages. 

Furthermore, it is unclear how SAN differentiation is regulated: what 

initiates differentiation of SAN progenitors, and what refines this population as 

the embryonic heart matures? Here, many studies have made significant 

inroads in understanding the genetic network that functions during SAN 

differentiation (Blaschke et al., 2007; Christoffels, 2006; Espinoza-Lewis et al., 

2009; Hoogaars et al., 2007; Liang et al., 2015; Mommersteeg et al., 2007b; 

Mori et al., 2006; Wiese et al., 2009). However, the upstream signals that 
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initiate the pacemaker genetic network are not yet understood and are worthy 

of further exploration. 

The goal of this dissertation is to use the zebrafish embryo as a model 

organism to examine open questions regarding pacemaker development. 

Where do pacemaker cells originate? How does the embryo generate the 

appropriate number of pacemaker cells, rather than too many or too few? In 

zebrafish, pacemaker cells are located in the cardiac inflow tract (IFT), and we 

have studied the IFT in the context of both normal and abnormal cardiac 

patterning. Specifically, this dissertation explores three topics: characterization 

of the wild-type IFT, analysis of the role of Hedgehog (Hh) signaling in IFT 

development, and analysis of the role of Bone morphogenetic protein (Bmp) 

signaling in IFT development.  As an introduction to this work, I will first review 

the characteristics of the zebrafish IFT in comparison to mammalian 

pacemaker cells. Then, I will discuss literature investigating the regulation of 

pacemaker cell development and the origin of pacemaker cells. Next, I will 

review the components of the Hh signaling pathway and the roles of Hh 

signaling during cardiac development. Finally, I will review the components of 

the Bmp signaling pathway and discuss its roles during cardiac development.  

This review will provide context for the novel data presented in Chapters 2 and 

3. 
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The zebrafish inflow tract  

The zebrafish embryo has emerged as an ideal model in which to 

investigate the specification and differentiation of pacemaker cardiomyocytes. 

In the zebrafish heart, the myocardium at the sinoatrial junction, which we 

refer to as the IFT, acts as a functional equivalent to the mammalian SAN 

(Tessadori et al., 2012). Early stages of IFT development can be examined 

using zebrafish because external fertilization allows convenient access to the 

early embryo from the onset of its development (Poon and Brand, 2013). 

Additionally, the optical transparency of zebrafish embryos allows direct 

visualization of the differentiation of pacemaker cardiomyocytes as it occurs 

(Staudt and Stainier, 2012). Furthermore, cardiac conduction can be easily 

analyzed in live embryos (Chi et al., 2008), revealing the functional 

consequences of IFT abnormalities. Most importantly, there is a growing body 

of research that has laid the groundwork for investigating the zebrafish IFT 

and its pacemaker activity (Arrenberg et al., 2010; Chi et al., 2008; Tessadori 

et al., 2012), so the zebrafish community is currently poised to contribute 

substantial information on the development of pacemaker cardiomyocytes.  

Within the IFT of adult zebrafish, a population of pacemaker cells was 

recently identified and rigorously evaluated for homology to the mammalian 

SAN (Tessadori et al., 2012). This population is located at the junction 

between the atrium and the sinus venosus (Tessadori et al., 2012), as is the 

mammalian SAN (Anderson et al., 1979; Mangoni and Nargeot, 2008; 
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Sánchez-Quintana et al., 2005). Cardiomyocytes in the IFT initiate action 

potentials spontaneously, unlike the neighboring chamber myocardium 

(Tessadori et al., 2012), and the electrophysiological properties of these action 

potentials mimic mammalian pacemaker cells (Bleeker et al., 1980; Mangoni 

and Nargeot, 2008; Verheijck et al., 2001). Indeed, IFT cells express the 

pacemaker channel hcn4 (Tessadori et al., 2012), which is enriched in the 

SAN and required to establish the unique electrophysiological properties of 

pacemaker cardiomyocytes (Garcia-Frigola et al., 2003; Moosmang et al., 

2001; Stieber et al., 2003). Furthermore, it was observed that the zebrafish IFT 

cells express the markers isl1, bmp4, and tbx2b along with the myocardial 

marker myl7 (Tessadori et al., 2012), all of which are expressed in the 

mammalian SAN as well (Christoffels, 2006). Isl1 serves as a useful marker of 

this population, since it is expressed specifically in the adult pacemaker 

population, but not in the adjacent chamber myocardium (Tessadori et al., 

2012). Thus, the population of Isl1+ pacemaker cardiomyocytes in the adult 

zebrafish IFT is similar to the adult mammalian SAN in its location, molecular 

marker expression, and function, providing strong evidence for homology 

between these structures. 

In fact, these similarities in anatomical structure, gene expression, and 

electrophysiological function between the zebrafish adult IFT and murine SAN 

are preserved from the characteristics of the zebrafish IFT during embryonic 

stages. In the zebrafish embryo, differentiated IFT cardiomyocytes are located 
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at the sinoatrial junction, and it has been demonstrated that pacemaker 

function is confined to this location. Embryos carrying the transgene 

Tg(cmlc2:gCaMP), which expresses a fluorescent calcium indicator in 

cardiomyocytes, have been utilized for optical mapping of calcium flux, which 

reveals that cardiac conduction originates in the venous pole (Chi et al., 2008). 

Furthermore, when IFT cells are hyperpolarized using transgenic light-gated 

ion channels, the heartbeat ceases, indicating that this region is required to 

initiate the heartbeat (Arrenberg et al., 2010). This pacemaking activity is 

present in a broad ring at the venous pole at 24 hours post fertilization (hpf), 

becomes refined to the IFT at 48 hpf, and is then further whittled down to the 

inner curvature of the IFT by 72 hpf (Figure 1.2 and (Arrenberg et al., 2010). 

Cardiomyocytes in the embryonic IFT also express the molecular marker Isl1, 

along with a group of pacemaker markers that includes bmp4, tbx18, hcn4, 

and shox2 (Begemann et al., 2002; Blaschke et al., 2007; Chin et al., 1997; 

Poon et al., 2016; Witzel et al., 2012). These functional attributes and 

molecular markers establish the IFT as the primary cardiac pacemaker in the 

zebrafish embryo and demonstrate its functional and developmental homology 

to the mammalian SAN.  

 

Regulation of IFT development 

The molecular markers expressed in the IFT have been studied 

extensively during murine cardiac development, and these factors form the 
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basis of a genetic network that is required for formation of a functional SAN 

(Figure 1.3). In this network, several transcription factors promote expression 

of the pacemaker genetic program, including Tbx18, Tbx2, Tbx3, Isl1, and 

Shox2. In adjacent non-pacemaker cardiomyocytes, which we refer to as 

chamber cardiomyocytes, the transcription factor Nkx2.5 represses the 

pacemaker program and promotes chamber identity. It remains to be seen 

whether this entire genetic network plays a conserved role in the zebrafish 

IFT. Here, we compare the role of each factor in development of the 

mammalian SAN and the zebrafish IFT. Isl1 and Shox2 have been studied in 

zebrafish IFT development and are indeed required for normal pacemaker 

function, but Tbx18 and other Tbx factors warrant further study to evaluate 

their function in the context of the zebrafish. 

 

Shared requirement for Isl1 and Shox2 in zebrafish and mammalian 

pacemaker cells 

Isl1 has been used as a marker for the zebrafish IFT and is required in 

both zebrafish and mouse for normal pacemaker cell development. In mouse, 

Isl1 is thought to be transiently expressed in nearly all cardiac progenitors 

(Prall et al., 2007), but its expression is lost during cardiac differentiation in 

most populations and retained only in specific populations of differentiated 

cardiomyocytes, including in the SAN (Cai et al., 2003; Sun et al., 2007). In 

zebrafish, isl1 is initially expressed in a broad region that overlaps with the 
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heart fields (Witzel et al., 2012), but after cardiac differentiation, the only 

cardiomyocytes that express isl1 are in the IFT (Tessadori et al., 2012). This 

suggests that Isl1 might play an important role during IFT differentiation. 

Indeed, zebrafish isl1 mutants add fewer cells to the venous pole, lack bmp4 

expression in the IFT, and exhibit bradycardia (de Pater et al., 2009). At later 

stages, these isl1 mutants display a sinus block, indicating defective 

pacemaking activity (Tessadori et al., 2012). This function of ISL1 is 

conserved in mammals: when Isl1 is knocked out in the pacemaker lineage, 

mouse embryos display arrhythmia, reduced SAN cell number, and embryonic 

lethality (Liang et al., 2015). These conditional knockouts also have reduced 

expression of SAN markers such as Bmp4, Shox2, and Hcn4 (Liang et al., 

2015). Interestingly, Isl1 is capable of limiting its own expression to regulate 

the number of cardiac progenitors that contribute to the IFT. When Isl1 is 

bound to the RA-responsive transcription factor Ajuba, it delimits the number 

of IFT cells added to the zebrafish venous pole, and when Ajuba is knocked 

down, the number of IFT cells increases dramatically (Witzel et al., 2012). 

Thus, Isl1 is crucial both for establishing an appropriate number of IFT cells 

and for directing their differentiation into functional pacemaker cardiomyocytes. 

The transcription factor gene shox2 is also required for formation of 

pacemaker cells in both zebrafish and mouse. In mouse embryos with 

mutations in Shox2, the SAN is hypoplastic and fails to fully differentiate, 

resulting in bradycardia and embryonic lethality (Blaschke et al., 2007; 
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Espinoza-Lewis et al., 2009). SHOX2 directly activates transcription of both 

Bmp4 and Isl1 in pacemaker cells (Hoffmann et al., 2013; Puskaric et al., 

2010). In zebrafish embryos, Shox2 deficiency results in severe bradycardia 

(Blaschke et al., 2007), but this can be rescued by increased isl1 expression 

(Hoffmann et al., 2013). SHOX2 also represses NKX2.5: murine Shox2 

mutants aberrantly express Nkx2.5 in the SAN, and shox2 overexpression in 

Xenopus embryos results in a strong downregulation of nkx2.5 in all cardiac 

tissue (Blaschke et al., 2007; Espinoza-Lewis et al., 2009). In fact, SHOX2 

repression of Nkx2.5 is a crucial element in SAN differentiation, as Nkx2.5 

overexpression can recapitulate the SAN defects caused by loss of Shox2 

(Espinoza-Lewis et al., 2011). Interestingly, SHOX2 and NKX2.5 bind many of 

the same gene regulatory elements, indicating that the interaction of these 

factors determines whether cardiomyocytes adopt a pacemaker genetic 

signature (Ye et al., 2015). Altogether, the requirements for both Isl1 and 

Shox2 appear well conserved between mammals and fish, suggesting that 

similar genetic networks are at play in the development of the murine SAN and 

the zebrafish IFT. 

 

Tbx factors may function in zebrafish IFT development 

Factors in the Tbx family are essential for mammalian pacemaker cell 

development and deserve further study in the zebrafish IFT. The transcription 

factor TBX18 is expressed in the myocardium of the murine sinus venosus, 
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which encompasses and gives rise to the SAN (Christoffels, 2006; 

Mommersteeg et al., 2010). Mice deficient in TBX18 have sinus venosus 

abnormalities and a small, deformed SAN (Christoffels, 2006; Wiese et al., 

2009), indicating that TBX18 function is required for normal development of 

pacemaker tissues. tbx18 is expressed in the zebrafish IFT (Begemann et al., 

2002), but it remains to be seen whether loss of Tbx18 alters IFT development 

in zebrafish. TBX2 and TBX3 are expressed in the murine cardiac conduction 

system, including in the SAN, and they repress the differentiation of chamber 

myocardium in these tissues (Christoffels et al., 2004; Hoogaars et al., 2004; 

Hoogaars et al., 2007; Mommersteeg et al., 2007b). In particular, Tbx3 

overexpression is sufficient to repress atrial chamber genes and drive 

formation of ectopic, functional pacemaker cells even in differentiated atrial 

chamber cardiomyocytes (Hoogaars et al., 2007). In zebrafish, the function 

and expression of Tbx3 homologues in IFT development have not been 

investigated. However, tbx2b is expressed in the IFT of adult zebrafish 

(Tessadori et al., 2012), and Tbx2b and Tbx3b have been found to repress the 

chamber genetic program and promote the conduction system genetic 

program in the atrioventricular canal (AVC; Ribeiro et al., 2007), indicating that 

the roles of these factors are likely conserved from zebrafish to mammals. It 

will be satisfying to investigate the function of Tbx family transcription factors 

in the zebrafish IFT in future studies. Furthermore, zebrafish will be an 
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excellent model in which to identify factors that act upstream of Tbx factors 

during cardiac specification and patterning. 

 

Early origins of IFT progenitors remain unknown 

Though many studies have focused on describing the gene regulatory 

network acting in the mature SAN, little is known about the origin of these 

important cells during early embryonic development. Identification of IFT 

progenitor cells will aid in studies of their specification. For example, 

understanding the physical location of IFT progenitors allows us to develop 

hypotheses about how diffusible factors act on this population during its 

patterning and can provide insight into the lineage relationships between IFT 

progenitors and other cardiac populations.  

Previous studies in mouse and chick embryos have identified potential 

locations for IFT progenitors during somitogenesis stages, after gastrulation is 

complete. In mouse embryos, Cre-mediated lineage tracing has shown that 

cells of the SAN derive from lineages that express Tbx18 and Isl1 

(Christoffels, 2006; Mommersteeg et al., 2010; Sun et al., 2007; Wiese et al., 

2009). By examining the expression patterns of these markers prior to SAN 

formation, it was shown that SAN progenitors are located in the caudal and 

lateral edges of the heart fields (Mommersteeg et al., 2010). In chick embryos, 

fate mapping has been used to show that pacemaker progenitor cells reside 

posterior to the heart fields (Bressan et al., 2013). This posterior area, termed 
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the tertiary heart field, lacks expression of ISL1 (Bressan et al., 2013), calling 

into question whether the tertiary heart field correlates with the Isl1-expressing 

SAN progenitor territory described in mouse embryos. Perhaps this 

discrepancy indicates that pacemaker progenitors only activate isl1 expression 

upon migration toward the heart tube from the tertiary heart field. In both 

species, SAN progenitors seem to reside at the periphery of the heart fields, 

suggesting that a similar arrangement may be conserved in zebrafish during 

somitogenesis stages. However, the origin of pacemaker cell progenitors prior 

to gastrulation has not yet been addressed in any species. Previous fate 

mapping studies have shown that atrial, ventricular, and outflow tract (OFT) 

progenitor populations are each located in defined territories within the lateral 

margin of the zebrafish blastula and the heart fields of the zebrafish gastrula 

(Hami et al., 2011; Keegan et al., 2004; Schoenebeck et al., 2007), raising the 

possibility that IFT progenitors may also reside in a specific territory. In 

Chapter 2, we define the location of IFT progenitors in the zebrafish embryo, 

which provides clues as to which factors influence IFT patterning. 

It also remains unclear exactly how cardiac progenitor cells in the early 

embryo are assigned to a pacemaker fate. This process seems to rely in part 

on canonical Wnt signaling. In chick embryos, Wnt ligands are expressed near 

the presumptive pacemaker progenitor population during early somitogenesis 

(Bressan et al., 2013). Increasing Wnt activity in cardiac progenitors causes 

cells to adopt electrophysiological properties reminiscent of pacemaker cells, 
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whereas reducing Wnt activity in pacemaker progenitors results in ectopic 

expression of the chamber marker NKX2.5 (Bressan et al., 2013). These data 

suggest that Wnt signaling acts during early somitogenesis to promote 

pacemaker specification at the periphery of the heart fields, but the broad 

expression patterns of Wnt ligands suggests that other signals must also 

refine this population (Bressan et al., 2013). What other factors cooperate with 

canonical Wnt signaling to insure that the proper number of pacemaker 

progenitors is specified? It will be interesting to uncover factors that regulate 

IFT specification upstream of transcription factors such as Tbx18 and Shox2, 

and the zebrafish model is uniquely poised to provide insight on these topics. 

In Chapter 3, we present data investigating the roles of both Hh and Bmp 

signaling in this context. 

 

Roles of Hh signaling during cardiac development 

The Hh signaling cascade 

Since its initial discovery as a key pattern formation pathway in 

Drosophila embryos, Hh signaling has emerged as a crucial regulator of 

embryo formation and organogenesis. Hh signaling activity relies on a family 

of Hedgehog ligands, including Sonic hedgehog (Shh), Indian hedgehog (Ihh), 

and Desert hedgehog (Dhh) (Ingham and McMahon, 2001). These ligands are 

secreted and bind to the membrane-bound Hh receptor, Patched (Ptc) 

(Bumcrot et al., 1995; Ramsbottom and Pownall, 2016). Once bound to a Hh 
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ligand, Ptc de-represses the membrane-bound Hh effector protein, 

Smoothened (Smo) (Ramsbottom and Pownall, 2016). Smo activity allows Gli 

transcription factors to be processed into an activator form, resulting in active 

transcription of Hh-responsive genes (Figure 1.5). Conversely, in the absence 

of Hh ligands, Ptc represses Smo activity, Gli transcription factors are 

processed primarily into a repressor form, and Hh-responsive genes are 

expressed only at basal levels (Robbins et al., 2012). 

Hh ligands form a family with three branches: Shh, Ihh, and Dhh 

(Ingham and McMahon, 2001). Due to an ancestral genome duplication in 

teleosts, zebrafish have duplicate versions of both Shh and Ihh, creating a 

total of five ligands (Ingham and McMahon, 2001). In early embryogenesis, 

these ligands show an overlapping pattern with high expression in the dorsal 

portion of the gastrula followed by strong expression in the midline (Currie and 

Ingham, 1996; Ekker et al., 1995; Krauss et al., 1993). These ligands are 

highly similar to each other, with Shh and Ihh showing the strongest similarity 

and Dhh showing the most divergence (Kumar et al., 1996). While Shh and 

Ihh are generally more potent than Dhh, all three ligands activate the Ptc 

receptor (Pathi et al., 2001). 

The Ptc receptor is a transmembrane protein that sits at the cell 

membrane when Hh signaling is inactive (Robbins et al., 2012). In vertebrates, 

there are two members of the Ptc family, Ptc1 and Ptc2 (Marigo et al., 1996; 

Motoyama et al., 1998). These genes are upregulated in response to Hh 
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activity, which means that elevated Ptc expression can be used as a readout 

for where Hh signaling is active. Ptc1 also serves as a negative regulator of 

Hh signaling, allowing Hh to limit its own activity (Ingham, 1998). Because of 

this Hh-dampening effect, embryos with mutations in Ptc1 and Ptc2 show 

excess Hh activity (Koudijs et al., 2008). Ptc function is defined by its 

interaction with the main transducer of the Hh signaling cascade, Smo. 

Smo is a transmembrane protein that is classified as a member of the G 

protein-coupled receptor superfamily (Ayers and Thérond, 2010). Smo is 

expressed both maternally and zygotically in a ubiquitous expression pattern 

(Varga 2001, Chen 2001). When Hh signaling is inactive, Smo is located in 

intracellular vesicles; Smo is transferred to the cell surface of the primary 

cilium upon its activation (Robbins et al., 2012). At the cell membrane, 

phosphorylation of the Smo C-tail finalizes its activation (Ayers and Thérond, 

2010). Activated Smo initiates intracellular changes that alter processing of Gli 

transcription factors (Ayers and Thérond, 2010; Hui and Angers, 2011; 

Robbins et al., 2012). Thus, in embryos with mutations in smo, Hh activity is 

absent (Chen et al., 2001; Varga et al., 2001; Zhang et al., 2001). In zebrafish, 

smo mutants lack ptc1 expression, indicating that there is no Hh activity in 

these embryos (Chen et al., 2001; Varga et al., 2001). Furthermore, injection 

of shh mRNA has no effect on smo mutant embryos (Chen et al., 2001). 

These embryos show defects across multiple organ systems, including the 

brain, spinal cord, muscle, blood, and heart (Chen et al., 2001; Varga et al., 
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2001). These embryos also show increased apoptosis and decreased 

proliferation globally (Chen et al., 2001). Because Gli factors are not 

processed into an active form in smo mutants, Hh target genes are not 

transcribed in smo. 

Gli factors are zinc finger transcription factors that can act as either 

repressors or activators. Full-length, unmodified Gli factors have very limited 

activation activity and result in only basal expression of Hh target genes 

(Robbins et al., 2012). However, in the absence of Hh ligand, the majority of 

Gli proteins in the cell are processed into a repressive form by cleavage of the 

activation domain (Hui and Angers, 2011; Robbins et al., 2012). When Hh 

signaling is active, cleavage of the activation domain ceases, and Gli factors 

are instead processed into a potent activator form (Hui and Angers, 2011; 

Robbins et al., 2012). In zebrafish, there are four Gli factors, known as Gli1, 

Gli2a, Gli2b, and Gli3. As in mammals, gli1 is highly expressed in tissues 

where Hh signaling is active, and its expression is reduced in smo (Karlstrom 

et al., 2003). It primarily functions as an activator (Karlstrom et al., 2003). Both 

Gli2a and Gli2b can act as activators in response to Hh activity or as Hh-

independent repressors (Karlstrom et al., 2003, 1999, Ke et al., 2008, 2005). 

Similarly, Gli3 can act as an activator or a repressor; however, Gli3 is most 

abundant in its repressor form as Hh activity represses Gli3 expression 

(Tyurina et al., 2005). In smo mutants, gli3 expression is expanded (Tyurina et 
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al., 2005). Together, these factors mediate Hh activity throughout most tissues 

and organs in the developing embryo. 

Hh activity has been well characterized in several tissues in zebrafish 

through analysis of ptc1 expression, an established output of Hh activity. In 

early embryogenesis, ptc1 is expressed highly in the dorsal mesoderm during 

gastrulation and then in the midline mesoderm and neural tube after 

gastrulation (Concordet et al., 1996; Huang et al., 2012; Lewis et al., 1999), 

indicating that Hh signaling is highly active in those tissues. The ptc1 promoter 

has been used to generate a Hh reporter line in zebrafish, Tg(ptc1:kaede) 

(Huang et al., 2012). This transgene is also highly expressed in the midline 

tissues (Huang et al., 2012), supporting a large role for Hh signaling in 

patterning the midline tissues, including both mesodermal structures and the 

nervous system. 

