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ABSTRACT

Underactuated mechanical system (UMS) is a special class of mechanical
systems that play an important role in a wide variety of engineering applications.
UMSs typically show a great difficulty in analysis and control design because of
complex nonlinearity and loss of capability to configure arbitrary motions in some
directions. Flatness-based control and active disturbance rejection control (ADRC)
approach has been an active research topic about dealing with control problems of
UMSs. Flatness, as a useful property of a class of dynamical systems, called flat
systems, guarantees that all the states and inputs of them can be parameterized by
a set of differentially independent coordinates, called flat output. The trajectory
planning and tracking control of flat systems can be greatly simplified by prescrib-
ing the desired references in ‘flat space’ without any other constraints except for
necessary initial and final conditions. Despite its merits in control design, flatness
is not a universal property of nonlinear dynamical systems and normally is not ef-
fortless to be characterized. Additionally, most UMSs are not inherently flat, i.e.,
not feedback linearizable, either statically or dynamically. The emerging framework
that combines flatness of tangent linearization and ADRC has been experimentally
proved feasible and robust for a large class of UMSs in recent years. While this
approach continues to extend to more engineering applications, data-driven control
design based on the flatness and ADRC has drawn attention of us, as fully detailed
model information for flat output characterization is expensive and normally un-
available in control design. With few numbers of input-output measurements and
little knowledge of the underlying UMSs, a data-driven approach for this framework
enables an efficient, without modeling process, and systematic feedback control de-
sign for a class of UMSs with similar dynamical structures. Specifically, we first
focus on the identification of flat output of nonlinear UMSs’ tangent linearization
using only input-output data collected. The identified flat outputs are naturally ap-
plied to the flatness-based control and ADRC framework, where several issues, such
as trajectory planning and identification of state-flat output relations, are discussed
and solved when extensive model information is no longer available.

Frequency domain algorithms (FOID, MFOID) and time domain algorithm
(FOID-Net) are proposed to solve flat output identification (FOID) problem of non-
linear UMSs. FOID and MFOID leverages the estimated transfer function of vari-
ous flat output candidate in chosen frequency band to identify their relative degrees
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which is proved closely related to flatness of linearized UMSs. No detailed mathe-
matical model of the system is needed. Flat output candidate is written as a linear
combination of measured outputs. An optimal linear combination is identified so
that the candidates achieve the highest relative degree. When the relative degree
is equal to the order of the system, the output is flat. We have also developed
data handling strategies to obtain the best estimate of the relative degree in the
presence of measurement noise, high-frequency dynamics and Nyquist digitization
effect. MFOID is an extension of FOID to deal with a special case of flat output of
MIMO UMSs. The proposed algorithms are validated by numerical examples and
an experimental study of a rotary crane system. The FOID-Net is a neural work
framework designed to use time series data to estimate flat output out of linearized
systems. We introduce the tracking differentiator into training of neural network
which generates the time derivatives of flat output candidates and filter the noisy
states. The idea of FOID-Net is based on the essential feature of flat systems that
all states and inputs can be expressed by linear or nonlinear functions of flat coor-
dinates. The training method, simulations of Furuta pendulum and a fourth-order
nonlinear UMSs are discussed.

A framework of designing data-driven robust tracking control based on iden-
tified flat output and sparse identification is proposed. Reduced linearized model
are proposed to show that the number of components of linear flat outputs can be
further reduced. Flat outputs can be identified by FOID algorithm or FOID-Net.
Technique of sparse regression is applied to identify the relationships between flat
output and system states, which reduces the order of the well-known extended state
observer (ESO) and thereby make the ESO more effective for both trajectory plan-
ning and tracking in terms of the flat output. When FOID-Net is applied, the flat
output-state relations can be directly found by weight matrix of well trained layer.
The proposed control scheme is validated by experimental studies of a rotary crane
system in which a rest-to-rest tracking control is implemented.

xx



Chapter 1

INTRODUCTION

1.1 Background

1.1.1 Underactuated Mechanical System

Underactuated mechanical system (UMS) is a special class of mechanical
systems that play an important role in a wide variety of engineering applications.
Many mechanical systems are UMSs, such as robot manipulators, helicopters, satel-
lites and underwater vehicles. Underactuation basically refers to the feature that
there are more degrees of freedom of the system than number of distinct and decou-
pled control inputs it has. This characteristic forces the motions of UMSs to being
restricted in their configuration space, which can be the nature of some dynamical
systems, a result of actuator failure or intentional design for flexibility and cost
reduction. UMSs are usually difficult to analyze and to control even if the accu-
rate mathematical models of them are available. When external forces and internal
unknown dynamics, treated as general disturbances, affect the motion of the sys-
tem, the stabilization or tracking control design can even become more challenging.
There has been a major interest in developing control strategies for stabilization and
tracking of UMSs in the past decades [1–4].

1.1.2 Differential Flatness and Flat Output

Flatness, as a property of nonlinear dynamical systems, has been used ex-
tensively in trajectory planning and tracking control. The flat system guarantees
that a class of outputs, called flat outputs [5], exists such that all other system vari-
ables, including control inputs, can be expressed in terms of them and their finite
number of time derivatives. The full parameterization of all system variables allows
the dynamics of the nonlinear flat system to be rewritten completely with flat out-
puts such that the general difficulty of motion planning in nonlinear control design,
approximation and integration of differential equations, is avoided. We are able to
transform the system to a trivial form of integrals with flat output variables. Any
other constraints on the systems could be also transformed by the flat coordinates
and become the limits of the trajectories of flat output variables. It has been proved
that a special class of mechanical control systems whose motion is described by La-
grange Equations and have special structures are differentially flat [6]. To leverage
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the features of flatness, the flat output is normally identified first with a provided
mathematical model of nonlinear flat system. However, the characterization of dif-
ferential flatness and flat outputs of nonlinear system, even if with accurate model
information, is generally a challenging problem, which has become one of the main
obstacles to applying flatness-based control. Further, utilizing flatness becomes im-
practicable when the flat outputs do not exist since many nonlinear systems are not
inherently or strictly flat.

1.1.3 Flatness-based Control and Active Disturbance Rejection Control

With characterized flat output variables, the trajectory planning and track-
ing control for nonlinear flat systems could be solved straightfowardly, hence the
name flatness-based control. The concentration of our work is identification of flat
outputs of a class of nonlinear UMSs without explicit models and use them in flatnes-
based control design. Unfortunately, most underactuated mechanical systems are
non-differentially flat, which seems to cause the concept of flatness to be useless
in this scope. Although the direct application of flatness may fail, a framework of
combining the flatness of the tangent linearization of the system and active distur-
bance rejection control (ADRC) is introduced recently to deal with the challenge
of output reference trajectory tracking control of non-flat UMSs [7]. The tangent
linearization of UMSs around arbitrary equilibrium point, if controllable, has been
proved differentially flat and can take advantage of all the properties of flatness for
control design. The approximation error of tangent linearization, internal and exter-
nal disturbances, known as total disturbances, is compensated online by a properly
configured extended-state observer(ESO) from ADRC framework. The ADRC has
a good robustness of cancelling the real-time disturbances and mismatch of system
parameters within a large range, thus the closed-loop system can operate far from
the equilibrium point where it was supposed to operate around due to ’linear’ as-
sumption. However, the accuracy of characterization of flat output variable from
the mathematical equations is still important, even if the linearization and other
approximation error can be presumably compensated by the ESO. A large discrep-
ancy existing in flat output variable’s expression could easily result in the failure
of ESO, because of the numerical instability and disqualification of estimating the
huge variation in signals, and lead to instability and other undesirable behaviors of
the closed-loop system.

1.1.4 Problem Formulation

We notice the characterization of the flatness and flat output variables, or
short flat outputs, are almost model-based approaches. When model is available,
the characterization process of flatness and find its flat is not trivial work generally,
and sometimes it needs to tailor the existing models to simplified or reduced models
so that the flat outputs could be found. With controllable tangent linearization of



3

nonlinear system and ADRC framework, the flat output characterization can rely
on mathematical tools from linear system theories, although reduction of models
sometimes are still needed to obtain flat output in a nice form, however, the model
is still quite necessary to initiate the control design in the first place.

In this thesis, we first aim to design several data-driven algorithms using
tools and concepts from machine learning and deep learning to identified the flat
output for those tangent linearization of nonlinear UMSs for flatness-based control
design. The identification of flat output does not require explicit equation of mo-
tions and only take input-output measurements from the underlying systems. As
a result, the designed algorithms should find the best expression of flat output in
terms of the linearized system states around certain equilibrium point where it is
controllable. Secondly, the result of proposed flat output identification algorithms
can be incorporated into a new framework where we only use input-output data
to design robust tracking control for nonlinear UMSs based on ADRC. The algo-
rithms need to additionally identifies the relations between flat coordinates, the flat
output and its finite time derivatives, and linearized original system states which
would be extremely useful in trajectory design in tracking control. This problem in
linear system theory is also known as finding the controllability canonical form, or
Brunovsky’s Form. The performance of the ESO also needs to be improved when
the system is faced with heavy noise.

1.2 Literature Review

1.2.1 Flatness and Flat Output Characterization

The characterization of differential flatness and flat outputs is a critical and
challenging problem for flatness-based control design. Linear controllable systems
can be proved to be flat [5]. The flat output of linear systems can be derived by
polynomial matrices [8]. Sufficient and necessary conditions for existence of flatness
of nonlinear systems are discussed in plenty publications [9–13]. These studies have
not led to the development of methods for systematically computing and verifying
the flat outputs. [14] proposed an approach by eliminating variables to construct
flat outputs for lumped parameter nonlinear systems with an arbitrary number of
inputs. [15] and [16] introduced generalized moving frame structure equations and
generalized Euler-Lagrange operator to characterize the flatness of nonlinear sys-
tems. [17] have studied the characterization of flat outputs of MIMO controllable
linear time-invariant discrete- and continuous-time systems, and developed a quick
computational test to claim whether an output candidate is flat. [18] modeled the
system by differential algebraic equations (DAE) and proposed a numerical method
to characterize the flatness of complex nonlinear systems. However, the characteri-
zation of flatness and flat outputs highly depend on the availability and accuracy of
the mathematical model of the system and is unreliable when uncertainties such as
unmodeled dynamics and unknown disturbances are considered. In the recent years,
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the data-driven method of finding the flat output has not been fully researched and
discovered.

1.2.2 Flatness-based ADRC Design

Sira-RamirezLuviano-JuarezCortes-Romero2012 proposed a linear active dis-
turbance rejection control scheme for Chua’s circuit based on its differentially flat-
ness. The flat output is found by inspecting the state-space model of the circuit,
and validated by the dynamics of the equations. A smooth output reference sig-
nal is designed specifically for the tracking control, and generalized proportional
integral(GPI) observer, a variant of ESO, is designed to compensate the internal
and external disturbances. The circuit system is naturally differentially flat with-
out approximation. The robustness with control gain parameters of ADRC is also
shown in the work. The burden of GPI or ESO is relatively light compared with the
case where controllable tangent linearization of system is introduced. [19] worked on
the flatness-based ADRC design for buck-converter DC-motor combinations with a
normalized average flat model. The unknown, exogenous, time-varying load current
are considered as main disturbance for the system. The flatness is not exact but
the dynamics can be compensated by the proposed GPI observers so the system
could track the given reference velocities. Similar work for Thomson’s ring model
and permanent magnet synchronous motor can be in [20–22]. All of the flatness is
characterized based on common models or transformed models.

For underactuated mechanical systems, [23] introduced tangent linearization
model of Furuta pendulum and GPI observers for its tracking control design. The
model of Furuta pendulum is nonlinear naturally, while in their work the model
is linearized around the unstable equilibrium point and hence become flat system
without damping terms in the model. The flat output is found based on the lin-
earized model and verified. One important technique used in its GPI design is that
the second-order derivatives of flat output is not taking from observers directly but
an intermediate signals that constitute the second-order derivatives of flat output is
introduced. The signals are linear combinations of the rotary angle of pendulum arm
and the swing angle of pendulum. This is important model information they need
to guarantee the GPI, or ESO, does not fail to provide useful and noise-attenuated
feedback states. Tracking control with ADRC of ball and beam system is included
in [24] where a class of underactuated systems that have the same form of model
are considered. Although they are not feedback linearizable, i.e., non-flat, the con-
trollable tangent linearization still leads to successful tracking control design thanks
to ADRC and flat output. Similar techniques of control design is used to convert
the input-flat output model into error space. The ESO is also fed with intermediate
signals that helps to stable the closed-loop system. The case of inverted pendu-
lum on a cart, inertia wheel pendulum and the convey crane systems are included
in [7, 25]. In [26], the method is extended to 3 degrees-of-freedom torsional plant.
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The increases of the dimension of the model potentially deteriorate the performance
of ESO, hence two intermediate signals are introduced in observers to guide the
high-order differentiation of chosen flat output. The overall idea of this framework
is further summarized in [27]. Another observation for Lagrangian mechanical sys-
tems is that nearly all flat outputs are not a general function of all the states, i.e.,
generalized coordinates and their velocities, but are only functions of generalized
coordinates, with some proper approximation or reduction on the model. We notice
this feature can greatly simplifies composition of the flat output in terms of the
states and the trajectory design in these cases could have fewer constraints.

1.3 Contributions

For the problem of identification of flat output without explicit models, we
propose a flat output identification (FOID) algorithm . The algorithm is able to
identify differentially flat output or r-degree linearizing output [5] when the flat
output is not available. We should point out that the flatness identified from the
output is valid in the region spanned by the data set, and hence is local. We
demonstrate the algorithm with single-input-multiple output (SIMO) underactuated
nonlinear systems. Some of these system may not be globally feedback linearizable,
but can still be controllable via the tangent linearization in the region spanned by
the data set, and are thus locally flat. FOID offers an efficient way to identify
the flatness and flat outputs or r-degree linearizing outputs from the input-output
data of underactuated mechanical system (UMS) when the system operates near its
equilibrium. The flatness- and model-based control with ADRC has many successful
examples on stabilization and tracking problems of UMS. The same result of flatness
and flat outputs can still be obtained by applying FOID without the mathematical
model. Results of experiments and various simulations are given to support the
effectiveness and feasibility of FOID.

The FOID problem is further extended to a class of MIMO UMSs. We develop
an modified version of FOID to find locally flat outputs for a class of multiple-input
nonlinear UMSs. The main contributions include two aspects. First, the modified
FOID(MFOID) algorithm can deal with flat output identification for both single-
input UMSs and a class of MIMO UMSs with high efficiency. Due to the complexity
of flatness in MIMO cases, the problem is therefore simplified to finding flat outputs
of some specific form, and the relation between relative degree vector and MIMO
flatness is researched to give the new condition for algorithm to find flat outputs.
Second, we also prove that the reduced linearized model with damping neglected can
have fewer number of states involved in the expression of flat outputs and induce
simpler process of identification. This is a simple explanation why flat outputs are
normally and mostly composed of few states in linearized mechanical systems. The
reduction, as a result, allows fewer number of sensors and measurements used for
construction of flat output, and finally the input-to flat output equation of motion of
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MIMO nonlinear UMSs is derived with all neglected terms and external disturbances
included in a time-varying term called total disturbance.

FOID-Net, a neural network framework of FOID problem, is first proposed
to solve the same problem for SIMO mechanical systems, including UMSs. The idea
of FOID-Net is inspired from the autoencoder network used extensively in machine
learning and deep learning community. It works as a function approximator to find
the mapping between system’s original states and expected flat outputs. We also
introduce the tracking differentiator into neural network to help taking derivatives
of signals. Only data series in time domain is needed for training the FOID-Net.
The results are supported by the simulation results of two underactuated mechanical
systems, which can also be validated by FOID algorithm.

A new framework of flatness-based ADRC for nonlinear single-input UMSs is
proposed without the need of detailed knowledge of their mathematical models. The
main procedure to design a data-driven robust tracking control of UMSs is presented.
We take advantage of the result from previous FOID algorithm, or FOID-Net and
extend them to control applications where identified flat output is exploited. It
is proved that the number of states or outputs needed for identification of locally
flat output can be decreased if the nonlinear model of UMS is reduced to a special
linear form. When using FOID algorithm, the relations between states and flat
outputs needs to be found. The SINDy method [28, 29] is tailored to investigate
a sparse regression of states of the system in terms of the identified flat output
and its time derivatives. Example of trajectory planning based on this result is
given. The algebraic method in [30,31] is adopted to formulate the sparse regression
problem without the need of derivatives of the measured time series. The approach
to obtain even-order derivatives of the flat output for ADRC of high-order UMSs
is developed. We show that estimation of even-order derivatives of the flat output
can be expressed as a function of measurable states in the reduced model and can
be either identified by a new sparse regression or directly solved from the previous
result of the state-oriented sparse regression.

1.4 Thesis Organization

The rest of the thesis is organized as follows:
In Chapter 2 “Identification of Differentially Flat Output of Underactuated

Dynamic Systems”, the FOID algorithm is fully discussed with results of experi-
ments and simulations. This chapter is fundamental for understanding the problem
of identification and flatness-based control for UMSs.

In Chapter 3 “Data-Driven Robust Tracking Control of Underactuated Me-
chanical Systems using FOID, Sparse Regression and Flatness-based ADRC”, we in-
troduce the framework of robust tracking control design for UMS without leveraging
the details of mathematical models. We discuss how to integrate FOID algorithm
with classic ADRC setup and trajectory planning for flatness-based ADRC. The
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difficulty of applying ESO to high-order UMSs are solved as high-order derivatives
of flat outputs can be identified and expressed by measurable outputs by sparse
regression and algebraic method. Experiments are done to validate the theory.

