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Accurate spin-dependent electron liquid correlation energies for local spin density 
calculations: a critical analysis 1 
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Departme11t of Physics, U11iversity ofToro11to, Toro11to, 011t .. Canada M5S I A 7, 3 Departme11t of Physics , University of California, 
lrvi11e. CA . U.S.A. cmd IBM. Thomas J. Watson Research Ce11ter, Yorktow11 Heights, NY, U.S.A . 

AND 

L. W ILK AND M. NUSAIR 

Department of Physics. U11iversity of Toronto, Toronto , 0111., Ca11ada M5S /A7 

Received March 19, 1980 

We assess various approximate forms for the correlation energy per particle of the spin­
polarized homogeneous electron gas that have frequently been used in applications of the local 
spin density approximation to the exchange-correlation energy functional. By accurately recal­
culating the RPA correlation energy as a function of electron density and spin polarization we 
demonstrate the inadequacies of the usual approximation for interpolating between the para- and 
ferro-magnetic states and present an accurate new interpolation formula. A Pade approximant 
technique is used to accurately interpolate the recent Monte Carlo results (para and ferro) of 
Ceperley and Alder into the important range of densities for atoms. molecules. and metals. These 
results can be combined with the RPA spin-dependence so as to produce a correlation energy for a 
spin-polarized homogeneous electron gas with an estimated maximum error of I mRy and thus 
should reliably determine the magnitude of non-local corrections to the local spin density 
approximation in real systems. 

Nous evaluons differentes formes de l'energie de correlation par particule dans un gaz 
homogene d'electrons avec polarisation du spin qui ont ete utilisees dans des applications de 
('approximation densite locale de spin a la fonctionnelle de l'energie de correlation et d'echange. 
En recalculant de fayon precise l'energie de correlation RPA en fonction de la densite elec­
tronique et de la polarisation du spin nous montrons !es insuffisances de !'approximation usuelle 
pour !'interpolation entre les etats para- et ferromagnetiques et nous presentons une nouvelle 
formule precise d'interpolation-. Une technique d 'appoximants de Pade est utilisee pour faire une 
interpolation precise des resultats Monte Carlo recents (para- et-ferro-) de Ceperley et Alder dans 
l'intervalle important de densites pour les atomes, les molecules et les metaux. Ces resultats 
peuvent etre combines avec la dependance de spin RPA de fayon a donner une energie de 
correlation pour un gaz homogene d'electrons avec polarisation du spin dont l'erreur maximum 
estimee est de I mRy, determinant ainsi de fayon plus sure la grandeur des corrections non locales 
a !'approximation de densite locale de spin dans les systemes reels. 

Can. J. Phys .• 58, 1200 (1980) 

1. Introduction 
The importance of the correlation energy for many­

electron systems has long been appreciated and a great 
deal of effort has been directed towards its study. 
In particular, the homogeneous electron gas has re­
ceived much attention for nearly 50 years (see Pines 
(1) for a review of pre-1955 work) primarily as an 
idealized model of a metal. More recently the develop­
ment and success of the Hohenberg, Kohn, and Sham 
spin density functiona l (SDF) formalism (for recent 
reviews see Lang (2), Rajagopal (3), and Mackintosh 
and Andersen (4)) and especially the local spin 
density approximation (LSDA) to the exchange-

1Supported in part by the Natural Sciences and Engineering 
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2Visiting Professor UCI 1978-1979, IBM 1979 Summer 
Faculty Program. 

3Permanent address. 

[Traduit par le journal] 

correlation (XC) energy functional has given the 
correlation energy of the homogeneous electron gas 
added significance for the study of real many­
electron systems. Specifically, the correlation energy 
per particle of the homogeneous electron gas, 
i::0 (r., I;), where r5 and I; are the usual density and spin 
polarization parameters, respectively (see Sect. 2), is 
an essential ingredient of the LSDA and if known 
accurately would hopefully improve agreement 
between theory and experiment, and if not, enable 
one to assess unambiguously the importance of non­
local corrections to the LSDA in atoms, molecules, 
and metals. 

The past several years have seen a very large com­
putational effort (4, 5) based on various approximate 
forms for the fundamental quantity i::0 (r., I;). In our 
view, sufficient attention has not been given to the 
accuracy of this quantity used in calculations, 

0008-4204/80/081200-12$0 l. 00/0 
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es~cially with regard to its spin dependence. Since 
various authors use different forms for e (r Y) in 

1
. c s• '> 

comp 1cated self-consistent calculations it is difficult . ' to appreciate the meaning and significance of simi-
larities and differences in their results. Although there 
have been many approximate determinations of the 
correlation energy (i.e., beyond the so-called random 
phase approximation, hereinafter referred to as the 
RP~) for the paramagnetic state, Ec(r., 0), it was not 
until very recently (6, 7) that highly accurate results 
were available for both the para- and ferro-maanetic 
electron liquid states, albeit for a limited number of 
electron densities. 

In the present work we will compare and assess the 
adequacy of the various approximate forms for 
E~(ru s) that have been frequently used in applica­
tions of the LSDA. Since the spin dependence of 
these approximate forms is based on a suagestion of 
vo~ Barth and ~edin (8) (to be referred to as vBH) 
derived from their RPA calculation, we have carefully 
re-examined the spin dependence of the RPA in 
Sect. 3 and found the vBH form inaccurate for 
de~sities corresponding to r5 =::; 6. A new parametri­
zation of the RPA is introduced which is accurate to 
better than 13 for all r, and S· These new RPA 
results are combined with Ceperley and Alder's 
calcula~ions by ~eans of a two-point Pade approxi­
mant mterpolat1on formula to produce a new 
Ec(ru s) that is accurate for the important densities in 
atoms, molecules, and solids, and thus should 
provide a reliable means for judging the validity of 
the LSDA. 