 

Hh signaling in cardiac development 

Hh signaling is particularly well known for its role in patterning the 

central nervous system, but it has also emerged as a crucial factor in heart 

development. Mouse embryos with mutations in Smo have a small heart that 

cannot progress pass the linear heart tube stage (Zhang et al., 2001). In 

zebrafish, smo mutant embryos have hearts that are small with fewer 

cardiomyocytes in both chambers (Figure 1.6 and Thomas et al., 2008). Timed 

chemical manipulations of Hh activity have shown that Hh signaling is required 
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during gastrulation and early somitogenesis to promote specification of cardiac 

progenitor cells (Thomas et al., 2008). Although cardiac progenitors are not 

immediately adjacent to tissues that express Hh ligands, mosaic analyses in 

zebrafish have shown that Hh signaling is required cell autonomously 

(Thomas et al., 2008). Similarly, murine cardiac progenitors can be marked 

with a Hh-responsive Gli1 lineage tracer, suggesting that cell autonomous 

reception of Hh activity is conserved between species (Thomas et al., 2008). 

Taken together, these data support a model in which Hh signaling acts early in 

embryonic development to maximize the number of mesodermal cells that 

adopt a cardiac progenitor fate. In these previous studies, neither the murine 

SAN nor the zebrafish IFT were specifically investigated to determine whether 

Hh signaling also promotes specification of pacemaker progenitors. 

In addition to this early requirement for Hh signaling, many studies 

suggest that Hh signaling is also important for the development of late-

differentiating cardiac progenitors in the second heart field (SHF). In anterior 

SHF cells that give rise to the OFT, Hh signaling is a key regulator of 

proliferation and cell survival (Dyer et al., 2010; Dyer and Kirby, 2009; 

Goddeeris et al., 2007; Lin et al., 2006), and reduced Hh signaling results in 

abnormal OFT development. Embryos with mutations in the Hh ligand shh 

display a single, small OFT and both atrial and ventricular septal defects 

(Washington Smoak et al., 2005). Likewise, embryos lacking Smo in the SHF 

have a small OFT that lacks septation (Goddeeris et al., 2007; Lin et al., 
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2006). These phenotypes can be reproduced when Shh is excised specifically 

from the pharyngeal endoderm, indicating that the pharyngeal endoderm is a 

source of ligand for Hh signaling in the anterior SHF (Goddeeris et al., 2007). 

Likewise, in chick embryos, Hh signaling in the anterior SHF has been shown 

to drive proliferation that is required for normal OFT development (Dyer and 

Kirby, 2009). Importantly, this function of Hh seems to be conserved in 

zebrafish. Zebrafish smo mutant embryos seem to lack the OFT entirely and 

show severely reduced incorporation of SHF cells into the heart (Hami et al., 

2011). These data reveal a well-conserved requirement for Hh signaling in late 

stages of cardiac development. 

At these later stages, Hh signaling is also required in the posterior SHF 

cells that give rise to the atrial and atrioventricular septa in mouse. Shh 

mutants frequently exhibit atrioventricular septation defects (Goddeeris et al., 

2008). This arises due to limited Hh activity in the SHF, as conditional deletion 

of Smo in the SHF reproduces these atrioventricular septation defects 

(Goddeeris et al., 2008). Indeed, SHH ligand from the pulmonary endoderm 

signals to the posterior SHF, inducing migration of SHF cells into the atrial 

septum (Hoffmann et al., 2009). Although the SHF contribution to the atrial and 

atrioventricular septa has now been studied in depth, the SHF contribution to 

the atrium has been less well examined. More specifically, it remains unknown 

whether Hh signaling plays any role in development of pacemaker 

cardiomyocytes in the murine SAN or the zebrafish IFT. In Chapter 3 of this 
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dissertation, I present novel findings indicating that Hh signaling is required for 

normal development of the zebrafish IFT. 

 

Roles of Bmp signaling during cardiac development 

The Bmp signaling cascade 

Bmp signaling is widely known for its importance in axis formation and 

its reiterative use in organogenesis. Ligands in the Bmp family are secreted 

into the extracellular space (Wharton and Serpe, 2013), where they bind to 

Bmp receptors in order to activate a signaling cascade that phosphorylates 

Smad transcription factors, resulting in Smad-mediated transcriptional 

regulation (Figure 1.7 and (Katagiri and Watabe, 2016). Bmp ligands are 

known to act as morphogens, but their gradients are heavily modified by Bmp 

antagonists such as Chordin, Follistatin, and Noggin (Brazil et al., 2015). The 

interplay between these ligands and their antagonists forms the foundation of 

axis formation and then resurfaces at later stages, such as during neural tube 

patterning (Hegarty et al., 2013; Schier and Talbot, 2005). 

Bmp ligands are a large family of secreted proteins that are dynamically 

expressed throughout the embryo (Katagiri and Watabe, 2016). For example, 

the ligand bmp4 is originally expressed throughout the zebrafish blastula 

before being confined to ventral tissues during gastrulation (Chin et al., 1997; 

Nikaido et al., 1997). Just after gastrulation, bmp4 expression is present in 

both the anterior and posterior poles of the embryo (Chin et al., 1997; 
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Martinez-Barbera et al., 1997). By the second day of development, bmp4 

expression is detectable in specific portions of the developing limb, neural 

tube, heart tube, and somites (Chin et al., 1997; Martinez-Barbera et al., 

1997). Though Bmp ligands are expressed broadly and dynamically in many 

tissues, the best-studied role for Bmp ligands is in axis formation. Embryos 

with mutations in Bmp ligand genes generally show dorsalization, or loss of 

ventral structures, reflecting the requirement for these ligands for promoting 

ventral fates (Schier and Talbot, 2005). Zebrafish embryos with mutations in 

bmp4 show variable dorsalization with abnormal tail patterning (Lenhart et al., 

2013; Stickney et al., 2007). Likewise, zebrafish embryos with mutations in 

bmp2, known as swirl, are highly dorsalized (Hammerschmidt et al., 1996; 

Kishimoto et al., 1997). However, these phenotypes are likely limited by the 

redundancy between Bmp ligands. For example, restoration of bmp2 during 

only early development is sufficient to produce healthy, fertile adult fish, 

indicating that bmp2 has no specific role during late development or adulthood 

(Kishimoto et al., 1997). To substantially decrease Bmp activity, manipulation 

of Bmp receptors is a more effective strategy. 

Bmp receptors fall into two subtypes, known as type I and type II (Yadin 

et al., 2016). These two subtypes come together to form heterotetrameric 

receptor complexes that act as serine/threonine kinases (Yadin et al., 2016).  

Because of the nature of these complexes, a mutation in one Bmp receptor 

gene is sufficient to reduce Bmp activity but will not eliminate it. For example, 
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zebrafish with mutations in the type I receptor alk8 show a relatively mild 

dorsalized phenotype (Mintzer et al., 2001; Mullins et al., 1996). These 

embryos are known as lost-a-fin (laf), reflecting the fact that embryos lack a 

ventral tail fin (Mintzer et al., 2001; Mullins et al., 1996). This phenotype can 

be reproduced by injection of a dominant negative alk8 construct (Payne et al., 

2001). Because alk8 is maternally supplied, maternal-zygotic laf mutants show 

much more severe dorsalization (Mintzer et al., 2001). Conversely, injection of 

a constitutively active alk8 construct creates excess Bmp signaling, resulting in 

marked loss of dorsal structures and expansion of ventral structures, referred 

to as ventralization (Payne et al., 2001). This phenotype is reminiscent of 

embryos in which Bmp antagonists are nonfunctional. 

Many Bmp antagonists exist, including well-known examples such as 

Chordin and Noggin (Brazil et al., 2015). In zebrafish, Bmp antagonists are 

expressed on the dorsal side of the embryo during gastrulation and then their 

expression is maintained in various midline structures during somitogenesis 

stages (Bauer et al., 1998; Fürthauer et al., 1999; Miller-Bertoglio et al., 1997). 

Embryos with mutations in Bmp antagonists generally show a ventralized 

phenotype (Dal-Pra et al., 2006; Schier and Talbot, 2005). For example, the 

chordino mutant, which has a mutation in chordin, is highly ventralized 

(Hammerschmidt et al., 1996; Schulte-Merker et al., 1997). Zebrafish also 

have three homologs of noggin, and all three function as dorsalizers 

(Fürthauer et al., 1999). The interplay between these antagonists in dorsal 
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tissues and Bmp ligands in ventral tissues creates an activity gradient that is 

necessary for normal gastrulation and mesoderm patterning. 

The primary downstream effectors of Bmp activity are Smad factors, 

specifically Smad1, Smad5, and Smad8 (Katagiri and Watabe, 2016). Smad 

proteins are capable of moving into the nucleus to activate or repress 

transcription, but their nuclear translocation is inhibited when Bmp signaling is 

inactive (Sieber et al., 2009). In the presence of a Bmp ligand, Smad1/5/8 are 

phosphorylated by Bmp receptors and released from the receptor complex, 

allowing them to alter transcription (Sieber et al., 2009). Mutation of Smad 

factors causes a reduction in Bmp activity, resulting in dorsalization (Hild et al., 

1999). Antibody staining for the active, phosphorylated form of Smad1/5/8 can 

be used to detect active Bmp signaling (Kurata et al., 2001). Bmp activity has 

also been visualized through fluorescent reporters. For example, a fluorescent 

reporter known as Tg(bre:egfp) uses a Bmp-responsive promoter element to 

drive expression of GFP in areas where Bmp signaling is active (Collery and 

Link, 2011; Laux et al., 2011). Tg(bre:egfp) is first visible in the tailbud starting 

at 6 somites, and its expression is highly dynamic after that (Collery and Link, 

2011; Laux et al., 2011). Tg(bre:egfp) expression indicates that Bmp activity 

occurs in various cardiac populations. Tg(bre:egfp) is present in 

cardiomyocytes at 19 hpf, as they differentiate shortly before heart tube 

formation (de Pater et al., 2012; Strate et al., 2015). At 48 hpf, Tg(bre:egfp) is 

highly expressed in the AVC and weakly expressed in the IFT (Laux et al., 



	

	

26	

2011). This expression pattern corresponds to known roles for Bmp signaling 

in early cardiac patterning, AVC patterning, and atrial development. 

 

Bmp signaling in cardiac development 

Interestingly, Bmp signaling seems to influence multiple aspects of 

cardiac development, with a special impact on atrial cardiomyocytes. Previous 

work in the Yelon lab has shown that laf mutants have fewer atrial 

cardiomyocytes due to reduced atrial specification (Marques and Yelon, 2009). 

Overexpression of the Bmp antagonist noggin during cardiac patterning results 

in a very dramatic reduction in atrial cell number relative to a smaller reduction 

in ventricular cell number (de Pater et al., 2012). Similarly, chemical or genetic 

inhibition of Bmp activity during gastrulation strongly diminishes the number of 

atrial cardiomyocytes, with a more modest effect on the ventricular population 

(Marques and Yelon, 2009). Conversely, injection of constitutively active alk8 

mRNA results in a dramatically enlarged atrium and a modestly enlarged 

ventricle (Marques and Yelon, 2009). These data support a model in which 

Bmp activity promotes production of atrial cardiomyocytes, with a notable but 

less potent effect on ventricular cardiomyocytes. 

The requirement for Bmp activity changes markedly across different 

stages of cardiac development. In experiments where Bmp activity is 

chemically inhibited, reduced Bmp signaling during gastrulation results in a 

small atrial population, but reduced Bmp signaling at later stages has no effect 
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(Marques and Yelon, 2009). In similar experiments, noggin overexpression at 

the end of gastrulation reduces production of both atrial and ventricular 

cardiomyocytes, whereas noggin overexpression in mid-somitogenesis 

specifically reduces production of atrial cardiomyocytes (de Pater et al., 2012). 

Interestingly, transplantation experiments were used to show that Bmp 

signaling is required cell autonomously to promote cardiomyocyte formation, 

but that fine-tuning the level of Bmp activity is crucial: either very high or very 

low levels of Bmp activity disrupt cardiomyocyte specification (Marques and 

Yelon, 2009). Indeed, the inhibitory factor Smad6a is expressed in cardiac 

progenitors at the onset of differentiation, indicating that the level of Bmp 

activity is moderated in order to allow cardiac differentiation. Increasing Bmp 

activity, either though Smad6a knockdown or through ectopic expression of 

bmp2b, results in reduced differentiation of ventricular cardiomyocytes and 

ectopic expression of atrial chamber markers (De Pater 2012). Taken 

together, these data support the following model: during early stages of 

cardiac patterning, high levels of Bmp activity promote cardiac specification, 

with a preference for atrial rather than ventricular specification, and then 

during cardiac differentiation stages, moderate levels of Bmp activity promote 

atrial differentiation and prevent ventricular differentiation. 

The requirement for Bmp activity in early cardiac development is well 

conserved in other species. In Xenopus, bmp4 and alk3 are expressed in the 

heart fields, and injection of dominant negative Bmp receptors into the embryo 



	

	

28	

results in production of far fewer cardiac cells (Shi et al., 2000). Similarly, 

inhibition of Bmp activity in chick embryos reduces expression of cardiac 

markers (Schlange et al., 2000). In mouse embryos, deletion of the Bmp 

receptor BmpR1a in the mesoderm results in reduced specification of cardiac 

progenitors in the cardiac crescent (Klaus et al., 2007). Bmp activity also 

seems to be dynamically regulated in mouse: while early Bmp activity 

promotes cardiac specification and expression of Nkx2.5 (Klaus et al., 2007), 

NKX2.5 limits Bmp activity in specified cardiac cells by repressing expression 

of Bmp2 (Prall et al., 2007). During the proliferative period between cardiac 

specification and differentiation, Bmp activity must be attenuated, because 

high Bmp activity limits proliferation of cardiac progenitors and instead pushes 

those cells toward premature differentiation (Prall et al., 2007; Tirosh-Finkel et 

al., 2010).  

After cardiac differentiation has commenced, Bmp signaling remains 

important for late-differentiating cardiomyocytes of the SHF. In zebrafish, cells 

in the SHF-derived arterial pole contain phosphorylated Smad, an indicator of 

active Bmp signaling (Hami et al., 2011). Furthermore, decreasing Bmp 

activity beginning at 24 hpf reduces OFT cardiomyocyte addition and expands 

OFT smooth muscle (Hami et al., 2011). Conversely, elevated Bmp activity in 

gpc4 mutants prevents cardiomyocyte accretion after linear heart tube 

formation, indicating that suppressed levels of Bmp activity are required for 

SHF cardiomyocyte differentiation (Strate et al., 2015). These data support the 
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idea that moderate levels of Bmp activity are required for addition of late-

differentiating cardiomyocytes to the zebrafish ventricle, rather than very high 

or very low levels. In mouse embryos, deletion of the Bmp receptor AcvR1 in 

the SHF results in a malformed OFT with septal defects (Thomas et al., 2014); 

abnormal OFT morphogenesis and septal defects are also seen upon deletion 

of Bmp4 in the SHF (McCulley et al., 2008). Furthermore, reduced Bmp 

activity in the SHF results in abnormalities at the venous pole, including 

atrioventricular septal defects and reduced proliferation (Briggs et al., 2013). 

Given that Bmp signaling promotes formation of atrial cardiomyocytes and is 

active in the murine venous pole, it seems likely that Bmp activity could 

promote production of IFT cardiomyocytes in the zebrafish venous pole. In 

Chapter 3 of this dissertation, I will present novel data indicating that IFT 

cardiomyocytes depend on both initial and ongoing Bmp activity for their 

development. 

 

Summary 

In this chapter, we have argued that investigating the patterning of 

pacemaker cardiomyocytes is a valuable endeavor that will advance the field’s 

understanding of cardiac development. We have shown that the zebrafish IFT 

is homologous to the mammalian SAN and is an excellent model in which to 

study pacemaker cell development. We have reviewed the factors involved in 

regulating development of pacemaker cells and examined the developmental 



	

	

30	

origin of this population. We have discussed the roles of Hh and Bmp signaling 

in cardiac development, and we have proposed that both Hh and Bmp 

signaling are important for IFT patterning. In Chapter 2, I will characterize the 

wild-type inflow tract and examine its origin in zebrafish embryos. In Chapter 

3, I will investigate the roles of Hh and Bmp signaling in IFT patterning. In 

Chapter 4, I will comment on the significance of this work and propose future 

directions.
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Figure 1.1. 
Location and molecular marker signature of the zebrafish IFT. 
(A) This section through an adult zebrafish heart shows the IFT region, which 
is boxed here and then enlarged in panels B-E,G-H. The IFT is located at the 
junction between the atrium and the sinus venosus. This heart is labeled with 
the myocardial marker myl7. (B-E,G-H) The IFT is characterized by a myl7+, 
isl1+, hcn4+, nppa- tbx2b+, bmp4+ molecular signature. (F) This 3D 
reconstruction of the sinoatrial junction shows that Isl1 (yellow) is expressed 
around the entire sinoatrial junction, forming a ring. This Isl1-expressing ring is 
defined as the IFT. a, atrium; avc, atrioventricular canal; ba, bulbus arteriosus; 
sv, sinus venosus; v, ventricle; l, left; r, right; a, anterior; p, posterior. Scale 
bars represent 50 μm. Reproduced from Tessadori et al., 2012. 
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Figure 1.2. 
Cells located in the IFT are responsible for pacemaking activity. 
(A-E) Schematic drawings depict areas sensitive to hyperpolarization at the 
inflow and atrioventricular canal regions of wild-type zebrafish hearts. 
Optogenetic methods were used to hyperpolarize cells in different regions of 
the heart, thus ceasing their conductive activity. Hyperpolarization of cells in 
the orange region ceases contractions in both the atrium and ventricle, 
indicating that the orange region contains pacemaker cells. (B) The orange 
pacemaker region aligns with the territory referred to as the IFT. dpf, days post 
fertilization; avc, atrioventricular canal; sar, sinoatrial region; a, atrium; v, 
ventricle. Reproduced from Arrenberg et al., 2010. 
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Figure 1.3. 
Schematic of the pacemaker gene regulatory network. 
(A) This schematic depicts a simplified version of the gene regulatory network 
that controls pacemaker cell differentiation. Cells arise from a Tbx18-
expressing lineage and express transcription factors such as Isl1, Shox2, 
Tbx2, and Tbx3. These transcription factors activate expression of other 
pacemaker markers, including ion channels such as Hcn4. Meanwhile, 
transcription factors that are associated with a chamber identity, such as 
Nkx2.5, are excluded from pacemaker cells and retained only in non-
pacemaker cells. 
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Figure 1.4. 
Murine pacemaker cells originate from the edges of the heart fields. 
(A) This schematic shows the fate maps of the heart fields (top row) that give 
rise to the mammalian heart (bottom row). The sinus venosus progenitor 
population, shown in blue, originates in the caudal and lateral portion of the 
heart fields. These progenitors give rise to the SAN and surrounding tissues in 
the sinus venosus. a, atrium; aip, anterior intestinal portal; ccv, common 
cardinal vein; ev, embryonic ventricle; ht, heart tube; oft, outflow tract; ven, 
ventral; dor, dorsal; cra, cranial; cau, caudal; l, left; r, right. Reproduced from 
Mommersteeg et al., 2010. 
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Figure 1.5. 
Schematic of the Hh signaling pathway. 
(A) When Hh ligands are absent, the Hh receptor Ptc continuously inhibits 
activity of Smo. Gli molecules are cleaved to create their repressor forms 
(GliR), which translocate into the nucleus and repress transcription of Hh 
target genes such as Ptch1 and Gli1. (B) When Hh ligands are present, Ptc 
binds to Hh ligands and ceases inhibition of Smo. Smo undergoes 
conformational changes and becomes active. Gli molecules are no longer 
cleaved and are instead processed into active forms (GliA), which activate 
transcription of Hh target genes. Reproduced from Yang et al., 2010.  
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Figure 1.6. 
Hh signaling promotes production of both ventricular and atrial 
cardiomyocytes. 
(A-D) Zebrafish hearts at 48 hpf show the ventricle in red and the atrium in 
green. Scale bar represents 100 μm. (A) A wild-type heart shows the typical 
size. (B-D) Hh-deficient embryos have small hearts in which both the atrium 
and the ventricle are diminished. Here, Hh signaling has been reduced through 
zygotic mutation of smo (B), maternal and zygotic mutation of smo (C), and 
cyclopamine treatment (D). (E) Quantification shows that there are fewer 
cardiomyocytes in Hh-deficient hearts relative to wild-type controls at 52 hpf. 
Asterisks indicate statistically significant differences from wild-type. 
Reproduced from Thomas et al., 2008. 
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Figure 1.7. 
Schematic of the Bmp signaling pathway. 
(A) In the absence of Bmp ligands, the Bmp Type I and Type II receptors do 
not form an active complex. Smad1/5/8 factors are not activated, and they do 
not translocate to the nucleus to regulate transcription of Bmp target genes. 
(B) In the presence of Bmp ligands, Bmp Type I and Type II receptors form a 
complex and act as serine-threonine kinases. Smad1/5/8 factors are activated 
via phosphorylation, allowing them to bind to Smad4 and translocate to the 
nucleus. In concert with cofactors, Smad1/5/8 regulates expression of Bmp 
target genes. Reproduced from Bandyopadhyay et al., 2013. 
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Figure 1.8. 
Bmp signaling promotes production of atrial cardiomyocytes. 
(A-C) Zebrafish hearts at 48 hpf show all cardiomyocytes in red with the atrium 
marked in green. Scale bar represents 50 μm. (A) A wild-type heart shows the 
typical size and shape. (B) In a laf mutant heart, which has reduced Bmp 
activity, the atrium is abnormally small. (C) In embryos expressing alk8CA, 
which constitutively activates Bmp signaling, the hearts are enlarged. Notably, 
the atrium is particularly outsized relative to the ventricle. (D) Quantification 
shows that there are fewer atrial cardiomyocytes in laf relative to wild-type 
controls at 48 hpf. Conversely, there are more cardiomyocytes in alk8CA-
expressing embryos relative to wild-type controls at 48 hpf, with a striking 
increase in atrial cell number. Statistically significant differences from wild-type 
are indicated by asterisks and carets. Reproduced from Marques et al., 2009. 
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Chapter 2: Patterning and differentiation of the cardiac inflow tract in 

zebrafish 



	

	

40 

ABSTRACT 

The rhythmic and synchronous beating of cardiomyocytes, which is essential 

for efficient circulation, relies on pacemaking activity that originates in the 

cardiac inflow tract (IFT). The specialized function of cardiac pacemaker cells 

has been well documented, but open questions remain regarding the origins of 

the pacemaker lineage and the regulation of pacemaker differentiation. The 

zebrafish embryo presents valuable opportunities to study early phases of 

pacemaker development in depth. Here, we review the evidence for homology 

between the zebrafish IFT and the mammalian sinoatrial node, examining their 

functional attributes, expression of molecular markers, and dependence on 

key transcription factors. We integrate this information with new data indicating 

how zebrafish IFT progenitor cells are organized within the heart fields and 

demonstrating when and where these cells differentiate into IFT 

cardiomyocytes. Together, these results illuminate the biography of the 

zebrafish IFT and provide an important resource for future studies that can 

elucidate the genetic pathways controlling specification and differentiation of 

pacemaker progenitor cells.  
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INTRODUCTION 

In the mammalian heart, the sinoatrial node (SAN) is crucial for 

maintaining synchronized, rhythmic contractions of the cardiac chambers. 