In Chapter 4 “Identification of linear differentially flat output of a class of
MIMO underactuated mechanical systems”, modified-FOID algorithm is extended
to deal with FOID problem for a class of MIMO UMSs.

In Chapter 5 “FOID-Net: A Neural Network Framework identifying Lin-
ear Differentially Flat Output using Measurements”, we introduce the structure of
FOID-Net and the training method. The neural network framework can have some
great advantages when identifying the flat outputs. The identified result could be
used in our data-driven robust tracking control framework as well. Result of numer-
ical simulations are given.

Chapter 6 concludes the whole thesis and also briefly discuss the future work
for current algorithms.



Chapter 2

IDENTIFICATION OF DIFFERENTIALLY FLAT
OUTPUT OF UNDERACTUATED DYNAMIC SYSTEMS

Flatness-based control has been an active research topic for decades. How-
ever, data-driven algorithm for flatness and flat output identification has not been
researched before. This chapter presents a novel procedure to identify the locally
flat output of nonlinear systems based on the output data only without the need for
the mathematical model. More specifically, two interesting questions are addressed
in this chapter: Is it possible to characterize the flatness, even if locally, and identify
the flat output only from the input-output data of the system? If the system is non-
flat or flat output is not available due to the lack of states measurement, are there
any other special outputs that transform the system into the normal form with the
minimum number of states representing the internal dynamics? Since the existence
of flat outputs implies the controllability of the system, determining the flatness by
using the data only is also an interesting and emerging topics in the application of
the data science to control studies.

The proposed flat output identification (FOID) algorithm In this chapter is
able to identify differentially flat output or r-degree linearizing output automatically
near arbitrary controllable equilibrium point of nonlinear UMSs. We will calculate
the flat output from the given model to show that same result of flatness and flat
outputs can be obtained by applying FOID without the mathematical model.

The rest of the chapter is organized as follows. In Section 2.1, we introduce
the mathematical concepts of the flatness. In Section 2.2, a statement of the prob-
lem is given. In Section 2.3, an identification algorithm of optimal output with the
highest relative degree is discussed. Sections 2.4 and 2.5 present numerical and ex-
perimental examples to validate the algorithm. The chapter is concluded in Section
2.6.

2.1 Mathematical Preliminaries

In this section, we discuss the mathematical background of the work. In
particular, we introduce the notion of flatness for general nonlinear systems. Then
we present a SIMO nonlinear underactuated mechanical system of interest and dis-
cuss its linearization around equilibrium point. We also discuss the relationship
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between the local flatness and relative degree of this class of nonlinear systems.
A disturbance-rejection-based control is used to show the advantage of using the
flatness property.

A nonlinear dynamical system ẋ = f(x,u) with state vector x ∈ R2n, and
input vector u ∈ Rm is said differentially flat or flat for short if it is equiva-
lent to a linear controllable system with the same number of inputs via a proper
change of coordinates. The coordinate transformation given in the form yf (x) =

[yf1 , . . . , y
(d1)
f1

, yf2 , . . . , y
(d2)
f1

, . . . , yfm , . . . , y
(dm)
fm

] is called a flat output (vector). The
superscript di (i = 1, 2, ...,m) represents the order of time derivatives of yfi . The
corresponding transformation is endogenous, which implies that all the states of the
original system are transformed without the aid of exogenous variables. There are
several features of nonlinear system characterizing its flatness.

• All the states and inputs can be expressed by the flat output vector yf (x), or
equivalently, by its components yfi and their finite number of time derivatives.

• Conversely, the flat output vector yf (x) is also expressible in terms of original
states x.

• All components yfi are differentially independent, which means that yf (x)

does not satisfy any differential equation of the form g(yf , ...,y
(k)
f ) = 0.

The flat coordinates thus realize a directly input-to-output description of the
original system without any zero dynamics in which the new outputs are generally
considered as the components yfi . These properties of flat systems turn out to be
extremely useful in trajectory planning and design of tracking control. When m = 1,
the flat output vector consists of only one component yf1 and its finite number of
time derivatives. We will stick to the discussion of single-input system in the rest
of the chapter and denote it by yf .

Consider the state-space representation of an n-degree-of-freedom SIMO non-
linear UMS with m outputs as:

ẋ = F(x) + G(x)u(t), (2.1)

y = H(x),

where x ∈ R2n is state vector, u(t) ∈ R is the input scalar function, F(x) ∈ R2n

is a nonlinear function of the argument, G(x) ∈ R2n is the input influence vector
which has at least one nonzero entry and H(x) ∈ Rm is an output function. The
system is assumed to be control-affine. The system represented by Equation (2.1)
is said to be underactuated if rank(G) < n, which implies that u is not capable of
commanding instantaneous accelerations of the system in arbitrary directions.

Let p = (xe, ue) denote an operation or equilibrium point of the system. The
tangent linearization of the system can be obtained as
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ẋδ =

(
∂F

∂x

∣∣∣∣
p

+
∂G

∂x
u(t)

∣∣∣∣
p

)
xδ + G|p uδ (2.2)

≡ Axδ + Buδ,

where xδ = x− xe, uδ = u − ue and B is a 2n × 1 control influence vector, A is
a 2n × 2n matrix of the linear state. The tangent or Jacobian linearized system
(2.2) is flat if, and only if, it is controllable, which means there exists a function yf
of the output yδ such that all the states xδ are expressible in terms of yf and its
finite successive time derivatives [5, 32]. In this case, the original nonlinear system
is called locally flat at the point p and the local flatness can be interpreted as
local controllability. With the assumption of controllable linearization, it is always
possible to find a nonsingular square matrix T that transforms the linearized system
into the controllable canonical form. Let z = Txδ where z = [z1, z2, ..., z2n]T . The
transformed state satisfies the equation in the controllable canonical form as

ż = Acz + buδ, (2.3)

where

Ac =


0 1 0 · · · 0
0 0 1 · · · 0
...

. . . . . . . . .
...

0 0 0
. . . 1

a1 a2 a3 · · · a2n

 , b =


0
0
...
0
1

 , (2.4)

and ai ∈ R (1 6 i 6 2n). Consider an output y = z1 for the controllable system
(2.3). The system is then observable. Hence, yf = z1(xδ) is a flat output. Another
important observation is that the flat output y = z1 has a relative degree equal to the
system dimension 2n. The following lemma and corollary restate the relationship
between relative degree of linearization (2.2) and flatness.

Lemma 2.1.1. A 2nth-order single-input linear system in the form of Equation
(2.2) is controllable if there exists a scalar function y = yf (xδ) such that when y is
taken as an output of system (2.2), it has relative degree 2n.

Corollary 2.1.2. A linear system in the form of Equation (2.2) with a scalar output
function y = yf (xδ) having relative degree 2n is flat. yf (xδ) is one of the flat output
functions.

The proof of the lemma and corollary is straightforward. To save space, we
omit the proof. It should be pointed out that the necessity part of Lemma 2.1.1 does
not generally hold. The construction of transformation matrix T that transforms
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system (2.2) to system (2.3) may need strong accessibility of its original states from
its m measurable outputs. These outputs are used to reconstruct all the required
state variables for flat output yf (xδ). The desired flat output yf (xδ) may not be
physically measurable since the observability of the required states is not guaranteed
by controllability of tangent linearization (2.2), although such output with relative
degree 2n does theoretically exist. On the other hand, it immediately shows that
system (2.2) fits into the form of system (2.3) by state redefinition if a scalar output
function y = yf (xδ) with relative degree 2n is found and measured, from which the
controllability, hence flatness, is implied. Clearly, the observability of both system
(2.2) and (2.3) is also asserted with measurable y as flat output.

We use yf (xδ) to denote the flat output function. The flat output defined in

[5] is a vector of functions given by yf =
[
yf , ẏf , ..., y

(2n−1)
f

]
. Once the yf is available,

the calculation of derivatives of yf for the vector yf is trivial. For convenience, we
shall refer to yf as the flat output function in this chapter. Since the number of
outputs m is less then 2n, the existence of a flat output as a linear combination of
the m outputs requires the system to be locally observable. When the system is
not completely controllable and observable, we may find an output function yl with
relative degree r < 2n. The question is how to find the maximum relative degree r
for a given system and its outputs.

Recall that when we take the flat output yf = z1 and define the states as

zi+1 = y
(i)
f , we have Equation (2.3), the last line of which reads

y
(2n)
f = f(yf ) + buδ, (2.5)

where f(yf ) : R2n −→ R is a linear map, b ∈ R. Equation (2.5) is the basis for the
feedback linearization control in terms of the incremental input uδ. Controls can
be readily designed to track a given trajectory y∗f or stabilize the equilibrium point.
Note that the evolution of yf (xδ) indirectly manipulates the original states xδ as
the functional relationship implies.

To conclude, the flatness as defined in [5] refers to the characteristics that a
flat output and its time derivatives can form a state transformation, leading to the
controllability form of the system. The system in this form has no zero dynamics
and is clearly feedback linearizable. The control design of the transformed systems
benefits from great freedom of choices of mature linear controls. Flatness can also be
viewed as an extension of the Kalman controllability for nonlinear systems due to the
equivalence between the flat system and linear controllable system. We notice that
the exact nonlinear system models are not always available. When the equations of
the linearized system cannot be obtained accurately, the traditional flatness-based
control method that relies on the precise model and transformation of the original
system will not apply. Many nonlinear UMSs are not inherently or strictly flat on
account of nonexistence of flat coordinates. The notion of flatness can be extended
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to become a local property of a nonlinear system around an equilibrium point in
the state space. It has been proven that a nonlinear system is locally flat at an
equilibrium point if its tangent linearization at this point is controllable. Clearly,
locally flat systems benefit from all properties of flatness around the equilibrium
point.

2.2 Problem Statement

In this section, we will re-state the problem of finding locally flat output of
nonlinear underactuated system in a more formal manner. Because the measurement
of all the states is either expensive or unrealizable, it is worth exploring the optimally
constructed outputs of linear model (2.2) that has the highest relative degree.

Definition 2.2.1. Given n-degree-of-freedom (DOF) SIMO nonlinear underactuated
control affine system (2.1), it is said to be differentially flat (or shortly flat) at the
state p if its tangent linearized system (2.2) around the point p is controllable. An
incremental flat output yf (xδ) of the linearized system (2.2) is called locally flat
output, or locally linearizing output, of system (2.1) around the point p.

The definition of locally linearizing output is an extension of the differentially
flat output discussed in [5] and [32] for SIMO nonlinear underactuated control affine
system. We will stick to the term ‘locally linearizing output’ next with some modi-
fications to distinguish the locally flat output in case the linearized system does not
have full relative degree.

Definition 2.2.2. Let yi(xδ) (i = 1, 2, ...,m) be m incremental outputs of the tan-
gent linearized system (2.2) around the state p = (xe, ue). A linear combination

yl =
m∑
i=1

ciyi(xδ) with relative degree r is said to be r-degree locally linearizing output

of 2n-dimensional system (2.1) around the point p, denoted by yrl . yl is a locally flat
output, or full-degree locally linearizing output of system (2.1), if, and only if, it has
a relative degree r = 2n, denoted as y2nl or simply yf .

The relative degree specifies the number of the states may be reconstructed
from the outputs. In this work, we only consider linear combinations of the outputs.
Nonlinear combinations are not considered. The idea of using a linear combination
of the system outputs to form a so-called “redefined” output such that the internal
dynamics of the system is stable has been studied before in the literature. However,
most studies on the output redefinition are model-based.

Definition 2.2.3. Define a set S = {(yl, rc) | yl =
m∑
i=1

ciyi(xδ), ci ∈ R}. The set S

consists of all possible linear combinations yl of the m outputs with relative degree



13

rc determined by m coefficients ci. A r-degree locally linearizing output yrl of 2n-
dimensional system (2.1) around the point p is globally optimal if r > rc for any
combination determined by ci ∈ R.

We should point out that the globally optimal linearizing output needs not
to be unique. There possibly exists two or more elements in set S that share the
same relative degree r and r > rc. As shown in the next section, we will restrict the
searching region in S for globally optimal linearizing output since S is an infinite
set. Despite the restriction, locally flat output which has relative degree 2n is still
clearly globally optimal over the whole set. Otherwise, the global optimality can
only be concluded in a finite region.

With these definitions, we state the problem as follows:

Problem 1. Find the r-degree locally linearizing output yl of a given 2n dimensional
SIMO nonlinear underactuated mechanical system defined by Equation (2.1) with m
measurable outputs such that the relative degree r is maximum. When r = 2n, the
output is locally flat denoted as yf .

2.3 Flat Output Identification (FOID)

The proposed FOID algorithm is based on the following assumptions.

2.3.1 Assumptions

Assumption 1. The system state dimension 2n is known.

We should point out that with sufficient input-output data, it is possible to
estimate the dimension of the so-called “embedding state space” [33].

Assumption 2. xe = 0 and ue = 0 represent the equilibrium state p of the nonlinear
system. The linearized system in the form of Equation (2.2) exists at the point p.
Hence, xδ = x and uδ = u.

For this reason, we shall refer to xδ as x, and uδ as u in the rest of the chapter.

Assumption 3. The time histories of m independent outputs and the control input
u(t) are available.

The objective of the FOID algorithm is to find the maximum relative degree
r among all the output functions yl ∈ S according to Definition 2.2.3. If an output
function is found such that r = 2n, it is a flat output from the input-output data.
If r < 2n, we can only conclude that the given data set of input and output does
not support the flat output in the form of linear combinations of the measurable
outputs. Finding the maximum relative degree r with respect to coefficients ci is an
optimization problem, which is the computational core of the FOID algorithm.
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2.3.2 Frequency-domain Analysis

Recall that the relative degree of a SISO linear system is equal to the slope
of the Bode amplitude plot in the log-log scale as the frequency ω →∞ . The first
step of the FOID algorithm involves estimation of the transfer function from the
control input u to the constructed output yl ∈ S.

Estimation of transfer functions from input-output data is a well-studied
topic [34, 35]. Several optimal unbiased estimates of the transfer function in the
least-squares sense have been developed over the years. The transfer function of a
SISO time-invariant system can be estimated from its input u(t) and output y(t)
by taking ratio of their cross power spectral density (CPSD) denoted as Pyu to
the power spectral density (PSD) of u(t) denoted as Puu. The estimated transfer
function known as H1 estimation is given by

H1(ω) =
Pyu(ω)

Puu(ω)
. (2.6)

It is noted that Equation (2.6) may underestimate the true transfer function if the
noise exists in both input and output channels or the system is strongly nonlinear.
Many numerical methods such as FFT, Welch’s method and Bartlett’s method have
been developed for computing PSD and CPSD of signals. The computed spectrum
is called periodogram.

Assume that the transfer function H(s) of the linearized system (2.2) with a
constructed output yl is given by

H(s) =
Yl(s)

U(s)
=

bks
k + bk−1s

k−1 + . . .+ b1s+ b0
s2n + a2n−1s2n−1 + . . .+ a1s+ a0

. (2.7)

Note that in general, the order k of the polynomial in the numerator is unknown
while the order of the polynomial in the denominator is 2n according to Assumption
1. The relative degree of the system is computed from the following limit,

sl = lim
ω→+∞

log |H(jω)|
logω

= −(2n− k). (2.8)

The absolute value of the slope sl of the transfer function in the log-log plot as
ω → +∞ is the relative degree of the output yl,

rl = |sl| . (2.9)

The transfer function from u(t) to yl ∈ S can be expressed in terms of PSD and
CPSD as discussed earlier,

H(jω) =
Yl(jω)

U(jω)
=

m∑
i=1

ciYi(jω)

U(jω)
=

m∑
i=1

ciGi(jω). (2.10)
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Each transfer function Gi(jω) from input u(t) to output yi(t) can be estimated by
using Equation (2.6). The slope of H(jω) as ω → +∞ is given by

sl = lim
ω→+∞

log

∣∣∣∣∣∣∣∣
m∑
i=1

ciPyiu(ω)

Puu(ω)

∣∣∣∣∣∣∣∣÷ logω. (2.11)

In order to estimate sl accurately, we must compute the slope of H(jω) at
high frequencies. This automatically implies the need for high sampling frequency
of the measurements in this application. The high sampling frequency has a couple
of undesirable consequences from the practical point of view. First, the measured
outputs are more likely contaminated by the measurement noise, even when an
anti-aliasing filter is used. Second, it is more likely to pick up resonant responses
of high frequency unmodelled dynamics of the mechanical system. Both can cause
difficulties in estimating the slope sl of the transfer function. In general, the numer-
ical estimate of H(jω) near the Nyquist frequency ωF is not accurate enough for
estimation of sl due to the effect of digitization.

In the following, we shall discuss how to effectively identify the slope sl of
the transfer function at high frequencies.

2.3.3 The Algorithm

The algorithm involves the following components.

1. Selection of a Frequency Band

After H(jω) is obtained numerically, a frequency range is to be selected to
evaluate the slope of H(jω) in the log-log plot. The lower bound of the band
should be greater than the highest resonant frequency of the resonances picked
up by the outputs and the upper bound of the band should be smaller than
the Nyquist frequency. Sometimes, the selection has to be done manually from
the Bode plot.

2. Regression

The data in the selected range of frequencies is used to create a linear regression
curve fitting. The slope of the fitted line is an estimate of the slope sl. The
least mean square (LMS) method is used for the regression problem. The
norm of residuals R of the LMS is used to judge the quality of the regression.
The slope estimated from the regression can either be truncated or rounded
off to an integer.