2. General Comments and Criteria for Assessing 
Correlation Energy 

The essential ingredients for applying the SDF 
formalism to c~lcu lating the ground state properties 
of any system 1s the exchange-correlation functional 
E,c[n1, ni), where nt/1 is the density for spin up/down 
electrons, respectively. The LSDA assumes E [n ni] is xc t• 

[2.1] E,/·[np 11iJ = J di' n(l')E,c(np 111) 

where Exc(n1, 111) is the XC energy (per particle) of a 
homogeneous electron gas with spin densities n and 

+ F d
. . . . Ill 

n = 111 n1. or 1scussing Exe 1t 1s more convenient 
to.use the.sta~dard variables r5 ands for density and 
spin polarization, respectively (s = (111 - n1)/n). It is 
well known (e.g., refs. 8 and 9) that the exchange 
energy can be written in the form 

(2.2) Ex(ru s) = E/(r5 ) + (E/(r5 ) - E/(r.)Jf(s) 

= e/(r.) + 6e.(r., s) 

where P/F stand for para/ferro-magnetic states, 

respectively, with 

and 

(2.3] 

e/(rs) = - 3/2mxr, = E/(r.)/2113 

ex = (4/9rt) 1
'
3 

ji(
Y) = ((1 + C)4/3 + (l - C)4/3 - 2] 
.., 2(21' 3 - 1) 

Unfortunately there is no analogous simple closed 
form for the correlation energy Ec(r5 , s). Nonetheless 
Ec(r., s) can always be Written as 

(2.4] Ec(r., s) S E/(r5 ) + 6Ec(r5 , s) 

Wh~re E/(r,) = Ec(ru 0), thus defining 6eoCr., s) 
which should not be confused with the von Barth and 
Hedin suggestion for approximating it (see Sect. 3). 
We will begin with a review of recent calculations of 
the correlation energy and present some simple 
criteria for judging their accuracy. These results will 
provide a standard for our new estimates in Sect. 4. 
Our main emphasis will be on its spin dependence 
and the importance of calculating it in a consistent 
manner. The reason for this is that E P(r ) and 
E/(r.) are of the same sign (both being ne~ati~e) and 
le/I > IE/I for important densities. On the other 
ha~d ~E._(r5 , s) is positive while 6E,(r., s) is negative 
(this 1s JUSt the well-known fact that correlation 
~nhibits ferromagnetism (10)) and although l6EcCi'., s)I 
IS smaller than l6E,(r., s)I, it is of much more similar 
magnitude especially in the range '• ;;;::; 3, so that any 
error in 6£c(r5 , s) is magnified in 6E (r Y) XC S' '-, • 

There have been numerous studies of E/(r.) and 
recently Ceperly and Alder (7) have also studied 
E/(r.) = Ec(r,, 1) for several values of r5 , but the 
s-dependence over the whole range has been calcu­
lated only. in the.~PA by von Barth and Hedin (8) 
for metallic densities and more recently Dunaevskii 
(11) has attempted to use the method of Singwi et al. 
(12) to study 6ec(r5 , s). We do not believe that his 
results are correct since his 6Ec(r., 1) conflicts with 
the known high density behaviour (see below and 
Fig. 2). The factorization of the correlation energy in 
[2.4] has more significance than might appear at first 
glance. Firstly, it emphasizes the independence of the 
spin polarization part from the paramagnetic 
'background' and accentuates that · E/(r5 ) and 
AEc(rs, s) can be taken from different sources with the 
condition that 6Ec('s• 0) = 0, to obtain 'a more 
accurate Ee('~· s) than from, say, an RPA calculation. 
Secondly.. _(2.4] s~resses that when calculating 
6Ec(r., s) It IS essential to use the Same approximation 
for the E/(rs) and the Ec(r5 , s) parts, i.e., include the 
same Feynman graphs. In fact there are strong 
reasons for believing that 6£cCrs, s) converges more 
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TABLE 1. Recent calculations of -E/(r,) in mRy. Quantities in parentheses were obtained by 
interpolation from values at different r,'s. 'Av' denotes the average value of -E0 P(r,) not 

including RPA, H-67, KW, and MRT 

-E/(r,) (mRy) 

r, = 1 1·, = 2 r, = 3 r, = 4 r, = 5 r, = 6 

RPA 157.6 123.6 105.5 93.6 85.0 78.2 
H-67 (23) 92 
STLS (24) 125 97 
SSTL (12) 124 92 
KW (25) 76.3 70.6 
vs (21) 130 98 
LB (26) 125 91.9 
cw (27) (117) 91.3 
F (16) 118 88.4 
MRT (28) 137 103 
C-78 (6) 122 87.4 
Av 123 92.3 

rapidly than E/(r5 ). For example, the leading correc­
tion to the RPA correlation energy ERPA(r5 , t;) at high 
density is the second-order exchange eb <2 > = 48.36 
mRy (13, 14) and is the same order of magnitude as 
ERPA(r., t;) (see Table 1). However, it is simple to 
show that Eb C2J is independent oft; as well as 1'5 (15) so 
that the two leading terms of t.Ec(r., t;) are given 
exactly by the RP A in the high density limit. Recall 
that eb c2 J contains two bare coulomb interactions, 
thus graphs of this structure will become t;-dependent 
when screening is included. Freeman (16) has calcu­
lated the effect of replacing one bare coulomb line in 
the second-order exchange graph by a dynamically 
screened line for t; = 0 and finds a weak r5 depen­
dence (he denotes this contribution by t.Ec/). How­
ever, it should be pointed out that Freeman does not 
include all the graphs which give corrections of the 
order r. In r, and r, to Eb C2 J which must be grouped 
together ( 17) to obtain the correct coefficients of 
these terms. Generalizing DuBois (17) to allow for 
spin polarization, we will denote the combination of 
these terms as E1,(r., t;). In the high density limit 

[2.5] E1x<rs. 0) = eb(l) + r.(A1x In'· + Cix) 

+ O(rs2) 
The constants A£, and C 1 x have been evaluated by 
Carr and Maradudin (18) to be 13 and - 21 mRy, 
respectively. For graphs of this structure Misawa (19) 
has pointed out a scaling relation between t; = 0 and 
1, namely e 1 x(/'5, 1) = e 1 .(r./2413, 0). (This relation is 
consistent with eb C2 J being constant.) It should be 
contrasted with RPA scaling (10, 19), i.e., ERPA(r., 1) 
= teRPA(r,/2413

, O). The t;-dependenceofhigher order 
graphs has not been investigated; however, there is 
good evidence (Ceperley and Alder (7), see Sect. 4) 
that t.ec(r., 1) differs from t.eRPA(r., 1) by at most 

75 64 
80 70 63 57 
75 64 56 50 

60.3 52.3 46.0 40.7 
81 70 62 56 

74.2 62.5 54.4 
(76.5) 67.9 (61. O) (56. 5) 
73.3 63.6 56.7 51.5 

85 74 65 59 
72.2 62.4 55.0 (49. 8) 
76.0 65.8 58.3 53.5 

113 while e/(r.) differs from the RPA value by 25 
to 303 for metallic densities. 