Located at the junction between the right atrium and the sinus venosus, the 

SAN is a tight bundle of pacemaker cells that spontaneously generate action 

potentials to set the pace for the entire cardiac conduction system (Mangoni 

and Nargeot, 2008). SAN action potentials are rapidly conducted through the 

atria, then delayed at the atrioventricular node before moving into the 

ventricular conduction system (Mangoni and Nargeot, 2008).  

When the pacemaker cells in the SAN malfunction due to congenital 

malformation, disease, or aging, it can result in arrhythmia, insufficient 

circulation, or even sudden cardiac death (Choudhury et al., 2015; Dobrzynski 

et al., 2007). Currently, the only effective treatment is costly implantable 

electronic pacemakers (Mulpuru et al., 2017). The search for biological 

alternatives is in progress and has focused on generating pacemaker-like cells 

through directed differentiation of stem cells or through reprogramming of 

quiescent cardiomyocytes (Bakker et al., 2012; Hu et al., 2014; Jung et al., 

2014; Kapoor et al., 2013; Mandel et al., 2012; Nam et al., 2014; Protze et al., 

2017; Scavone et al., 2013). However, these approaches have failed to yield 

efficient induction of pacemaker cells that are functionally equivalent to 

endogenous pacemaker cardiomyocytes (Boink et al., 2015; Nam et al., 2014). 

To improve the efficacy of these efforts, additional insight is necessary; in 
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particular, it would be highly informative to elucidate the genetic networks that 

regulate pacemaker development in vivo so that these can be recapitulated in 

vitro. Furthermore, understanding how the pacemaker population develops 

during embryonic stages may shed light on the etiology of congenital 

arrhythmias. Therefore, it is worthwhile to investigate open questions that 

concern the specification and differentiation of pacemaker cells. 

It is unclear how pacemaker cells are specified in the early embryo, 

when pacemaker specification occurs, and where pacemaker progenitors 

arise. Fate mapping experiments in avian embryos suggest that pacemaker 

progenitors reside in locations posterior to the heart fields (Bressan et al., 

2013). However, these data are inconsistent with genetic lineage tracing 

studies in mice that suggest that the SAN originates from caudal and lateral 

territories located at the edges of the heart fields (Christoffels, 2006; 

Mommersteeg et al., 2007b; Wiese et al., 2009), so a precise understanding of 

the requirements for pacemaker specification remains elusive. Furthermore, it 

is unclear how pacemaker differentiation is regulated: what triggers the 

differentiation of pacemaker progenitors, and what refines this population as 

the embryonic heart matures? Although many studies have made significant 

inroads in understanding the genetic network that functions during SAN 

differentiation (Blaschke et al., 2007; Christoffels, 2006; Espinoza-Lewis et al., 

2009; Hoogaars et al., 2007; Liang et al., 2015; Mommersteeg et al., 2007b; 

Mori et al., 2006; Wiese et al., 2009), the upstream signals that initially activate 
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the pacemaker network have not yet been fully elucidated and the temporal 

dynamics of this process are not completely understood.  

The zebrafish embryo has emerged as an ideal model in which to 

investigate the specification and differentiation of pacemaker cardiomyocytes. 

In the zebrafish heart, the myocardium at the sinoatrial junction, which we 

refer to as the inflow tract (IFT), acts as a functional equivalent to the 

mammalian SAN (Tessadori et al., 2012). Early stages of IFT development 

can be examined using zebrafish because external fertilization allows 

convenient access to the early embryo from the onset of its development 

(Poon and Brand, 2013). Additionally, the optical transparency of zebrafish 

embryos allows direct visualization of the differentiation of pacemaker 

cardiomyocytes as it occurs (Staudt and Stainier, 2012). Furthermore, cardiac 

conduction can be easily analyzed in live embryos (Chi et al., 2008), revealing 

the functional consequences of IFT abnormalities. Most importantly, there is a 

growing body of research that has laid the groundwork for investigating the 

zebrafish IFT and its pacemaker activity (Arrenberg et al., 2010; Chi et al., 

2008; Tessadori et al., 2012), so the zebrafish community is currently poised 

to contribute substantial information regarding the mechanisms regulating 

pacemaker development. 

In this resource paper, we first review the evidence for homology 

between the zebrafish IFT and the mammalian SAN. Next, we integrate the 

analysis of new data that indicate how zebrafish IFT progenitor cells are 
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organized within the embryonic heart fields and demonstrate when and where 

these cells initiate their differentiation into IFT cardiomyocytes. Taken 

together, this information comprises a biography of the zebrafish IFT and 

provides a framework for future studies investigating the regulation of 

pacemaker specification and differentiation.  
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UTILITY OF THE ZEBRAFISH FOR ANALYSIS OF INFLOW TRACT 

DEVELOPMENT  

Within the IFT of adult zebrafish, a population of pacemaker cells was 

recently identified and rigorously tested for homology to the mammalian SAN 

(Tessadori et al., 2012). This population is located at the junction between the 

atrium and the sinus venosus (Tessadori et al., 2012), as is the mammalian 

SAN (Anderson et al., 1979; Mangoni and Nargeot, 2008; Sánchez-Quintana 

et al., 2005). Cardiomyocytes in the IFT initiate action potentials 

spontaneously, unlike the neighboring chamber myocardium (Tessadori et al., 

2012), and the electrophysiological properties of these action potentials mimic 

mammalian pacemaker cells (Bleeker et al., 1980; Mangoni and Nargeot, 

2008; Verheijck et al., 2001). Indeed, IFT cells express the pacemaker 

channel hcn4 (Tessadori et al., 2012), which is enriched in the SAN and is 

required to establish the unique electrophysiological properties of pacemaker 

cardiomyocytes (Garcia-Frigola et al., 2003; Moosmang et al., 2001; Stieber et 

al., 2003). Furthermore, it was observed that the zebrafish IFT cells express 

the markers isl1, bmp4, and tbx2b along with the myocardial marker myl7 

(Tessadori et al., 2012), all of which are expressed in the mammalian SAN as 

well (Christoffels, 2006). Isl1 serves as a useful marker of this population, 

since it is expressed specifically in the adult pacemaker population, but not in 

the adjacent chamber myocardium (Figure 1.1 and Tessadori et al., 2012). 

Thus, the population of Isl1+ pacemaker cardiomyocytes in the adult zebrafish 
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IFT is similar to the adult mammalian SAN in its location, molecular marker 

expression, and function, providing strong evidence for homology between 

these structures. 

In fact, these similarities in anatomical structure, gene expression, and 

electrophysiological function between the zebrafish adult IFT and murine SAN 

are preserved from the characteristics of the zebrafish IFT during embryonic 

stages. In the zebrafish embryo, differentiated IFT cardiomyocytes are located 

at the sinoatrial junction (Figure 2.1A), and it has been demonstrated that 

pacemaker function is confined to this location. Embryos carrying the 

transgene Tg(cmlc2:gCaMP), which expresses a fluorescent calcium indicator 

in cardiomyocytes, have been utilized for optical mapping of calcium flux, 

which reveals that cardiac conduction originates in the venous pole (Chi et al., 

2008). Furthermore, when IFT cells are hyperpolarized using transgenic light-

gated ion channels, the heartbeat ceases, indicating that this region is 

required to initiate the heartbeat (Arrenberg et al., 2010). This pacemaking 

activity is present in a broad ring at the venous pole at 24 hours post 

fertilization (hpf), becomes refined to the IFT at 48 hpf, and is then further 

whittled down to the inner curvature of the IFT by 72 hpf (Arrenberg et al., 

2010). Cardiomyocytes in the embryonic IFT also express the molecular 

marker Isl1 (Figure 2.1G-H; Witzel et al., 2012), along with a group of 

pacemaker markers that includes bmp4, tbx18, shox2, and hcn4 (Figure 2.1 A-

E; Begemann et al., 2002; Blaschke et al., 2007; Chin et al., 1997; Poon et al., 
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2016). These functional attributes and molecular markers establish the IFT as 

the primary cardiac pacemaker in the zebrafish embryo and demonstrate its 

functional and developmental homology to the mammalian SAN.  
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REGULATION OF IFT DEVELOPMENT 

The molecular markers expressed in the IFT have been studied 

extensively during murine cardiac development, and these factors form the 

basis of a genetic network that is required for formation of a functional SAN. In 

this network, several transcription factors promote expression of the 

pacemaker genetic program, including Tbx18, Tbx2, Tbx3, Isl1, and Shox2 

(van Weerd and Christoffels, 2016). In adjacent non-pacemaker 

cardiomyocytes, which we refer to as chamber cardiomyocytes, the 

transcription factor Nkx2.5 represses the pacemaker program and promotes 

chamber identity (van Weerd and Christoffels, 2016). It remains to be seen 

whether this entire genetic network plays a conserved role in the zebrafish 

IFT. Here, we compare the role of each factor in development of the 

mammalian SAN and the zebrafish IFT. Isl1 and Shox2 have been studied in 

zebrafish IFT development and are indeed required for normal pacemaker 

function, but Tbx18 and other Tbx factors warrant further study to evaluate 

their function in the context of the zebrafish. 

 

Shared requirement for Isl1 and Shox2 in zebrafish and mammalian 

pacemaker cells 

Isl1 has been used as a marker for the zebrafish IFT and is required in 

both zebrafish and mouse for normal pacemaker cell development. In mouse, 

Isl1 is thought to be transiently expressed in nearly all cardiac progenitors 
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(Prall et al., 2007), but its expression is lost during cardiac differentiation in 

most populations and retained only in specific populations of differentiated 

cardiomyocytes, including in the SAN (Cai et al., 2003; Sun et al., 2007). In 

zebrafish, isl1 is initially expressed in a broad region that overlaps with the 

heart fields (Witzel et al., 2012), but after cardiac differentiation, the only 

cardiomyocytes that express isl1 are in the IFT (Tessadori et al., 2012). This 

suggests that Isl1 might play an important role during IFT differentiation. 

Indeed, zebrafish isl1 mutants add fewer cells to the venous pole, lack bmp4 

expression in the IFT, and exhibit bradycardia (de Pater et al., 2009). At later 

stages, these isl1 mutants display a sinus block, indicating defective 

pacemaking activity (Tessadori et al., 2012). This function of ISL1 is 

conserved in mammals: when Isl1 is knocked out in the pacemaker lineage, 

mouse embryos display arrhythmia, reduced SAN cell number, and embryonic 

lethality (Liang et al., 2015). These conditional knockouts also have reduced 

expression of SAN markers such as Bmp4, Shox2, and Hcn4 (Liang et al., 

2015). Interestingly, Isl1 is capable of limiting its own expression to regulate 

the number of cardiac progenitors that contribute to the IFT. When Isl1 is 

bound to the RA-responsive transcription factor Ajuba, it delimits the number 

of IFT cells added to the zebrafish venous pole, and when Ajuba is knocked 

down, the number of IFT cells increases dramatically (Witzel et al., 2012). 

Thus, Isl1 is crucial both for establishing an appropriate number of IFT cells 

and for directing their differentiation into functional pacemaker cardiomyocytes. 
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The transcription factor gene shox2 is also required for formation of 

pacemaker cells in both zebrafish and mouse. In mouse embryos with 

mutations in Shox2, the SAN is hypoplastic and fails to fully differentiate, 

resulting in bradycardia and embryonic lethality (Blaschke et al., 2007; 

Espinoza-Lewis et al., 2009). SHOX2 directly activates transcription of both 

Bmp4 and Isl1 in pacemaker cells (Hoffmann et al., 2013; Puskaric et al., 

2010). In zebrafish embryos, Shox2 deficiency results in severe bradycardia 

(Blaschke et al., 2007), but this can be rescued by increased isl1 expression 

(Hoffmann et al., 2013). SHOX2 also represses NKX2.5: murine Shox2 

mutants aberrantly express Nkx2.5 in the SAN, and shox2 overexpression in 

Xenopus embryos results in a strong downregulation of nkx2.5 in all cardiac 

tissue (Blaschke et al., 2007; Espinoza-Lewis et al., 2009). In fact, SHOX2 

repression of Nkx2.5 is a crucial element in SAN differentiation, as Nkx2.5 

overexpression can recapitulate the SAN defects caused by loss of Shox2 

(Espinoza-Lewis et al., 2011). Interestingly, SHOX2 and NKX2.5 bind many of 

the same gene regulatory elements, indicating that the interaction of these 

factors determines whether cardiomyocytes adopt a pacemaker genetic 

signature (Ye et al., 2015). Altogether, the requirements for both Isl1 and 

Shox2 appear well conserved between mammals and fish, suggesting that 

similar genetic networks are at play in the development of the murine SAN and 

the zebrafish IFT. 
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Tbx factors may function in zebrafish IFT development 

Factors in the Tbx family are essential for mammalian pacemaker cell 

development and deserve further study in the zebrafish IFT. The transcription 

factor TBX18 is expressed in the myocardium of the murine sinus venosus, 

which encompasses and gives rise to the SAN (Christoffels, 2006; 

Mommersteeg et al., 2010). Mice deficient in TBX18 have sinus venosus 

abnormalities and a small, deformed SAN (Christoffels, 2006; Wiese et al., 

2009), indicating that TBX18 function is required for normal development of 

pacemaker tissues. tbx18 is expressed in the zebrafish IFT (Begemann et al., 

2002), but it remains to be seen whether loss of Tbx18 alters IFT development 

in zebrafish. TBX2 and TBX3 are expressed in the murine cardiac conduction 

system, including in the SAN, and they repress the differentiation of chamber 

myocardium in these tissues (Christoffels et al., 2004; Hoogaars et al., 2004; 

Hoogaars et al., 2007; Mommersteeg et al., 2007b). In particular, Tbx3 

overexpression is sufficient to repress atrial chamber genes and drive 

formation of ectopic, functional pacemaker cells even in differentiated atrial 

chamber cardiomyocytes (Hoogaars et al., 2007). In zebrafish, the function 

and expression of Tbx3 homologues in IFT development have not been 

investigated. However, tbx2b is expressed in the IFT of adult zebrafish 

(Tessadori et al., 2012), and Tbx2b and Tbx3b have been found to repress the 

chamber genetic program and promote the conduction system genetic 

program in the atrioventricular canal (AVC; Ribeiro et al., 2007), indicating that 
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the roles of these factors are likely conserved from zebrafish to mammals. It 

will be satisfying to investigate the function of Tbx family transcription factors 

in the zebrafish IFT in future studies. Furthermore, zebrafish will be an 

excellent model in which to identify factors that act upstream of Tbx factors 

during progenitor specification. 
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EARLY ORIGINS OF IFT PROGENITORS 

Though many studies have focused on describing the gene regulatory 

network acting in the mature SAN, little is known about the origin of these 

important cells during early embryonic development. Identification of IFT 

progenitor cells will aid in studies of their specification. For example, 

understanding the physical location of IFT progenitors allows us to develop 

hypotheses about how diffusible factors act on this population during its 

patterning and can provide insight into the lineage relationships between IFT 

progenitors and other cardiac populations.  

Previous studies in mouse and chick embryos have identified potential 

locations for IFT progenitors during somitogenesis stages, after gastrulation is 

complete. In mouse embryos, Cre-mediated lineage tracing has shown that 

cells of the SAN derive from lineages that express Tbx18 and Isl1 

(Christoffels, 2006; Mommersteeg et al., 2010; Sun et al., 2007; Wiese et al., 

2009). By examining the expression patterns of these markers prior to SAN 

formation, it was shown that SAN progenitors are located in the caudal and 

lateral edges of the heart fields (Mommersteeg et al., 2010). In chick embryos, 

fate mapping has been used to show that pacemaker progenitor cells reside 

posterior to the heart fields (Bressan et al., 2013). This posterior area, termed 

the tertiary heart field, lacks expression of ISL1 (Bressan et al., 2013), calling 

into question whether the tertiary heart field correlates with the Isl1-expressing 

SAN progenitor territory described in mouse embryos. Perhaps this 
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discrepancy indicates that pacemaker progenitors only activate isl1 expression 

upon migration toward the heart tube from the tertiary heart field. In both 

species, SAN progenitors seem to reside at the periphery of the heart fields, 

suggesting that a similar arrangement may be conserved in zebrafish during 

somitogenesis stages. However, the origin of pacemaker cell progenitors prior 

to gastrulation has not yet been addressed in any species. 

Previous studies in zebrafish have employed fate mapping to determine 

that atrial, ventricular, and outflow tract (OFT) progenitor populations are each 

located in defined territories within the early embryo (Hami et al., 2011; 

Keegan et al., 2004; Schoenebeck et al., 2007), raising the possibility that IFT 

progenitors may also reside in a specific territory. In the late blastula, cardiac 

progenitors are located in two bilateral territories, near the embryonic margin 

and about midway between the dorsal and ventral poles of the embryo. More 

specifically, atrial progenitors are found in a relatively ventral position within 

this territory, primarily between 90 and 140 degrees from dorsal, in the third 

and fourth cell tier relative to the margin (Keegan et al., 2004; Figure 2.2A). 

Ventricular progenitors are located in a more dorsal portion of this territory, 

between 60 and 125 degrees from dorsal, in the first through third cell tiers 

(Keegan et al., 2004; Figure 2.2A). OFT progenitors are positioned closest to 

the dorsal side of the territory, between 55 and 105 degrees from dorsal, in the 

first or second cell tiers (Hami et al., 2011; Figure 2.2A). During gastrulation, 

these cardiac progenitor populations are rearranged into two bilateral heart 
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fields within the anterior lateral plate mesoderm (ALPM). In the ALPM, cardiac 

progenitors are spatially organized such that ventricular progenitors are found 

in more medial positions and atrial progenitors are found in more lateral 

positions within the heart fields (Schoenebeck et al., 2007; Figure 2.2B). OFT 

progenitors localize in relatively medial and anterior portions of the heart fields 

(Hami et al., 2011; Figure 2.2B). Importantly, none of these studies specifically 

evaluated the location of IFT progenitors. 

To evaluate the fate map for IFT progenitor cells in the early zebrafish 

embryo, we revisited our previously reported data sets, in combination with 

additional data that had not been included in our prior publications. First, we 

examined our data from previous experiments performed at 40% epiboly 

(Keegan et al., 2005, 2004, and unpublished data). In these studies, we 

generated a high-resolution fate map of cardiac progenitor cells by using a 

photoactivatable lineage tracer to label a small number of blastomeres just 

prior to gastrulation, recording the initial position of the labeled cells, and then 

subsequently recording the locations of their progeny within the heart at 48 

hours post fertilization (hpf). In these original experiments, a group of atrial 

progenitors was identified, and that group included labeled cells that 

contributed to the IFT or to the non-IFT portion of the atrium, which we refer to 

as the atrial chamber (AC); here, we have separated those two populations. In 

this data set, we identified eight examples in which labeled cells contributed to 

the IFT myocardium, plus an additional three examples in which labeled cells 
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contributed to both the IFT and the (AC; Figure 2.3). In all 11 examples, the 

labeled cells were initially located in tiers 2-4, between 92 and 160 degrees 

from dorsal (Figure 2.3). Thus, IFT progenitor cells seem to be reside in the 

upper tiers and the ventral portion of the cardiogenic territory at 40% epiboly, 

suggesting that IFT progenitors are a discrete and spatially organized subset 

of cells located near the ventral edge of the atrial progenitor population. 

Combining this new finding with previously published fate maps (Hami et al., 

2011; Keegan et al., 2004), we conclude that cardiac progenitors are located 

in four overlapping territories in the late blastula: atrial and ventricular 

progenitors are flanked by IFT progenitors on the ventral side and OFT 

progenitors on the dorsal side (Figure 2.2A). 