3. Segmentation
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Consider the data set Wb of (H(jω), ω) in the chosen frequency band denoted
as b for an output yl. Divide Wb into q nonconsecutive subsets denoted as
wbi (i = 1, 2, ..., q). Each subset should not contain too few sample points.
The size of each subset is denoted as pi. When the slope si of each subset is
calculated and rounded denoted as [si], we compare the rounded values. The
maximum absolute value denoted as rl = maxi |[si]| is taken as an estimate
of the relative degree of the output yl as is in Equation (2.9). The subset
corresponding to rl is denoted as w∗b .

2.3.4 Optimization for Linearizing Output

Recall the set S in Definition 2.2.3. In the following study, we restrict the
coefficients ci ∈ [−τi, νi] (i = 1, 2, ...,m) in a finite region where τi and νi are positive
real numbers. We consider the following optimization problem for all the subsets
wbi .

max
ci∈[−τi,νi]

rl (yl, rl) ∈ S. (2.12)

We should point out that the real numbers τi and νi are selected on the trial and
error basis. We denote the optimal coefficients as c∗i and the corresponding relative
degree as r∗l . It turns out that the solution to the optimization problem (2.12) is
usually not unique. In the following, we introduce a concept of relative data usage
as a metric to select one optimal solution to use.

For high dimensional optimization problem (2.12), we can apply the cell
mapping based search algorithm to find the optimal coefficients. The cell mapping
method proposes to use a grid to discretize the search space and carry out the search
over the grid points. A refinement strategy is also available to reduce the grid size
gradually to improve the accuracy of the search results. The cell mapping method
can be carried out in parallel computing with CPUs or GPUs. More details on the
method can be found in the cited references. Furthermore, the computer programs
of many examples are also available on-line as open source code.

Relative Data Usage (RDU)

Assume that there are d solutions to the optimization problem (2.12). Let
p∗i (i = 1, 2, ..., d) be the size of the subset w∗bi which is associated with the relative
degree r∗li of the optimal output y∗li . The relative data usage (RDU) of each optimal
output is defined as a ratio given by,

RDU(y∗li) =
p∗i∑d
j=1 p

∗
j

, i = 1, 2, ..., d. (2.13)

To some extend, the RDU ratio indicates the confidence of the ith optimal output
since the accuracy of regression is strongly coupled to the number of active data
points in the regression.



17

2.4 Numerical Simulations

We present two numerical simulation examples to demonstrate the feasibility
and efficiency of the proposed algorithm.

2.4.1 Furuta Pendulum

The rotary inverted pendulum, also known as the Furuta pendulum, is a pop-
ular UMS. A flatness-based active disturbance rejection control for tracking problem
of the Furuta pendulum is proposed in [23]. The local differentially flat output of the
nonlinear Furuta pendulum model is derived from its tangent linearization, which
requires a full knowledge of the system dynamics beforehand. The undamped non-
linear model of the Furuta Pendulum is given by,

(Jr +mpl
2
0 +mpl

2
1 sin2(φ))θ̈ −mpl1l0 cos(φ)φ̈

+2m1l
2
1θ̇φ̇ sin(φ) cos(φ) +m1l1l0φ̇

2 sin(φ) = τ, (2.14)

−mpl0l1 cos(φ)θ̈ + (Jp +mpl
2
1)φ̈

−mpl
2
1φ̇

2 sin(φ) cos(φ)−mpgl1 sin(φ) = 0, (2.15)

where θ is the angle of the horizontal rotary arm, φ is the angular displacement
of the pendulum, Jr represents the moment of inertia of the rotary arm, Jp is the
moment of inertia of the pendulum, mp is the mass of pendulum, l0 and l1 are the
length of rotary arm and the distance from the joint to center of the mass of the
pendulum, respectively. τ is the torque generated by the DC motor. The tangent
linearization of Equations (2.14) and (2.15) around the unstable equilibrium θ = 0,
θ̇ = 0, φ = 0, φ̇ = 0 and τ = 0 is obtained as,

(Jr +mpl
2
0)θ̈δ −mpl1l0φ̈δ = τδ, (2.16)

−mpl0l1θ̈δ + (Jp +mpl
2
1)φ̈δ −mpgl1φδ = 0, (2.17)

where θδ = θ− 0, φδ = φ− 0, τδ = τ − 0. A local differentially flat output yf can be
found analytically from Equations (2.16) and (2.17) as

yf = − l0
l1
θδ + (

Jp
mpl21

+ 1)φδ. (2.18)
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Figure 2.1: Schematic of the rotary inverted pendulum.

We can show that all the incremental states of the system can be expressible in
terms of yf and its time derivatives.

φδ =
−mpl0l1θ̈δ + (Jp +mpl

2
1)φ̈δ

mpgl1
=

mpl
2
1

mpgl1
ÿf =

l1
g
ÿf,

φ̇δ =
l1
g

...
y f , (2.19)

θ =
l1
l0

[
(
Jp
mpl21

+ 1)
l1
g
ÿf − yf

]
,

θ̇ =
l1
l0

[
(
Jp
mpl21

+ 1)
l1
g

...
y f − ẏf

]
.

Equation (2.19) suggests that a nonsingular state transformation is generated by
the flat output yf . The system equations can be written in the norm form, the last
line of which in the form of Equation (2.5) reads

y
(4)
f =

(Jr +mpl
2
0)
l1
l0[

(Jr +mpl20)
l1
l0

( Jp
mpl21

+ 1) l1
g
−mpl1l0

l1
g

] ÿf (2.20)

+
1[

(Jr +mpl20)
l1
l0

( Jp
mpl21

+ 1) l1
g
−mpl1l0

l1
g

]τδ.
We now assume that the complete knowledge of system (2.14) and (2.15) is

not available. We apply the FOID algorithm to identify yf from the incremental
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input signal τδ and incremental outputs θδ and φδ. Since the equilibrium of the
inverted pendulum is unstable, it is not possible to generate data of an open-loop
system. We assume that a full-state feedback control, such as LQR control, has
been applied to stabilize the system. Consider the following control τδ for Equation
(2.16)

τδ = −k1θδ − k2θ̇δ − k3φδ − k4φ̇δ + r(t). (2.21)

We have

(Jr +mpl
2
0)θ̈δ −mpl1l0φ̈δ + k1θδ + k2θ̇δ + k3φδ + k4φ̇δ = r(t), (2.22)

where r(t) is an reference input, typically a white noise signal, for identification
purpose. Equation (2.17) still holds when the feedback control is applied. We
should point out that in general, the feedback control may change the property of
the output. The locally flat output yf for this system remains the same after the
control τδ is applied, which is the reason we chose this system as the first example to
illustrate the proposed method. The resulting input-output model can be rewritten
as

y
(4)
f = α1y

(3)
f + α2ÿf + α3ẏf + α4yf + βr(t), (2.23)

where α1, α2, α3, α4 and β are coefficients to be determined.
The parameters of the Furuta pendulum are taken as l0 = 0.33m, l1 =

0.275m, mr = 1.64kg, mp = 0.141kg, Jr = 0.0481kgm2 and Jp = 0.0036kgm2. Let
the four gains of the LQR control be [18.7663 3.6997− 1.0000− 1.4614]. r(t) is a
normally distributed random reference signal that follows N(0, 0.01) distribution.
The state-space representation of the closed-loop system is given by

ẋ =


0 1 0 0

−291.3562 −63.8581 17.2605 25.2243
0 0 0 1

−354.4923 −71.1805 19.2397 28.1167

x +


0

17.2605
0

19.2397

 r(t), (2.24)

y =

[
1 0 0 0
0 0 1 0

]
x, (2.25)

where x =
[
θδ, θ̇δ, φδ, φ̇δ

]
. The outputs of the closed-loop system in the time interval

t = [0, tf ] are θδ(t) and φδ(t). The number of outputs is m = 2. The trial output
yl ∈ S has two coefficients c1 and c2. Without loss of generality, we assume that
c1 = 1 and call c2 as Cr. The trial output yl is thus in the form

yl = φδ + Crθδ. (2.26)

For the simulations, we have chosen the following parameters: sample fre-
quency is fs = 1kHz, time duration is tspan = 20s, the dimension of the state of the
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original nonlinear system is known 2n = 4, the frequency band selected for regres-
sion is from 0.5 to 250Hz, the range of the coefficient is Cr ∈ [−1, 0) ∪ (0, 1] and the
grid size is h = 0.0001. The 5000-point Kaiser window function with a shape factor
β = 35 is applied to the estimation of periodogram [36]. The minimal eligible size
for every subset w∗b is 5% of the data points in the frequency band. The threshold
for the residual of linear regression R is 5. 20000 trial outputs yl are constructed in
search for the optimal linear combination. The main results are discussed next.

Figure 2.2 shows the response of the closed-loop system. The initial condi-
tions are small random numbers around the origin so that the system is considered
linear during the simulation. The FOID will search for the largest relative degree of
the output functions in terms of θδ and φδ as defined in Equation (2.26).

The relative degree of the output function as a function of Cr is shown in
Figures 2.3 and 2.4. Each Cr corresponds to a distinctive output yl. The identifica-
tion algorithm finds the ratio that gives the output the highest relative degree. In
the search range, we have found the optimal ratio as C∗r = −0.8971 and the corre-
sponding relative degree r∗ = 4 is maximum. Furthermore, the RDU of that output
function is also the highest. The optimal output y∗l is therefore a full-degree lineariz-
ing output or locally differentially flat output. From extensive numerical searches,
we can also confirm that C∗r is not only be optimal in the range [−1, 0) ∪ (0, 1], but
also optimal in R.

Figures 2.5 through 2.8 show the estimated transfer functions from the input
to different outputs yl. Take Figure 2.7 as an example. A small portion of the Bode
amplitude plot in the lower end of the chosen frequency band is curved and can
be discarded, which amounts to about 5% of the data in the frequency range. The
relative degree of the system can be estimated based on the slope of the remaining
smooth curve. The subset used for the regression takes up nearly 95% points. The
slope as defined by Equation (2.8) is found to be −2/decade after rounding off. The
relative degree of the output yrl = θδ + 0.35φδ is thus identified as 2.

If the amplitude graph in the chosen frequency range cannot be fitted by a
straight line, we introduce break points at the resonant peaks and corners in order
to form subsets. Only the subset with enough data points, say more than 10%
of the data in the frequency range, is eligible to be used in identification of the
relative degree. Figures 2.5 and 2.8 show the cases when one subset is eligible, while
the other subset is not. More than one subset can be eligible, as shown in Figure
2.6. The one with higher RDU ratio is used to identify the relative degree. The
estimated optimal coefficient Cr from the simulations can be verified by the output
in Equation (2.18).

yf =

(
Jp
mpl21

+ 1

)(
φδ −

l0mpl1
Jp +mpl21

θδ

)
(2.27)

= 1.3376(φδ − 0.8971θδ).
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Figure 2.2: Response of the closed-loop system for simulation example of the Fu-
ruta pendulum.

The simulation results are in excellent agreement with the theoretical analysis
of the locally flat output based on the mathematical model. FOID is promising in
applications to flatness-based controls such as the ones proposed in [23] and [24].
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Figure 2.3: Relative degree of the output of the tangent linearized system in sim-
ulation example of the Furuta pendulum as a function of Cr.
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Figure 2.4: Zoomed view of Figure 2.3.



23

10
0

10
1

10
2

10
-6

10
-4

10
-2

10
0 unused data

break point

segment 1 for est.

segment 2 for est.

Figure 2.5: The estimated transfer function of the closed-loop system, Cr =
−0.95. Segment of the Furuta pendulum is below the threshold of
the residual of linear regression R = 5 and its size is less than.5% of
the total data in the range. Segment 1 is discarded. Segment 2 is
chosen as w∗b .
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Figure 2.6: The estimated transfer function of the closed-loop system of the Furuta
pendulum, Cr = −0.8971. Segment 1 has a larger slope (-3.9559/dec)
than segment 2 (-1.1925/dec). Segment 1 is chosen as w∗b .
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Figure 2.7: The estimated transfer function of the closed-loop system of the Furuta
pendulum, Cr = 0.35. Segment 1 is chosen as w∗b . The lower frequency
portion has 5% data points and is discarded.
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Figure 2.8: The estimated transfer function of the closed-loop system of the Furuta
pendulum, Cr = 0.75. Less than 5% data around the resonance and
antiresonance identified by the break points are unused. Segment 3 is
selected as w∗b .
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2.4.2 A Nonlinear Underactuated System

Consider a 4th order nonlinear underactuated system as follows:

ẋ1 = x2 + x31,
ẋ2 = −105.6415x1 − 94.1675x2 − 72.7381x3 − 54.1651x4 − r(t),
ẋ3 = x1 + 3x2 + x3 + x4 + x23,
ẋ4 = 165.9623x1 + 143.2512x2 + 113.6072x3 + 84.2476x4 + 1.5r(t).

(2.28)

The input r(t) is a random signal following the normal distributionN(0, 0.01).
We apply the same steps as used in the previous example. Figures 2.9 and 2.10 show
the simulated response of the system.
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Figure 2.9: Responses x1(t) and x2(t) of the 4th order nonlinear underactuated
system.

Consider the tangent linearization of the nonlinear system around the origin.
We consider two cases. In the first case, we assume that x1 and x2 are the outputs.
The trial output yl1 is a linear combination of the outputs x1 and x2 similar to
Equation (2.26)

yl1 = x1 + Crx2. (2.29)

Figures 2.11 and 2.12 show the variation of the relative degree of the output
function yl1 as Cr varies. The largest relative degree of yl1 can be found is 2 when
the linearizing output is y∗l1 = x1 − 0.0015x2. The optimal coefficient is found to be
C∗r = −0.0015. Since the system is 4th order 2n = 4, y∗l1 is hence not a locally flat
output. There will be internal dynamics of order two.
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Figure 2.10: Responses x3(t) and x4(t) of the 4th order nonlinear underactuated
system.

Because the optimal coefficient C∗r in this case is a small number, we can
have an approximate output of relative degree 2 as ŷ∗l1 = x1. This approximate
output with relative degree 2 can be verified from system (4.53) where the input
r(t) appears in the second equation for the derivative of x2. However, the largest
relative degree can only be 1 theoretically if Cr is nonzero, which is shown in the
Figure 2.11 when values of Cr are larger so that x2 can not be neglected.

In the second case, we consider the outputs x1 and x3. The trial output yl2
reads,

yl2 = x1 + Crx3. (2.30)

Figures 2.13 and 2.14 show the variation of the relative degree of the output function
yl2 as Cr varies. The largest relative degree of yl2 is found to be 4 when C∗r =
−0.6667. Hence, we find a locally flat output or full-degree linearizing output.

The locally flat output can be verified with the original system. The tangent
linearization of Equation (4.53) around the origin is given by

ẋ1 = x2,
ẋ2 = −105.6415x1 − 94.1675x2 − 72.7381x3 − 54.1651x4 − r(t),
ẋ3 = x1 + 3x2 + x3 + x4,
ẋ4 = 165.9623x1 + 143.2512x2 + 113.6072x3 + 84.2476x4 + 1.5r(t).

(2.31)
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Figure 2.11: Variation of relative degree with Cr of the output yl1 of the 4th order
nonlinear underactuated system.
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Figure 2.12: Variation of relative degree with Cr of the output yl1 of the 4th order
nonlinear underactuated system. Zoomed view of Figure 2.11.
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Figure 2.13: Variation of relative degree with Cr of the output yl2 of the 4th order
nonlinear underactuated system.
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Figure 2.14: Variation of relative degree with Cr of the output yl2 of the 4th order
nonlinear underactuated system. Zoomed view of Figure 2.13.
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Figure 2.15: Schematic of the rotary crane system.

The output function y∗l2 = x1 − 2
3
x3 has the relative degree 4, as is shown

below.

ẏ = −2

3
x1 − x2 −

2

3
x3 −

2

3
x4,

ÿ = −5.6667x1 − 4x2 − 3.6667x3 − 2.6667x4, (2.32)
...
y = −23.6724x1 − 22.0048x2 − 15.6706x3 − 11.6694x4,

y(4) = 372.2690x1 + 329.7973x2 + 259.1889x3 + 193.1026x4 + 4.5007r(t).

2.5 Experimental Validation

2.5.1 Rotary Crane

A rotary crane system is a typical example of nonlinear UMS. Experiments
are done with this system to validate the proposed algorithm. The rotary crane
system made by Quanser is driven by a DC servo motor system as shown in Figure
2.15. A control has been designed to let the rotary arm track a desired trajectory
and keep the pendulum vertically downward during motion, as opposed to keeping it
upright. The horizontal arm is attached to the output shaft of the gear system, which
is actuated by the torque τ generated by the DC motor. The angular positions of
the horizontal arm and pendulum are denoted as θ and ψ, respectively. The voltage
applied to the DC motor is denoted as V .