Janak, Moruzzi, and Williams' (20) (hereinafter 
JMW) effort to improve on the RPA is in the spirit 
of [2.4]. They took E/(r.) from the calculation of 
Vashishta and Singwi (21); however, their procedure 
for estimating t.ec(r., t;) suffers in two aspects (which 
in fact do compensate for some values of r, and t;, 
see Sect. 5): (i) ecF (r5 ) was determined from e/(r.) by 
RPA scaling which clearly does not satisfy the above 
criterion for consistency and (ii) the von Barth and 
Hedin suggestion for expressing t.ec(r., t;) as 
[E/ (r.) - e/(r.)]/(t;) is inaccurate (see Sect. 3). 

Table 1 contains a summary of recent calculations 
ofe/(r.). Hubbard's classic 1957 work (22) has been 
omitted since it has been superceded by his 1967 
work (23). Also, Ceperley and Alder (7) (hereinafter 
to be referred to as CA) have improved Ceperley's (6) 
calculations for a few values of r 5 (2, 5, 10, 20, 50, 
and 100). Since only two values are in the range 
considered in Table 1 we delay discussion of their 
work until Sect. 4. It is very difficult to judge the 
accuracy of any one of these calculations, especially 
in the range 2 ~ r. ~ 6. In particular, even at as high 
a density as !'5 = 1 the maximum disagreement is 
50 mRy (i.e., -11 to +40% of the average) while 
at '• = 6 the extreme values differ from the average 
by approximately 203. It is not difficult to establish 
criteria for assessing the validity of these calculations, 
at least in the high density limit. Recall that the 
correlation energy can be written as a sum of Feyn­
man graphs, the dominant contribution being the 
RPA which contains the In r 5 singularity. Thus it is 
useful to write 
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expect that its maximum error is a few millirydbergs. 
Thus combining the average value of e:/(r5 ) given in 
Table 1 with accurate RPA calculations for t.e:c(r., () 
will result in an E:c(r., s) which has a maximum error 
of 10% for metallic densities and for the important 
transition metals where r. ~ 2 the error will be even 
less. 

Since there have been very few calculations of 
e:/(rs) it is even more important to have criteria for 
assessing t.e:c(r5 , 1). Using the fact that e:b <2 l is inde­
pendent of rs and s. the analogue of [2.8] is that 

(2.10] 01t.E:c(rs, 1) = ~E:c(r., 1) - ~E:RPA(rs, 1) 

must go to zero as r5 - 0 with a positive value having 
an infinite slope at rs = 0 (see (2.11]). By using the 
scaling relation for £ 1 .(r., s) given above to obtain 
the analogues of A 1 x and C1 x for s = 1 we note that 

(2.11] 02 t.E:c(r5, 1) = 01~£c(r5, 1) 

's - rs{t.Aix ln rs + ~Cix} 
FIG. J. A comparison of results for e. '"(r, ) - eRPAP(r, ) (see where 

Table J for notation). Equation (4.4] refers to our Pade fit to ( I ) 
Ceperley and Alder (7) as described in the text (see Table 5). ~A 1 x = 24 / 3 - I A 1 x 

where oe:c(r., s) is smaller than the other two terms 
for the range of r5 of interest and is a smooth function 
of r •. In the high density limit, according to [2.5], it is 

(2.7] OE:c(r5 , 0) = r5(A 1 x In rs + C1.) + Dr5 

+ O(r/) 

The constant D has not been evaluated (17, 18). Thus 
if one considers 

(2.8) 01E:c{I'., S) = E:c(l's, S) - E:RPA(rs, S) 

it should tend smoothly to e:b <2 l as rs - 0. A more 
refined criterion for e:0 P(r.) is provided by the 
quantity 

(2.9) 02 E:c(r5, 0) = 01e:c(t·5 , 0) - E:b <2l 

- r 5(A1 x In rs + C1x) 

which should approach zero linearly as r5 - 0. 
Either of these criteria immediately throws doubt on 
the validity of the Keiser and Wu (KW) (25) and 
Mandal, Rao, and Tripathy (MRT) (28) results 
(see Fig. 1). Also, a smooth extrapolation of the 
Chakravarty and Woo (CW) (27) results for 
rs = 0.565 and 1.13 does not appear to be approach­
ing the correct limit. Furthermore, a similar plot of 
criterion [2.9) suggests that the Vashishta and Singwi 
(21) calculations are inaccurate for r5 near 1. In an 
effort to present an unbiased view we have used all 
the results in Table 1 except RPA, KW, MRT, and 
H-67 to arrive at the average presented there. We 

and 

~Cix = (2L3 - I )cix - (!Ai.~ In 2)/24
1
3 

must tend to zero linearly with r5 • For the level of 
accuracy presently available for t.e:0 (r., 1) criterion 
[2.10) is most useful. Figure 2 contains plots of 
0 1t.e:0 (r., 1) for the calculations of Dunaevskii (11), 
the parametrized forms of Gunnarsson and Lundq­
vist (9) (hereinafter GL) and JMW used in LSDA 
calculations, the result from Freeman's (16) calcu­
lation using the scaling relation for £ l .(rs, s), 
Perdew's parametrization of Ceperley's old calcula­
tion (6), and our result obtained by interpolating 
CA's (see Sect. 4) most recent calculations. Clearly 
the results from Dunaevskii, GL, and JMW have the 
wrong behaviour for rs - 0. (Recall that 01t.s0 (r., 1) 
must be positive in the vicinity of r5 = 0.) The values 
derived from Freeman's and CA 's calculations agree 
with this rigorous result. For rs > 1 we favour our 
result (as derived from CA in Sect. 4) for two rea­
sons: li) Freeman's calculation is not really consis­
tent in retaining all graphs of a given order in r. 
(see above) and (ii) even if the errors estimated by 
CA are off by a factor of 2 or 3, o 1~e:c(rs, 1) would 
remain positive and not change significantly. Thus we 
must conclude that the GL and JMW values of 
t.e:c(r5 , 1) are in error by approximately 10 mRy in the 
metallic density range. It should be emphasized that 
this will not necessarily give an error of 10 mRy per 
spin since s is usually less than one. 
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Fie. 2. Results for l'itc(r, , 1) - AERPA(r,, 1) from various 
approximations for t/(r,) and Ec"(r,). GL, Gunnarsson and 
Lundqvist (9); JMW, Janak, Mornzzi, and Williams (20); 
Dunaevskii (JI); P, Perdew (private communication), CA, 
numerical values from Cepedey and Alder (7); F, as derived 
from Freeman (16) by use of scaling; and eq. [4.4) refers to 
values obtained from our Pade fits to Ceperley and Alder (7). 