We next asked where IFT progenitors are located reside relative to the 

heart fields in the ALPM. For this analysis, we examined our data from 

previous experiments performed between the 6 somite and 9 somite stages 

(Schoenebeck et al., 2007). In these studies, we labeled small clusters of cells 

within the ALPM, generating a fate map of cardiac progenitors with slightly 

broader resolution relative to our map at 40% epiboly. As in our other studies, 

we originally scored contributions to the atrium but did not distinguish between 

contribution to the IFT and the AC. Reexamining these data, we found 48 

examples in which labeled cells became IFT cardiomyocytes (Figure 2.4). Of 

these 48 examples, 43 were located in the lateral portion of the heart fields, 

where atrial progenitor cells typically reside. The other five examples were 
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found in the medial portion of the heart fields, and no examples were found in 

the anterior ALPM, which contains blood and vessel progenitors are located 

(Figure 2.4). In half (24/48) of these examples, labeled cells were present in 

both the IFT and AC (Figure 2.4), indicating the proximity of IFT progenitors to 

AC progenitors. The broad resolution of this fate map does not allow us to 

distinguish the degree to which IFT and AC progenitors are intermingled; 

however, the trends reflected in our data make it appealing to consider that 

IFT progenitors could be positioned along the lateral edge of the progenitor 

field. Integrating this new information with previously published data (Hami et 

al., 2011; Schoenebeck et al., 2007), we propose a fate map of the ALPM in 

which IFT, AC, ventricular, and OFT progenitors are spatially organized, with a 

relatively lateral to medial distribution within the heart fields (Figure 2.2B). This 

arrangement echoes the spatial organization of cardiac progenitors observed 

prior to gastrulation (Figure 2.2A). This fate map also suggests conservation 

with the mammalian sinus venosus fate map, in which sinus venosus 

progenitors reside on the lateral edges of the murine heart fields 

(Mommersteeg et al., 2010). 

Together, these results provide a framework for further studies of IFT 

progenitor specification in the context of the zebrafish embryo. Bearing in mind 

the relatively ventral and lateral locations of the IFT progenitors, we can begin 

to create and test hypotheses regarding the signals that might influence IFT 

fate. Such future studies would benefit from the identification of molecular 
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markers that are specifically expressed in pacemaker progenitor cells. 

Whereas the mammalian SAN has been shown to arise from a progenitor 

population that expresses Tbx18 and Isl1 (Christoffels, 2006; Mommersteeg et 

al., 2007b, 2010; Wiese et al., 2009), no molecular markers have been 

identified that clearly distinguish this progenitor population prior to its 

differentiation in avian or zebrafish embryos. Characterization of the gene 

expression profile of IFT progenitor cells would be a key step toward the 

elucidation of factors at play during IFT patterning. 

  



	

	

59 

DIFFERENTIATION OF IFT MYOCARDIUM 

Another interesting avenue for further study is investigation into the 

factors that initiate the differentiation of IFT cardiomyocytes. However, before 

pursuing this analysis in depth, we must first ascertain when and where IFT 

differentiation occurs. In zebrafish, myocardial differentiation begins during 

mid-somitogenesis stages, as ventricular and atrial cardiomyocytes migrate 

toward the midline, eventually forming a ring-shaped cardiac cone (Yelon et 

al., 1999; Figure 2.2C). Differentiation occurs in two phases: an initial wave 

that begins with differentiation of ventricular cardiomyocytes followed by 

differentiation of atrial cardiomyocytes, and a second wave in which OFT cells 

differentiate at the arterial pole of the ventricle (de Pater et al., 2009; Figure 

2.2D-E). Previous experiments using developmental timing assays have 

suggested that cardiomyocytes at the venous pole of the atrium differentiate 

later than the rest of the atrial myocardium, but prior to the second wave of 

OFT differentiation (de Pater et al., 2009). However, these studies did not 

utilize molecular markers to distinguish IFT and AC cells, so they did not 

resolve how late-differentiating cardiomyocytes at the venous pole relate to the 

pacemaking territory of the IFT. 

To investigate when and where the IFT myocardium differentiates, we 

chose to employ Isl1 as a molecular marker. By examining Isl1 localization in 

embryos carrying the transgene Tg(myl7:egfp), we can determine when Isl1 

first appears in myl7-expressing differentiated cardiomyocytes. At the 18 
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somite stage, no Isl1+ cardiomyocytes could be detected (Figure 2.5A-C), 

suggesting the IFT progenitor cells have not yet begun to differentiate. At the 

21 somite stage, a small population of Isl1+ cardiomyocytes could be detected 

at the periphery of the cardiac cone (Figure 2.5D-F), suggesting that a few IFT 

progenitors begin to differentiate between 18 and 21 somites. At the 23 somite 

stage, we observed many Isl1+ cardiomyocytes along the outer circumference 

of the cardiac cone (Figure 2.5G-I), suggesting that IFT differentiation is well 

underway by this time. At 24 hpf, after the linear heart tube has formed, Isl1+ 

cardiomyocytes form a ring at the IFT (Figure 2.5J-L). At this point, cardiac 

contraction has commenced, and pacemaking activity is present in a ring-

shaped region at the venous pole of the heart tube (Arrenberg et al., 2010), 

which likely encompasses the Isl1+ IFT.  

We next wondered how these IFT differentiation dynamics relate to 

differentiation in the rest of the atrium. To investigate this, we revisited 

previously-published developmental timing assays that revealed late-

differentiating cells at the venous pole (de Pater et al., 2009) and we added 

simultaneous analysis of an IFT marker. Isl1 localization was examined in 

embryos carrying the transgenes Tg(myl7:egfp) and Tg(myl7:dsred). In this 

assay, differential protein folding dynamics between eGFP and DsRed result in 

fluorescence of eGFP but not DsRed in newly-differentiated cardiomyocytes 

(de Pater et al., 2009). At 36 hpf, Isl1 is present in the majority of the eGFP+ 

and DsRed- cells at the venous pole of the heart (Figure 2.6), indicating that 
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the pacemaker cardiomyocytes in the IFT are late-differentiating relative to the 

remainder of the atrium and the ventricle. However, these data and others 

suggest that IFT cells differentiate earlier than SHF-derived OFT cells (de 

Pater et al., 2009), which proliferate for an extended period after heart tube 

formation prior to their differentiation (de Pater et al., 2009; Hami et al., 2011; 

Zeng and Yelon, 2014; Zhou et al., 2011). It will be interesting to determine 

whether additional IFT cells are appended to the venous pole at later stages in 

future studies. 

These data pinpoint the timeframe and location during which IFT 

differentiation occurs, providing a foundation for future studies investigating 

open questions regarding the regulation of this process. For example, future 

experiments could evaluate which signaling pathways are active in and around 

IFT progenitor cells during this critical time period, leading to new hypotheses 

regarding the signals that trigger IFT differentiation. Extensions of these 

studies could probe the interesting question of why IFT cardiomyocytes 

differentiate later than the rest of the atrial population. Furthermore, it would be 

intriguing to examine the dynamics of the IFT as the heart continues to grow, 

as it is unclear whether the cells appended to the IFT prior to 24 hpf remain in 

the IFT or get taken up into the atrium and replaced by other pacemaker 

cardiomyocytes at later stages.  
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FUTURE DIRECTIONS FOR STUDIES OF THE ZEBRAFISH INFLOW 

TRACT  

Taken together, the synthesis of these findings creates a dynamic 

biography of the zebrafish IFT (Figure 2.2). In our proposed timeline of IFT 

development, IFT progenitor cells originate in the ventral portion of the 

cardiogenic territory in the late blastula (Figure 2.2A). During gastrulation, the 

IFT progenitor cells come to reside in the lateral portion of the heart fields 

within the ALPM (Figure 2.2B). Then, together with the rest of the cardiac 

mesoderm, the IFT progenitors migrate toward the midline, retaining their 

relative position at the periphery of the field and initiating their differentiation 

along the outer circumference of the cardiac cone (Figure 2.2C). As the heart 

tube forms, IFT cardiomyocytes are appended to the venous pole of the atrium 

where they begin to function as pacemaker cells (Arrenberg et al., 2010). The 

IFT is retained as the heart tube matures (Figure 2.2E), and it continues to 

function as the primary pacemaker in the adult zebrafish heart (Tessadori et 

al., 2012).  

Given the ease of studying the zebrafish IFT and its remarkable 

similarity to the murine SAN, the zebrafish can serve as a valuable model for 

studies aiming to provide new insight into the development of pacemaker cells. 

For example, it will be important for future studies to investigate exactly how 

cardiac progenitor cells in the early embryo are assigned to a pacemaker fate. 

This process seems to rely in part on canonical Wnt signaling. In chick 
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embryos, Wnt ligands are expressed near the presumptive pacemaker 

progenitor population during early somitogenesis (Bressan et al., 2013). 

Increasing Wnt activity in cardiac progenitors causes cells to adopt 

electrophysiological properties reminiscent of pacemaker cells, whereas 

reducing Wnt activity in pacemaker progenitors results in ectopic expression of 

the chamber marker NKX2.5 (Bressan et al., 2013). These data suggest that 

Wnt signaling acts during early somitogenesis to promote pacemaker 

specification at the periphery of the heart fields, but the broad expression 

patterns of Wnt ligands suggest that other signals must also refine this 

population (Bressan et al., 2013). What other factors cooperate with canonical 

Wnt signaling to insure that the proper number of pacemaker progenitors is 

specified? It will be interesting to uncover factors that regulate IFT 

specification upstream of transcription factors such as Tbx18 and Shox2, and 

the zebrafish model is uniquely poised to provide insight on these topics. 

Future studies in the zebrafish could also be used to answer open 

questions about the heart fields and their differentiation dynamics. Studies in 

mammalian and avian embryos have been inconclusive about whether the 

pacemaker population originates from the second heart field or from a distinct 

tertiary heart field. Populations within the venous pole have been shown to 

originate from a common second heart field lineage that also gives rise to the 

arterial pole (Bertrand et al., 2011; Domínguez et al., 2012; Lescroart et al., 

2012; Rana et al., 2014; van den Berg et al., 2009). However, pacemaker cells 
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may be considered a discrete population from the posterior second heart field 

because they originate from a Tbx18+ Nkx2-5- population that arises after 

second heart field cells have already incorporated into the heart (Christoffels, 

2006; Mommersteeg et al., 2010; Wiese et al., 2009). In zebrafish, it seems 

unlikely that IFT and OFT cardiomyocytes share a common lineage because 

the progenitor populations are located on opposite sides of the heart fields 

(Figure 2.2A-B). However, the clonal relationship between these cell 

populations has not yet been tested and deserves more rigorous study. Also, it 

remains to be seen whether there is plasticity within the OFT or IFT 

populations that could tie portions of these two late-differentiating structures to 

a common cellular lineage. On the other hand, future studies in zebrafish may 

determine that pacemaker cardiomyocytes originate in a tertiary heart field, 

defined as a discrete area in the ALPM that expresses neither Isl1 nor Nkx2.5 

(Bressan et al., 2013). Alternatively, perhaps the notion of separate heart 

fields will prove to be inappropriate: cardiac progenitors may in fact 

differentiate in a continuous wave rather than in discrete phases, and live 

imaging of differentiating cardiomyocytes in zebrafish embryos could be used 

to address this possibility. 

Finally, investigation of the zebrafish IFT could shed light on what 

regulates the differentiation of pacemaker cardiomyocytes, both during their 

initial differentiation phase and at later stages as the heart matures. One 

particularly interesting open question is how the pacemaker activity is confined 
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to a small territory within the heart. In zebrafish, the primary pacemaking 

activity is initially spread over a large territory that encompasses much of the 

atrium, but it becomes restricted to the IFT by 48 hpf and to a specific group of 

cells on the inner curvature of the sinoatrial junction at later stages (Arrenberg 

et al., 2010). This refinement process is conserved in chick embryos (Bressan 

et al., 2013; Kamino et al., 1981), but the mechanisms underlying refinement 

remain unknown. This refinement incorporates two processes: extinguishing 

pacemaking activity in unnecessary pacemaker cells, and imposing left-right 

asymmetry on the venous pole. It has been shown that left-right asymmetry 

relies on the homeobox transcription factor Pitx2, which represses SAN 

formation on the left side of the heart (Ammirabile et al., 2012; Mommersteeg 

et al., 2007b; Wang et al., 2010). However, even on the correct side of the 

heart, it remains unclear how pacemaking activity is refined from a broad 

territory to a small group of cells. This process of refinement affects some 

molecular markers of the IFT. For example, Bmp4, Hcn4, and a transgenic 

reporter linked to Fhf2a are initially broadly expressed and are then 

progressively refined in the venous pole (Chin et al., 1997; Poon et al., 2016; 

Vicente-Steijn et al., 2011). It will be interesting to identify factors that act 

upstream of these factors to restrict pacemaking activity within the IFT. 

Further study of the zebrafish IFT will provide novel insights into the patterning 

and regulation of pacemaker cardiomyocytes. Identifying the regulatory 

network that controls IFT differentiation in zebrafish is likely to be useful for 
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devising novel strategies for in vitro differentiation of pacemaker 

cardiomyocytes. Finally, it will be exciting to test whether zebrafish can be 

used to model diseases that affect the IFT, such as congenital arrhythmias, 

which would allow high-throughput testing of potential therapeutics. 
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MATERIALS AND METHODS 

Zebrafish 

We used the following zebrafish strains: Tg(myl7:egfp)twu277 (Huang et al., 

2003) and Tg(myl7:dsredt4)sk74 (Garavito-Aguilar et al., 2010). All zebrafish 

husbandry and experiments followed IACUC-approved protocols. 

 

In situ hybridization 

In situ hybridization was performed as previously described (Schindler et al., 

2014) using probes for bmp4 (ZDB-GENE-980528-2059), tbx18 (ZDB-GENE-

020529-2), shox2 (ZDB-GENE-040426-1457), hcn4 (ZDB-GENE-050420-

360), and isl1 (ZDB-GENE-980526-112). 

 

Immunofluorescence 

Immunofluorescence was performed as previously described (Schindler et al., 

2014) using the monoclonal antibody MF20 (Developmental Studies 

Hybridoma Bank) and a polyclonal antibody against Islet1 (GeneTex; 

GTX128201L). The secondary antibodies used were goat anti-mouse IgG2 

TRITC (Southern Biotech 1090-03), goat anti-rabbit Alexa Fluor 488 (Life 

Technologies A11008), and goat anti-rabbit Alexa Fluor 568 (Life 

Technologies A11011). 
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Imaging 

In situ images were captured using a Zeiss Axioplan and Axiocam and 

processed using Zeiss Axiovision and Adobe Creative Suite software. 

Immunofluorescence images were captured using a Leica SP5 confocal laser-

scanning microscope and analyzed using Imaris software (Bitplane) and 

ImageJ. All confocal images shown are 3D reconstructions. 

 

Fate map analysis 

Previously generated data sets were analyzed to approximate the locations of 

IFT progenitor cells in the early embryo. These include several sets of 

previously published experiments (Keegan et al., 2005, 2004; Schoenebeck et 

al., 2007), as well as additional unpublished data from prior experiments. For 

each experimental embryo, available data indicate the initial position of the 

labeled cells and the subsequent location of the labeled progeny within the 

MF20-labeled heart at 48 hpf. Because IFT molecular markers were not used 

when generating these data sets, we used morphological criteria to score 

contribution of labeled progeny to the IFT. Specifically, we scored 

cardiomyocytes as IFT if they were located in the bottom 30% of the atrium, 

close to the venous pole rather than the atrioventricular canal. Instances in 

which the available information was insufficient to judge IFT contribution were 

excluded from this analysis. 
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Figure 2.1.  
Inflow tract cardiomyocytes express a set of pacemaker markers.  
(A-H) Frontal views depict the embryonic zebrafish heart at 48 hours post 
fertilization (hpf); arrowheads indicate the inflow tract (IFT). 
(A) Schematic outlines the embryonic ventricle and atrium; green territory 
highlights the IFT, a ring of tissue at the base of the atrium. 
(B-F) In situ hybridization reveals expression of the pacemaker markers bmp4 
(B), tbx18 (C), shox2 (D), hcn4 (E), and isl1 (F) in the IFT; dashed lines outline 
the cardiac chambers. (G-H) Immunofluorescence indicates Isl1 localization in 
the nuclei of the IFT cardiomyocytes (green in G,H). The MF20 antibody marks 
the myocardium (red, H). Quantification of Isl1+ nuclei in the IFT yields an 
average of 31.5 IFT cells in wild-type embryos at 48 hpf (n=14; standard 
deviation=5.5).   
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Figure 2.2.  
A biography of IFT cardiomyocytes.  
(A-E) Schematics depict the regions in the zebrafish embryo that give rise to 
the myocardium of the IFT (green), the atrial chamber (AC, yellow), the 
ventricular chamber (red), and the OFT (purple). 
(A) Lateral view of the blastula at 40% epiboly, before gastrulation begins; D 
and V indicate the dorsal and ventral (V) sides of the embryo. Ovals indicate 
the territories that have been shown to contain ventricular and atrial progenitor 
cells (Keegan et al., 2004), as well as progenitors of the OFT lineage (Hami et 
al., 2011). The ventral location of the IFT progenitors is derived from the data 
presented here (Fig. 2.3). 
(B) Dorsal view of the gastrula at 6-9 somites, highlighting the territories within 
the anterior lateral plate mesoderm (ALPM) that have been shown to contain 
ventricular and atrial progenitors (Schoenebeck et al., 2007)and OFT 
progenitors (Hami et al., 2011). The lateral location of the IFT progenitors is 
derived from the data presented here (Fig. 2.4). 
(C) Dorsal view at 23 somites illustrates how differentiated ventricular and 
atrial cardiomyocytes form the cardiac cone at the embryonic midline 
(Berdougo et al., 2003). The location of the differentiating IFT precursors 
around the periphery of the cone reflects the data presented here (Fig. 2.5). 
(D) Dorsal view at 24 hpf shows the position of the elongating heart tube, with 
OFT progenitors located near the arterial pole (Lazic and Scott, 2011; Zeng 
and Yelon, 2014; Zhou et al., 2011). At this stage, IFT cardiomyocytes are 
appended to the venous pole of the atrium and begin initiating the heartbeat 
(Arrenberg et al., 2010; de Pater et al., 2009). 
(E) Frontal view at 48 hpf. As the heart loops and matures, OFT cells append 
to the arterial pole (de Pater et al., 2009). IFT cells remain at the base of the 
atrium and continue to serve as the primary cardiac pacemaker (Arrenberg et 
al., 2010).   
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Figure 2.3.  
IFT progenitors originate from a ventral portion of the lateral margin.  
(A) In previous experiments (Keegan et al., 2005, 2004), fate mapping of 
cardiac progenitors was performed by injecting a caged fluorescein-dextran 
lineage tracer at the single-cell stage, followed by uncaging in small groups of 
cells at 40% epiboly and subsequent analysis of cell fates at 48 hpf. For each 
set of labeled cells, their location at 40% epiboly was recorded in terms of 
latitude, using cell tiers to measure distance from the margin, and longitude, 
using degrees from the dorsal midline. By revisiting previously published fate 
mapping data (Keegan et al., 2005, 2004) and unpublished data, we identified 
eight examples (dark green) in which labeled cells contributed to the IFT. We 
also found an additional three examples (light green) in which labeled cells 
contributed to both the IFT and the AC. In all 11 examples, IFT progenitors 
were located in tiers 2-4, between 92 and 160 degrees from dorsal.  
(B) Table lists each instance of IFT labeling, indicating the cell tier, degrees 
from dorsal, and side (left or right indicated by L or R, respectively) at 40% 
epiboly, as well as the final myocardial contribution of the labeled progeny at 
48 hpf.  
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Figure 2.4.  
IFT progenitors reside in lateral portions of the heart fields.  
(A) In previous experiments (Schoenebeck et al., 2007), fate mapping of 
cardiac progenitors was performed by uncaging a caged fluorescein-dextran 
lineage tracer in small groups of cells within the ALPM at 6-9 somites, followed 
by analysis of cell fates at 48 hpf. For each set of labeled cells, their location in 
the ALPM was categorized into one of six zones, with zone 1 in the anterior 
and zone 6 in the posterior portion of the ALPM, using the tip of the notochord 
as a landmark along the anterior-posterior axis. Zones 3-6 were further 
subdivided into medial and lateral portions based on distance from the midline. 
By revisiting previously published fate mapping data (Schoenebeck et al., 
2007) and unpublished data, we identified 24 examples in which labeled cells 
contributed to the IFT, plus an additional 24 examples in which labeled cells 
contributed to both the IFT and the AC. Pie charts represent the proportion of 
experiments that labeled IFT myocardium (dark green), IFT and AC 
myocardium (light green), or non-IFT myocardium (white) for each zone of the 
ALPM.  
(B) Table indicates the frequency of IFT labeling, organized by zone. The 
“total” column lists the total number of experiments in which myocardium was 
labeled, and the “percentage” column lists the percentage of these 
experiments in which either the IFT or the IFT and AC were labeled. 
Experiments that did not result in any myocardial labeling were excluded in 
this analysis.  
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Figure 2.5.  
IFT cardiomyocytes emerge by 23 somites and append to the venous 
pole of the heart tube. 
(A-L) Immunofluorescence in Tg(myl7:egfp) embryos indicates nuclear 
localization of Isl1 (red) in cells within and near the differentiated myocardium 
(green). (A-I) Dorsal views, anterior toward the top. Examination of Isl1 
localization at 18 somites (A-C), 21 somites (D-F), and 23 somites suggests 
that the differentiation of IFT cardiomyocytes commences between 21 and 23 
somites, when these cells are positioned at the periphery of the cardiac cone. 
(J-L) Lateral view of the heart tube, arterial pole toward the top. By 24 hpf, IFT 
cardiomyocytes are present in the venous pole of the heart tube.  
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Figure 2.6.  
IFT cardiomyocytes differentiate after atrial chamber cardiomyocytes.  
(A-H) Immunofluorescence with an antibody against Isl1 combined with 
visualization of native eGFP and DsRed in Tg(myl7:egfp);Tg(myl7:dsred) 
embryos indicates the location of late-differentiating cells (eGFP+/DsRed-; (de 
Pater et al., 2009; Lepilina et al., 2006) and Isl1+ cells (purple) within the heart 
at 36 hpf. Frontal views, arterial pole toward the top. Panels E-H are enlarged 
versions of the boxed areas in panels A-D; arrowheads indicate 
eGFP+/DsRed-/Isl1+ cardiomyocytes. (A,E) eGFP becomes visible rapidly 
after the myl7 promoter becomes active in differentiated cardiomyocytes. (B,F) 
DsRed becomes visible approximately 24 hours after the myl7 promoter 
becomes active in differentiated cardiomyocytes, due to slower protein folding. 
(C,D,G,H) Most Isl1+ cardiomyocytes are eGFP+ and DsRed- at 36 hpf, 
indicating that they are late-differentiating.   
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Chapter 3: Hedgehog signaling restricts formation of the cardiac inflow 

tract in zebrafish 

 



	

	

77 

ABSTRACT 

Cardiac pacemaking activity is confined to a specialized population of 

cells in the cardiac inflow tract (IFT), but the patterning processes that 

establish IFT dimensions remain unknown. Here, we demonstrate that 

Hedgehog (Hh) signaling has a potent effect on limiting the number of IFT 

cells in the embryonic zebrafish heart. Using both genetic and 

pharmacological manipulations of the Hh pathway, we find that loss of Hh 

signaling results in a significantly expanded IFT. Conversely, reduction of Bmp 

signaling dramatically diminishes IFT production and hinders IFT 

maintenance. Through temporal inhibition of each pathway, we show that Hh 

and Bmp signaling are both required in the same timeframe, prior to cardiac 

differentiation, to establish the normal number of IFT cardiomyocytes. 