We ignore the damping of the system. The equations of the linearized system
around the origin of the state space (θ = 0, ψ = 0, θ̇ = 0, ψ̇ = 0, τ = 0, V = 0) can
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be obtained by applying the Euler-Lagrange method:

(Jr +mpl
2
0)θ̈δ +mpl1l0ψ̈δ = τδ, (2.33)

mpl0l1θ̈δ + (Jp +mpl
2
1)ψ̈δ +mpgl1ψδ = 0, (2.34)

τδ =
ηgKgηmkt(Vδ −Kgkmθ̇)

Rm

, (2.35)

where τδ = τ−0 = τ is the incremental torque and Vδ = V −0 = V is the incremental
voltage. The system variables and their values are listed in Table 2.1. With the full
knowledge of the system, we can find one locally flat output as

yf = θδ +
Jp +mpl

2
1

mpl1l0
ψδ = θδ + 1.039ψδ. (2.36)

The original states can be expressed in terms of yf and its derivatives as,

ψδ =
mpl0l1θ̈δ + (Jp +mpl

2
1)ψ̈δ

−mpgl1
= − l0

g
ÿf , (2.37)

ψ̇δ = − l0
g

...
y f , (2.38)

θδ = yf −
Jp +mpl

2
1

mpl1l0
ψδ = yf +

Jp +mpl
2
1

mpl1g
ÿf , (2.39)

θ̇δ = ẏf +
Jp +mpl

2
1

mpl1g

...
y f . (2.40)

A block diagram for realization of the experimental identification of the flat
output is shown in Figure 2.16. In the experiment, the angular positions θδ and ψδ
are recorded. We consider the output given by yl = θδ + Crψδ. The parameters of
the rotary pendulum are given in Table 2.1.

In the experiment, the angular positions θδ and ψδ are recorded. We consider
the output given by yl = θδ + Crψδ.

The input voltage V is a normally distributed random signal following the
distribution N(0, 5) with sample time ts = 0.001. The system is forced into random
motions around the equilibrium. The execution time of the experiment is tspan = 60s.
Two direct outputs θ and ψ will be measured and their incremental values are shown
in Figure 2.17. The order of the original nonlinear system is known 2n = 4. We
shall search for the flat output in the domain Cr ∈ [−2, 0) ∪ (0, 2]. The Welch’s
method is used to compute the frequency response function in order to obtain the
H1 estimate of the transfer function from V to yl. The transfer functions from the
input V to θδ and ψδ are shown in Figure 2.18.

The frequency band selected for regression is from 0.5Hz to 25Hz. The fre-
quency increment is h = 0.001. A 5000-point Kaiser window function with a shape
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Table 2.1: Parameters of the rotary crane system.

Symbol Description Value
Jr Rotary arm moment of inertia 9.9829×10−4 kg·m2

about its center of mass
Jp Pendulum moment of inertia 0.0012 kg·m2

about its center of mass
mp Mass of pendulum 0.1270 kg
Lh Half length of pendulum 0.1683 m
Lr Total length of rotary arm 0.2159 m
g Gravitational acceleration 9.81 m·s2
ηg Gearbox efficiency 0.90
Kg High-gear total gear ratio 70
ηm Motor efficiency 0.69
kt Motor current-torque constant 7.68×10−3 N·m
km Motor back-emf constant 7.68×10−3 V/(rad/s)
Rm Motor armature resistance 2.6 Ω

Figure 2.16: Block Diagram For Experiment
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Figure 2.17: The open-loop response of the rotary crane system with normally
distributed random input.

factor β = 35 is applied to the estimation of periodogram. The minimal eligible
size for every subset w∗b is 5%. The threshold for residual of linear regression R is
5. The passive range around the peaks is ±5% about the frequency of resonance
and antiresonance. 5% points of lower frequency are dropped. 4000 trial outputs yl
are constructed during the search for the optimal linear combination. Figures 2.19
and 2.20 show the variation of relative degree of the output with Cr. A locally flat
output is found from Figure 2.20 as

yr
∗

l = θδ + 1.037ψδ, (2.41)

where the largest relative degree is r∗ = 4, which equals to the order of the system.
The result is in a good agreement of the theoretical flat output in Equation (2.36).

2.6 Conclusions

A flat output identification (FOID) algorithm is presented in this chapter
from experimental data of a dynamic system of known order. The system can be
nonlinear, SIMO and underactuated. No detailed mathematical model of the system
is needed. Trial output is written as a linear combination of measured outputs. An
optimization problem is proposed to search for the linear combination that leads
to the highest relative degree of the trial output. The identification is done in
the frequency domain by taking advantage of the asymptotic behavior of transfer
functions of linear systems. Various data handling strategies have been developed
to achieve the best estimate of the relative degree in the presence of measurement
noise, high frequency dynamics and Nyquist digitization effect. The FOID algorithm
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Figure 2.18: The estimated transfer functions from input V to measurable outputs
(a) θδ and (b) ψδ. The red boxes indicate the area selected for relative
degree estimation in the chosen frequency band.
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Figure 2.19: The relative degree of the output yl as a function of Cr for the rotary
crane system around the origin.
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Figure 2.20: The relative degree of the output yl as a function of Cr for the rotary
crane system around the origin. Zoomed view of Figure 2.19.

has been tested with two numerical examples of nonlinear dynamic systems and also
validated with an experimental study of a rotary crane system.



Chapter 3

DATA-DRIVEN ROBUST TRACKING CONTROL OF
UNDERACTUATED MECHANICAL SYSTEMS USING
FOID, SPARSE REGRESSION AND FLATNESS-BASED

ADRC

When UMSs are known to be differentially non-flat, and the control design
cannot make use of the flatness property. In this case, the well-known ADRC can
be introduced to resolve this issue [37, 38]. The paradigm of ADRC assumes that
the nonlinear system of interest is in a canonical form and lumps all disturbances
including, for instance, uncertainties, unmodeled dynamics and external excitations,
into one time-varying term called the total disturbance. The total disturbance can be
estimated online and be canceled in real time. This allows us to modify the model of
non-flat nonlinear systems to render flatness, such as linearization, and use control to
compensate such modification, viewed as one of endogenous disturbances. Flatness
indicates that there is a direct input-output model in terms of flat outputs and
control input existing without internal dynamics, which is naturally in accordance
with the premise of using ADRC. Many examples have shown the success in control
design of UMSs by combining flatness and ADRC in Chapter 1.

This chapter we adopt previously proposed data-driven approach FOID to
identify the flat output and applies the flatness-based ADRC to UMSs. This work
also includes a sparse representation of differential relationships of state variables
in order to overcome the deficiency of the ADRC for higher order systems. Several
issues about implementing data-driven robust tracking control using ADRC and flat
output are proposed as follows and the potential solutions are addressed and given:

(I1) It seems necessary to characterize flatness first and find flat output for
nonlinear systems, or at least locally flat output for its linearization. A data-driven
method of finding flat output is needed.

(I2) The reference trajectory planning for the output of UMSs may need the
mathematical expression of states and flat outputs, which is not a problem in model-
based setting. The relationship between them should be identified in data-driven
environment for the purpose of planning and understanding of the system behavior.

(I3) Many UMSs have high degrees of freedom, which means a large number
of states and high-order ESOs may be involved in the ADRC design. The increase

35
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of the order of linear or nonlinear ESOs can intensely deteriorate the performance
of estimation of the total disturbance and derivatives of the tracking error due to
noises. It also causes large phase lag of the estimates so that the closed-loop system
may become unstable.

The rest of the chapter is organized as follows. In Section 3.1, we present the
single-input-multiple-output (SIMO) nonlinear UMS of interest in this chapter. The
basic concepts of the flatness, flat output and ADRC design are discussed. In Section
3.2, the control objectives for the SIMO UMS including the special requirements
and principles are stated. In Section 3.3, a data-driven framework of ADRC design
is proposed that integrates FOID, state-oriented sparse identification, trajectory
planning and a cascade of low-order ESOs or Leunberger observers. Experiments of
a rotary crane pendulum are carried out to validate the effectiveness of the control
design. Conclusion of the chapter is included in Section 3.5.

3.1 Preliminaries

3.1.1 Single-input-multiple-output UMS

Although we have introduced the general form of UMS in last chapter, we
would like to restrict the system of interest to a class of single-input-multiple-
output(SIMO) nonlinear UMS in this section. There are many underactuated sys-
tems naturally fitting into this category, such as acrobot, inverted pendulum and
cart-pole system. The dynamical equations of n-degree-of-freedom (n > 1) SIMO
nonlinear UMS can be given as [39]:

m11(q)q̈a + m12(q)q̈u + h1(q, q̇) = u (3.1)

m21(q)q̈a + m22(q)q̈u + h2(q, q̇) = 0, (3.2)

where q1 ∈ R and qu ∈ R(n−1)×1 are the generalized coordinates q = [qa,q
T
u ]T ∈

Rn×1, the scalar function h1(q, q̇) and vector function h2(q, q̇) ∈ R(n−1)×1 contain
Coriolis, centrifugal and gravitational terms, and u ∈ R is the generalized force
applied to the system produced by a single actuator. The terms m11 ∈ R, m12 ∈
R1×(n−1), m21 ∈ R(n−1)×1 and m22 ∈ R(n−1)×(n−1) form the mass matrix given by

M(q) =

[
m11 m12

m21 m22

]
n×n

, (3.3)

M(q) is symmetric and positive definite. Equations (4.1) and (4.2) can be written
in the state-space form. The state vector consists of generalized coordinates and
velocities. Due to the fewer number of actuators than degrees of freedom, the input
of a single actuator is not capable of driving the UMS arbitrarily in any direction
along the generalized coordinates. The nature of nonlinearity and underactuation
makes the stabilization and trajectory tracking problem of the UMS intractable in
general.
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3.1.2 Flatness-based Active Disturbance Rejection Control

To distinguish the flat output from MIMO system cases, we now denote the
flat output of SIMO by yf1 . The input-output model, as a result of parameterization
of input in terms of states, naturally lends itself to the paradigm of ADRC design.
Active disturbance rejection control, or shortly ADRC, is an observer-based control
approach that estimates unknown total disturbances online, including endogenous
system dynamics and exogenous disturbances, and cancels them by feedfoward com-
pensation. By finding the flat output, a flat nonlinear control-affine system of order
n in the state space, with a single input u for example, can be transformed into the
form

y
(n)
f1

= g(yf1) + b(yf1)u. (3.4)

yf1 is the vector of the flat output and its time derivatives. g(·) and b(·) are scalar
functions. ADRC treats g(yf1), all its variations due to parametric uncertainties and
unmodeled dynamics as endogenous perturbation, and inteprets any external dis-
turbance to the system, regardless of its type and origin, as exogenous perturbation.
The basic idea of disturbance rejection is to estimates both types of perturbations
together on-line, called the total disturbance, and compensate them by the feed-
forward control. After the compensation, a variety of linear and nonlinear control
schemes can be applied to the resulting trivial system of pure integrators. When
b(yf1) is not known exactly in advance, a common technique is to incorporate the
state-dependent part of b(yf1) into the total disturbance and retains a constant b0 or
known function of yf1 as a nominal input gain. The input-output model in ADRC
is therefore rewritten as

y
(n)
f1

= ξ(t) + b0u, (3.5)

where ξ(t) is a time-varying term representing the total disturbance. The control
law is in the following form

u =
1

b0
(−ξ̃(t) + v) (3.6)

where ξ̃(t) is an estimate of ξ(t) and v is the control designed for the trivial integral

system y
(n)
f1

= v. Consequently, the influence of unknown disturbances could be
suppressed adaptively, and the robustness of the closed-loop system with respect to
disturbances is significantly improved.

The performance of ADRC is highly relied on accurate on-line estimation of
the flat output vector yf1 and the total disturbance, which requires an effective al-
gorithm for state and disturbance estimation with low latency. The core component
udertaking this task in ADRC is the extended state observer (ESO). Although a
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large number of variants of ESOs have been developed over past decades, the main
structure of them for system (4.14) can be summarized as,

e1 = z1 − yf1
ż1 = z2 − β1ϕ1(e1)

ż2 = z3 − β2ϕ2(e1) (3.7)

...

żn = zn+1 + b0u− βnϕn(e1)

żn+1 = −βn+1ϕn+1(e1),

where z = [z1, z2, . . . , zn+1]
T is the estimate of the extended vector

yf1 = [yf1 , . . . , y
(n−1)
f1

, ξ(t)]T ,

ϕi(e1) and βi (i = 1, 2, . . . n + 1) are the gain functions of tracking error e1 and
tuning parameters, respectively. The ESO with nonlinear gain functions are called
the nonlinear ESO (NLESO) and can produce better transient behavior and faster
convergence than the linear ESO (LESO), which is a special class of ESO with
linear gain functions. However, the LESO has shown its advantages of simple tuning
process and clear physical interpretation in applications, whereas the design of gain
functions and tuning parameters in NLESO are overall more difficult and may vary
from one specific system to another.

3.2 Problem Formulation

We first address the solutions for the issues proposed at the beginning of this
chapter.

A potential solution for issue (I1), i.e., finding flat output of UMS from
input-output data, has been addressed in Chapter 2. The study assumed that
the linearized UMS around its equilibrium point is controllable and hence is flat.
The locally flat output of the linearized system is then identified offline from the
measured input and output data. The flat output identification algorithm (FOID)
searches for an optimal linear combination of measurable outputs that grants the
system highest relative degree, which can be interpreted as the flat output of the
linearized system.

Once the flat output is available, issue (I2) can be solved by identifying
linear regression representation of all the states and input in terms of the base
functions consisting of the flat output and its finite number of time derivatives. For
high dimensional UMSs, there can be many coefficients to be determined in the
regression. Furthermore, not all the base functions may contribute the regression.
The method of sparse identification of nonlinear dynamics (SINDy) in [28] or the
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least absolute shrinkage and selection operator in [40] are good solutions to remove
unnecessary terms.

For issue (I3), the idea of dividing the whole system into several subsystems
works well to reduce the need for computing higher order derivatives of the flat
output in [23, 26]. The second-order ESOs and Leunberger observers can handle
the estimation efficiently with very small phase lag. To this end, we have found
that the even-order derivatives of flat output are necessarily needed and can be
expressed in terms of the measured output so that the order of ESOs can be kept
low. The estimates of even-order derivatives of the flat output can be obtained
with a linear regression with the base functions that are measurable states of the
linearized system. The method of SINDy can be used here also to reduced the
number of needed states.

Given the SIMO nonlinear UMS in the form of Equations (4.1) and (4.2),
one challenging task of control design is to derive a robust feedback control law that
forces one of its outputs to track prescribed smooth trajectory. Only one generalized
coordinate, by reason of underactuation, is capable of following designated motion,
and the difficulty of off-line motion planning differs from system to system, also
depending on the trajectory of which output of the system, denoted by yp, is being
planned. Without loss of generality, we do not restrict our discussion to any specific
UMS here, but assume the choice of yp is known. Several requirements are proposed
for designing tracking control in order to achieve disturbance rejection, robustness
and noise attenuation.

A1. The output yp should asymptotically track preplanned smooth trajectory
y∗p for yp, while satisfying the given initial and final conditions.

A2. The desired controller can deal with unmodeled dynamics, parameter
variations and external disturbances to a relatively large extent. These features are
extremely valuable in engineering practice and yet often elusive.

A3. Need for high-order derivatives of measured signals should be avoided.
Tracking control often involves computations of high-order derivatives of both states
and reference signals, which tends to amplify the measurement noise and then leads
to bad performance or instability of the closed-loop system.

For many engineering systems, a detailed mathematical model may not be
readily available. We are interested in meeting the above control design requirements
without such a model. We particularly focus on two aspects:

B1. Only the general structure of the model, such as the form of Equations
(4.1) and (4.2), is known. No prior knowledge of system dynamics and control input
specified in mathematical expressions is needed.

B2. The least number of sensors are available to lower the cost of building
the system and to simplify its architecture. The actual number of sensors needed
can be determined from the input-output data of the system without knowing the
mathematical model.
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The control problem studied in this article, as summarized in the previous
discussions, is formalized as follows:

Problem 2. Design a robust tracking controller for SIMO nonlinear UMS in Equa-
tions (4.1) and (4.2) subject to requirements A1-A3 based on principles B1 and B2.

3.3 Data-Driven Robust Tracking Control Design

In this section, a data-driven framework of robust tracking control design for
SIMO nonlinear UMS in Equations (4.1) and (4.2) is presented. The flat output
identification (FOID) and sparse identification with the algebraic method are applied
to explore the least number of terms in the representation of information from input-
output data in order to develop a flatness-based ADRC without knowing the detailed
mathematical expressions in Equations (4.1) and (4.2). The proposed framework
for control design can be applied to different types of UMSs.

3.3.1 Trajectory Planning for Flat System

The trajectory planning problem for flat system can be solved with the help of
the parametrization of the states with respect to a flat output. Consider a nonlinear
single-input flat system with the flat output yf1 . Let yp be a prescribed motion
over a time interval t ∈ [t0, tf ] such that it satisfies the following initial and final
conditions [41].

yp(t0) = yp0, (3.8)

yp(tf ) = ypf . (3.9)

Making use of the properties of flatness, we express yp(t) as a function of yf1 and
its time derivatives as

yp(t) = γ1(yf1 , ẏf1 , . . . , y
(r)
f1

), (3.10)

From conditions (3.8) and (3.9), the initial and final conditions of (yf1 , ẏf1 , . . . , y
(r)
f1

)
can be specified to satisfy Equation (3.10). The design of trajectory yp(t) becomes
equivalent to the design of a desired trajectory y∗f1 for yf1 . y

∗
f1

can be expressed as a
polynomial of time with the order at least r. Normally, Equation (3.10) should be

known to obtain all initial and final conditions y
(k)
f1

(t0) and y
(k)
f1

(tf ), k = 0, 1, . . . , r. A
special trajectory is a rest-to-rest path where yp0 and ypf are taken as the equilibrium
points of the system. In this case, all derivatives of yf1 at the initial and final time
are zero resulting in

yp0 = γ1(yf1(t0), 0, . . . , 0). (3.11)

ypf = γ1(yf1(tf ), 0, . . . , 0). (3.12)

The initial and final values of output yp are fully determined by the values of yf1(t0)
and yf1(tf ). One can add more zero conditions to Equation (3.11) and (3.12) such
that y∗f1 can be sufficiently smooth at the beginning and end of the planned path.
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3.3.2 Reduced Nominal Model with Linear Flat Output

Even though many nonlinear UMSs are non-flat, their linearized system
around the equilibrium, as long as controllable, can be flat to take advantage of
the simplified process of trajectory planning. Consider a state-space linearized form
of Equations (4.1) and (4.2) around an equilibrium point p = (xe, ue) given by,

ẋδ = Axδ + buδ, (3.13)

where xδ = x − xe and x = [qT , q̇T ]T ∈ R2n. xδ is the incremental state vector,
uδ = u − ue is the incremental scalar input variable. A ∈ R2n×2n is the linearized
system matrix and b ∈ R2n is the input vector. Assume that (A,b) is controllable.
The flat output of the linearized system can be given by

yf =
[

0 0 . . . 1
]
C−1xδ, (3.14)

where C =
[

A Ab A2b . . . An−1b
]

is the controllability matrix. The flat
output yf , in general, is a linear function of all the components of incremental state
vector xδ, which implies that the construction of yf , as a physical and measurable
output, must require full access of the original states x. Additional sensors or state
estimators are needed for flatness-based control as a result. Moreover, this increases
the burden of trajectory planning as more initial and final conditions of the states
are involved.