It was pointed out by Yosko and Perdew (29) that 
the spin susceptibility of paramagnets in the LSDA is 
determined by the sum of the exchange and correla­
tion contributions to the spin stiffness <XxcV's) = 
(o2e,c(r5 , s)/0(,2

) 0 (the subscript denotes s = 0). 
However, it has not always been appreciated that for 
metallic ferromagnets Isl ::;; 0.15 and for s's in this 
range Ll?,c(r5 , s) can be accurately approximated by 
the first non-vanishing term in the Taylor series: 

[2.12] Ae.c{r5 , t,) ~ -!cx.0(r.)s2 

To illustrate the validity of this approximation for 
ile.(r., t,) we have tabulated f(t,) and tf" (O)t,2 in 
Table 2. Even for s = 0.2 the error is less than 0.4%. 
Noting that the XC contribution to the spin stiffness 
is related to the non-interacting and interacting spin 
susceptibilities, Xo(r.) and x 11(r.), respectively, of a 
homogeneous electron gas (10, 29) by 

3cxrr {Xo(r5 ) } [2.13) cx,c(r.) = 2~ -(.) - I 
rs Xh 1 s 

a calculation ofxh(rs) determines Aex0 (r., t,) for s's of 
interest in solids. 

There have been many calculations of the correla­
tion contribution to Xh(r.). A complete list of refer­
ences is given in Kushida et al. (ref. 30, see Fig. 6). 
Because of the agreement between a number of 
methods (31-33) which appeared to be different, 
these results took on a degree of credibility. How­
ever, Shastry (34) has recently shown that they are all 
equivalent to an RPA calculation ofe0 (r .. t,) and then 

TABLE 2. Comparison of /(0 and -}/"(0)~2 where 
/(0 is defined in (2.3) 

~ /(~) tf"(0)~2 

0.1 0.008550 0.008550 
0 .2 0.034327 0.034198 
0.4 0.138935 0.136794 
0 .8 0.589705 0.547175 
1.0 J.000 0.855 

using cx0 to obtain X11(r5). Keiser and Wu (25) have 
also calculated x11(r5) by their method and although 
when used in LSDA calculations for the spin 
susceptibility of Li, Na, and K (35) it gave excellent 
agreement with experiment we now have reason to 
doubt the validity of their results. First, as pointed 
out above their calculation of e/(r5) appears to be 
incorrect. Also, one can apply a criterion analogous 
to {2.8], namely 

(2.14] o1cx0 (r5 ) = cxc(r5 ) - CXRPA(r5 ) 

should tend smoothly to zero as r5 -> 0. The reason 
for this is that eb <2> is independent of s so that the 
high density corrections to cxc(r5 ) are O(r5 In r., r.). 
Their results do not satisfy this criterion (see Table 6). 
For these reasons we cannot accept their values in the 
range 3 ;::; r5 ;::; 6. In our view there is no calculation 
presently available which gives reliable corrections to 
the RPA. 

3. The Spin-dependence of the Random Phase 
Approximation Correlation Energy 

The analysis of Lle0 (r., s) in Sect. 2 is limited to 
Isl ::;; 0.2 and t, near l. To apply the SDF formalism 
to general systems the whole range oft, is needed. 
Based on an analysis of their RPA calculation of 
sc(r .. t,), von Barth and Hedin (8) suggested that the 
form 

[3.1] LleRPA(rs> s) = LleRPA(rs, l}f(t,) 

gives an adequate representation of the s-dependence, 
wheref(s) is defined in (2.3). This form, with different 
choices fore/(r5) and e/ (r.) (9, 20) has been adopted 
by most researchers doing SDF calculations. In fact 
it is a rather poor representation in that the error it 
introduces for the important density range r. ::;; 6 
and Kl ;::; 0.2 is likely larger than the error in the 
RPA itself to As0(r5 , t,). This is illustrated in Table 3 
where the vBH values of s/(r.) and As0 (r., t,) are 
reproduced and the latter are compared with [3.1]. 
For example, if we consider r. = 0.5 and 1.0, densi­
ties which are particularly important for transition 
metals and where the RPA should be most accurate, 
the t, = 0.2 values of Aec(r., t,) given by [3.1] are in 
error by 203. 
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TABLE 3. The RPA correlation energy in mRy (present) compared with the results obtained by von Barth and Hedin 
(vBH (8)) and interpolation formulas [3.1] and (3.2] 

6.ERPA(r., ~) 

'" ERPAP(r,) ~ = 0.2 ~ = 0.4 ~ = 0.6 ~ = 0.8 ~ = 1.0 

0.5 Present -194.628 1.974 8.057 19.087 36.509 70.977 
Eq. [3.1] 2.436 9.861 22.678 41. 856 70.977 
Eq. [3.2] 1.968 8.009 18.874 37.093 70.977 

1.0 vBH -157.30 1. 5 6.2 14.8 28.3 53.3 
Eq. [3.1] 1.8 7.4 17.0 31.4 53.3 
Present - 157.599 1.553 6.324 14.958 28 .410 53.849 
Eq. [3.1] 1.848 7.481 17.205 31.755 53.849 
Eq. [3.2] 1.548 6.296 14.769 28 . 705 53.849 

2.0 vBH - 123.40 1.2 4.7 11.0 20.9 38.4 
Eq. [3.1] 1.3 5.3 12.3 22.6 38.4 
Present -123.621 l.163 4. 725 I 1.152 21.000 38.797 
Eq. (3.1] 1.332 5.390 12.396 22.879 38.797 
Eq. [3.2] 1.162 4.719 11.016 21. 152 38.797 

3.0 vBH -105. 30 0.9 3.8 9.0 17.0 30.7 
Eq. [3.1] 1.1 4.3 9.8 18.1 30.7 
Present -105.532 0.956 3.878 9.140 17 .118 31.170 
Eq. [3.J] 1.070 4 .331 9.959 18 .381 31.169 
Eq. [3.2] 0.956 3.881 9.036 17.225 31.169 

4.0 vBH -93.50 0.9 3.4 7.8 14.6 26.1 
Eq. [3.l] 0.9 3.6 8.3 15.4 26.l 
Present -93.621 0.821 3.327 7.831 14 .611 26.345 
Eq. [3.1] 0.904 3.660 8 .418 15.536 26.346 
Eq. [3.2] 0.822 3.334 7.747 14.696 26.346 