Remarkably, simultaneous reduction of both Hh and Bmp signaling restores 

the IFT population to a relatively normal size, suggesting that these pathways 

act in opposition during IFT patterning. We therefore propose a model in which 

IFT specification relies on both low levels of Hh signaling and high levels of 

Bmp signaling, which together set appropriate boundaries for the IFT 

progenitor population. 
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INTRODUCTION 

The mature heart is comprised of multiple types of specialized 

cardiomyocytes, each with distinct functional attributes. However, the 

patterning mechanisms that specify discrete populations of cardiac progenitors 

are not well understood. For instance, it is known that pacemaking activity is 

confined to a small population of specialized cardiomyocytes located in a 

discrete region at the sinoatrial junction (Monfredi et al., 2010), but it is unclear 

which factors regulate the allocation of an appropriate proportion of 

pacemaker cells (Chapter 2). As a step toward understanding the complex 

genetic networks that underlie cardiac patterning, we have sought to elucidate 

which signaling pathways control specification of the pacemaker progenitor 

population. 

Pacemaker cells originate from late-differentiating cardiac progenitors 

that are appended to the venous pole after the primitive atrium has formed 

(Christoffels, 2006; Mommersteeg et al., 2010). In this Tbx18-expressing 

lineage, several transcription factors, including Tbx18, Tbx2, Tbx3, Isl1, and 

Shox2, drive pacemaker differentiation (van Weerd and Christoffels, 2016). 

The signals that  lie upstream of this genetic program remain relatively 

mysterious, although a few pathways have been implicated in the process. For 

example, Wnt signaling has been identified as a positive regulator of 

pacemaker development (Bressan et al., 2013). Furthermore, it is known that 

venous pole development is positively regulated by retinoic acid signaling via 
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Tbx5 activation (Niederreither et al., 2001). However, we do not yet have a 

complete picture of how signaling pathways interact to create a population of 

pacemaker cells that is sufficiently large but also restricted to the right size and 

location. 

We have chosen to use zebrafish as a model organism in which to 

study the early patterning processes that ultimately give rise to pacemaker 

cells. In the embryonic zebrafish heart, pacemaker cells are located within a 

specific territory, referred to as the inflow tract (IFT), that appears to be the 

functional equivalent of the mammalian sinoatrial node (SAN; Chapter 2). Like 

the SAN, the zebrafish IFT initiates the heartbeat and demonstrates 

pacemaker activity at both embryonic and adult stages (Arrenberg et al., 2010; 

Tessadori et al., 2012), and cells in the IFT express genes in the pacemaker 

differentiation program, including isl1, bmp4, and hcn4 (Chin et al., 1997; Poon 

et al., 2016; Witzel et al., 2012). Furthermore, zebrafish IFT development 

seems to depend on the transcription factor Isl1, as does SAN development; 

isl1 mutant zebrafish lack expression of pacemaker genes in the IFT and also 

display bradycardia (de Pater et al., 2009). Thus, analysis of the regulation of 

zebrafish IFT formation has the potential to provide new insight into the 

genetic pathways that establish the pacemaker lineage.  

Our work demonstrates a novel role for Hedgehog (Hh) signaling during 

IFT development. Prior studies have indicated that the Hh pathway promotes 

the initial specification of cardiac progenitor cells. In both mouse and 
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zebrafish, mutations in smoothened (smo), which encodes the transmembrane 

protein responsible for Hh signal transduction, result in formation of a small 

heart (Thomas et al., 2008; Zhang et al., 2001). This phenotype arises due to 

defects in mesodermal patterning: in zebrafish, Hh signaling is required cell-

autonomously during and shortly after gastrulation to maximize the number of 

mesodermal cells that adopt cardiac fate (Thomas et al., 2008). In addition, 

several studies suggest that Hh signaling is a key component in second heart 

field (SHF) development. Hh signaling promotes formation of the outflow tract 

(OFT) from progenitor cells within the SHF: in mouse, embryos with reduced 

Hh signaling (hereafter referred to as Hh-deficient embryos) have a diminished 

OFT with septal defects (Goddeeris et al., 2007; Lin et al., 2006; Washington 

Smoak et al., 2005), and, in zebrafish, smo mutant embryos show severely 

reduced incorporation of SHF cells into the OFT (Hami et al., 2011). Hh 

signaling is also required for the formation of septa by cells from the murine 

posterior SHF. Hh-deficient embryos have atrioventricular septation defects 

(Goddeeris et al., 2008), and Hh signaling is required for migration of SHF 

cells into the atrial septum (Hoffmann et al., 2009). Despite the attention paid 

to Hh signaling during venous pole septation, the involvement of Hh signaling 

in formation of the appropriate number of cardiac IFT or SAN cells at the 

venous pole has remained unstudied. 

Here, we demonstrate that Hh signaling is required during early stages 

of cardiac patterning to define the size of the zebrafish IFT. In contrast to other 
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roles of the Hh pathway in promoting cardiomyocyte production, we find that 

Hh signaling restricts formation of IFT cardiomyocytes: reduced Hh activity 

results in an enlarged IFT. This phenotype arises due to Hh signaling prior to 

cardiac differentiation, suggesting an influence on the specification of IFT 

progenitor cells. Interestingly, Bmp signaling acts during a similar timeframe to 

promote formation of IFT cardiomyocytes: reduced Bmp activity results in a 

severely diminished IFT. Intriguingly, reducing both Hh and Bmp signaling 

restores the IFT to a nearly normal size, suggesting that Hh and Bmp signaling 

work together to set the dimensions of the IFT population. Synthesizing these 

data, we propose that Hh and Bmp signaling pattern cardiac progenitors in 

order to assign an appropriate proportion to an IFT fate. 
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RESULTS 

Loss of Hh signaling causes expansion of the cardiac IFT 

While analyzing the hearts of embryos with reduced Hh activity, we 

were intrigued to discover that bmp4, an IFT marker, is dramatically expanded 

in smo mutant embryos at 48 hours post fertilization (hpf) (Figure 3.1A-B). In 

contrast to the narrow ring of bmp4 expression that marks the IFT at the 

venous pole of the wild-type atrium, bmp4 is expressed in a larger territory at 

the venous pole of the smo mutant heart, beginning from the inlet at the base 

of the atrium and extending upward. Several other IFT markers are expressed 

in the same pattern: hcn4, tbx18, shox2, and Isl1 are similarly expanded in 

smo relative to wild-type siblings (Figure 3.1C-J). Using nuclear localization of 

Isl1 to quantify the number of IFT cardiomyocytes at 48 hpf, we observe that 

IFT cell number is roughly 50% higher in smo mutants than in wild-type 

(Figure 3.2G). This phenotype is particularly striking because the total number 

of atrial and ventricular cardiomyocytes is substantially smaller in smo mutants 

(Thomas et al., 2008), indicating that the expansion of the IFT cardiomyocyte 

population is present in the context of a general reduction in heart size. Thus, 

these data reveal a novel and unexpected requirement for Hh signaling in 

restricting the dimensions of the cardiac IFT.  

Since cells in the IFT act as the cardiac pacemaker, we examined heart 

rate and rhythm in smo mutant embryos. smo mutants exhibit a significantly 

reduced heart rate at 48 hpf, compared to their wild-type siblings (Table 3.1, 



	

	

83 

p<0.0001). In addition to observing bradycardia, we also noted arrhythmia in 

some smo mutants (Table 3.1). Within this arrhythmic group, some embryos 

displayed an additional abnormal phenotype in which cardiac contraction 

occasionally initiates outside the IFT, contrasting with normal heartbeats in 

which the IFT initiates the contraction. It is unclear whether the abnormal heart 

rate and rhythm in smo mutants arise due to the expanded IFT or due to other 

defects in the chamber myocardium. However, in mouse, failure to restrict 

expression of pacemaker markers can result in atrial arrhythmia (Wang et al., 

2010), suggesting that a similar mechanism may cause functional defects in 

smo. These data reveal that Hh signaling is required for normal cardiac 

function in addition to delimiting the size of the IFT. 

 

Hh signaling limits IFT size prior to the onset of myocardial 

differentiation 

We wondered whether Hh activity restricts IFT expansion after the heart 

tube forms, perhaps by preventing unchecked growth of the IFT population. In 

wild-type embryos, bmp4 is initially expressed throughout the heart tube (Chin 

et al., 1997), with its restricted expression in the IFT becoming apparent by 32 

hpf (Figure 3.2A). Intriguingly, as early as 32 hpf, bmp4 is expressed in a 

broader area and at higher levels in smo mutants relative to their wild-type 

siblings (Figure 3.2A-B). This expansion in bmp4 expression is maintained 

through at least 48 hpf (Figure 3.2C-F). In addition, we quantified the number 
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of Isl1+ IFT cardiomyocytes at 24 hpf, just after heart tube formation, as well 

as at 32 hpf. In wild-type embryos, we find that the number of IFT cells is quite 

consistent between 24 hpf and 48 hpf, indicating that this population is 

established prior to 24 hpf and then maintained as the heart matures (Figure 

3.2G). In smo mutants, we observe an increase in the number of Isl1+ IFT 

cells at both 24 hpf and 32 hpf. Notably, these data indicate that the degree of 

IFT expansion in smo is maintained consistently from 24 hpf through at least 

48 hpf (Figure 3.2G). This consistency suggests that Hh signaling suggests 

that Hh signaling acts prior to heart tube formation to restrict IFT cell number. 

Next, we shifted our attention to earlier stages to ask when Hh activity 

is required to limit the size of the IFT. Prior work in zebrafish has suggested 

that the critical period for cardiac progenitor specification occurs during 

gastrulation and early somitogenesis (Marques et al., 2008; Thomas et al., 

2008; Marques and Yelon, 2009; Keegan et al., 2005), prior to the onset of 

myocardial differentiation around the 13 somite stage (Yelon et al., 1999). To 

test whether Hh signaling delimits the IFT population during these cardiac 

specification stages, we utilized cyclopamine (CyA), a potent pharmacological 

inhibitor of Smo (Cooper et al., 1998). When CyA is added during gastrulation 

(at dome stage) or just after gastrulation (at tailbud stage or at 3 somites), loss 

of Hh signaling results in an increase in the number of Isl1+ cells in the IFT 

(Figure 3.3A). In these embryos, the size and morphology of both the IFT and 

cardiac chambers are comparable to what is observed in smo mutants (Figure 
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3.3A and data not shown). However, when CyA is applied during mid-

somitogenesis stages (at 6 somites or beyond), there is no change in the 

number of IFT cardiomyocytes (Figure 3.3A) and the hearts appear 

comparable to controls (data not shown). Similarly, CyA treatment during or 

just after gastrulation results in expanded bmp4 expression in the IFT (Figure 

3.3F-G), as seen in smo (Figure 3.1F). However, application of CyA during 

mid-somitogenesis does not alter bmp4 expression (Figure 3.3H and data not 

shown), resulting in a heart that is indistinguishable from controls (Figure 

3.3F). These data indicate that Hh signaling acts prior to myocardial 

differentiation to restrict IFT cell number, potentially by setting limits on IFT 

progenitor specification.  

Interestingly, Hh signaling acts during this same timeframe to promote 

production of ventricular cardiomyocytes (Thomas et al., 2008). In this prior 

study, we considered analysis of the ventricular population to be 

representative of both chambers, but our new IFT observations motivated us 

to explicitly test whether Hh signaling also promotes atrial cardiomyocyte 

production during this critical time period. We treated embryos with CyA and 

then counted amhc-expressing cells at 22 somites, a convenient stage for 

visualization of atrial cardiomyocytes prior to heart tube formation. We found 

that inhibition of Hh activity during or just after gastrulation reduces the number 

of amhc-expressing atrial cells, whereas CyA treatment during somitogenesis 

leaves the atrial population intact (Figure 3.3B-E). These data indicate that Hh 
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signaling plays contrasting roles during cardiac specification stages, 

simultaneously promoting production of atrial and ventricular cells while also 

limiting the number of IFT cells. 

 

Increased Hh activity does not affect IFT size 

Our data thus far suggested the hypothesis that Hh activity above a 

certain threshold could preclude specification of IFT progenitor cells. To test 

this, we next asked whether a heightened dose of Hh activity would reduce IFT 

size. To increase Hh activity, we overexpressed the Hh ligand sonic hedgehog 

(shh) throughout the embryo, via injection of shh mRNA (Ekker et al., 1995; 

Krauss et al., 1993). We have previously shown that shh overexpression 

results in production of more cardiomyocytes in both the ventricle and the 

atrium (Thomas et al., 2008). Here, in order to distinguish IFT cardiomyocytes 

from the rest of the atrium, we quantified Isl1+ IFT cells separate from Isl1- 

atrial cells. As expected from our prior studies, we observed an increase in the 

number of Isl1- atrial cells upon shh overexpression (Figure 3.4A-C). However, 

IFT size is unchanged in response to increased Hh activity (Figure 3.4A-E). 

Similarly, bmp4 expression is retained in the IFT of embryos overexpressing 

shh (Figure 3.4F-G). Thus, while Hh activity is necessary to prevent IFT 

expansion, increased Hh activity is not sufficient to depress the IFT population 

beyond its usual size. 
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This finding contrasts sharply with the positive response to increased 

Hh activity in other cardiomyocyte populations. As mentioned above, shh 

overexpression expands the total number of ventricular and atrial 

cardiomyocytes (Thomas et al., 2008 and Figure 3.4A-C). In addition, shh 

overexpression results in an expansion of the expression of ltbp3 (Figure 

3.5A-B), which marks OFT progenitors in the SHF (Zhou et al., 2011). Since 

the OFT, ventricular, and atrial populations are also reduced in smo embryos 

(Hami et al., 2011; Thomas et al., 2008; Figure 3.5C), it seems that these 

three populations all respond in a reciprocal fashion to loss and gain of Hh 

activity. This is distinct from the response of the IFT population, which 

expands in response to reduced Hh signaling but appears unaffected by 

increased levels of Hh. Thus, we suggest that there may be two separable 

roles for Hh signaling during cardiac specification stages: in addition to its role 

in promoting production of atrial, ventricular, and OFT cells, Hh signaling also 

acts separately to inhibit production of IFT cells. 

 

Nkx2.5 acts downstream of Hh signaling to restrict IFT development 

We next asked how this novel role for Hh signaling fits into the genetic 

network that regulates IFT formation. We envision that the Hh pathway 

interacts with other factors in order to determine the dimensions of the IFT, 

including other signaling pathways and downstream transcription factors. 

Because Nkx2.5 is a well-established repressor of the pacemaker 
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differentiation program (Espinoza-Lewis et al., 2011; Mommersteeg et al., 

2007a, 2007b; Ye et al., 2015), we hypothesized that Nkx2.5 may act 

downstream of Hh activity to restrict IFT size. Indeed, prior studies have 

observed altered nkx2.5 expression in the anterior lateral plate mesoderm 

(ALPM) of both smo mutants and CyA-treated embryos (Zhang et al., 2001; 

Thomas et al., 2008). By revisiting this aspect of the phenotype, we have 

found that the distribution of nkx2.5 expression is comparable in Hh-deficient 

embryos and their normal siblings, but that the intensity of nkx2.5 expression 

is reduced in Hh-deficient embryos (Figure 3.6). These data suggest that low 

levels of nkx2.5 expression in Hh-deficient embryos could contribute to the 

formation of an enlarged IFT. 

We next asked whether increasing the levels of nkx2.5 expression 

could prevent IFT expansion in Hh-deficient embryos. Recent studies have 

shown that overexpression of nkx2.5 after IFT differentiation can inhibit isl1 

expression in the IFT (Kimara Targoff and Sophie Colombo, Columbia 

University Medical Center, personal communication), but it remains unknown 

whether nkx2.5 also restricts IFT progenitor specification. To test this, we 

examined whether increasing nkx2.5 expression prior to IFT differentiation 

could rescue the expanded IFT phenotype in CyA-treated embryos. In these 

experiments, we used the transgene Tg(hsp70l:nkx2.5-EGFP), which drives 

expression of nkx2.5 under control of a heat-inducible promoter and has been 

previously shown to rescue nkx2.5 mutants (George et al., 2015). Both 
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transgenic embryos and non-transgenic siblings were treated with CyA at 

dome stage, and then all embryos were heat-shocked at 3 somites to induce 

transient nkx2.5 overexpression (Figure 3.7A). We chose this stage for 

induction because endogenous nkx2.5 expression begins at approximately 3 

somites (Lee et al., 1996) and because this stage is within the timeframe when 

cardiac progenitor specification is underway. In wild-type embryos treated with 

CyA, the number of Isl1+ cells in the IFT is increased at 48 hpf relative to wild-

type controls (Figure 3.7B-D), as previously observed (Figure 3.3A). 

Tg(hsp70l:nkx2.5-EGFP) embryos treated with CyA display an intermediate 

phenotype, in which the number of Isl1+ cells is lower than in nontransgenic 

CyA-treated siblings but still significantly elevated relative to wild-type controls 

(p=0.045, Figure 3.7B-D,F). Thus, nkx2.5 overexpression can attenuate the 

IFT expansion in Hh-deficient embryos, but the limited degree of rescue 

observed suggests that Hh signaling relies on additional factors, beyond 

Nkx2.5, to regulate the size of the IFT.  

 

Bmp signaling promotes IFT development  

We next asked how Hh-mediated restriction of the IFT population is 

balanced during cardiac patterning. We envision that other signaling pathways 

promote IFT progenitor specification, counteracting Hh activity to result in the 

appropriate IFT dimensions. The Bmp pathway is an appealing candidate for 

this role. Prior work in zebrafish has shown that Bmp signaling acts during 
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cardiac specification stages to promote cardiomyocyte formation, with a 

particularly potent effect on promoting the production of atrial cardiomyocytes 

(de Pater et al., 2012; Marques and Yelon, 2009). Additionally, in the murine 

venous pole, Bmp signaling supports the proliferation of SHF cells and their 

contribution to atrioventricular septation (Briggs et al., 2013). However, it has 

not yet been determined whether Bmp activity is required for development of 

pacemaker cells at the venous pole.   

Examination of the effects of a mutation in the type I Bmp receptor gene 

alk8, also known as laf (Bauer et al., 2001; Mintzer et al., 2001; Mullins et al., 

1996), revealed that reduction of Bmp signaling results in formation of a small 

atrium with a diminished IFT at 48 hpf (Figure 3.8, 3.9A). Whereas wild-type 

embryos exhibit discrete expression of bmp4, tbx18, and shox2 in the IFT 

(Figure 3.8A,C,E), laf mutants do not display concentrated expression of these 

genes at the venous pole (Figure 3.8B,D,F). Similarly, laf mutant hearts 

typically contain very few Isl+ IFT cells at 48 hpf (Figure 3.8H, 3.9A). 

Quantification of the number of Isl1+ cells revealed that the IFT in laf embryos 

is already reduced at 24 hpf (Figure 3.9A), indicating that Bmp signaling 

promotes IFT cardiomyocyte production prior to heart tube formation. 

Interestingly, the laf mutant IFT continues to diminish between 24 hpf and 48 

hpf (Figure 3.9A), suggesting that Bmp signaling may play an additional role in 

maintenance of the IFT population after it has already differentiated. These 
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data indicate that Bmp signaling is required for the establishment of an 

appropriately sized IFT. 

In order to evaluate whether Bmp signaling, like Hh signaling, 

influences IFT size during cardiac specification stages, we utilized 

dorsomorphin (DM), a small molecule antagonist of type I Bmp receptors (Yu 

et al., 2008), to reduce Bmp activity at different timepoints. Addition of DM at 

dome stage reduces the IFT dramatically (Figure 3.9B), resulting in a heart 

and IFT that are comparable to laf mutants (data not shown). However, 

addition of DM at tailbud stage results in a more modest deficit in IFT cell 

number relative to wild-type (Figure 3.9B), suggesting that Bmp activity has a 

particularly potent effect on IFT specification during gastrulation. When DM is 

applied at 24 hpf, the IFT is mildly reduced by 48 hpf (Figure 3.9B), 

comparable to the loss of IFT cells that emerges during the same timeframe in 

laf (Figure 3.9A). Altogether, these data support a requirement for Bmp 

signaling both during IFT specification and IFT maintenance, with the major 

impact of Bmp activity occurring during early phases of cardiac patterning, 

when Bmp and Hh signaling may interact to define IFT size. 