A simplified model which neglects the effect of damping can be adopted so
as to minimize the number of the needed states to construct flat output yf . Such
simplification is feasible in the framework of flatness-based ADRC, given that the
unmodeled dynamics is in the scope of estimation. Consider a linearized system of
Equations (4.1) and (4.2) around the origin without the damping term q̇

Mcq̈ + Kcq = u, (3.15)

where Mc and Kc are constant mass and stiffness matrices, u =
[
u 0 . . . 0

]T
1×n.

Flat outputs can be found as linear functions of the generalized coordinates, or at
most half of the states in state space, as the following theorem states.

Theorem 3.3.1. If the simplified linearized model (3.15) of a SIMO nonlinear UMS
is controllable, there exists a scalar linear function yc(q) such that yc(q) is the flat
output of the system (3.15).

Proof. A trivial state-space realization of (3.15) is carried out by choosing state as
x = [x1, x2, · · · , x2n] = [qT , q̇T ]T ,

ẋ = Acx + bcu, (3.16)
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where input variable u = τ and controllable pair (Ac,bc) are of the form:

Ac =

[
0 In
H 0

]
,bc =

[
0
v

]
2×n

, (3.17)

Hn×n =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
an1 an2 · · · ann

 ,v =


b1
b2
...
bn

 , (3.18)

In is n × n identity matrix. At least one of bi, i = 1, 2, · · · , n, is not zero. In the
following discussions, we shall use the following symbols interchangeably.

x = [xT1 ,x
T
2 ] = [qT , q̇T ]T ∈ R2n (3.19)

where x1 = q = [x1, x2, · · · , xn]T . Consider scalar function yc(x1, x2, · · · xn) =
c1x1 + c2x2 + · · ·+ cnxn = cTx1. Taking derivative of yc 2n times gives,

ÿc = cT ẍ1= cT (Hx1 + vu), (3.20)

y(4)c = cTx
(4)
1 = cT (H2x1 + Hvu+ vü), (3.21)

y(6)c = cTx
(6)
1 = cT (H3x1 + H2vu+ Hvü+ vu(4)), (3.22)

...

y(2n)c = cTx
(2n)
1 = cTHnx1 + cT (Hn−1vu+

· · ·+ H2vu(2n−6) + Hvu(2n−4) + Gu(2n−2)). (3.23)

Let cTHiv = 0, we have
(Hiv)Tc = 0, (3.24)

where i = 0, 1, · · · , n − 2. Equation (3.24) forms at most n − 1 independent lin-

ear equations of c having infinitely many solutions {ck} = {
[
ck1, c

k
2, · · · , ckn

]T}, k =
1, 2, · · · , in general. Taking any nonzero solution c∗ from set {ck}, (v,Hv, · · ·Hn−1v)
are linearly independent since (Ac,bc) is controllable, which implies,

[v,Hv, · · · ,Hn−1v]Tn×nc
∗ 6= 0. (3.25)

Therefore, (Hn−1v)Tc∗ 6= 0 , and equivalently, (c∗)THn−1v 6= 0. The scalar function
yc(q) ≡ yc(x1, x2, · · · xn) = (c∗)Tx1, having (2n)th order derivatives in the form of

y(2n)c = (c∗)Tx
(2n)
1 = (c∗)THnx1 + (c∗)THn−1vu, (3.26)

is hence the flat output according to Corollary 2.2 in [52].
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Theorem 3.3.1 implies that the flat output of system (3.15) or (3.16) can be
constructed, as a combination of the generalized coordinates, or the corresponding
states, through limited number of sensors. When the states are not directly measur-
able, the flat output can be a linear function of the measured outputs as long as the
required states can be reconstructed from them. Although less knowledge is needed
to derive the flat output from the reduced model, one must know Mc and Kc in
advance from a proper modelling process. By treating (3.15) as a nominal model,
however, it is possible to identify the desired flat output from enough measured data,
simply assuming the controllability holds, as shown in the following subsection.

3.3.3 Flat Output Identification (FOID)

FOID from last chapter automatically searches the flat output as a linear
combination of measured outputs and identify the flatness of the mechanical system
operating around its equilibrium. Consider a reduced linear model around origin,
for simplicity, as given by Equation (3.15). According to the statement of Theorem
3.3.1, at most n sensors that measure the signals of generalized coordinates are
required, while the minimum number of measurements of output needed for building
flat output, which depends on system dynamics, is unknown. A possible candidate
of flat output of system (3.15) is given by

yl(t) = c1y1(t) + c2y2(t) + . . . cjyj(t), (3.27)

where y1(t), . . . , yj(t) are measured outputs. It has been shown that the flat output
of system (3.15) is the one having full relative degree, that is, the order of differen-
tiation of the output function until the input variable u(t) explicitly appears. The
optimal output yopt(t) with highest relative degree ropt will be chosen, and the sys-
tem described by the nominal model can be transformed into an input-output model
without zero dynamics, if ropt = 2n, as

y
(2n)
opt (t) = g(yopt) + b(yopt)u(t), (3.28)

where yopt =
[
ẏopt, ÿopt, . . . , y

(2n−1)
opt

]T
is the flat output vector. Taking all uncer-

tainties and unmodeled dynamics into account, Equation (3.28) can be furthermore
extended to

y
(n)
f1

(t) = ξ(t) + b0u(t), (3.29)

where yopt(t) is replaced with yf1(t).
The dimension of system (3.16), 2n, is assumed to be known, which is the

assumption of FOID. The derivation of dimension is sometimes straightforward for
simple mechanical systems by knowledge of physics and mechanics. A determination
of principal dimension in a data-driven method can be found in [33].
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3.3.4 Sparse Identification for States and Derivatives of Flat Output

It is common to measure the generalized coordinates q as outputs of UMS.
For instance, the motion of Acrobot can be described by the joint angle at shoulder
and relative joint angle at elbow which are measurable by two rotary encoders. In
the state-space model shown before, the generalized coordinates, as well as their first
derivatives, constitute the state vector. Suppose there are enough sensors directly
measuring q, the first n states in (3.16), for control design, the flatness and linearity
of (3.15) indicates that all these states xi can be expressed as a linear function of
flat output and its time derivatives up to the order of 2n − 1. Consider a general
case when flat output yf1 of (3.15) consists of linear combination of all generalized
coordinates,

yf1(t) = c1x1(t) + c2x2(t) + . . .+ cnxn(t) = cTx1, (3.30)

To configure the motion of certain output yp(t) = xi(t), i ∈ {1, 2, . . . , n}, and design
the reference trajectory y∗f1 for flat output, the relationship given as equation (3.10)
are necessary. Moreover, one may need to know what trajectories the rest of the
states will have when yp(t) follows desired reference.

Sparse regression has manifested the versatility and effectiveness in identifi-
cation of nonlinear systems recently, where the basic assumption is that the gov-
erning equations are sparse in high-dimensional function space, which is reasonable
for many systems in action. The library of nonlinear functions in sparse regres-
sion comprises the candidate functions, such as constant, polynomial, trigonometric
functions and discontinuous terms, that are chosen based on the understanding of
the system of interest, and hence the building of the library has become a challenge
in application of this technique. When it comes to discovering the relationship be-
tween original states and flat output as equation (3.10), the collection of candidates
is constrained with a limit number of members which are only flat output yf1 and
its successively finite time derivatives. Interestingly, assumption of simplified model
(3.15) also allows us to have even fewer terms of candidates, as shown by the next
theorem.

Theorem 3.3.2. All generalized coordinates q in model (3.15) are functions of
linear flat output (3.26) and its finite number of even-order derivatives.

Proof. From Theorem 3.3.1, any linear flat output yf1 is a function of all generalized
coordinates yf1(q) ≡ yc(x1, x2, · · · , xn) = (c∗)Tx1 in which c∗1, c

∗
2, · · · , c∗n have at

least one nonzero coefficient. Differentiating yf1 2(i− 1) times gives n− 1 equations
as

y
(2i−2)
f1

(x1) = (c∗)THi−1x1, i = 2, · · · , n. (3.31)

Due to feature of flat output, Equation (3.31) along with yf1(x1) = (c∗)Tx1 forms
n linearly independent equations, for which the solution x1, equivalently q, are all
linear functions of even-order derivatives.
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Corollary 3.3.3. All generalized velocities q̇ in model (3.15) are functions of linear
flat outputs’ finite number of odd-order derivatives.

To figure out how generalized coordinates are represented in terms of locally
flat output without relying on prior mathematical model, one can now perform
sparse regression with the library comprising yf1 , ÿf1 , . . . , y

(2n−2)
f1

to identify their
relationship. The rest of the states, generalized velocities q̇, can be obtained by the
direct differentiation of q(yf1 , ÿf1 , . . . , y

(2n−2)
f1

) by corollary. Consider i-th component
of q is written by

qi = χi1yf1 + χi2ÿf1 + . . .+ χiny
(2n−2)
f1

= χT
i yf1 , (3.32)

where χij, j = 1, 2, . . . , n, are the scalar coefficients. Differentiation of signals, es-
pecially when it comes to computing high-order derivatives, is usually confronted
with unexpected disturbance caused by random noise from environment, which hin-
ders the result of sparse regression to be useful. In order to tackle this issue, the
algebraic operation in [30] is applied. Applying Laplace transformation to equation
(3.32) gives

Qi(s) = χi1Yf1(s) + χi2
[
s2Yf1(s)− syf1(0)− ẏf1(0)

]
+ . . . (3.33)

+ χin

[
s2n−2Yf1(s)− (s2n−1yf1(0) + s2n−2ẏf1(0) . . .+ y

(2n−1)
f1

(0))
]
,

where Qi(s) and Yf1(s) are the Laplace transform qi and yf1 respectively. Taking
derivatives 2n− 2 times with respect to s can eliminate the dependence of all initial
conditions. To show this method but keep procedures compact, case of n = 2 are
shown below.

d2Qi(s)

ds2
= χi1

d2Yf1(s)

ds2
+ χi2

[
2Yf1(s) + 4s

dYf1(s)

ds
+ s2

d2Yf1(s)

ds2

]
. (3.34)

The next step is dividing s2n−2 on both side of the preceding result to avoid differ-
entiation with respect to time. When n = 2, it gives

1

s2
d2Qi(s)

ds2
= χi1

1

s2
d2Yf1(s)

ds2
+ χi2

[
2

s2
Yf1(s) +

4

s

dYf1(s)

ds
+
d2Yf1(s)

ds2

]
. (3.35)

Equation (3.35) can be transformed back to time domain as

Pqi(t) = χi1Pi1(t) + χi2Pi2(t), (3.36)

where

Pq(t) =

∫ t

0

∫ τ2

0

τ 21 qi(τ1)dτ1dτ2, (3.37)

Pi1(t) =

∫ t

0

∫ τ2

0

τ 21 yf1(τ1)dτ1dτ2, (3.38)

Pi2(t) = 2

∫ t

0

∫ τ2

0

yf1(τ1)dτ1dτ2 − 4

∫ t

0

τ1yf1(t)dτ1 + t2yf1(t). (3.39)
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This result (3.36) can be easily extendable when n > 2 such that

Pqi(t) = χi1Pi1(t) + χi2Pi2(t) + . . .+ χinPin(t) (3.40)

in which all Pj, j = 1, 2, . . . , n can be defined similarly according to previous steps.
In implementation of sparse identification, all signals involved are considered

discrete. Assuming only few terms dominate equation (3.40), we employ the least
absolute shrinkage and selection operator (LASSO) [40] to estimate the coefficients
vector χi of sparse terms through minimizing the cost function Jλ in (3.41) and
defining error ei(tk) at time tk:

Jλ(χi) =
∑
tk

e2i (tk) + λ ‖χi‖1 , (3.41)

ei(tk)=χi1P1(tk) + χi2P2(tk) + . . .+ χinPn(tk)− Pqi(tk). (3.42)

λ > 0 is a preselected positive number known as the sparse regulator. It is com-
mon to use K-fold cross-validation techniques from machine learning to determine
the sparse regulation parameter λ. Consider signals P1(tk), P2(tk), . . . , Pn(tk) and
Pqi(tk), k = 1, 2, . . . , Nt, form the whole data set St. Nt is the total number of
samples of each signal. The K-fold cross-validation divides all data points in St into
roughly K equal parts and each time take one of the part to validate the perfor-
mance of model while using the K−1 parts for training. When z-th part is selected
as validation set, let Szv and Szk denote the selected validation set and k-th training
set among the rest folds. The sum of square error for given λ on validation sets is
defined by

SSEz(λ)=
K−1∑
k=1

∥∥Pz
i ck −Pz

qi

∥∥2
2
,

where ck =
[
χ̃ki1 χ̃ki2 . . . χ̃kin

]T
is the k-th vector of coefficients in equation

(3.40) that estimated by data from Szk , , Pz
i are the n-by-nv matrix of signals

P z
j (t1), P

z
j (t2) . . . , P

z
j (tnv) , j = 1, 2, . . . , n, nv is the number of samples in Szv ,

and Pz
qi

is the vector of signals P z
j (t1), P

z
j (t2) . . . , P

z
j (tnv) from Szv . Pz

i and Pz
qi

are
given by

Pz
i =


P z
1 (t1) P z

2 (t1) . . . P z
n(t1)

P z
1 (t2) P z

2 (t2) . . . P z
n(t1)

...
...

. . .
...

P z
1 (tnv) P z

2 (tnv) . . . P z
n(tnv)

 ,Pz
qi

=


P z
qi

(t1)
P z
qi

(t2)
...

P z
qi

(tnv)

 .
The mean square cross validation error MSEcv of model (3.40) for given λ on vali-
dation sets is defined by

MSEcv(λ)=
1

nvK

K∑
z=1

SSEz(λ),
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in which we assume nv is equal in each validation set. The λ value which minimizes
the cross-validation error is selected so that the resulting estimate χ̃i is a set of
optimal coefficients with a proper balance between complexity and accuracy. For
the purpose of improving the robustness of sparse regression, the algorithm could
be implemented with bootstrapping. It is always possible to add odd-derivatives
of flat output to library of sparse regression of generalized coordinates. But by
the assumption of reduced nominal model and framework of ADRC followed, we
attribute the neglect into internal disturbances.

Another important observation from theorem 3.3.2 is that even-order deriva-
tives of locally flat output yf1(t), up to the order 2n − 2, are solely functions of
generalized coordinates, which in turn allows one to construct high– and even-order
derivatives of yf1(t) without using extra sensors or estimation in flatness-based feed-
back control design. Given enough identified equation of generalized coordinates as
(3.32), it is always possible to solve for a set of coefficients such that

y
(2j−2)
f1

= ηTj q, (3.43)

where j = 2, 3, . . . , n and ηj ∈ Rn is the coefficient vector, of which some elements
may be zero. ηj can be either estimated by sparse identification with time sequences

of y
(2j−2)
f1

(t) and all generalized coordinates q(t), or obtained by solving some linear
equations based on sparse identification of q. In fact, the elements of ηj could

be trivially solved if any generalized coordinate is identified as qk = χkjy
(2j−2)
f1

.

Otherwise, since q(yf1 , ÿf1 , . . . , y
(2n−2)
f1

) can be estimated, there are l + 1 equations

as (3.32) that contain y
(2j−2)
f1

and have totally l+ 1 number of nonzero terms of flat
output and its derivatives on right hand side of them:

qk = χkjy
(2j−2)
f1

+ wk1yd1 + wk2yd2 + . . .+ wklydl (3.44)

where yd1 , . . . , ydl can represent the flat output yf1 and some derivatives of yf1 of

certain even-order that is less or equal than 2n − 2 except y
(2j−2)
f1

, 1 6 l 6 n − 1.
wk1, . . . , wkl are coefficients from sparse regression of qk, where k ∈ [1, 2, . . . , n] . A

coefficient vector ηj =
[
ηj1 ηj2 . . . ηjl

]T
can be defined such that

y
(2j−2)
f1

= ηTj ql (3.45)

=
∑
k

ηjk

(
χkjy

(2j−2)
f1

+ wk1yd1 + wk2yd2 + . . .+ wklydl

)
=
∑
k

ηjkχkjy
(2j−2)
f1

+
∑
k

ηjk (wk1yd1 + wk2yd2 + . . .+ wklydl) ,
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where ql is the vector of l generalized coordinates that are relevant to y
(2j−2)
f1

. Match-
ing coefficients on both sides of the equations gives a set of linear equations of ηj
to solve ∑

k

ηjkχkj = 1, (3.46)∑
k

ηjk (wk1yd1 + wk2yd2 + . . .+ wklydl) = 0 (3.47)

By filling up zeros for irrelevant n − l generalized coordinates, ηj can be extended
to ηj with n dimensions. Construction of high-order derivatives of yf1 extremely
reduce the noise effect and phase lag in feedback signal. These good properties make
the extended-state observer, illustrated in next subsection, available to high-order
flat system. For example, the second-order derivative ÿf1 , when 2n = 4, is generally
involved in

q1 = χ12ÿf1 + w11yd1 = χ12ÿf1 + χ11yf1 ,

q2 = χ22ÿf1 + w21yd1 = χ22ÿf1 + χ21yf1 .