5.0 vBH -84.80 0.7 2.9 6.8 12.8 22.8 
Eq. [3.1] 0.8 3.2 7.3 13.4 22.8 
Present - 84.946 0.724 2.930 6.891 12.819 22.952 
Eq. [3.1) 0.788 3.189 7.333 13.535 22.952 
Eq. [3.2] 0.725 2.939 6.820 12.892 22.952 

6.0 vBH -78.10 0.7 2.7 6.1 11.4 20.2 
Eq.[3.1] 0.7 2.8 6.5 11. 9 20.2 
Present -78.239 0.650 2.627 6.173 11.460 20.408 
Eq. (3.1) 0.701 2.835 6.520 12.034 20.408 
Eq. (3.2) 0.650 2.637 6.112 JI .524 20.408 

7.5 Present -70.505 0.565 2.283 5.361 9.927 17 .570 
Eq. [3.J) 0.603 2.441 5 .614 10.361 17 .570 
Eq. [3.2) 0.566 2.294 5.311 9.982 17.570 

10.0 Present -61.317 0.467 .1. 885 4.422 8.164 14.348 
Eq. [3.1] 0.493 1. 993 4.584 8.461 14.348 
Eq. [3.2) 0.468 I. 895 4.383 8.209 14.348 

15.0 Present -49.859 0.350 1.411 3.305 6.080 10.598 
Eq. [3.1] 0.364 1.472 3.386 6.250 10.598 
Eq. [3.2] 0.350 1 .419 3.277 6.113 10.598 

20.0 Present - 42 . 762 0.281 I. 133 2.652 4.870 8.449 
Eq. [3.1] 0.290 1.174 2.699 4.982 8.449 
Eq. (3.2] 0.281 1. 140 2.630 4.895 8.449 

30.0 Present - 34.136 0.203 0.818 J .913 3.505 6.048 
Eq. [3.1] 0.208 0.840 1.933 3.567 6.049 
Eq. [3.2] 0.203 0.823 l.897 3.522 6.048 

50.0 Present -25.360 0.131 0.529 1.237 2.263 3.887 
Eq. [3.1) 0. 133 0.540 1.242 2.292 3.887 
Eq. (3.2] 0.131 0.532 1.226 2.272 3.887 

75.0 Present -19.845 0.092 0.371 0.853 1.579 2.700 
Eq. [3.1] 0.093 0.375 0 .863 1. 592 2.700 
Eq. [3.2] 0.092 0.371 0.854 J .581 2.700 

100.0 Present -16.602 0.070 0.285 0.656 l .214 2.072 
Eq. [3.1] 0.071 0.288 0.662 1.222 2.072 
Eq. [3.2] 0.070 0.285 0.657 l .215 2.072 
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TABLE 4. The RPA spin stiffness constantaRPA(r,) 
(mRy) defined by [3.2) and the fitting parameter 

~RPA(r,) of (3.3) 

r, aRPA(r,) ~RPA(r,) 

0.5 97.98 0.2387 
I 77.10 0.1943 
2 57.86 0.1466 
3 47.62 0.1192 
4 40.92 0 .1008 
5 36.09 0.0875 
6 32.39 0.0774 
7.5 28.18 0.0661 

10 23.29 0.0533 
15 17.45 0.0386 

To clarify the situation for the whole range of 
densities of interest in atoms, molecules, surfaces, etc., 
We have recalculated ERPA(r5 , s) for 1"5 = 0.5 to 100 
and have presented the values in Table 3. Greater 
care has been taken in performing the necessary two­
dimensional integrals so that the results are accurate 
to the number of digits quoted. It is clear from 
Table 3 that the raw results of vBH are generally 
accurate to the number of digits they quoted and the 
inadequacy of [3.1] for s ;:::;; 0.4 persists to at least 
r5 = 10. To summarize our results and put them in a 
form that is useful for SDF calculations we have 
introduced a new formula for interpolating over t;. 
To ensure that the formula is accurate for s ;:::;; 0.2 we 
have made a direct calculation of the RP A contribu­
tion to the spin stiffness, o:RPA(r5), using the RPA 
result for ec<r5 , s) (see Shastry (34)) and written 

(3.2) ~ERPA(rs, S) = O:RPA(rs)[/(.s)/f"(O)] 

x [1 + ~RPA(rs)s4 ] 

where 

[3 .3] ~ (r) = f"(O)~SRPA(r5, l) _ 1 R PA s o:RPA(rs) 

which has been chosen so that ~sRPA(r5, 1) is also 
given exactly. The value of ~RPA(r5 ) is a measure of 
the inadequacy of [3.1]. Equation [3.2] is slightly more 
complicated than the v BH form; however, it fits the 
data in Table 3 to better than 13. The values of 
o:RPA(r.) and ~RPA(r5) are given in Table 4. 

4. New Estimates of Correlation Energies by Pade 
Approximant Interpolation 

New values of e/(r.) and EcF(rs) have recently 
become available from the work of Ceperley and 
Alder (7). These results are based on an 'exact' 
calculation of the total energy for a finite number of 
electrons in liquid para- and ferro-magnetic states. 
The correlation energy is obtained by subtracting out 

the corresponding kinetic and exchange energies. 
Their new results are significantly more accurate than 
Ceperley's (6) previous combined variational-Monte 
Carlo calculation but for a more limited range of r5• 

Because e/(r.) and e/(r5 ) have very small error 
estimates, especially for r5 ~ 10 (see Table 5), and 
have been evaluated by the same procedure we expect 
that ~Ec(r5 , 1) is likely quite accurate. However, the 
values of r5 available are inadequate for use in LSDA 
calculations. To extend the r5 range we have de­
veloped an interpolation formula which yields the 
leading two terms for sc(r5 ) when r5 ~ 0 and can be 
fit to the CA values. The interpolation formula, 
based on a two-point Pade approximant, is similar to 
the work of Isihara and Montroll (36) except that we 
are concerned with Ec(r5 ) only, while they considered 
the total energy. 