 

Bmp signaling acts in opposition to Hh signaling during IFT formation 

We hypothesized that Hh and Bmp signaling may act in the same 

pathway to direct IFT specification. To test this, we generated smo;laf double 

mutant embryos that have reductions in both Hh and Bmp signaling. Classical 
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epistasis between smo and laf would result in smo;laf double mutants 

exhibiting either an expanded IFT, similar to smo, or a minimal IFT, similar to 

laf. Alternatively, a less direct interaction between the two pathways, such as 

convergence on the same target genes, could result in smo;laf double mutants 

displaying an intermediate phenotype, potentially reminiscent of the wild-type 

IFT. Indeed, the IFT in smo;laf double mutant embryos is fairly similar to the 

wild-type IFT. For example, in contrast to the enlarged IFT we observe in smo 

(Figure 3.1J, 3.2G) and the diminished IFT we observe in laf (Figure 3.8H, 

3.9A), smo;laf double mutants show an intermediate phenotype in which 

expression of bmp4 is restored to a relatively normal pattern in the IFT (Figure 

3.10A,D). Additionally, the number of Isl1+ IFT cells in smo;laf double mutants 

is more similar to the number of cells in wild-type siblings than to the number 

in either single mutant (Figure 3.10B-C, E-G). This phenotype is particularly 

remarkable because it occurs in the context of a very small heart in smo;laf 

double mutants (data not shown). Taken together, these data suggest that Hh 

and Bmp signaling act in opposition during cardiac patterning in order to 

generate an appropriately sized IFT population.  
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DISCUSSION 

Taken together, our studies highlight novel roles for both Hh and Bmp 

signaling in defining the size of the cardiac IFT. Embryos with reduced Hh 

activity have an enlarged IFT, indicating that Hh activity is required to restrict 

IFT cell number. Conversely, embryos with reduced Bmp activity have a 

diminished IFT, indicating that Bmp signaling promotes production of IFT cells. 

These two pathways both exert their influence on the size of the IFT 

population prior to myocardial differentiation, presumably during specification 

of the IFT lineage. Furthermore, Hh and Bmp signaling seem to counteract 

each other, as reducing both signals results in a relatively normal IFT. Based 

on these findings, we propose that the restrictive influence of Hh signaling and 

the inductive influence of Bmp signaling converge to set appropriate 

boundaries for the IFT progenitor population.  

The newly identified requirement for Hh activity during IFT patterning is 

notable for two reasons: its restrictive nature and its timing. The role of Hh 

signaling in limiting the production of IFT cardiomyocytes is in stark contrast to 

its role in promoting the formation of other cardiomyocyte populations, as in 

the zebrafish atrium and ventricle (Thomas et al., 2008), the zebrafish OFT 

(Hami et al., 2011), the murine heart tube (Zhang et al., 2001), the murine OFT 

(Goddeeris et al., 2007; Lin et al., 2006; Washington Smoak et al., 2005), and 

the murine atrial septum (Goddeeris et al., 2008; Hoffmann et al., 2009). 

Furthermore, in several of these contexts, Hh activity is required at later 
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stages in development, after myocardial differentiation has already begun, 

whereas we find that Hh signaling influences IFT formation during and just 

after gastrulation, before the onset of differentiation. We therefore favor the 

interpretation that Hh signaling acts to delimit the specification of IFT 

progenitor cells within the ALPM. Importantly, this idea has not yet been 

directly tested through fate mapping experiments or through analysis of an IFT 

progenitor marker. At present, no molecular markers specific to IFT 

progenitors within the ALPM have been identified. In future studies, it will be 

worthwhile to evaluate whether and how IFT specification is expanded in Hh-

deficient embryos. These studies will also reveal precisely which other 

population is reduced in order to generate excess IFT cells in Hh-deficient 

embryos. 

Our data also illuminate important roles for Bmp signaling during IFT 

formation. The proposed requirement for Bmp activity during IFT specification 

is consistent with our previous findings: our previous work has shown that 

Bmp signaling acts during cardiac specification stages to promote production 

of atrial cardiomyocytes (Marques and Yelon, 2009), just as it seems to do for 

production of IFT cells. Our finding that Bmp signaling is required for 

maintenance of IFT cardiomyocytes is novel, while also being consistent with 

previous studies showing that Bmp activity is required during differentiation 

stages to promote cardiomyocyte production in both the zebrafish atrium and 

the murine venous pole (Briggs et al., 2013; de Pater et al., 2009). Given that 
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the Bmp ligand bmp4 is expressed within the IFT, we posit that paracrine Bmp 

signaling within the IFT is required for survival of this population or for 

reinforcement of IFT fate. Future experiments investigating how Bmp activity 

promotes specification and maintenance of the pacemaker cell population will 

extend our knowledge about this important cardiac population. 

It is important to note that our data do not indicate where Hh and Bmp 

signaling are active during cardiac specification stages, relative to the 

locations of the IFT progenitor cells. During these stages, Bmp ligands are 

produced on the ventral side of the embryo, and Bmp activity is highest 

ventrally and low on the dorsal side (Chin et al., 1997; Nikaido et al., 1997; 

Tucker et al., 2008), whereas Hh ligands are produced on the dorsal side of 

the embryo, resulting in high Hh activity in dorsal tissues (Concordet et al., 

1996; Currie and Ingham, 1996; Ekker et al., 1995; Krauss et al., 1993; Lewis 

et al., 1999). Cardiac progenitor cells arise in between these positions, at the 

lateral margin on both the left and right sides of the embryo (Keegan et al., 

2004). Notably, our fate maps of the wild-type embryo suggest that IFT 

progenitor cells are located at the ventral edge of the lateral marginal zone, 

near the source of Bmp ligands and far from the source of Hh ligands (Chapter 

2). This layout is consistent with a model in which IFT specification occurs in 

cells that experience robust Bmp activity and limited Hh activity. We also 

suspect that Bmp signaling could act cell autonomously in IFT progenitors, 

whereas Hh activity could act either autonomously or non-autonomously. 
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Previous studies have demonstrated that Hh and Bmp signaling each act cell 

autonomously to promote ventricular and atrial fate, respectively (Marques and 

Yelon, 2009; Thomas et al., 2008), and future mosaic analyses studies could 

be designed to explicitly test where Hh and Bmp signaling are required in the 

context of IFT specification. A complementary method would be to visualize 

the IFT progenitor population at early stages in combination with reporters of 

Hh or Bmp signal reception (Collery and Link, 2011; Huang et al., 2012; Laux 

et al., 2011); however, all currently known IFT markers are only expressed 

after differentiation (data not shown). In future studies, it would be worthwhile 

to identify molecular markers of the IFT progenitor population in order to 

visualize this population in the early heart fields, determine what signals are 

active, and analyze changes to IFT progenitors when signaling is altered. 

Altogether, we propose a model in which specification of an appropriate 

number of IFT progenitor cells relies on two requirements: high Bmp activity 

and limited Hh activity. While Bmp activity promotes IFT specification, Hh 

activity sets a boundary for IFT specification. Together, these two signals 

result in IFT progenitor emergence only from a defined territory at the edge of 

the heart fields, thus creating an IFT population that is sufficient but not 

oversized. It seems feasible that Hh and Bmp activity could converge on 

downstream target genes that direct IFT identity, perhaps with Gli and Smad 

factors binding within the same enhancer but with different consequences. It is 

also possible that Hh and Bmp signaling act through different target genes, 
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potentially in different tissues. One interesting alternative could involve Hh 

activity regulating expression of Bmp signaling antagonists, such as noggin 

and chordin. Perhaps in the absence of Hh activity, diminished expression of 

these antagonists results in increased Bmp activity in the heart fields, resulting 

in excess IFT specification. Future experiments can test this possibility, as well 

as investigating downstream effectors of Hh and Bmp activity, in order to 

provide insight into the specific mechanisms of IFT patterning. 

In future work, it will be interesting to investigate whether the roles for 

Hh and Bmp signaling during IFT development are conserved in other species. 

We posit that conservation is likely; however, because altering very early 

patterning in mammalian embryos generally results in lethality prior to SAN 

formation (Mishina et al., 1995; Zhang et al., 2001), the use of conditional 

alleles will be needed to illuminate how Hh and Bmp signaling affect 

mammalian SAN development. It will also be interesting to understand 

whether abnormalities in Hh signaling, Bmp signaling, or their downstream 

effectors are associated with congenital arrhythmias. Finally, it will be exciting 

to ask whether modulating Hh and Bmp activity can improve efforts to 

generate pacemaker-like cardiomyocytes in vitro (Protze et al., 2017; 

Vedantham, 2015). Perhaps limiting Hh activity can improve the efficiency of 

current protocols to generate pacemaker-like cells. Furthermore, it seems 

possible that introducing Bmp activity in differentiating cardiomyocytes could 

improve the maturation and/or survival of pacemaker-like cells. In the long 
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term, these data and extensions of this work will help elucidate the etiology of 

congenital arrhythmias and may help inform efforts to generate in vitro 

pacemaker cells for therapeutic purposes.  
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MATERIALS AND METHODS 

Zebrafish 

We used the following zebrafish strains: smob577 (Varga et al., 2001), lafsk42 

(Marques and Yelon, 2009), Tg(myl7:H2A-mCherry)sd12 (Schumacher et al., 

2013), Tg(nkx2.5:ZsYellow)fb7 (Zhou et al., 2011), Tg(hand2:EGFP)pd24 

(Kikuchi et al., 2011), and Tg(hsp70l:nkx2.5-EGFP)fcu1 (George et al., 2015). 

All zebrafish husbandry and experiments followed IACUC-approved protocols. 

 

In situ hybridization and immunofluorescence 

In situ hybridization and immunofluorescence were performed as previously 

described (Zeng and Yelon, 2014). In situ probes were used for bmp4 (ZDB-

GENE-980528-2059), tbx18 (ZDB-GENE-020529-2), shox2 (ZDB-GENE-

040426-1457), hcn4 (ZDB-GENE-050420-360), amhc (myh6; ZDB-GENE-

031112-1), and ltbp3 (ZDB-GENE-060526-130). Primary and secondary 

antibodies are outlined in Table 3.2. 

 

Imaging 

In situ images were captured using a Zeiss Axioplan and Axiocam and 

processed using Zeiss Axiovision and Adobe Creative Suite software. 

Immunofluorescence images were captured using a Leica SP5 confocal laser-

scanning microscope and analyzed using Imaris software (Bitplane) and 

ImageJ. All confocal images shown are 3D reconstructions. 
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Heart rate observations 

Heart rate was determined by counting the number of atrial contractions over a 

period of 30 seconds from videos of live embryos imaged at 21°C. Videos 

were recorded and processed using a Zeiss M2Bio microscope, an Optronics 

DEI750 video camera, and iMovie software.  

 

Cell counting 

To count Isl1+ IFT cardiomyocytes (Figures 3.2, 3.3, 3.7, 3.9, and 3.10), 

we employed immunofluorescence with an anti-Isl1 antibody. Isl1 localizes to 

the nucleus of IFT cardiomyocytes, and cardiomyocytes are distinguishable 

from other cardiac cell types based on MF20 staining. Though some 

pericardial Isl1 was observed, we only counted cells in which the Isl1+ nucleus 

was surrounded by MF20 staining. We occasionally observed embryos with 

poor quality anti-Isl1 staining, across all genotypes and without any discernible 

pattern; these samples were excluded from our analysis. 

To count amhc-expressing cells at 22 somites in Figure 3.3, we used an 

established protocol for counting cells after in situ hybridization (Thomas et al., 

2008). A cell was counted only if its nucleus was clearly outlined by amhc 

expression. 

To count cardiomyocytes in the atrium in Figure 3.4, we used the 

transgene Tg(myl7:H2A-mCherry) to label the nuclei of all cardiomyocytes, an 

anti-Isl1 antibody to label the nuclei of all IFT cardiomyocytes, and the S46 



	

	

101 

antibody (anti-Amhc) to label all atrial cardiomyocytes. We counted atrial 

cardiomyocytes by visualizing native mCherry protein in Amhc+ cells. We 

subtracted the number of Isl1+ Amhc+ cells from the total number of atrial 

cardiomyocytes to determine the number of Isl1- atrial cardiomyocytes, which 

we define as the “atrial chamber.” 

 

Drug treatments 

Embryos were treated with CyA (Fisher Scientific 507605; dissolved in 

ethanol) at 25-75 µm or DM (Sigma-Aldrich P5499; dissolved in DMSO) at 10-

20 µm in E3 embryo medium. Embryos treated with 25-75 µm CyA at dome 

stage resemble smo mutants based on their diminutive head, mild cyclopia, 

ventral body curvature, and U-shaped somites. Embryos treated with 10-20 

µm DM at dome stage resemble laf mutants based on their mild dorsalization, 

including absence of the ventral tail fin. Control embryos were treated with an 

equal volume of the small molecule vehicle, either ethanol or DMSO. 

 

Heat shock 

For experiments depicted in Figure 3.7, embryos were incubated at 28.5°C 

and were treated with CyA at dome stage as described above. At 3 somites, 

embryos were transferred to an E3 solution pre-equilibrated to 37.5°C and 

containing either CyA or ethanol. Embryos were incubated at 37.5°C for 60 

minutes and were then removed from the 37.5°C solution and replaced into 
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the 28.5°C solution. Embryos carrying Tg(hsp70l:nkx2.5-EGFP) were 

identified based on eGFP visualization, and nontransgenic siblings were used 

as controls. Embryos were maintained at 28.5°C continuously until fixation at 

48 hpf. 

 

Injection of RNA 

Embryos were injected with 50 pg mRNA encoding zebrafish shha (referred to 

as shh) at the one-cell stage (Ekker et al., 1995). 

 

Statistics and replicates 

Figures show data representing at least two experiments from independent 

crosses. The only exceptions are Figure 3.8E and 3.8F, which are each based 

on one experiment. All statistical analyses of data were performed using 

GraphPad to conduct two-tailed, unpaired t-tests.  
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Figure 3.1.  
The IFT is expanded in smoothened mutants.  
(A-J) Wild-type (wt, top row) and smoothened mutant (smo, bottom row) 
embryos at 48 hpf are shown after in situ hybridization (A-H) or after 
immunofluorescence followed by confocal imaging (I-J). Frontal views; 
arrowheads indicate the IFT. (A-B) bmp4 expression is expanded in the 
venous pole of smo mutants relative to wt siblings (n=8 wt, 12 smo). (C-H) 
hcn4, tbx18, and shox2 are similarly expanded in the venous pole of smo, 
compared to wt (n=10 wt, 12 smo for hcn4; n=12 wt, 12 smo for tbx18; n=26 
wt, 13 smo for shox2). (I-J) Isl1 (green) is present in the nuclei of IFT 
cardiomyocytes. More Isl1+ cells are observed in the IFT of smo mutants than 
in wt siblings (n=15 wt, 11 smo). 3D reconstruction shows the myocardium in 
red, labeled with MF20. Scale bars: 50 μm.  
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Figure 3.2. 
Enlarged IFT arises by 24 hpf in smo mutants. 
 (A-F) In situ hybridization depicts bmp4 expression in wt (top row) and smo 
(bottom row). Frontal views; arrowheads indicate the IFT. Expression of bmp4 
is already expanded in the IFT of smo mutants, relative to wt siblings, at 32 hpf 
(A-B, n=6 wt, 8 smo). This expansion is maintained at 40 hpf (C-D, n=8 wt, 10 
smo) and 48 hpf (E-F, n=8 wt, 12 smo). Scale bar: 50 μm. 
(G) Bar graph indicates the average number of Isl1+ cells in the IFT; error bars 
represent standard error, and asterisks indicate significant differences from wt 
(p≤0.01). See Materials and Methods for cell counting technique. The size of 
the IFT in smo mutants, relative to the IFT in wt siblings, is increased as early 
as 24 hpf (n=9 wt, 12 smo). This increase is maintained at 32 hpf (n=11 wt, 12 
smo) and 48 hpf (n=15 wt, 11 smo). The number of Isl1+ cells in wt embryos is 
also steadily maintained throughout this timeframe.  
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Figure 3.3. 
Hh signaling acts during gastrulation and early somitogenesis to limit 
IFT cell production and promote atrial cell production. 
(A) Bar graph indicates the average number of Isl1+ cells in the IFT at 48 hpf, 
as in Figure 3.2G; asterisks indicate significant differences from controls 
(p<0.01). Embryos treated with CyA beginning at dome (n=9), tailbud (n=13), 
or 3 somites (s, n=9) have higher numbers of Isl1+ cells in the IFT than 
ethanol-treated control embryos do (n=18). Embryos treated with CyA at 6 s 
(n=6) or 10 s (n=6) have the same number of IFT cells as found in controls.  
(B) Bar graph indicates the average number of amhc-expressing cells at 22 s; 
error bars represent standard error, and asterisks indicate significant 
differences from controls (p<0.01). See Materials and Methods for cell 
counting technique. Embryos treated with CyA at dome (n=12) or tailbud 
(n=20) have lower numbers of amhc-expressing cells than control embryos do 
(n=37), whereas embryos treated at 10 s (n=14) have the same number of 
amhc-expressing cells as found in controls.  
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Figure 3.3, Continued. 
Hh signaling acts during gastrulation and early somitogenesis to limit 
IFT cell production and promote atrial cell production. 
 
(C-E) In situ hybridization depicts amhc expression at 22 s. Dorsal views; 
anterior toward the top. Embryos treated with CyA at tailbud stage (D) express 
amhc in fewer cells relative to controls (C). Embryos treated with CyA at 10 s 
exhibit normal amhc expression (E). 
(F-H) In situ hybridization depicts bmp4 at 48 hpf. Frontal views; arrowheads 
indicate the IFT. Embryos treated with CyA at tailbud stage (G, n=12) exhibit 
expanded bmp4 expression relative to controls (F, n=44) whereas embryos 
treated at 10 s have a normal pattern of bmp4 expression (H, n=24). Scale 
bars: 50 μm. 
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Figure 3.4. 
IFT cell number is unaffected by increased Hh signaling. 
(A) Bar graph indicates the average number of Isl1+ and Isl1- cardiomyocytes 
in the atrium at 48 hpf; error bars represent standard error, and asterisk 
indicates significant difference from controls (p<0.03). See Materials and 
Methods for cell counting technique. Injection of shh mRNA into wt embryos 
increases the number of Isl1- atrial cardiomyocytes but does not change in the 
number of Isl1+ IFT cardiomyocytes relative to uninjected control embryos 
(n=8 control, 5 +shh).  
(B-C) In Tg(myl7:H2A-mCherry) embryos at 48 hpf, mCherry fluorescence 
(red) marks cardiomyocyte nuclei, and immunofluorescence reveals Amhc 
(purple) and Isl1 (green) localization. Frontal views; arrowheads indicate the 
IFT; red dotted lines indicate the ventricle. Although injection with shh mRNA 
alters cardiac morphology, the size of the IFT is comparable in injected 
embryos (C) and controls (B). 
(D-E) Isl1 immunofluorescence from panels B-C is shown alone in white. 
Frontal views; arrowheads indicate the IFT; white dotted lines indicate the 
ventricle. 
(F-G) In situ hybridization depicts bmp4 expression at 48 hpf. Frontal views; 
arrowheads indicate the IFT. Embryos injected with shh mRNA retain bmp4 
expression in the IFT (E, n=12), in a narrow ring similar to that seen in 
uninjected controls (D, n=9). Scale bars: 50 μm.  
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Figure 3.5. 
Expression of ltbp3 in outflow tract progenitors responds to Hh 
signaling. 
(A-C) Fluorescent in situ hybridization indicating expression of ltbp3 (green) is 
combined with MF20 immunofluorescence that marks the myocardium (red), 
followed by confocal imaging. Partial 3D reconstructions show lateral views at 
26 hpf; arrowheads indicate the arterial pole of the heart. In wt embryos (A), 
ltbp3 is expressed in OFT progenitor cells located at the arterial pole (n=13). In 
embryos injected with shh mRNA (B), ltbp3 expression is expanded at the 
arterial pole (n=9). In most smo embryos, ltbp3 expression is either absent (C, 
n=7/12) or reduced (n=4/12) at the arterial pole. Scale bar: 50 μm. 
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Figure 3.6. 
Intensity of nkx2.5 expression is reduced in the Hh-deficient anterior 
lateral plate mesoderm. 
(A-D) In Tg(hand2:eGFP);Tg(nkx2.5:ZsYellow) embryos, immunofluorescence 
followed by confocal imaging allows visualization of eGFP (indicating hand2 
reporter expression) and ZsYellow (indicating nkx2.5 reporter expression) at 
10 s. Dorsal views of 3D reconstructions are shown, with both channels shown 
in A-B and ZsYellow shown alone in C-D. White outlines indicate the territory 
expressing detectable amounts of ZsYellow (C-D). (A,C) Ethanol-treated 
control embryos show normal distribution of hand2 and nkx2.5 reporter 
expression within the anterior lateral plate mesoderm (ALPM). (B,D) CyA-
treated embryos show normal distribution of both hand2 and nkx2.5 reporter 
expression, but the intensity of nkx2.5 expression within the ALPM is reduced. 
Scale bar: 50 μm. 
(E) Bar graph indicates the average intensity at 10 s; error bars represent 
standard error, and asterisk indicates significant difference from controls 
(p<0.0001).  Within its expression domain (as outlined in C and D), the 
intensity of nkx2.5 reporter fluorescence is higher in control embryos (n=10) 
than in CyA-treated embryos (n=10).   
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Figure 3.7. 
Overexpression of nkx2.5 can partially rescue the expansion of the IFT 
in Hh-deficient embryos. 
(A) Schematic depicts timeline of the experiment performed: embryos were 
treated with CyA or ethanol (as a control) at dome, heat shocked to induce 
transient nkx2.5 overexpression at 3 s, and then analyzed at 48 hpf. Transient 
expression of nkx2.5 diminishes by 8 hours after heat shock administration 
(George et al., 2015), which corresponds to approximately 22 s in this 
experiment. 
(B) Bar graph indicates the average number of Isl1+ cells in the IFT, as in Fig. 
2G; error bars represent standard error; asterisk indicates a significant 
difference relative to wt controls (p<0.01), and ns indicates no significant 
difference. Treatment of wt embryos with CyA results in more Isl1+ IFT cells 
than in wt ethanol-treated controls (n=13 wt controls, 7 wt with CyA; 
p=0.0011). Transgenic (Tg) overexpression of nkx2.5 beginning at 3 s slightly 
reduces the number of Isl1+ cells in the IFT of CyA-treated embryos (n=18 Tg 
with CyA; p=0.1304 relative to wt with CyA). Overexpression of nkx2.5 at 3 s 
has no effect on IFT cell number in ethanol-treated control embryos (n=23 Tg 
controls; p=0.861 relative to wt controls).  
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Figure 3.7, Continued. 
Overexpression of nkx2.5 can partially rescue the expansion of the IFT 
in Hh-deficient embryos. 
 