η2 is the solution of [
χ12 χ22

χ11 χ21

] [
η21
η22

]
=

[
1
0

]
,

where η2 is also η2. Equation (3.31) has shown ηTj = (c∗)THj−1 so solving for

y
(2j−2)
f1

from (3.46) and (3.47) is always possible under the setting of reduced model.
The calculation result of ηj should be consistent with the one from applying sparse
regression to equation (3.43).

3.3.5 Error-space Representation and Extend-state Observer Design

Tangent linearized model (3.29) has limitation because it only approximates
nonlinear system within a small range around certain equilibrium point. The idea
of linearization works in many applications but can be invalid when large range
operations are required and non-negligible hard nonlinearities are detected. To
compensate the unmodeled dynamics neglected by tangent linearization and extend
the range of operation as large as possible, the input-to-flat output representation
(3.29) is considered in the framework of ADRC, where the term ζ(t) represents
the total disturbance and b0 is a constant nominal gain. Many different types of
extended-state observer have been studied in past decade [42–46], however, their role
in ADRC design and basic structure remain almost unchanged. We will illustrate
flatness-based ADRC with classic LESO due to its simple tuning process and light
computational burden. Note that any NLESO can be adopted to replace LESO
in this framework if it fulfills basic requirements, like stability and fast enough
convergence.
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Conventional flatness-based ADRC for tracking control would estimate and
filter the flat output yf1 and its time derivatives ẏf1 , . . . , y

(2n−1)
f1

by ESO, and ref-

erence signals for yf1 , ẏf1 , . . . , y
(2n)
f1

are introduced for feedback purpose. While this
scheme needs all high-order time derivatives of reference signals, another approach
is introduced to transform system (3.29) into error space and treat reference signals
as part of the external disturbance, hence part of the total disturbance. We assume
that a particular output yp = xp is to be planned. The prescribed trajectory de-
signed for yp, y

∗
p , leads to a reference of flat output y∗f1 according to (3.10). The

tracking error is defined as e(t) = yf1(t)− y∗f1(t). Therefore error dynamics reads

e(2n) = y
(2n)
f1
− y∗(2n)f1

= ζ1(t) + b0u(t), (3.48)

where ζ1(t) is the new total disturbance term, which lumps ζ(t) defined in (3.29) and

desired trajectories of yf1 , ẏf1 , . . . , y
(2n)
f1

. The series of low-order Leunberger observers
and LESO are used to generate feedback signal in design of control law. Because
even-order derivatives of yf1 are accessible from linear combination of generalized
coordinates, system (3.48) can be divided into several subsystems

ėi = ei+1, (3.49)

ėi+1 = ei+2, (3.50)

ei = e(i) = y
(i)
f1
− y∗(i)f1

, i = 0, 2, . . . , 2n− 4, (3.51)

and

ė2n−2 = e2n−1, (3.52)

ė2n−1 = ζ1(t) + b0u(t). (3.53)

The subsystems in the form of equation (3.49)(3.50) are purely second-order differ-
ential equations of error and its even-order derivatives. To derive the estimate of
e1, e3, . . . e2n−3, n− 1 Leunberger observers can be built as

żi = zi+1 − βi(zi − ei), (3.54)

żi+1 = zi+2 − βi+1(zi − ei), i = 0, 2, . . . , 2n− 4, (3.55)

where zi, zi+1 is the estimate of ei and ei+1, βi are the gains of observers to be
selected. Note that zi are redundant because the relationship between ei and gen-
eralized coordinate q are assumed known from sparse identification. The LESO for
subsystem (3.52)(3.53) is given by

ż2n−2 = z2n−1 − β2n−2(z2n−2 − e2n−2), (3.56)

ż2n−1 = z2n + b0u(t)− β2n−1(z2n−2 − e2n−2), (3.57)

ż2n = −β2n(z2n−2 − e2n−2), (3.58)
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where z2n−1, z2n−2 and z2n are estimate of e2n−2, e2n−1 and ζ1(t) respectively, β2n−2, β2n−1
and β2n are gains of ESO to be determined.

The reason that dividing (3.48) into subsystems is that estimates of higher
order derivatives from high-order Leunberger Observer or ESO are easily polluted
and distorted by noise. The more times the derivatives of e(t) has been taken,
the worse accuracy of their estimates will have. Some other work about building
cascaded ESO to avoid this issue can be found in [47] and [48].

The convergence of observation error of Leunberger observers requires to
choose appropriate βi and βi+1 such that

¨̃ei + βi ˙̃ei + βi+1ẽi = 0, i = 0, 2, . . . , 2n− 4, (3.59)

has asymptotically stable solution ẽi, defined as observation error ẽi = zi − ei. A
pair of straightforward choice is βi = 2ωi, βi+1 = ω2

i , where ωi can be interpreted
as bandwidth of observers in frequency domain. The observation error of ESO
ẽ2n−2 = z2n−1 − e2n−2 provides the error dynamics:

...
ẽ 2n−2 + β2n−2¨̃e2n−2 + β2n−1 ˙̃e2n−2 + β2nẽ2n−2 = −ζ̇1(t). (3.60)

Selecting β2n−2, β2n−1, β2n such that its characteristic polynomial

s3 + β2n−2s
2 + β2n−1s+ β2n = 0 (3.61)

has negative roots in which β2n−2 = 3ω2n−2, β2n−1 = 3ω2
2n−2, β2n = ω3

2n−2 is a com-
mon choice. Define estimation error of total disturbance as ẽζ = z2n−ζ1(t).Assuming
the total disturbance ζ1(t) and its first time derivative ζ̇1(t) is uniformly absolutely
bounded, it can be proved the estimation errors ẽi, ẽ2n−2 and ẽζ , based on the selec-
tion of gains βi, βi+1, β2n−2, β2n−1, β2n, can become as small in magnitude as desired
and uniformly approach a neighborhood of the origin in error space [37].

The control law for flatness-based ADRC can be designed as

u(t) =
1

b0
(−ζ̃1(t)− α1z2n−1 − α2z2n−2 . . .− a2n−1z1 − α2nz0), (3.62)

which leads to

e(2n) + α1e
(2n−1) + α2e

(2n−2) . . . α2ne = ẽζ −
2n∑
j=1

αj ẽ(2n−j), (3.63)

where α1, α2, . . . , α2n−1 coefficients chosen such that characteristic equation of dif-
ferential equation (3.63) has negative roots. The flat output tracking error e(t)
and its time derivatives asymptotically converge to a small neighborhood of the
origin in error space, with proper high gains in ESO and Leunberger observers, as
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Figure 3.1: Schematic of Rotary Crane Pendulum

µ(t) = ẽζ −
∑2n

j=1 αj ẽ(2n−j) does [37]. Stability analysis of the closed-loop system,

when ζ1(t) and ζ̇1(t) is bounded or uniformly bounded, can be found in [26,49,50].
The burden of keeping track of good performance and closed-loop stability is

shifted to Leunberger observer and LESO. The upper bound of the estimation error
of LESO is decreased monotonically with its bandwidth increased [51]. Setting
up proper bandwidth for closed-loop system and these observers is crucial to keep
ADRC working on the right track. There are other variants of ESO with time-
varying gain [50], or generalized proportional integral observer(GPIO) [37] that can
be used in this framework. As previously stated, these versions of ESO can freely
replace classic linear ESO. For simplicity, however, the details are not in the scope
of research in this chapter.

3.4 Experimental Validation: Rotary Crane Pendulum

In this section, we illustrate the data-driven tracking control design and ex-
periment by an example of rotary crane pendulum. Model information of rotary
crane pendulum will be briefly introduced, however, details of which are not used
in following control design. FOID and sparse identification are carried out with
enough data collected from device, after which trajectory planning and design of
ADRC follow.

3.4.1 Introduction of Rotary Crane Pendulum

The rotary crane pendulum (RCP) is 2-degree-of-freemdom SIMO nonlinear
UMS shown in Figure 3.1 and 3.2. Its main structure consists of two components:
rotary arm and crane pendulum. The DC motor and gear system, providing torque
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Figure 3.2: Rotary Crane Pendulum

τ , drive the arm to rotate in a horizontal plane, while the pendulum tied to the end
of the arm can swing back and forth along the motion. Assume two rotary encoders
mounted to measure θ, the angular position of arm, and ϕ, the angle of swing, are
all incremental. Two generalized coordinates, as well as measurable outputs, θ and
ϕ are chosen for modelling process, that is q = [θ, ϕ]T . The mathematical model of
the linearized system around the origin of the state space (θ = 0,ϕ = 0, θ̇ = 0, ϕ̇ = 0,
τ = 0) can be obtained by applying the Euler-Lagrange method:

Mcq̈ + Kcq=τ , (3.64)[
Jr +mpl

2
0 mpl1l0

mpl0l1 Jp +mpl
2
1

] [
θ̈
ϕ̈

]
+

[
0 0
0 mpgl1

] [
θ
ϕ

]
=

[
τ
0

]
, (3.65)

where we neglect the terms related to equivalent viscous damping involving θ̇ and ϕ̇.
All other notations are: rotary arm moment of inertia about its center of mass Jr,
pendulum moment of inertia about its center of mass Jp, mass of pendulum mp, half
length of pendulum l1, full length of rotary arm l0 and gravitational acceleration g.
The device of rotary crane system in the experiment is made by Quanser as shown
in Figure . The voltage applied to the DC motor is denoted as V . The relation
between voltage V and torque τ is given by

τ =
ηgKgηmkt

Rm

(V −Kgkmθ̇) ≈
ηgKgηmkt

Rm

V, (3.66)

where term ηgKgηmktKgkm
Rm

θ̇ is also neglected in our ‘no damping’ reduced model.
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Simplified model (3.65) can be easily verified as differentially flat system since
it is controllable. The details can be found in chapter 2. One possible but not unique
flat output can be found as

yf1 = θ +
Jp +mpl

2
1

mpl1l0
ϕ. (3.67)

The value of all parameters from RCP’s manual are shown in Table 2.1.

3.4.2 Locally Flat Output Identification of RCP

Without the knowledge of equation (3.65), we assume the degree of freedom
n = 2 is known and the RCP around its equilibrium point is controllable, that is,
locally flat. Such equilibrium point can be reached at any static position of rotary
arm and crane pendulum since all encoders have incremental data from the starting
point of motion. For simplicity, the angular position of arm and swing angle of
pendulum are denoted by θ and ϕ without extra notation indicating increment.
The flat output yf1 should be a function of θ and ϕ. Let us define yf1 as

yf1 = θ + Cfϕ, (3.68)

where Cf is a constant. (3.68) is always available because any other flat output yf1
of the form

yf1 = λ1θ + λ2ϕ (3.69)

= λ1(θ +
λ1
λ2
ϕ)

= λ1(θ + Cfϕ)

= λ1yf1

indicate yf1 is also a flat output of the same system, where Cf is predetermined by
the system dynamics in linear flat output, λ1 and λ2 are scalars. FOID algorithm
is capable of finding Cf in proper range for RCP with measured input and output
data. The best approximate coefficient of Cf in FOID is denoted by C∗r .

To create input-output data, voltage V is designed as a random input se-
quence u[k] that has Gaussian distribution that has zero mean and variance 5, and
corresponding open-loop responses of θ(t) and ϕ(t), as time sequences θ[k] and ϕ[k],
are measured. The RCP hence has random motion around the equilibrium. The
transfer function between a u(t) and a candidate function yl = θ(t) + Crϕ(t) is
estimated by H1 method within frequency band from 0.5Hz to 25Hz, where Cr is
incrementally selected from predetermined range [−2, 0) ∪ (0, 2]. With 1 kHz sam-
ple rate and 60-second measurements, the FOID gives the optimal Cr, denoted by
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Figure 3.3: The relative degree of the candidate output yl as a function of Cr for
the rotary

C∗r , that maximizes the relative degree of yl as result shown in Figure 3.3 and 3.4.
Several values of Cr are eligible for deriving flat output, however, only one optimal
C∗r = 1.037 is chosen based both on relative degree r and relative data usage that
calculates relative ratio of data used in identification over other candidate func-
tions will full relative degree. The optimal candidate, or identified flat output, with
maximum relative degree ropt is 2n = 4 and highest relative data usage, is given by

y∗l ≡ yf1 = θ(t) + 1.037ϕ(t). (3.70)

The estimated transfer function for optimal candidate y∗l is shown in Figure 3.5. The
segmentation by FOID results in three segments of the estimated function: unused
data and two subsets to be analyzed. The break point of curve is automatically found
and the data points around the break points are considered distorted and will not
be used in estimation of relative degree. The segment 1 takes up approximately 26%
data out of total data within the chosen bandwidth of estimated transfer function,
and segment 2 contains around 67% data points. The linear regression by feeding
data from two segments gives the estimates of relative degree in which segment 2
does not generate a valid result because it almost leads to negative relative degree.
The derivation of optimal relative degree ropt = 4 is hence based on the segment 1.

Remark 3.4.1. One can verify the result is in a good agreement of the theoretical
flat output in Equation (3.65). It is also necessary to check if yf1 = ϕ is the flat
output to complete the identification. More details about FOID can be found in [52].
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3.4.3 Sparse identification of states θ and ϕ

θ and ϕ are assumed to be two of the states in state-space model of RCP.
Since flat output yf1 is found, they can be expressed in terms of yf1 and its even-order
derivatives up to order 2 as

θ = χ11yf1 + χ12ÿf1 , (3.71)

ϕ = χ21yf1 + χ22ÿf1 . (3.72)

Equation (3.71) leads to the following regression problem:

Jλ(χ1) =
∑
tk

e2
1(tk) + λ ‖χ1‖1 , (3.73)

Pθ(tk) = χ11P11(tk) + χ12P12(tk), (3.74)

e1(tk)=χ11P11(tk) + χ12P12(tk)− Pθ(tk), k = 1, 2, . . . , ns. (3.75)

where Jλ(χ1) is the cost function that needs to be minimized, e1 is residual at time
tk, ns is the number of elements in sequence, Pθ(t), P11(t) and P12(t) are defined
as equation (3.37) (3.38) (3.39). A sinusoidal input signal is set as input voltage
V = 0.1sin(0.25t). The sequence of θ[k] and ϕ[k] used for sparse identification
sparse regression is truncated within 0.6s and 3s, shown in Figure 3.6. All other
related settings from flat output identification remain the same . The best sparse
regulator λ is automatically selected by cross-validation from 100 numbers within
logarithmically spaced vector [10−2, 102]. Figure 3.7 shows that least mean square
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error (MSE) is attained when λ = 0.00221 or less, the best result of sparse regression
for state θ is given by

θ = 1.0077yf1 + 0.0223ÿf1 . (3.76)

Applying same settings for ϕ, the result of sparse regression is shown in Figure 3.8.
Equation (3.72) is identified as

ϕ = 0 · yf1 − 0.0219ÿf1 . (3.77)

Note that the coefficient χ21 for yf1 in equation (3.72) is 0 due to the effect of
regularization term λ ‖χ1‖1 . We are able to verify the result by simply adding
(3.76) and (3.77) up with weight C∗r , which gives

θ + C∗rϕ = 1.0077yf1 − 0.0004ÿf1 ≈ yf1 . (3.78)

The rest of the states, induced by generalized coordinates naturally, would be θ̇ and
ϕ̇, which are known as generalized velocities despite the lack of model information.
Therefore the following identification for these two states is redundant. Instead,
they can be given directly as

θ̇ = 1.0077ẏf1 + 0.0223
...
y f1 . (3.79)

ϕ̇ = 0 · ẏf1 − 0.0219
...
y f1 . (3.80)

The even-order derivatives of yf1 , solely ÿf1 in this case, can be estimated through
generalized coordinates q1 = θ and q2 = ϕ by weighting them properly

ÿf1 = z21q1 + z22q2, (3.81)

where clearly the solution is straightforward

z21 = 0, z22 = − 1

χ21

= −45.6621. (3.82)

Therefore we conclude that ÿf1 is identified as

ÿf1 = −45.6621ϕ. (3.83)

Remark 3.4.2. The result of equation (3.76), (3.77) and (3.83) can be also verified
approximately close to the ones derived from reduced model (3.65).