Recall from Sect. 2 that for r5 « 1, 

[4.1] Eci(r5 ) =A' In 1"5 + Ci 

+ rs[Aii In rs + C1i] + ... 
where i = P/F, while for r5 » 1, EciCrs) can be 
written (37) as 

[4.2] 

We shall be concerned with reproducing the terms 
containing Ai and Ci of [4.1] exactly and a series of 
the form in [4.2] for r5 » 1. (The superscript i will 
now be dropped except when necessary.) A function 
with these characteristics can be constructed by 
making a [l, 3] two-point Pade approximant for 
r. decfdrs as follows: 

[4.3] 

where x = r/ 12• In a true application of the Pade 
method (36) the quantities b1 , b2 , and b3 would be 
determined by g0 , g 1, and g2 • However, these latter 
quantities are not known for an electron liquid. 
Moreover, although such a procedure would give the 
A In rs term there is no guarantee that the constant C 
in [4.1] would be reproduced. Since we are primarily 
interested in the r5 < 6 range we prefer to reproduce 
C as well as A In r5 so that criterion [2.8] is satisfied. 
This is accomplished by regarding the quantities b 1, 

b2 , and b3 as parameters and making a least-squares 
fit to the CA data (see below) and the constant C. 
Since the denominator in [4.3] is a cubic it must have 
at least one real root (x0) which we will insist is 
negative so that decf dr5 is finite for all rs > 0, and we 
will assume that the other roots are complex (this is 
consistent with the best estimates (38) of the g's in 
[4.2]). Equation [4.3] can be integrated with the 
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TABLE 5. Ceperley and Alder's (7) correlation energies (~R.Y) arc given in the SCC?~d and third col~mns (the 
quantity in parentheses is their estimated error in the last s1gn1ficant figure due to sta~1st1cal and systematic err?rs). 
The third and fourth columns were obtained by fitting their r, = 10 to 100 results using formula (4.4) as described 
in the text. The last two columns compare the present results with the RPA. Ii= 6ec(r., 1) - AE1tPA(r., I). The 
corresponding values of x0 , b, and c for P and Fare - 0.10498, 3.72744, 12.9352, and - 0.32500, 7.06042, 18.0578, 

respectively 

r, -e/[CA] -e/[CA) -e/ 

0.5 154.13 
1 120.04 
2 90.2(4) 48 .0(6) 89.57 
3 73.77 
4 63.57 
5 56. 3(1) 31. 2(2) 56.27 
6 50.71 
7.5 44.40 

10 37 .22(5) 21.0(1) 37.09 
15 28.30 
20 23 .00(3) 13 .55(3) 23.10 
50 11.40(1) 7 .09(2) 11.41 

JOO 6.379(5) 4 .146(5) 6.37 

condition that E0 (rs) --. 0 as r, --. oo. The result is 
most usefully written as 

{ 
x 2 2b _ 1 Q 

(4.4] E.(r5) = A In X(x) + Q tan 2x + b 

_ bx0 [ in (x - x0 )
2 

X(.x0) X(x) 

+ 2(b + 2x0)t - 1 Q ]} 
Q an 2x + b 

where x0 , b, c replace the parameters b., b2 , b3 , with 
X(x) = x2 + bx + c, Q = (4c - b2

)
112

. Expression 
[4.4) satisfies criterion (2.8) by construction. 

To test the adequacy of formula (4.4] to inter­
polate over the important range of '• based on the 
values at r5 = 10, 20, 50, and 100 we used it on 
ERrA(rs, s) given in Table3 with the appropriate values 
of A; and CRPA;(Ar = 2AF = 0.0621814, CRrAr == 
-0.1416455, CRrAF = -0.0995567). The best fitting 
parameters x 0 , b, c were found to be -0.409286, 
13.0720, and 42.7198 for the paramagnetic case, and 
-0.743294, 20.1231, and 101.578 for the ferro­
magnetic case, respectively. For rs s 15 the values 
given by formula [4.4) differed from the RPA values 
by less than 1.53. We have deliberately omitted from 
the fitting procedure the other values of r5 available 
(2 and 5) for two reasons: (i) the CA results are more 
accurate for low densities, especially for the ferro­
magnetic state and (ii) the r5 = 2 and S values can be 
used as an independent test of the adequacy of the 
method for the important range of densities in metals 
and atoms. The parameters obtained from fitting the 
CA values are given in Table 5 with the resulting 

6ec(r., 1) 
-e/ 6e:c(r., l) I) A&RPA(r, , l) 

80.24 73.89 2.92 1.04 
63.06 56.98 3.14 1.06 
47.71 41.85 3.05 1.08 
39.74 34.02 2.85 1.09 
34.58 28.99 2.64 1.10 
30.87 25.40 2.45 1. 11 
28.03 22.68 2.27 I. I I 
24.79 19 .61 2.04 1.12 
21.00 16.09 I. 74 1.12 
16.38 11.92 1. 33 1.13 
13.59 9.51 1.06 1.12 
7. JO 4.31 0.42 I. 11 
4.13 2.24 0.J7 1.08 

values of E/(r.) and E/(r,) for the important r5 

values. 
From Table 5 we see that formula [4.4] is not only 

capable of reproducing the CA input values at 
rs = 10, 20, 50, and 100 but also 'predicts' their 
results for r 8 = 2 and 5 to within 0.3 mRy. A com­
parison of E/(Av) from Table 1 with the corre­
sponding result in Table 5 derived from the fitting 
procedure shows that they agree to within 2 mRy. 
We note that this is not due to the fitting procedure 
since it also occurs with the CA results for r. = 2 
and 5. This gives us confidence that we are able to 
obtain E/(r.) and 6Ee{r., 1) to within ""i mRy by use 
of [4.4] with the parameters listed in Table S. It is 
important to note that the maximum difference 
between 6E0(r5 , 1) and 6ERrA(r., 1) is 13%, occurring 
at rs = 15. For metallic densities the difference is 
smaller than 113. 

As pointed out in Sect. 3, knowledge of 6E0 (r5 , I) is 
inadequate to give accurate values of 6E0 (r., s) for the 
intermediate range of S· According to [3.3] and [3.4], 
the minimum additional information necessary is 
et0 (r5). Unfortunately, values of et0 (r5 ) at the level of 
accuracy for e/(r.) and e/(r,) recently calculated by 
CA are unavailable. Until more accurate calculations 
Of 6E0 (r., s) for 0 < S < 1 become available there are 
a number of possibilities for incorporating our new 
more accurate value of 6e0(r8 , 1) into an approxi­
mation for 6E0 (r5 , s), always keeping in mind that the 
COrrection tO 6eRPA(1'5 , S) :5 133. 