(C-F) Frontal views of immunofluorescence at 48 hpf as in Fig. 1I,J; 
arrowheads indicate the IFT. Whereas wt control (C) and Tg control (E) 
embryos have a normal distribution of Isl1+ IFT cardiomyocytes, wt CyA-
treated embryos show an increase in Isl1+ IFT cells (D). Tg CyA-treated 
embryos show an intermediate phenotype (F), in which the IFT is modestly 
expanded relative to Tg controls but also mildly restrained relative to wt CyA-
treated siblings. Scale bar: 50 μm. 
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Figure 3.8. 
Bmp activity promotes production of IFT cardiomyocytes. 
(A-H) Wt (top row) and laf mutant (bottom row) embryos at 48 hpf are shown 
after in situ hybridization (A-F) or after immunofluorescence followed by 
confocal imaging (G-H). Frontal views; arrowheads indicate the venous pole. 
Whereas wt embryos (A,C,E) show discrete expression of IFT markers in the 
venous pole, concentrated expression of bmp4 (B), tbx18 (D), and shox2 (F) is 
not evident at the venous pole of most laf embryos (n=44 wt, 29/52 laf for 
bmp4; n=11 wt, 10/11 laf for tbx18; n=13 wt, 14/14 laf for shox2). Likewise, 
Isl1 (green) is present in very few cells in laf mutants (G) compared to their wt 
siblings (H) (n=24 wt, 20 laf). 3D reconstruction shows the myocardium in red. 
Isl1 staining near wt ventricle (G) is outside the heart. Note that variability 
observed in the laf mutant phenotype may reflect a variable degree of 
maternal alk8 contribution in individual embryos (Mintzer et al., 2001). Scale 
bars: 50 μm. 
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Figure 3.9. 
Bmp activity promotes establishment and maintenance of IFT 
cardiomyocytes. 
(A) Bar graph indicates the average number of Isl1+ cells in the IFT, as in 
Figure 3.2G; error bars represent standard error; asterisks indicate significant 
differences from controls (p<0.0001). Isl1+ IFT cell number is decreased at 24 
hpf in laf compared to wt siblings (n=8 wt, 15 laf). This reduced IFT population 
is further diminished in laf at 32 hpf (n=26 wt, 10 laf) and again at 48 hpf (n=24 
wt, 20 laf).  
(B) Bar graph indicates the average number of Isl1+ cells in the IFT at 48 hpf, 
as in Figure 3.2G; error bars represent standard error; asterisks indicate 
significant differences from controls (p<0.05). Embryos treated with 
dorsomorphin (DM) at dome show a striking decrease in IFT cell number at 48 
hpf relative to DMSO-treated controls (n=18 controls, 17 DM-treated; 
p<0.0001), comparable to laf embryos. Embryos treated at tailbud (n=14) or 
24 hpf (n=14) show a modest decrease in IFT cell number (p=0.0065 and 
0.0483, respectively).  
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Figure 3.10. 
IFT cell number is partially rescued in smo;laf double mutants. 
(A-B) In situ hybridization depicts bmp4 expression at 48 hpf. Frontal views; 
arrowheads indicate the IFT. bmp4 expression is restored to a normal pattern 
and intensity in smo;laf double mutants (B, n=8), comparable to wt siblings (A, 
n=5). This contrasts with the expanded bmp4 expression at the venous pole in 
smo mutants (Figure 3.1F) and the diminished bmp4 expression at the venous 
pole in laf mutants (Figure 3.8E). 
(C-F) Immunofluorescence depicts Isl1 (green) and MF20 (red) at 32 hpf. This 
timepoint was chosen because smo;laf embryos reliably survive to 32 hpf, 
whereas they have variable survival at later stages. Lateral views; arrowheads 
indicate the IFT. Scale bars: 50 μm. 
(G) Bar graph indicates the average number of Isl1+ cells in the IFT at 32 hpf, 
as in Figure 3.2G; error bars represent standard error; asterisks indicate 
significant differences from controls (p<0.008). Isl1+ IFT cell number is 
increased in smo (E, n=12), decreased in laf (D, n=6), and partially rescued in 
smo;laf (F, n=17), relative to wt siblings (C, n=14).  
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Table 3.1. 
 
Heart rate is abnormal in smo mutants at 48 hpf. 
smo mutants exhibit a significantly reduced average heart rate (± standard 
error), compared to their wild-type siblings (wt: n=38, smo: n=36, p<0.0001). 
 

Observations wt smo 

Heart rate (beats per minute) 106 ± 2 52 ± 3 

Normal heart rate and rhythm 38/38 0/36 

Bradycardia  0/38 24/36 

Bradycardia and arrhythmia 0/38 5/36 

Bradycardia, arrhythmia, and 
abnormal conduction 0/38 7/36 
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Table 3.2. 
 
Antibodies used for immunofluorescence. 
 

 

 Antibody Vendor Product Dilution 

Primary 
antibodies MF20 

Developmental 
Studies Hybridoma 

Bank 
supernatant 1:10 

 S46 
Developmental 

Studies Hybridoma 
Bank 

supernatant 1:10 

 rabbit anti-Isl1 GeneTex 128201L 1:2000 

 rabbit anti-RCFP Clontech 632475 1:250 

 chicken anti-GFP Abcam 13970 1:500 

Secondary 
antibodies 

goat anti-mouse 
IgG1 FITC SouthernBiotech 1070-02 1:100 

 goat anti-mouse 
IgG2b TRITC SouthernBiotech 1090-03 1:100 

 goat anti-rabbit 
Alexa Fluor 647 Invitrogen 21245 1:200 

 goat anti-rabbit 
Alexa Fluor 488 Life Technologies A11008 1:500 

 goat anti-rabbit 
Alexa Fluor 594 Life Technologies A11012 1:200 

 goat anti-chicken 
Alexa Fluor 488 Invitrogen A11039 1:200 
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Chapter 4: Future directions toward understanding inflow tract 
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Introduction 

In this dissertation, I have described a body of work that adds 

substantially to our understanding of inflow tract (IFT) development in the 

zebrafish embryo. In Chapter 2, we have characterized the wild-type IFT, 

including analysis of its origins and its differentiation dynamics. In Chapter 3, 

we have shown that the size of the IFT is determined through the interaction of 

two signaling pathways: Hh signaling restricts production of IFT 

cardiomyocytes, while Bmp signaling promotes IFT formation. In this chapter, I 

will discuss five open questions that can be addressed in future extensions of 

this work. Finally, I will comment on the potential biomedical significance of 

these contributions. 

 

Where are IFT progenitors located? 

 In Chapter 2, we proposed a model in which IFT progenitors originate in 

the ventral portion of the cardiogenic territory in the late blastula and then 

come to reside in the lateral portion of the heart fields within the ALPM. This 

model was generated after analyzing previously published fate mapping data 

in which IFT progenitors were not originally classified separately from atrial 

chamber cardiomyocytes (Keegan et al., 2004; Schoenebeck et al., 2007). 

Since these original experiments did not incorporate a molecular marker for 

the IFT cardiomyocytes, we were only able to assess contribution to the IFT 

based on the gross anatomical location of labeled cells. In future experiments, 
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we could create a more definitive fate map of IFT progenitors by using 

traditional fate mapping techniques combined with an IFT molecular marker, 

such as bmp4 or Isl1. This type of study would most likely provide a more 

refined, higher-resolution understanding of where IFT progenitors are located 

relative to other cardiac progenitor populations in the early embryo.  

An alternative strategy for advancing our analysis of IFT progenitor cells 

would be to visualize expression of a molecular marker that is specific to the 

IFT progenitors. However, no IFT progenitor marker has yet been identified; 

presently, all known markers of cardiac progenitor cells are thought to be 

expressed more broadly than in only IFT progenitors. Isl1 specifically marks 

differentiated IFT cardiomyocytes, but prior to myocardial differentiation, it is 

expressed broadly in the heart fields and is present in multiple progenitor 

populations (Hans et al., 2004; Witzel et al., 2017, 2012). Furthermore, the IFT 

markers tbx18 and shox2 are not readily detectable in the zebrafish ALPM 

(data not shown), indicating that their robust expression only emerges at later 

stages, as IFT differentiation proceeds. Identification of a novel marker of IFT 

progenitors would be highly valuable to the field and warrants further study. 

To identify a novel marker that would be specific to IFT progenitors, we 

could use either a candidate-based approach or an unbiased approach. A 

candidate-based approach could begin by determining whether any other 

markers of differentiated IFT cardiomyocytes are expressed in the ALPM. For 

example, tbx2b is expressed in the differentiated IFT, and tbx2b also seems to 
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be detectable in the ALPM (Tessadori et al., 2012; Thisse and Thisse, 2004). 

More detailed analysis of tbx2b expression relative to other markers would 

reveal whether it is indeed expressed in lateral portions of the heart fields, 

corresponding to the presumed location of the IFT progenitor cells. An 

alternative, unbiased approach could be to isolate tissue from different 

portions of the ALPM for gene expression profiling. Comparisons between the 

gene expression profiles of the lateral ALPM and medial ALPM could be used 

to generate a greater number of candidates, and then candidates can be 

screened for expression in IFT progenitors and IFT cardiomyocytes. Once a 

marker is identified, genetic lineage tracing studies would be valuable to 

confirm that the gene of interest is an IFT progenitor marker. This approach 

would be labor-intensive, but the data could yield meaningful insights into how 

different cardiac progenitor populations are arranged and patterned. 

Importantly, these techniques could also be used to investigate how 

cardiac specification is altered in smo and laf mutant embryos. Fate mapping 

experiments could be used to compare the dimensions of the IFT progenitor 

populations in wild-type, smo, and laf embryos; these experiments would 

rigorously test whether IFT specification is expanded in smo and reduced in 

laf, and they would provide insight into exactly which cell fate decisions are 

regulated by Hh and Bmp signaling. For example, in laf mutants, it has been 

shown that the ALPM is more narrow than in wild-type siblings (Marques and 

Yelon, 2009); perhaps this reflects the loss of a lateral portion of the heart 
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field, with medial portions preserved, or perhaps the entire heart field has 

reduced dimensions along the medial-lateral axis. Fate mapping would 

distinguish between these possibilities. Similarly, if an early IFT marker were 

identified, it could be used to determine how the distribution of IFT progenitors 

is altered in smo and laf relative to other progenitor populations in the early 

embryo. For example, perhaps analysis of the expression pattern of an IFT 

progenitor marker in smo mutants would reveal that the IFT progenitor 

population expands medially into the area that typically gives rise to atrial 

chamber cardiomyocytes, or, alternatively, perhaps the excess IFT progenitors 

come from a lateral expansion, beyond the normal boundary of the heart field. 

Further studies in this vein would refine our understanding of how Hh and Bmp 

signaling function during cardiac patterning with respect to the IFT progenitor 

population as well as other types of cardiac progenitors. 

 

How does Hh signaling restrict IFT specification? 

 In Chapter 3, we have shown that Hh signaling restricts the production 

of IFT cardiomyocytes. Based on the timeframe when Hh signaling is required, 

during gastrulation and early somitogenesis, we propose that Hh signaling 

restricts IFT progenitor specification. However, several topics remain 

mysterious, including one surprisingly elusive open question: where is Hh 

signaling required relative to the IFT progenitor population during this 

timeframe? 
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 A straightforward approach toward answering this question is to first 

ask where Hh signaling is active in and near the embryonic heart fields, as we 

assume that Hh signaling will be required in a cell type that experiences the 

Hh signaling cascade. To analyze where Hh signaling is active, we can 

evaluate the expression patterns of Hh-responsive genes relative to the 

locations of the cardiac progenitors. It is well-established that Hh ligands are 

expressed in the dorsal portion of the gastrula and then in the midline after 

gastrulation (Currie and Ingham, 1996; Ekker et al., 1995; Krauss et al., 1993). 

As expected, the Hh-responsive gene Ptc1 is expressed at high levels near 

these regions of the embryo (Concordet et al., 1996; Huang et al., 2012; Lewis 

et al., 1999). However, cardiac progenitors are located at the lateral margin 

prior to gastrulation and in the ALPM after gastrulation (Keegan et al., 2004; 

Schoenebeck et al., 2007), calling into question whether cardiac progenitors 

are exposed to Hh activity. Hh ligands are secreted and may travel long 

distances (Gritli-Linde et al., 2001; Ramsbottom and Pownall, 2016), so it is 

possible that cardiac progenitors are actively responding to Hh signaling. 

Indeed, murine cardiac progenitors are marked with a Gli1-Cre reporter of Hh 

activity (Thomas et al., 2008). However, we have not yet been able to detect 

expression of ptc1 in cardiac progenitors in zebrafish, either through in situ 

hybridization or through analysis of the Hh reporter Tg(ptc1:kaede) (Huang et 

al., 2012; data not shown). We cannot eliminate the possibility that low levels 

of ptc1 are present in cardiac progenitors, so this question deserves future 
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study. In future work, we could utilize more sensitive hybridization methods, 

such as RNAscope, to determine whether ptc1 is present in cardiac 

progenitors (Wang et al., 2012). If ptc1 were absent from the ALPM using 

sensitive detection methods, this would suggest Hh signaling acts indirectly in 

a different tissue to enforce limits on IFT specification.  For instance, perhaps 

Hh signaling in the midline induces release of a secondary factor that signals 

within the ALPM and patterns the heart fields. Once we attain a more detailed 

understanding of where Hh signaling is required, we could then use this 

knowledge to design blastomere transplantation experiments that would 

facilitate mosaic analyses (as in Thomas et al., 2008) to definitively determine 

whether Hh signaling acts autonomously or non-autonomously to restrict IFT 

specification. 

 We are also interested in understanding whether the dosage of Hh 

activity is an important element in cardiac patterning. We have shown that the 

size of the atrial chamber, ventricular chamber, and OFT populations change 

in conjunction with the amount of Hh activity (Figures 3.4 and 3.5, and Thomas 

et al., 2008), which is consistent with a dose-dependent mechanism. However, 

increasing Hh activity through overexpression of shh leaves the IFT population 

unchanged (Figure 3.4), indicating that high levels of Hh signaling are not 

sufficient to inhibit IFT formation, even though Hh signaling is required to limit 

the size of the IFT. This results hints at the possibility of an indirect 

mechanism for the involvement of Hh signaling during IFT patterning. 
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However, we cannot rule out the possibility that levels of Hh activity higher 

than those generated through injection of shh mRNA could depress IFT size. 

Perhaps overexpression of shh is does not generate uniformly high Hh activity, 

due to the influence of endogenous modifiers of Shh and Patched activity 

(Ramsbottom and Pownall, 2016). Direct modulation of Smo activity could 

potentially increase Hh signaling to a higher degree or with greater uniformity. 

Future experiments could utilize the small molecule Smo agonist SAG (Chen 

et al., 2002) or a constitutively-active smoM2 construct (Hynes et al., 2000) to 

induce excess Hh activity and then evaluate the effect on IFT size. If we see a 

reciprocal relationship between Hh activity and IFT size when Smo activity is 

increased, it would support a model in which the dosage of Hh activity patterns 

the heart fields. However, if high levels of Hh activity never affect the IFT 

population, it would favor an indirect mechanism in which Hh activity is 

necessary for IFT restriction but does not actively suppress IFT fate. 

 Finally, we remain curious about potential downstream effectors of Hh 

activity. We have considered both Nkx2.5 and Isl1 as potential candidates, but 

neither one seems to be primarily responsible for expanded IFT specification 

in smo mutants. Our data show that IFT expansion is only modestly attenuated 

in Hh-deficient embryos that overexpress nkx2.5 (Figure 3.7), and isl1 

expression seems to be normal in the heart fields of smo embryos (data not 

shown). Therefore, we wonder whether new candidate effectors could be 

identified, perhaps by analyzing published datasets of Hh-responsive genes. 
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Many groups have used gene expression profiling methods to identify Hh-

responsive genes in various embryonic contexts (Lee et al., 2010; 

Lewandowski et al., 2015; Peterson et al., 2012; Vokes et al., 2008, 2007; 

Wang et al., 2013; Xu et al., 2006). These datasets could be used to generate 

a group of candidates for further study. Once we determine where Hh 

signaling is required to restrict IFT specification, candidates can be screened 

for expression in that tissue during early somitogenesis stages. Ultimately, the 

long-term goal in extending this work will be to understand what factors act 

downstream of Hh signaling to create different progenitor populations within 

the heart fields.  

 

How does Bmp signaling promote production of IFT cardiomyocytes? 

We have also shown in Chapter 3 that Bmp signaling is required for IFT 

development. Bmp signaling plays a potent early role in promoting 

specification of IFT cardiomyocytes and also seems to contribute to 

maintenance of differentiated IFT cardiomyocytes (Figure 3.9). We propose 

that Bmp signaling acts cell autonomously in cardiac progenitors, with high 

levels of Bmp signaling promoting IFT specification. After differentiation, we 

hypothesize that Bmp signaling in IFT cardiomyocytes promotes cell survival 

and/or reinforces cell fate. Future work dedicated to testing these models will 

enhance our understanding of IFT development. 
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 To understand how Bmp signaling promotes specification of IFT 

cardiomyocytes, we would first like to understand where Bmp activity is 

required. Blastomere transplantation or similar mosaic analyses can be used 

to ask whether Bmp activity is required cell autonomously in the IFT lineage. If 

Bmp signaling is required in IFT cells for their specification, we would expect 

to see that cells that lack Bmp signaling fail to contribute to the IFT after 

transplantation into a wild-type embryo. Indeed, we have previously shown 

that cells deficient in Bmp signaling are highly unlikely to contribute to any 

cardiac population in mosaic assays (Marques and Yelon, 2009). If Bmp-

responsive reporters are active in IFT progenitors, that would also be 

consistent with a cell-autonomous role for Bmp signaling in this population. It 

has already been shown that Bmp signaling is active in differentiating cardiac 

cells prior to heart tube formation (de Pater et al., 2012; Strate et al., 2015). In 

our preliminary experiments analyzing the Bmp reporter Tg(BRE:dsGFP) 

(Collery and Link, 2011), we observe Bmp activity in the lateral portions of the 

ALPM at 10s, with some overlap between Bmp activity and nkx2.5-expressing 

cardiac progenitors (data not shown). Because we cannot currently mark IFT 

progenitors specifically, we cannot determine with certainty whether Bmp 

signaling is active in IFT progenitors. However, once an IFT progenitor marker 

is identified, it will be important to analyze whether IFT progenitors exhibit Bmp 

activity. These published results and preliminary data support a model of cell-
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autonomous Bmp activity promoting IFT specification, and it will be worthwhile 

to continue testing this model in extensions of our work. 

 In considering this model, we are also very curious about how this 

newly identified role for Bmp signaling during IFT development relates to our 

previous finding that Bmp signaling promotes atrial specification. Does Bmp 

signaling promote formation of the entire atrial pool, encompassing both IFT 

and atrial chamber progenitors? Or does Bmp signaling strongly favor IFT 

specification with a less potent role in atrial chamber specification? It is difficult 

to distinguish between these possibilities in the diminished laf heart because 

both the IFT population and the atrial chamber population are reduced. 

However, in future experiments examining the locations of Tg(BRE:dsGFP) 

expression within the heart fields, it will be interesting to note whether there is 

differential Bmp activity present in the IFT progenitors and the atrial chamber 

progenitors. Further analysis could determine how elevated Bmp activity 

affects the IFT population. In previous work, we have shown that elevating 

Bmp activity enlarges the atrium (Marques and Yelon, 2009), but we did not 

distinguish between atrial chamber and IFT cells in those original experiments. 

Future experiments could overexpress the constitutively active Bmp receptor 

alk8CA and then analyze the number of IFT cells along with the number of 

atrial chamber cells. We hypothesize that overexpression of alk8CA will cause 

the atrium will contain a greater number of IFT cardiomyocytes than in control 

embryos, but a more interesting aspect of this phenotype will be the ratio 
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between atrial chamber cardiomyocytes and IFT cardiomyocytes. If the 

enlarged atrium retains its usual proportions, then our data would support a 

model in which Bmp activity expands the atrial pool indiscriminately. 

Conversely, if the enlarged atrium contains proportionally more IFT 

cardiomyocytes than atrial chamber cardiomyocytes, that would support a 

model in which Bmp signaling promotes IFT fate to a greater degree than atrial 

chamber fate. Discerning between these possibilities will strengthen our 

understanding of how Bmp activity patterns cardiac progenitors. 

We propose that Bmp signaling is also required cell autonomously for 

maintenance of differentiated IFT cardiomyocytes, although the precise 

cellular mechanism of IFT maintenance is still unclear. After IFT differentiation, 

Bmp signaling seems to be active in the venous pole (Laux et al., 2011), and 

bmp4 is expressed in IFT cells (Figure 2.1 and Chin et al., 1997). Therefore, it 

seems likely that Bmp activity acts cell autonomously to maintain the IFT 

cardiomyocyte population. This hypothesis can be tested through mosaic 

analysis using reagents that allow temporal control of Bmp activity, in 

combination with rigorous analysis of reporters of Bmp signaling. Intriguingly, it 

remains unknown how IFT maintenance is aberrant in embryos with reduced 

Bmp activity. Are IFT cardiomyocytes lost through apoptosis? Do IFT 

cardiomyocytes lose expression of IFT markers and transform into atrial 

chamber cells? These possibilities can be tested through direct analysis of 

apoptosis indicators and by following IFT marker expression over time in Bmp-
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deficient embryos. It is also possible that Bmp signaling drives proliferation in 

the IFT cardiomyocyte population, although that seems unlikely because 

differentiated cardiomyocytes show limited proliferation during this timeframe 

(de Pater et al., 2009). Evaluating these possibilities will provide important 

information about how the IFT population is maintained. 

 

How do Hh and Bmp interact with each other? 