Remark 3.4.3. If there is nonzero coefficient associated with ẏf1 in (3.77), ÿf1 can
be found by solving a set of linear equations in the form of equation (3.46) and
(3.47).
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3.4.4 Trajectory Planning for angular position θ and swing angle ϕ

We will show an example of rest-to-rest trajectory planning for RCP. The
goal is maneuvering the rotary arm of RCP from one position to another in a
time interval [t0, tf ] while forcing the swing angle of pendulum ϕ(t) to be zero
at time tf and keeping it vertically downward thereafter. The starting and end
position of the arm and the pendulum can be two equilibrium points of the systems.
We assume the starting point is (θ(t0), ϕ(t0), θ̇(t0), ϕ̇(t0)) = (0, 0, 0, 0) and ending
point is (θ(tf ), ϕ(tf ), θ̇(tf ), ϕ̇(tf )) = (Θ, 0, 0, 0), which is feasible with incremental
encoders. The initial condition of θ(t), ϕ(t) and their first derivatives up to order 3
are all zeros, which forces the flat output yf1 and its derivatives should satisfy

yf1(t0) = θ(t0) + 1.037ϕ(t0) = 0 (3.84)

ẏf1(t0) = ÿf1(t0) = ÿf1(t0) =
...
y f1(t0) = 0 (3.85)

Higher order derivatives of yf1 can also be set 0 to smooth the trajectory at time
t = t0. Similarly, the final condition of yf1 and its derivatives satisfies

yf1(tf ) = θ(tf ) + 1.037ϕ(tf ) = Θ (3.86)

ẏf1(tf ) = ÿf1(tf ) = ÿf1(tf ) =
...
y f1(tf ) = 0 (3.87)

The reference trajectory y∗f1 can be generated according to these conditions. From
equation (3.76) , the actual trajectory of angular position θ will be affected by flat
output yf1 and its acceleration ÿf1 to different extents. One is able to modify the
y∗f1 to have specific shape for intermediate motion between starting and end point
but remain the initial and final conditions unchanged. The swing angle ϕ, based
on equation (3.77), is always going to follow the acceleration ÿf1 weighted by a
small number (−0.0219) from the beginning to the end. With this information, the
motions for θ and ϕ are fully understandable and configurable even if the model is
not elaborate. One practical example of y∗f1 is given when t0 = 2, tf = 4 and Θ = 1
as

y∗f1 =


0, 0 < t < 2

− 5
32

(t− 2)7 + 35
32

(t− 2)6 − 21
8

(t− 2)5 + 35
16

(t− 2)4, 2 6 t 6 4
1, t > 4

. (3.88)

3.4.5 LESO/Luenberger observer Design

The tracking error for control is defined as e(t) = yf1(t) − y∗f1(t). The error
dynamics in terms of equation (3.48) is then

e(4) = ζ1(t) + b0u(t), (3.89)

which can be divided into two subsystems:
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ė0 = e1, (3.90)

ė1 = e2, (3.91)

e2 = ë = ÿf1 − ÿ∗f1 , (3.92)

and

ė2 = e3, (3.93)

ė3 = ζ1(t) + b0u(t). (3.94)

The second derivative of tracking error, e2, is directly accessible from ÿf1 and ÿ∗f1 .
Therefore a low-order Leunberger observer and an LESO can be designed as,

ż0 = z1 − β0(z0 − e0), (3.95)

ż1 = z2 − β1(z0 − e0) (3.96)

ż2 = z3 − β2(z2 − e2), (3.97)

ż3 = z4 + b0u(t)− β3(z2 − e2), (3.98)

ż4 = −β4(z2 − e2), (3.99)

where β0 = 2ωlo and β1 = ω2
lo can be chosen based on design one parameter ωlo, the

bandwidth of this Leunberger observer. The gains β2, β3 and β4 are also tunable
through the bandwidth method, and are conveniently given as β2 = 3ωeso, β2 = 3ω2

eso

and β3 = ω3
eso. Assuming b0 is known here, the feedback control law is hence given

by,

u(t) =
1

b0
(−ζ̃1(t)− α1z3 − α2z2 − a3z1 − α4z0), (3.100)

3.4.6 Demonstration Experiment

We demonstrate an experiment on RCP to prove the feasibility and effec-
tiveness of above data-driven design of flatness-based ADRC. The bandwidths of
Leunberger observer and LESO are chosen with the same value ωo and are open to
multiple choices for performance comparison. The approximate range of the value
of nominal control input variable b0 is determined from result of several tests in
which b0 is first set as a large number and decreased until the controller reacts ef-
fectively. The sign of b0 can be determined by inspecting the open-loop response
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of RCP and analyze the relationship of variation between input u(t), the voltage,
and fourth-order derivative of yf1 . A square wave signal is added to input voltage
during the experiments to see its robustness in the presence of unknown external
disturbances. We also implement the same experiments after tying a block of mass
to the body of rotary arm and tip of rotary pendulum to test the robustness of
control to variations of system parameters. The linear feedback control gains are
α1 = 60, α2 = 1350, a3 = 13500, α4 = 50625.

Figure 3.9, 3.10 and 3.11 show the responses of flat output, angular position
of arm θ and swing angle ϕ when b0 is fixed as 2000 and bandwidth ω has three
different values. A short square wave is inserted at t = 11s and canceled at t = 12s
with amplitude of 3 and frequency of 1 rad/s as shown in Figure 3.12. The flat output
tracks the planned trajectory as desired at two equilibria. θ and ϕ accordingly overall
satisfy the prescribed initial value and final value with small tracking error before
the square wave is applied. The error is mainly caused by the damping existing
in the bearing of pendulum so that the steady-state error of swing angle ϕ is not
always eliminated but randomly distributed around origin in each experiment. The
responses also show that relatively higher bandwidth ω results in better tracking
performance during the transition between t = 2s and t = 4s and reduce the
deviation of amplitude from reference when external disturbances applied to the
control signal. The tracking error remains small after the disturbing voltage is
cancelled, which manifests a good robustness with regards to disturbances from
input channel.

Figure 3.13, 3.15 and 3.15 presents the responses of flat output, angular
position of arm θ and swing angle ϕ when bandwidth of observer ω is fixed and
nominal control input gain b0 changes. It can be found that the steady-state error
has a little bit increased if b0 changes from b0 = 2000 to 1500 and 2500 when LESOs
have the same capability to estimate the error signals and their derivatives. It shows
b0 = 2000 may be closer to the real control input, which is unknown without explicit
modelling of RCP, than b0 = 1500 and b0 = 2500. The large mismatched nominal
gain may also increases the overshooting of tracking as one can observe in Figure
3.13. Although the nominal input gain b0 might not chosen perfectly, we can still
see its strong robustness against external disturbing signal.

The estimate of total disturbance by designed LESO is given in Figure 3.16
where the result is obtained when b0 = 1500 and ω = 50 rad/s. The total input
voltage to RCP is also shown in Figure 3.17.

Responses in Figure 3.18, 3.19, 3.20 and 3.21 further prove the good robust-
ness of proposed control to parametric variations. In these experiments, the mass or
moment of inertia of both rotary arm and pendulum are subject to large variations,
whereas the performance of proposed controller are still as good as the one before
block of mass is placed.
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Figure 3.9: Response of flat output yf in experiments when b0 = 2000, ω = 20, 35
and 50 rad/s
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Figure 3.10: The angular position of rotary arm θ in experiments when b0 = 2000
and ω = 20, 35 and 40 rad/s
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Figure 3.11: The swing angle of pendulum ϕ in experiments when b0 = 2000 and
ω = 20, 35 and 40 rad/s
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Figure 3.12: Disturbance voltage added between 11s and 12s
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Figure 3.13: Response of flat output yf in experiments when ω = 50, b0 =
1500, 2000 and 2500.
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Figure 3.14: The angular position of rotary arm θ in experiments when ω = 50
rad/s and b0 = 1500, 2000 and 2500
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Figure 3.15: The swing angle of pendulum ϕ in experiments when ω = 50 rad/s
and b0 = 1500, 2000 and 2500
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Figure 3.16: Estimated total disturbance from LESO when b0 = 1500 and ω = 50
rad/s.



66

0 5 10 15 20

-4

-2

0

2

4

Figure 3.17: The input voltage to RCP when b0 = 1500 and ω = 50 rad/s.
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Figure 3.18: The angular position of rotary arm θ with 200g block of mass tying
to end of the pendulum in experiments
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Figure 3.19: The swing angle of pendulum ϕ with 200g block of mass tying to end
of the pendulum in experiments
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Figure 3.20: The angular position of rotary arm θ with 200g block of mass tying
to body of rotary arm in experiments.
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Figure 3.21: The swing angle of pendulum ϕ with 200g block of mass tying to
body of rotary arm in experiments.

3.5 Conclusions

The advantages of flatness-based control and ADRC are attractive in de-
signing control for UMS. While most of the research has been fully relying on the
mathematical model of the system, we are interested in exploring the possibilities
of doing the same work with less or without details of the models. In this chapter,
a framework of designing robust tracking control for SIMO UMS is proposed based
on flat output identification, sparse regression with algebraic method, and flatness-
based ADRC without knowing details of its mathematical model. The locally flat
output are identified and computed by applying FOID algorithm to input-output
data sequence of UMS. It shows the locally flat output can convert the nominal
model of UMS to a equation of input-output relation between control signal and
flat output, which is naturally the system of interest in the realm of ADRC. The
trajectory planning is convenient to be carried out with the aid of flat output and
its relationship between system states, thanks to sparse regression and algebraic
method. Ideas of reduced nominal model, error space and simple construction of
high-order derivatives of flat output through measurable outputs are adopted to
avoid directly using high-order ESO and make data-driven flatness-based ADRC
feasible. The experiment of rotary crane pendulum strongly supports the effective-
ness and robustness of provided control design.



Chapter 4

IDENTIFICATION OF LINEAR DIFFERENTIALLY
FLAT OUTPUT OF A CLASS OF MIMO

UNDERACTUATED MECHANICAL SYSTEMS

In this chapter, we introduce a data-driven algorithm that automatically iden-
tifies the locally flat output of a class of nonlinear MIMO underactuated mechanical
systems (UMS) from input-output measurements to address these issues. Without
the aid of a precise model, the concentration on local flatness not only simplifies the
composition of flat outputs such that the simple mathematical relations between
states, inputs and flat outputs can be obtained, but also allows non-flat nonlinear
systems to have approximate flatness around their equilibria and potentially extend
the use of flatness-based control to larger range of applications. We extend the FOID
algorithm proposed in Chapterr 2 which focuses on the identification of locally flat
outputs of single-input nonlinear UMSs and develop an modified version of FOID
to find locally flat outputs for a class of multiple-input nonlinear UMSs.

The rest of the chapter is organized as follows. In Section 4.1, we introduce
the MIMO nonlinear UMS of interest in this chapter and the mathematical concepts
of the flatness and flat outputs. In Section 4.2, the flat output of specific form
for linear reduced model is discussed. In Section 4.3, a statement of the problem
is given. Section 4.4 is devoted to the proposal of modified algorithm of FOID
that identifies locally flat outputs for MIMO nonlinear UMSs. In Section 4.5 two
numerical examples are presented to validate the feasibility and efficiency of the
modified algorithm. The chapter is concluded in Section 4.6.

4.1 Mathematical Preliminaries

4.1.1 Model of MIMO Nonlinear UMS

Given that the cases in which general MIMO nonlinear systems involve are
mostly complicated to discuss, for sake of simplicity, the system of interest in the
rest of chapter is proposed as a class of nonlinear UMSs with degrees of freedom
n = 3 and two independent input channels. Applying Lagrange’s equations to these
UMSs typically gives the equation of motion as [39],

m11(q)q̈a + m12(q)q̈u + h1(q, q̇) = g(q)τ (4.1)

m21(q)q̈a +m22(q)q̈u + h2(q, q̇) = 0, (4.2)

69
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where qa ∈ R2×1 and qu ∈ R are the generalized coordinates q = [qT
a , qu]

T ∈ R3×1,
the vector function h1(q, q̇) ∈ R2×1 and scalar function h2(q, q̇) ∈ R contain Coriolis,
centrifugal terms and the terms derived from potential energy, τ ∈ R2×1 is the
vector of generalized forces applied to the system, and g(q) is assumed to be a 2×2
invertible square matrix for all q in the configuration space. The terms m11 ∈ R2×2,
m21 ∈ R1×2, m12 ∈ R2×1 and m22 ∈ R form the mass matrix M(q) of the system,
given by

M(q) =

[
m11 m12

m21 m22

]
n×n

. (4.3)

The systems are supposed to have three independent outputs in terms of the gen-
eralized coordinates q,

y = I3×3q, (4.4)

where y ∈ R3×1 is the output vector and I is identity matrix. Equations (4.1) and
(4.2) can also be rewritten in the state-space form. Let x = [qTa , qu, q̇

T
a , q̇u]

T ≡
[x1, x2, · · · , x6]T be the state vector, and u = [u1, u2]

T ≡ τ . The state equations are
given by,

ẋ = F(x) + G(x)u (4.5)

y = I3×3[x1, x2, x3]
T (4.6)

or in the scalar form,

ẋ1 = x4, ẋ2 = x5, ẋ3 = x6,
ẋ4 = f1(x) + g11(x)u1 + g12(x)u2,
ẋ5 = f2(x) + g21(x)u1 + g22(x)u2,
ẋ6 = f3(x) + g31(x)u1 + g32(x)u2,
y1 = x1, y2 = x2, y3 = x3,

(4.7)

where F(x) ∈ R6×1 and G(x) ∈ R6×2 are smooth vector fields defined through
Equations (4.1) and (4.2). fi, gi1 and gi2, i = 1, 2, 3, are the components of F(x)
and G(x). G(x) is assumed to have full rank, i.e., 2, for all x, and gi1(x) and
gi2(x) are nonzero for i = 1, 2, 3. Since the rank of G(x) equal to 2 is less than the
number of degrees of freedom n = 3, the two independent inputs u1 and u2 cannot
fully actuate the system along arbitrary directions in its configuration space, which
normally makes the stabilization and tracking problem of the system intractable.

4.1.2 Flat Output for MIMO system

If there exists, a flat output of a MIMO nonlinear system with state vector x ∈
R2n×1 and 2 independent inputs u = [u1, u2]

T , it must be composed of two distinct
components yf1 and yf2 . Thus it can be shown that there exists endogenous dynamic
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feedback that makes the closed-loop system equivalent to the linear controllable
system in the canonical form as

y
(r1+1)
f1

= v1,

y
(r2+1)
f2

= v2,
(4.8)

where v1 and v2 are the new controls to be designed, r1 and r2 are integers such that
r1 + r2 ≥ 2n. x and u can be expressed as [41]

x = φ1(yf1 , . . . , y
(r1)
f1

, yf2 , . . . , y
(r2)
f2

) (4.9)

u = φ0(yf1 , . . . , y
(r1+1)
f1

, yf2 , . . . , y
(r2+1)
f2

) (4.10)

Equation (4.8) is an input-to-flat output description of the original system without
any internal dynamics, which allows one to design new controls to directly shape
the trajectories of flat outputs and hence achieve the prescribed trajectories of the
state x in tracking control as Equations (4.9) and (4.10) suggest.

Although flat systems have good properties for simplifying tracking control
design, a lot of nonlinear UMSs are not considered flat as they are not fully feedback
linearizable. In other words, it is impossible to transform them into equivalent linear
controllable systems through a feedback control law regardless of static or dynamic
one. To extend the application of flatness on various systems, the flatness can be
viewed as a local property of a nonlinear system around certain equilibrium in the
state space. A well-known theorem [32] about flatness states that a nonlinear system
is locally flat around an equilibrium point if the tangent linearized system around
that point is controllable. The linearized controllable system therefore takes the
advantage of flatness around its equilibrium point, and it is usually easier to find
flat outputs, though not all of them, for linear systems than for general nonlinear
ones. It can be transformed into controllable canonical form with the same inputs
via a static state feedback. In addition, these locally defined flat outputs can be
linear functions of states of the linearized system, which defines a diffeomorphism
transformation and preserves the dimension of the original linearized system. This
is usually not true for a nonlinear system whose flat outputs have nonlinear relations
with the original system states.

4.1.3 Flatness and Flat Output of MIMO Linear System

Linear controllable systems are always flat. It requires relatively less effort to
find flat outputs of linear systems as linear functions of states than that for nonlinear
systems. We can show that finding a transformation matrix T that converts the
original system to a controllable canonical form leads to the problem of finding the
flat output for linear controllable systems.
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Consider the transformed new state in the controllable canonical form is z
and the original linear state vector satisfies x = T−1z. For 2n-dimension single-
input-single output linear system with controllable pair (A,b), the controllability
matrix Cs = [b,Ab, · · · ,A2n−1b] can be uniquely determined, and thus the flat
output can be derived as the first state variable of transformed vector z given by

yf = t1z = [0, 0, · · · , 1]C−1s z. (4.11)

The transformation matrix T is then defined as T = [t1, t1A, · · · , t1A2n−1]T . The
flat output yf here is a linear combination of the state variables in x despite that
some flat output with nonlinear relations may exist. One can immediately verify that
all variables in x can be expressed by yf and its finite number of time derivatives.
Indeed, x is a linear function of the variables in new vector z = [yf , ẏf , · · · , y2n−1f ]T

where the function relation is determined by T. Note that yf is not the unique linear
flat output of the system since any variable ȳ = ayf , where a ∈ [−∞, 0) ∪ (0,∞],
can also be verified as flat output.