The crudest approximation would be to follow the 
suggestion of vBH given in [3.1) and write 

[4.5] 6E0 (r.,s)1=6Ec{r., 1)/(s) 
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TABLE 6. Values of the spin stiffness in mRy: X refers to the exchange contribution; the others correspond to various 
authors', as referenced, estimates of the correlation contribution; 'Fit' refers to the Pade fit as described at the end 

of Sect. 4 

Spin stiffness (mRy) 

r, = 0.5 r, = l r, = 2 

x -814.5 -407.3 -203.6 
RPA 98.0 77.1 57.9 
Rice (39) 92.3 74.3 
KW {25) 127 .3 63.J 
vBH (8) 122.7 94.7 68.2 
GL (9) 105.1 78.0 53.7 
JMW (20) 97.6 72~9 50. l 
p• 121 . J 93.3 68.9 
Eq. [4.6] 103 .0 82.5 63. l 
Eq. [4.7] 102.0 81.6 62.4 
Fit 100.1 79.4 60. l 

•J. P. Perdew, private communication (1979). 

where Asc(r., 1) is our new value. However, as can be 
seen by comparing Tables 3 and 5 the corrections to 
AsRPA (rs, 1) for rs ::; 2 are smaller than the errors 
introduced by this formula. Unless there are some 
very fortuitous cancellations of errors (which we do 
not expect) we cannot recommend using this approxi­
mation. 

A better choice than [4.5] is to approximate 
AsJr., ~) by 

[4.6] Asc<r., t;) 11 = AsRPA(r., t;) + [As0 (r., 1) 

- AsRPA(r., l)]f(t;) 

which becomes exact for t; --> 1. Since the correction 
to AsRPA (rs, 1) ::; 13% and the exact t;-dependence of 
this correction is unknown but is likely to be similar 
to f(t;), this form is unlikely to produce any large 
errors for small t;, i.e., [4.6] should be within a few 
percent of the exact As0 (rs, t;). 

If one assumes that the t;-dependence of As0(r5 , t;) is 
the same as AsRPA(r., t;) for fixed r., then it is natural 
to write 

[4.7] 

We have no a priori criterion for choosing between 
the forms [4.6) and [4.7]. Direct calculation shows 
that they differ by at most 0.2 mRy which is smaller 
than the accuracy of the fitting procedure for 
Asc(r., 1). 

The obvious criticism that could be made of the 
forms (4.6] and [4. 7] is that the .ix0 (r,) derived from 
them do not have the correct high density behaviour, 
i.e., they violate criterion [2.14). This difficulty can be 
overcome in a number of ways. The simplest method 
is to use the form (3.2] with PRPA(r,) replaced by 

r, = 3 r, = 4 r, = 5 r, = 6 

-135.8 -101.8 -81.5 -67 .9 
47.6 40.9 36.l 32.4 
59. l 51.8 
53.4 48. l 44.4 40.9 
53.7 44.2 37.3 32.0 
41.5 33.8 28.5 24.6 
38.0 30.3 24.8 20.6 
56.0 47.5 41.5 37 .0 
52.5 45.4 40.3 36.3 
52.0 45.0 39.9 36.0 
49.8 43.0 38.0 34.2 

This choice, referred to as Asc(rs, t;) 1v, will not differ 
from the RPA for small t;, but will approach the new 
value as t; --> 1. Using P1 (rs) in (3.2) produces a 
As0 (rs, t;) 1v which differs from the 'II' and 'III' by at 
most 1 mRy for intermediate t;'s. 

As emphasized in Sect. 2, for metals lt;I ;$ 0.15 so 
that only a.0 (rs) is needed . Most attempts (see 
Kushida et al. (30)) to improve on the RPA give an 
ix0 (r5) which is larger than a.RPA(r,). The correspond­
ing ci:;s for a number of works are given in Table 6. 
The work of Rice (39) is often quoted. However, it is 
based on Hubbard's 1957 work (22) which has been 
superceded by his 1967 method (23) and thus cannot 
be considered reliable. We have .also presented the 
ci:0 (r,) corresponding to the approximations [4.6] and 
[4.7]. It should be noted that they follow the trend of 
being larger than ci:RPA(r5). 

With a view to the future we wish to point out that 
the Pade interpolation procedure developed above 
for s0 (r,) can also be used for a.0 (rs). This can be 
done because ix0 (r,) has . the same r, dependence as 
s

0
(r,). Brueckner and Sawada (15) (as corrected by 

Shastry (34)) have shown that for r, « 1 

(4.9] ix0(r.) = Aa In 1'5 + Ca 

where Aa = -1/3rt2 Ry and 

(4 101 
C _ In (16rt/ix) - 3 + (In R)Av R 

. a - 3rt2 Y 

Brueckner and Sawada evaluated (In R)Av to be 
0.534. We have recalculated this integral and found 
it to be 0.531504. Due to cancellation in [4.10) this 
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TABLE 7. Values of - €cP(r, ) (see Table 6 for notation). X denotes values of -€,•(r, ) (eq. (2.2]) 

r, = 0.5 r, = I 

x 1832.7 916.3 
RPA 194.6 157.6 
Wigner (1)• 106.0 100.0 
GL (9) 190.3 148.0 
JMW (20) 154.8 125. l 
pb 150.8 117.6 
Present 154. l 120.0 

•E. P. Wigner, as corrected by Pines (ref. I, p. 375). 
•J. P. Perdew, private communication (1979). 

r, = 2 

458.2 
123 .6 
89.8 

109.0 
96.7 
88.4 
89.6 

difference produces a significant change in Ca. 
(=70.949 mRy). We have tested formula (4.4] on 
<XRrA(r5 ) with A and C replaced by Aa and Ca., respec­
tively, using rs = 10, 20, 50, and 100 as fitting points. 
With the fitting parameters x 0 = -0.228344, b = 
1.06835, and c = 11.4813 the maximum error for 
r5 ~ 100 is 0.2% ! Thus, if accurate values of cxc(r5 ) 

can be obtained for low densities (the method of 
Ceperley and Alder appears to have this potential) it 
should be possible to interpolate them accurately 
into the metallic range by this procedure. 