 We are very intrigued by the finding that IFT specification relies on 

interactions between Hh and Bmp signaling. We have observed that reducing 

both Hh and Bmp signaling through mutations in smo and laf results in an IFT 

that is very similar to the wild-type IFT in size (Figure 3.10). This rescue raises 

an interesting question: how do Hh and Bmp signaling interact? It is possible 

that Hh and Bmp signaling could converge directly onto the same target 

genes: perhaps there are certain transcription factors that direct IFT 

specification and whose expression is negatively regulated by Hh activity and 

positively regulated by Bmp activity. Alternatively, or additionally, it is possible 

that Hh and Bmp signaling interact through a less straightforward mechanism. 

For example, one signaling pathway could influence the signal reception or 

activity of the other pathway. Perhaps Hh signaling drives expression of Bmp 

antagonists in the midline, and these Bmp antagonists diffuse into the heart 

fields such that medial cardiac progenitors are exposed to limited Bmp activity 

and only lateral IFT progenitors experience high levels of Bmp signaling. This 
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exciting possibility could be tested by analyzing expression of Bmp 

antagonists in smo or evaluating Bmp activity in Hh-deficient embryos. It is 

also possible that this relationship goes in the other direction or is reciprocal. 

Perhaps Bmp signaling affects receipt or transduction of Hh signaling. One 

first step toward testing this would be to analyze Hh activity using a Hh 

reporter in dorsomorphin-treated embryos. If we see higher Hh activity in Bmp-

deficient embryos, it would support the notion that Bmp activity alters Hh 

signal reception. In the long term, it will be exciting to determine how these 

signaling pathways interact in the network of signals that generates highly 

specialized progenitor populations from within the heart fields. 

 

How do Hh and Bmp interact with other signals? 

 We envision that cardiac patterning relies on a complex network of 

interacting signaling pathways. Therefore, another major topic for future 

investigation is asking how Hh and Bmp interact with other pathways. In 

addition to Hh and Bmp signaling, cardiac patterning relies on Wnt signaling, 

retinoic acid (RA) signaling, and fibroblast growth factor signaling (Dohn and 

Waxman, 2012; Keegan et al., 2005; Marques et al., 2008; Pradhan et al., 

2017; Waxman et al., 2008). Therefore, it is intuitive that other signaling 

pathways could participate in IFT development. In future work, it will be 

interesting to assimilate information about these pathways into a network in 

order to more deeply understand cardiac patterning. 
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 The most exciting avenue for further studies of the zebrafish IFT is to 

integrate our work with an understanding of the role of the Wnt pathway. 

Experiments in chick embryos have shown that Wnt signaling promotes 

production of pacemaker progenitors in the ALPM (Bressan et al., 2013). In 

zebrafish, Wnt signaling is highly dynamic in its effects on cardiac 

development (Dohn and Waxman, 2012). Eliminating Wnt activity in the ALPM 

does not seem to negatively affect production of atrial cells, but increasing Wnt 

signaling during cardiac fusion expands expression of a marker expressed in 

both IFT and atrial chamber cardiomyocytes (Dohn and Waxman, 2012). 

These data suggest that Wnt signaling may promote formation of IFT 

cardiomyocytes during differentiation stages. In future experiments, it will be 

valuable to test this hypothesis by examining IFT size in embryos where Wnt 

signaling has been manipulated both positively and negatively. It will also be 

interesting to compare the role of Wnt signaling to that of Bmp signaling; for 

example, do Bmp and Wnt activity act during the same timeframe, or are their 

dynamics different? Is either Bmp or Wnt signaling upstream of the other 

pathway? Understanding how these pathways promote IFT development will 

be particularly important for advancing efforts to generate pacemaker 

cardiomyocytes in vitro; therefore, these questions certainly deserve further 

study. 

 Future experiments could also explore the role of RA signaling in IFT 

development. RA signaling seems to delimit IFT size, as embryos with 
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increased RA signaling have reduced isl1 expression in the venous pole 

(Witzel et al., 2012). Furthermore, the atrial progenitor population is sensitive 

to RA signaling during gastrulation and early somitogenesis (Waxman et al., 

2008), suggesting that RA signaling may act during cardiac patterning to 

restrict IFT specification. However, open questions remain: how does RA 

signaling restrict IFT size? Does RA signaling act cell autonomously or non-

autonomously? Previously, we have shown that the RA-responsive effector 

Hoxb5b acts non-autonomously to restrict the size of the atrial progenitor 

population (Waxman et al., 2008), suggesting that RA signaling is likely to limit 

production of IFT cardiomyocytes non-autonomously. On the other hand, there 

is also evidence that RA signaling may limit IFT size autonomously: the RA-

responsive transcription factor Ajuba limits isl1 expression upon binding to Isl1 

(Witzel et al., 2012), suggesting that RA and Ajuba may act autonomously in 

isl1-expressing cardiac progenitors. Future experiments could distinguish 

between these possibilities using mosaic analysis techniques, in addition to 

more thoroughly evaluating how the IFT population is altered in embryos with 

altered RA signaling. Incorporating those data into the broader context of IFT 

patterning could further elevate the findings. Perhaps RA and Hh signaling 

cooperate to establish the boundaries of the heart fields, with RA signaling 

setting the posterior boundary and Hh signaling setting the lateral boundary. 

Over the long term, elucidating this network will be highly interesting to the 
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scientific community and will deepen our insight into the mechanisms of 

cardiac specification and the possible etiologies of congenital heart disease. 

 

What is the broader significance of understanding IFT specification? 

 The data presented in this dissertation represent several novel findings 

that contribute substantially to our understanding of IFT development. Prior to 

these studies, very little was known about early patterning of pacemaker 

cardiomyocytes.  Here, we identify two factors that act during the earliest 

stages of cardiac patterning to influence IFT size. We have also generated a 

biography of wild-type IFT cardiomyocytes that sets the stage for future 

studies of this population. These studies add new insight into cardiac 

development and shed light on how a complex network of signaling activity is 

deciphered to create specialized populations during cardiac patterning. These 

ideas should also be of interest to the broader developmental biology 

community. 

 Furthermore, these findings could advance regenerative medicine. A 

major goal in translational research is to create cell-based therapies that can 

replace invasive surgical interventions. In this context, generation of 

pacemaker cardiomyocytes in vitro has the potential to replace implanted 

electrical pacemakers. Electrical pacemakers are commonly used in patients 

who experience arrhythmia after cardiac injury or disease, but these 

pacemakers are associated with health risks (Mulpuru et al., 2017; Tjong and 
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Reddy, 2017; Zhan et al., 2008). In the search for a cell-based alternative, 

several groups have sought to create pacemaker cells in vitro (Husse and 

Franz, 2016; Vedantham, 2015; Xiao, 2011). Various approaches have been 

tested, and each approach is associated with both successes and challenges. 

 In vitro production of pacemaker cells can be broadly divided into two 

strategies: transdifferentiation of mature cells into pacemaker-like cells, and 

differentiation of pluripotent cells into pacemaker-like cells. The 

transdifferentiation strategy manipulates expression of transcription factors to 

induce expression of the pacemaker genetic program in quiescent adult 

cardiomyocytes or fibroblasts. Tbx transcription factors have been used for 

reprogramming, specifically Tbx18, Tbx3, and Tbx5, and the initial tissue has 

included explanted cardiomyocytes, in vivo cardiomyocytes, and fibroblasts 

(Bakker et al., 2012; Hu et al., 2014; Kapoor et al., 2013; Nam et al., 2014). 

Alternatively, the differentiation strategy begins with pluripotent cells and 

generates pacemaker-like cells in vitro. Pluripotent cells can be pushed toward 

a pacemaker-like fate by induced expression of transcription factors like Tbx3 

or Shox2 (Ionta et al., 2015; Jung et al., 2014; Rimmbach et al., 2015), or 

pluripotent cells can be cultured to give rise to mixed cardiac fates and then 

sorted to enrich for pacemaker cells (Hashem and Claycomb, 2013; Protze et 

al., 2017; Scavone et al., 2013). A recently developed protocol has been 

particularly successful by imitating in vivo development of pacemaker cells. 

This protocol dynamically modulates Bmp, RA, and FGF signaling to generate 
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pacemaker-like cardiomyocytes from human pluripotent stem cells with 

impressive efficiency and without inducing any genetic changes (Protze et al., 

2017). This exciting advance suggests that patient-specific pacemaker cells 

could be adopted for therapeutic use. Indeed, some implanted biological 

pacemakers have been shown to pace the heartbeat in animal models (Kehat 

et al., 2004; Protze et al., 2017). Implanting these biological pacemakers could 

replicate normal pacemaking, if biological pacemakers prove safe, effective, 

and stable. 

Though these strategies represent significant advances toward 

biological pacemakers, some challenges remain, and further study is 

necessary to develop an optimal biological pacemaker. One major challenge is 

efficiency; current protocols are inefficient and generally rely on transgene-

based sorting to isolate pacemaker-like cells (Hashem and Claycomb, 2013; 

Kojima and Ieda, 2017; Nam et al., 2014; Rimmbach et al., 2015). 

Furthermore, pacemaker-like cells differentiated in vitro generally fail to reach 

full maturity comparable with cells that differentiate in vivo, resulting in very 

rapid beating and failure to create sarcomeric structures (Nam et al., 2014; 

Protze et al., 2017). Additionally, it is unclear whether implanted pacemaker-

like cells would survive in vivo over the long term. Published data has primarily 

focused on short-term outputs, and pacemaker-like cells seem to be lost over 

time (Hu et al., 2014; Kapoor et al., 2013). These challenges and others must 
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be overcome before biologic pacemakers can replace implanted pacemakers 

in patients with arrhythmia. 

Based on our experiments, we have identified two factors that may 

improve these efforts: antagonism of Hh activity, and continual activation of 

Bmp activity. Perhaps editing current protocols by adding cyclopamine at early 

stages could improve efficiency by limiting the production of chamber-like 

cardiomyocytes in favor of a pacemaker-like fate. Furthermore, increasing 

Bmp activity throughout differentiation and maintenance could help 

pacemaker-like cells reach a mature state in vitro and also enhance their 

survival. These ideas, along with other advances based in developmental 

biology, are likely to contribute to the creation of a biological alternative to 

man-made pacemakers. In this way, developmental biology can be harnessed 

to advance regenerative medicine and to improve treatment of human disease. 
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Abstract 

Heart formation relies on two sources of cardiomyocytes: the first heart 

field (FHF), which gives rise to the linear heart tube, and the second heart field 

(SHF), which gives rise to the right ventricle, the outflow tract, parts of the 

atria, and the inflow tract. The development of the SHF is of particular 

importance due to its relevance to common congenital heart defects. However, 

it remains unclear how the SHF is maintained in a progenitor state while the 

FHF differentiates. Likewise, the factors that trigger SHF differentiation into 

specific cardiac cell types are poorly understood. Investigation of SHF 

development can benefit from the utilization of multiple model organisms. 

Here, we review the experiments that have identified the SHF in zebrafish and 

investigated its contribution to the poles of the zebrafish heart. Already, 

zebrafish research has illuminated novel positive and negative regulators of 

SHF development, cementing the utility of zebrafish in this context.  

 

Keywords: Second heart field, zebrafish, outflow tract, inflow tract 

 

H.G. Knight and D. Yelon, Ph.D.* 

Division of Biological Sciences, University of California, San Diego, La Jolla, 

CA 92093 USA 

*email: dyelon@ucsd.edu  



	

	

163 

Introduction 

The embryonic origins of the heart have been a topic of intense interest 

due to the prevalence of congenital heart defects [1]. Cardiac progenitors 

(CPs) from the first heart field (FHF) form the initial heart tube, and CPs from 

the second heart field (SHF) contribute to most of the structures of the mature 

heart including the outflow tract, right ventricle, and much of the atria [2]. The 

SHF is generally defined as a population of CPs that originates adjacent to the 

FHF, differentiates after the initial heart tube has formed, and is responsible 

for cardiomyocyte accretion at both poles of the heart tube [2]. The SHF is 

particularly significant to congenital heart disease: many common cardiac 

abnormalities are caused by defects in SHF-derived tissues, including 

ventricular and atrial septal defects, transposition of the great arteries, and 

double outlet right ventricle [3]. Despite the importance of the SHF, the 

mechanisms that distinguish FHF and SHF development remain unclear. What 

signals or factors prevent the SHF from differentiating while the FHF is 

deployed, and what eventual change triggers SHF differentiation? Recent 

advances in zebrafish research offer new approaches that can complement 

work in mouse to deepen our comprehension of SHF regulation.  

Several lines of evidence indicate the presence of a population of late-

differentiating CPs in zebrafish that is likely to be analogous to the mammalian 

SHF. The conservation of the SHF provides exciting opportunities to advance 

our understanding using the distinct advantages of zebrafish embryos [4]. 
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Zebrafish embryos develop rapidly and have small hearts that are particularly 

tractable for cellular resolution of cardiogenesis. Furthermore, the 

transparency of the zebrafish embryo facilitates exceptional opportunities for 

time-lapse imaging of heart formation and tracking of cardiac cell fates. Finally, 

zebrafish are particularly well suited for conducting both genetic and chemical 

screens, which have the potential to identify novel regulators of heart 

development. Here, we review the studies that support the existence of a 

zebrafish SHF and demonstrate the utility of the zebrafish for opening new 

avenues in SHF research.   

 

Late-differentiating cardiomyocytes originate from the SHF in zebrafish 

Two types of assays have demonstrated that late-differentiating 

cardiomyocytes are recruited to the poles of the zebrafish heart tube. First, a 

developmental timing assay that relies on the different kinetics of GFP and 

DsRed fluorescence was used to visualize the dynamics of cardiomyocyte 

differentiation. Analysis of Tg(myl7:GFP); Tg(myl7:DsRed) embryos showed 

that newly-differentiated cardiomyocytes populate the cardiac poles at 48 

hours post-fertilization (hpf), whereas cardiomyocytes in the middle of the 

heart differentiate at an earlier stage (Fig. 31.1A; [5]). Second, 

photoconversion assays have consistently revealed late-differentiating 

cardiomyocytes in the outflow tract. UV exposure of Tg(myl7:kaede) or 

Tg(myl7:KikGR) embryos after the heart tube has formed, followed by imaging 
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at 48 hpf, showed addition of cardiomyocytes to the outflow tract after the time 

of photoconversion (Fig. 31.1B, [5, 6]). Together, these experiments revealed 

the existence of late-differentiating cardiomyocytes at the arterial pole of the 

zebrafish heart that seem to be analogous to SHF-derived cardiomyocytes in 

mammals.  

Fate mapping in zebrafish has shown that early SHF precursors seem 

to neighbor the FHF. Prior to gastrulation, arterial pole progenitors are found 

adjacent to ventricular progenitors at the embryonic margin (Fig. 31.1C; [7]). 

After gastrulation, arterial pole progenitors map to a medial cranial region next 

to the FHF in the anterior lateral plate mesoderm (ALPM) (Fig. 31.1C; [7]). 

Finally, DiI labeling has shown that the SHF resides adjacent to the heart tube 

in older embryos: pericardial cells just outside the outflow tract at 24 hpf move 

into the arterial pole at later stages [7]. The SHF has also been identified using 

Cre-mediated lineage tracing: this technique has shown that arterial pole 

progenitors express both gata4 and nkx2.5 during somitogenesis, confirming 

that SHF progenitors originate in the ALPM [8]. Furthermore, Cre-mediated 

lineage tracing has confirmed that cells from the pericardial mesenchyme 

adjacent to the heart tube migrate into the outflow tract [9]. Taken together, 

these analyses show that the late-differentiating cardiomyocytes at the 

zebrafish arterial pole meet the criteria that define the SHF. Outflow tract cells 

remain undifferentiated until after the linear heart tube has formed, are 

recruited to the arterial pole from outside the heart, and map to an area 
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adjacent to the FHF. These data, combined with conserved molecular 

mechanisms regulating mouse and zebrafish arterial pole development, 

suggest that the SHF is a conserved vertebrate feature. 

 

Mechanisms regulating outflow tract development in zebrafish 

Studies of the regulation of outflow tract formation have demonstrated 

conservation of the transcription factors utilized in zebrafish and mouse. 

Zebrafish embryos deficient in mef2cb lack late-differentiating cells that form 

the outflow tract [6], which is strikingly similar to the phenotype of Mef2c 

mutant mice that lack the SHF-derived outflow tract and right ventricle [10]. 

Zebrafish tbx1 mutants have several outflow tract defects, including reduced 

migration of cells into the heart [7] and reduced proliferation of cells at the 

arterial pole, resulting in a small outflow tract [11].  This phenotype is 

reminiscent of mouse Tbx1 mutants, which also display outflow tract 

abnormalities due to severely reduced proliferation in the SHF [12]. 

Signaling pathways also seem to have conserved roles in the mouse 

and zebrafish SHF. Hedgehog signaling is important for zebrafish SHF 

development: migration of cells into the heart is impaired in smoothened 

mutants, resulting in a small outflow tract [7]. Similarly, Hedgehog signaling is 

crucial for mammalian SHF survival and outflow tract septation [13]. In 

zebrafish, reduced Fgf signaling eliminates accretion of cardiomyocytes at the 

arterial pole [5] and blocks mef2cb expression in the SHF [6]. This requirement 
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for Fgf signaling mimics mouse Fgf8 mutants, which have a severely 

hypoplastic outflow tract and right ventricle [13]. These findings underscore the 

conserved mechanisms regulating outflow tract development and suggest that 

new discoveries in the zebrafish SHF are likely to be relevant to mammals. 

Importantly, novel insights into outflow tract development have emerged 

through studies in zebrafish. The role of Ltbp3, a secreted protein that 

regulates TGF-β ligand availability, has been of particular interest. ltbp3 is 

expressed in the zebrafish SHF, and Cre-mediated lineage tracing has shown 

that ltbp3-expressing cells give rise to outflow tract cardiomyocytes [9]. Ltbp3-

deficient embryos lack an outflow tract due to reduced SHF proliferation, a 

consequence of reduced TGF-β signaling [9]. This work not only illuminated 

Ltbp3 as a new SHF regulator but also uncovered a novel role for TGF-β 

signaling in SHF development. Additional studies have revealed that Nkx2.5 

promotes maintenance of ltbp3 expression [8]. This is exciting, as it elucidates 

a new pathway downstream of Nkx2.5: Nkx2.5 facilitates the activation of 

TGF-β signaling through regulation of ltbp3 and thereby drives SHF 

proliferation. Since Nkx2.5 is highly relevant to congenital heart disease, 

factors downstream of Nkx2.5 are excellent candidates for translational 

research. Thus, investigations in zebrafish can lead to the discovery of novel 

regulators of SHF development and provide new insight into connections 

between important factors. 
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Mechanisms regulating inflow tract development in zebrafish 

In mouse, the SHF has been shown to contribute to the venous pole in 

addition to the arterial pole [2]. The mammalian SHF is thought to be 

subdivided into the anterior SHF, which gives rise to the right ventricle and 

outflow tract, and the posterior SHF, which gives rise to the atria and the inflow 

tract [2]. The zebrafish heart has a distinct population of inflow tract cells that 

express the canonical SHF marker Isl1 [14]. In addition, developmental timing 

assays have shown that the zebrafish inflow tract contains a population of late-

differentiating cardiomyocytes (Fig. 31.1A; [5]). However, the degree of 

overlap between these two populations has not been examined, and the 

precise timing of when inflow tract cells are added to the heart is unclear. 

Furthermore, it is not known where zebrafish inflow tract cells originate in the 

early embryo and if inflow and outflow tract progenitors share a common 

lineage. Future experiments will be valuable to elucidate the zebrafish 

equivalent of the mammalian posterior SHF.  

Studies of inflow tract development in zebrafish have revolved around 

the role of Isl1. Zebrafish isl1 mutants lack late-differentiating cardiomyocytes 

at the venous pole [5]. This phenotype is similar to that of Isl1 null mouse 

embryos, which lack SHF-derived atrial cardiomyocytes [15]. Interestingly, 

studies in zebrafish have identified a novel requirement for the LIM domain 

protein Ajuba, which directly interacts with Isl1 [14]. Ajuba-deficient embryos 

have large hearts with an excess of Isl1-expressing cells and an expansion of 
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SHF markers in the ALPM. Conversely, Ajuba overexpression eliminates Isl1 

in the inflow tract [14]. Ajuba is one of the first factors that has been shown to 

limit SHF development, and the presence of Ajuba may determine whether Isl1 

activity promotes or limits cardiomyocyte formation. The identification of Ajuba 

as a negative regulator of inflow tract formation further illustrates the utility of 

zebrafish for the discovery of novel factors involved in SHF development. 

 

Future directions and clinical implications 

Altogether, the studies summarized here support the value of the zebrafish 

for the investigation of SHF development. It will be particularly exciting for 

future work in zebrafish to probe important open questions in this area.  For 

example, zebrafish studies may be valuable for elucidating the mechanisms 

that pattern the SHF into its anterior and posterior subdivisions. In addition, it 

will be interesting to use zebrafish to examine the factors that control 

differentiation of multipotent SHF cells into myocardial, endocardial, and 

smooth muscle lineages [9]. Zebrafish will also be valuable for exploring 

whether multipotent SHF cells are maintained after embryogenesis, perhaps to 

be deployed after injury. In the long term, use of the zebrafish for analysis of 

SHF development is likely to illuminate pathways that facilitate our 

understanding of the etiology of congenital heart disease. 
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Figure A.1 Late-differentiating cardiomyocytes originate from the zebrafish 
SHF. (A) A developmental timing assay reveals late-differentiating 
cardiomyocytes displaying GFP, but not DsRed [5]. (B) Green-to-red 
conversion of photoconvertible proteins expressed in differentiated 
cardiomyocytes at 24 hpf, followed by imaging at 48 hpf, reveals newly-added 
green cardiomyocytes in the outflow tract [6]. (C) Fate mapping in the late 
blastula shows that outflow tract progenitors (purple) are located close to the 
margin, adjacent to ventricular progenitors (red) and separate from atrial 
progenitors (yellow) [7]. In the early gastrula, outflow tract progenitors are 
located in a medial cranial portion of the ALPM [7].  
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