It was noted in Sect. 3 that for r5 ~ 10, M:RPA(r5 , 1;) 
~ 6ERrA(r5, 1)/(1;) (maximum error ~ 5%). Thus, it is 
not unreasonable to expect that this behaviour is 
approximately universal and (4.7] is more accurate in 
this range. With this assumption we have used the 
r5 = 10, 20, 50, and 100 values forcxcCr.) 111 (i.e., from 
(4.7]) as fitting values for the Pade formula. The re­
sults are labelled as ' fit' in Table 6 and correspond to 
the fitting parameters x0 = - 0.00475840, b = 
1.13107, and c = 13.0045. We found that to within a 
few percent, the values ofoc(r5) generated for metallic 
densities are insensitive to 5-10% changes in the input 
values and are less than cxc(r.)!11. Thus, we expect 
that cxc 'fit' is very near the true value and that 
<XRPA(rs) < <Xc(r5 ) < <Xc(r5)11i for r5 ~ 6. Thiscxc"fitcan 
be used to obtain yet another ~sc(r5, l;) of the form 
[3.2] by using it in place ofcxRPA (r5) in [3.2] and [4.8]. 
By construction this ~Ec(rs, s)v will satisfy the criteria 
[2.10] and [2.14]. Its maximum deviation from the 
forms "II" , "III", and " IV" is 0.8 mRy and 

~s.,(r., l;) II > M;c(rs, s) III > M;.,( rs, s)v 

> ~Ec(rs, S)1v 

Since 6Ec{r5 , s)v is easiest to implement in LSDA 
calculations we recommend its use. 

5. Discussion and Conclusions 

Most applications of the SDF formalism to the 

-€c •(r, ) 

r, = 3 r, = 4 r, = 5 ,., = 6 r, = IO 

305.4 229 .1 183.3 152. 7 91.6 
105.5 93.6 85.0 78.2 61.3 
81. 5 74.6 68.8 63.8 49.4 
88.3 74.9 65.4 58. l 40.6 
81.1 70.7 63.0 57.0 41.9 
72.8 62.7 55 .4 49.8 36.3 
73.8 63.6 56.3 50.7 37.1 

ground state properties of atoms, molecules, and 
solids have written ec(r5 , l;) in the form (2.4] with the 
vBH suggestion [3.1] for 6ec(r5 , 1;). However, there 
have been a number of choices for the e/(r5 ) and 
ecF(r.) components (recall that ~e.,{r5 , 1) = ecF(r5) -

ec P(r.). The most frequently used are those of vBH, 
GL, and JMW (refer to Tables 6 and 7 for notation). 
To assess the significance of these calculations (for 
recent reviews to the literature see Moruzzi et al. (6), 
Rajagopal (3), and Mackintosh and Andersen (4)) 
we will compare the corresponding values of e/(r5 ), 

cxc(rs), and 6e.,(r., 1) with the RPA, Perdew's 
parametrization, and the present results. To appreci­
ate the relative importance of correlation and ex­
change we also include the latter in Tables 6 and 7. 

For numerical convenience vBH, GL, and JMW 
parametrized ecCrs) using the form introduced by 
Hedin and Lundqvist (41): 

[5.l] e0 ;(r5) = -C;{ (I + xi)3 In ( 1 + ;J 
X· 2 }} + -l - x. - - Ry 2 I 3 

where i = P/F, xi = r5/r;, and the parameters ci and 
ri were chosen to fit some estimates of e/(r5 ) and 
e/(r5 ). This parametrization introduces a further 
approximation. However, since it is what has been 
used in the applications it is the appropriate quantity 
to compare. 

Table 7 makes explicit the point made earlier, 
namely le/(r5) I > le/(r5)I, both being of the same 
sign. Note also that the differences in the various 
e/(r5)'s relative to e/(r5) are not large. However, it is 
well known that e/(r5) makes an important con­
tribution to the cohesive energy, bulk modulus, 
surface energy, work function, etc. For example, 
Perdew (40) has shown that using his parametriza­
tion of Ceperley's (6) data produces a significant 
change in the surface energy and work function of 
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the jellium model from that obtained using Wigner's 
classic result (as corrected by Pines (ref. 1, p. 375)). 
We note that our new result is within 1 mRy of 
Perdew's for 1'5 ~ 2. 

Because of the sign difference in o:x(r5) and o:c{r5 ) 

Table 6 must be examined carefully. For r5 > 3 
o:.c(r5 ) and o:x(r5 ) are of the same order of magnitude, 
so that errors in o:c(r,) produce large percentage 
errors in o:.c(r.). It is interesting to note that even 
though vBH was derived from an RPA calculation 
the corresponding o:.c(r,) is considerably different, 
being larger for small r, and smaller for larger,. This 
is due to a combination of the errors produced by the 
parametrization [5.1] of Eci(r5 ) and the form [3.1]. 
Thus, metallic magnetic properties obtained from 
vBH cannqt be called true RPA. The values of 
E/(r,) and E/(r,) calculated by GL were obtained by 
a plasmon pole approximation to the RPA. Their 
results took on more significance because the E/(r.) 
produced is in closer agreement than the RPA with 
calculations of higher quality (see Tables 1 and 7) 
especially for r, > 4. However, we see from Table 6 
that the o:c(r5 ) is particularly poor for r, > 2. 
Although the JMW o:c(rs) is even worse in this region 
it is very similar to crRPA(r5 ) for r5 < 1. This may be 
the reason for the similarity between their results and 
those of Callaway and Wang (42) for Fe and Ni. The 
low value of JMW's o:c{r5 ) explains their larger value 
of 'I' for the alkali metals obtained by Wilk et al. 
(35). Although Perdew's parametrization produces a 
L\Ec(r., 1) that is very similar to ours (see Fig. 2), the 
resulting o:c(r,) is much larger than ours for r, < 2. 
This is due to his use of [3.1] to describe the s­
dependence. 

We should note that the values of o:cCr,) obtained 
by Keiser and Wu are considerably larger than our 
best estimates. Thus the good agreement between the 
experimental spin susceptibility and the LSDA 
calculations by Wilk et al. using the Keiser and Wu 
o:.c(r,) must now be reconsidered. However, all of our 
new estimates ofoc(r,) are larger than the RPA in the 
direction of most efforts to improve upon the RPA 
and needed to improve the RPA-LSDA calculations 
of the spin susceptibility. 

We conclude by noting that our results for e/(r5), 

e/(r5), and o:c-fit using the Pade interpolation formu­
las and form [3.2] to generate L\ec{r., s)v should be 
sufficiently accurate for all r5 and s so as to t.ruly test 
the ability of the LSDA for exchange and correlation 
to describe the ground state properties of many 
electron systems. This will make it possible to judge 
the importance of non-local corrections to the 
exchange-correlation energy functional. 
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