For MIMO controllable systems, the controllability matrix of 2n-dimension
MIMO system with m inputs Cm = [B,AB, · · · ,A2n−1B] has 2n×m columns, and
there are many choices to pick out 2n linearly independent columns from Cm to
form the transformation matrix T. The Luenberger second controllable canonical
form requires a special order for selecting 2n linearly independent columns which
constitute a matrix P given by

P = [b1,Ab1, · · · ,An1−1b1,b2,Ab2, · · · ,An2−1b1,b3, · · · ,Anm−1bm]2n×2n,
(4.12)

where {n1, n2, . . . , nm} is the set of controllability indices and
∑m

i=1 ni = 2n. The
transformation matrix T can be further derived from P. The resulting transformed
system is given by

z
(n1)
1 = f̄1(z) + u1 + b̄12u2 + . . .+ b̄1mum,

z
(n2)
2 = f̄2(z) + u2 + b̄23u3 + . . .+ b̄2mum,

z
(n3)
3 = f̄3(z) + u3 + b̄34u4 . . .+ b̄3mum,

...

z
(nm)
m = f̄m(z) + um,

(4.13)

where z1 is the first state of z, zi, i = 2, 3, · · · ,m, is the (1 + n1 + n2 + · · ·ni−1)th
state of z, f̄j(z), j = 1, 2, · · · ,m, is a linear function of z, and b̄kl with proper
subscript is a scalar coefficient for ul. Since

∑m
i=1ni = 2n, the new state vector z

consists of zi, i = 1, 2, . . . ,m, and their finite number of time derivatives, the orders
of which is determined by ni. Therefore, it is straightforward to show that all the
original states in x can be expressed by linear functions of states in z, which indicates
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yf = [z1, z2, . . . zm]T is a (linear) flat output of MIMO system. Accordingly, we can
calculate yf from z = Tx, and component zi is also a linear function of all the
states in x. The controllable canonical form derived in Equation (4.13) is extremely
powerful in feedback control design as it allows to decouple the control design for
each output zi. It can be shown that the Brunosky canonical form can be obtained
based on the controllable canonical form.

4.1.4 Flatness-based Active Disturbance Rejection Control

The input-output model, as a result of parameterization of input in terms
of states, naturally lends itself to the paradigm of ADRC design. Active distur-
bance rejection control, or shortly ADRC, is an observer-based control approach
that estimates unknown total disturbances online, including endogenous system dy-
namics and exogenous disturbances, and cancels them by feedforward compensation.
ADRC treats all its variations due to parametric uncertainties and unmodeled dy-
namics as endogenous perturbation, and interprets any external disturbance to the
system, regardless of its type and origin, as exogenous perturbation. The basic idea
of disturbance rejection is to estimates both types of perturbations together on-line,
called the total disturbance, and compensate them by the feedforward control. After
the compensation, a variety of linear and nonlinear control schemes can be applied
to the resulting trivial system of pure integrators. When b(yf1) is not known exactly
in advance, a common technique is to incorporate the state-dependent part of b(yf1)
into the total disturbance and retains a constant b0 or known function of yf1 as a
nominal input gain. The input-output model in ADRC is therefore rewritten as

y
(2n)
f1

= ξ(t) + b0u, (4.14)

where ξ(t) is a time-varying term representing the total disturbance. The control
law is in the following form

u =
1

b0
(−ξ̃(t) + v) (4.15)

where ξ̃(t) is an estimate of ξ(t) and v is the control designed for the trivial integral

system y
(2n)
f1

= v. Consequently, the influence of unknown disturbances could be
suppressed adaptively, and the robustness of the closed-loop system with respect to
disturbances is significantly improved. The performance of ADRC is highly relied on
accurate on-line estimation of the flat output vector yf1 and the total disturbance,
which requires an effective algorithm for state and disturbance estimation with low
latency. The core component undertaking this task in ADRC is the extended state
observer (ESO). The ESO with nonlinear gain functions are called the nonlinear
ESO (NLESO) and can produce better transient behavior and faster convergence
than the linear ESO (LESO), which is a special class of ESO with linear gain func-
tions. However, the LESO has shown its advantages of simple tuning process and
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clear physical interpretation in applications, whereas the design of gain functions
and tuning parameters in NLESO are overall more difficult and may vary from one
specific system to another. It should be pointed out that the performance of estima-
tion generally deteriorates when n becomes large because the noise and the phase
lag of signals will be amplified

4.2 Flat Output of Linear Reduced Model

Although many nonlinear UMSs are not inherently flat, their tangent lin-
earization around certain equilibrium can be flat. Let p = (xe,ue) denote an oper-
ation point or equilibrium of MIMO UMS (4.5). The tangent linearization around
p is given by

ẋδ = Axδ + Buδ, (4.16)

where xδ = x− xe, uδ = u−ue, A is a 6×6 system matrix and B is a 6×2 control
influence matrix. The linearized system (4.16) is flat if pair (A,B) is controllable,
which is an assumption that generally holds when the terms from potential energy,
such as gravitational and elastic forces, are included in Equations (4.1) and (4.2).
From the previous discussion, the linear flat output for system (4.16) exists and
can be calculated by finding the transformation matrix T such that the system is
in the form of Equation (4.13). It is worth noting that the derivation of vector z
may need information of the full state vector x, which is a strong condition that
is occasionally not satisfied in practice. The linear flat output shown in Equation
(4.13) may not be physically realizable if some states are not accessible. It is always
desirable to have fewer number of states involved in the construction of vector z, the
flat output vector, and hence include the full dynamics of the original system within
the components of flat output. Actually, the linearized system (4.16) can be further
simplified by neglecting the terms related to the generalized velocities q̇ because
they mostly affect the Coriolis forces, centrifugal forces and viscous damping which
usually have minor contribution to system dynamics when the system is operated
within a small range, to satisfy linear assumption in action. Consider the reduced
model of system (4.16) given by

ẋ = Arx + Bu, (4.17)

where we redefine x = [x1, x2, · · · , x6]T ≡ xδ for simplicity,

Ar =


0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
a11 a12 a13 0 0 0
a21 a22 a23 0 0 0
a31 a32 a33 0 0 0

 , B =


0 0
0 0
0 0
b11 b12
b21 b22
b31 b33

 , (4.18)
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The following theorem shows that the flat output is only linear functions of first
three states in xδ.

Theorem 4.2.1. Given reduced linearized system of MIMO nonlinear UMS in the
form of Equation (4.17), if the following matrices

K =

[
b21 b31
b22 b33

]
, Q =

[
c∗2 c∗3

a12 + c∗2a22 + c3a32 a13 + c∗2a23 + c∗3a33

]
, (4.19)

are non-singular, where c∗2 and c∗3 are the solution of equations

b11 + c2b21 + c3b31 = 0, (4.20)

b12 + c2b22 + c3b33 = 0, (4.21)

then the vector yf = [yf1 , yf2 ]
T is a flat output where

yf1 = x1, (4.22)

yf2 = x1 + c∗2x2 + c∗3x3. (4.23)

Proof. To prove that yf is a flat output, we need to show that all the states of

x can be expressed by the components yf1 , ẏf1 , · · · , y
(n1)
f1

, yf2 , . . . , y
(n2)
f2

, with n1 and
n2 being some finite positive numbers. Apparently, x1 = y1 and x4 = ẋ1 = ẏ1.
Differentiating y2 twice with respect to time gives,

yf2 = x1 + c2x2 + c3x3, (4.24)

ÿf2 = (a11 + c2a21 + c3a31)x1 + (a12 + c2a22 + c3a32)x2 (4.25)

+ (a13 + c2a23 + c3a33)x3 + (b11 + c2b21 + c3b31)u1 + (b12 + c2b22 + c3b33)u2.

By choosing c2 = c∗2, c3 = c∗3, it gives

ÿf2 = (a11 + c∗2a21 + c∗3a31)x1 + (a12 + c∗2a22 + c∗3a32)x2

+ (a13 + c∗2a23 + c∗3a33)x3. (4.26)

Substituting x1 with y1, x2 and x3 can be the linear functions of y1, y2 and ÿ2 by
solving the following system of equations[

c∗2 c∗3
a12 + c∗2a22 + c∗3a32 a13 + c∗2a23 + c∗3a33

] [
x2
x3

]
=

[
−1

−a11 − c∗2a21 − c∗3a31

]
yf1 +

[
1
0

]
yf2 +

[
0
1

]
ÿf2 .

(4.27)

Denote the solution by x2 = χ2(yf1 , yf2 , ÿf2) and x3 = χ3(yf1 , yf2 , ÿf2). Since Q is
invertible, the solution is given by[

χ2(y1, y2, ÿ2)
χ3(y1, y2, ÿ2)

]
= Q−1

([
−1

−a11 − c2a21 − c3a31

]
y1 +

[
1
0

]
y2 +

[
0
1

]
ÿ2

)
. (4.28)

Hence x5 = ẋ2 and x6 = ẋ3 are the linear functions of ẏ1, ẏ2 and
...
y 2.
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By Theorem 4.2.1, we can further show that scalar output functions in the
form of ȳf1 = xi and ȳf2 = xi + cjxj + ckxk, where i, j, k ∈ {1, 2, 3} and i 6= j, j 6= k,
k 6= i, can be proven as flat output of system (4.17) with proper modification of
matrices in conditions (4.20) and (4.21). To check the rank of Q matrix, the matrix
B is assumed to be known. On the other hand, if one knows the vector relative
degree [53] of the system with output function yf in which yf1 and yf2 are determined
by certain choice of c2 and c3, we are able to judge if it is a flat output without
knowing B. According to the definition and property of flatness, the problem of
finding the flat output for nonlinear systems can also be viewed as a problem of
finding an appropriate state feedback control law and a coordinate transformation
such that Brunovsky’s canonical form can be obtained, which is called State-Space
Exact Linearization Problem when we restrict the type of feedback control to regular
static state feedback. A well-known lemma [53] has stated the relations between
vector relative degree and flatness of the output in this case.

Lemma 4.2.2. The exact state linearization problem is solvable if and only if there
exists a neighborhood U of x◦ and m real-valued functions h1(x), . . . , hm(x), defined
on U , such that the nonlinear system with order of 2n and m independent inputs in
the state space given by

ẋ = F̄(x) + Ḡ(x)u, (4.29)

y = H̄(x), (4.30)

has some vector relative degree {n1, · · · , nm} at x◦ and n1 + n2 + · · · + nm =
2n, where x ∈ R2n×1, u ∈ Rm×1, F̄(x) ∈ R2n×1 and Ḡ(x) ∈ R2n×m, H̄(x) =
[h1(x), h2(x), · · · , hm(x)]T ∈ Rm×1 are real-valued smooth vector fields defined on
an open set of R2n.

Lemma 4.2.3. If there exist m real-valued outputs h1(x), · · · , hm(x) defined on U
for 2n-dimensional linear controllable system

ẋ = Āx + B̄u (4.31)

with m independent inputs with relative degrees {n1, n2, · · · , nm} and
∑m

i=1 ni = 2n,
the vector yf = [yf1 , yf2 , · · · , yfm ]T is a flat output where

yf1 = h1(x),

yf2 = h2(x),

...

yfm = hm(x).

(4.32)
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Proof. According to Lemma 1, it is sufficient to solve the state-space exact lineariza-
tion problem of 2n-dimensional MIMO linear controllable system with a vector of
relative degrees {n1, n2, · · · , nm} and

∑m
i=1 ni = 2n. It implies a set of functions

φik(x) = Lk−1
Ā

hi(x), (4.33)

for 1 ≤ k ≤ ni, 1 ≤ i ≤ m, completely define the local coordinate transformation
Φ = [φ1

1, · · · , φ1
n1
, φ2

1, · · · , φ2
n2
, · · · , φmnm

]T , which is invertible around x◦, and the
transformed new system, after applying a proper static state linearizing feedback,
can be rewritten by m sets of equations of the form

ξ̇i1 = ξi2,

...

ξ̇ini−1 = ξini
,

ξ̇ini
= vi,

(4.34)

where ξik = φik(x). Define yfi = ξi1. Since Φ is invertible, the state x can be
represented as

x = Φ−1[yf1 , ẏf1 , . . . , y
(n1−1)
f1

, yf2 , . . . , y
(n2−1)
f2

, . . . , yfm , . . . , y
(nm−1)
fm

], (4.35)

and the control input vector u can be written as

u = Ψ[yf1 , ẏf1 , . . . , y
(n1)
f1

, yf2 , . . . , y
(n2)
f2

, . . . , yfm , . . . , y
(nm)
fm

], (4.36)

hence, yf = [yf1 , yf2 , · · · , yfm ]T is a flat output.

When the sum of entries in the vector relative degree is equal to the order of
the system or the dimension of the state space, the vector of the output is shown
to be flat. We can apply this lemma to system (4.17) and obtain the sufficient
condition to characterize flat output, which is shown by next theorem

Theorem 4.2.4. Given real-valued output vector yf = [yf1 , yf2 ]
T in which yf1 = x1,

yf2 = x1 + c2x2 + c3x3, c2 6= 0, c3 6= 0, c2 ∈ R, c3 ∈ R, yf can be a flat output with
some choice of c2 and c3 if reduced linearized system of MIMO nonlinear UMS in
the form of Equation (4.17) has a vector relative degree {n1, n2}, and n1 + n2 = 6.

Proof. Differentiating yf1 twice, either u1 or u2 shows up in the result so the relative
degree n1 associated with yf1 is 2 because at least one of b11 and b12 is nonzero.
Then yf2 has relative degree n2 = 4. Equations (4.20) and (4.21) must be satisfied,
which gives

ÿf2 = (a11 + c∗2a21 + c∗3a31)x1

+ (a12 + c∗2a22 + c∗3a32)x2 + (a13 + c∗2a23 + c∗3a33)x3

= q1x1 + q2x2 + q3x3.

(4.37)
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where c∗2 and c∗3 must be chosen as the solution of Equations (4.20) and (4.21), and

matrix K =

[
b21 b31
b22 b33

]
must be nonsingular. yf and its finite time derivatives define

an invertible local coordinates transformation Φ

y = Φx, (4.38)

yt =


yf1
ẏf1
yf2
ẏf2
ÿf2...
y f2

 =


1 0 0 0 0 0
0 0 0 1 0 0
1 c∗2 c∗3 0 0 0
0 0 0 1 c∗2 c∗3
q1 q2 q3 0 0 0
0 0 0 q1 q2 q3




x1
x2
x3
x4
x5
x6

 . (4.39)

Now define the matrix Q as

Q =

[
c∗2 c∗3
q2 q3

]
(4.40)

is singular, which implies the row vectors qr1 = [c∗2, c
∗
3] and qr2 = [q2, q3] are linearly

dependent. Let qr2 = λqr1 , λ ∈ R, and λ 6= 0. We rewrite Equation (4.37) as

ÿf2 = q1yf1 + λc∗2x2 + λc∗3x3

= q1yf1 + λ(yf2 − yf1) (4.41)

Differentiating ÿf2 twice gives

y
(4)
f2

= q1ÿf1 + λ(ÿf2 − ÿf1) (4.42)

= (q1 − λ)ÿf1 + λ(q1x1 + q2x2 + q3x3)

= (q1 − λ)(a11x1 + a12x2 + a13x3 + b11u1 + b12u2)

+ λ(q1x1 + q2x2 + q3x3)

= w̄1x1 + w̄2x2 + w̄3x3 + (q1 − λ)b11u1 + (q1 − λ)b12u2.

where w̄1, w̄2, w̄3 are scalar coefficients and (q1−λ) 6= 0, as the vector relative degree
is {2, 4}. The transformed system becomes

ÿf1 = a11x1 + a12x2 + a13x3 + b11u1 + b12u2, (4.43)

y
(4)
f2

= w̄1x1 + w̄2x2 + w̄3x3 + (q1 − λ)b11u1 + (q1 − λ)b12u2. (4.44)

Since the new system can also be written as

ẏt = ΦĀΦ
−1

yt + ΦB̄u = Āyyt + B̄yu, (4.45)
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the new control influence vector B̄y becomes

B̄y = ΦB̄ =


0 0
b11 b12
0 0
0 0
0 0

(q1 − λ)b11 (q1 − λ)b12

 (4.46)

and the rank of B̄y is 1, which contradicts the fact that B̄ has full rank 2, or
two independent input channels exist. Therefore the matrix Q must be invertible.
According to Theorem 4.2.1, we conclude yf is a flat output of reduced linearized
system (4.17). The parametrization of the state vector x is given by

x1 = yf1 , x4 = ẋ1 = yf1 ,

x2 = χ2(yf1 , yf2 , ÿf2), x5= χ̇2 = η2(ẏf1 , ẏf2 ,
...
y f2), (4.47)

x3 = χ3(y1, y2, ÿ2), x6 = χ̇3 = η3(ẏf1 , ẏf2 ,
...
y f2),

where η2 and η3 are some linear functions.

From Theorem 4.2.4, the vector relative degree of system (4.17) is an efficient
indicator characterizing the flatness of the output in the form of Equations (4.22) and
(4.23) without checking the rank of K and Q. The reduced linearized model greatly
simplifies the composition of the flat output components by the means of neglecting
all the terms relevant to generalized velocities in the model. The numbers in the set
of controllability indices of the reduced model may also be changed compared to the
case when all the states in x are involved. Such simplification is extremely useful in
tracking control because certain components of the flat output, for instance, yf1 = x1
of the system we just discussed, could have a simple linear function of a single state
and undisturbed by other states during trajectory planning and tracking.

The reduced linearized model can be transformed into the Brunosky’s canon-
ical form if a proper static state feedback is applied. The resulting input-to-flat
output system is given by,

ÿf1 = a11yf1 + a12χ1(yf1 , yf2 , ÿf2)

+ a13χ2(y1, y2, ÿ2) + b11u1 + b12u2

= µ1(yt) + b11u1 + b12u2,

y
(4)
f2

= w1yf1 + w2χ1(yf1 , yf2 , ÿf2)

+ w3χ2(y1, y2, ÿ2) + l21u1 + l22u2

= µ2(yt) + l21u1 + l22u2.

(4.48)
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where

w1 = q1a11 + q2a21 + q3a31,

w2 = q1a12 + q2a22 + q3a32,

w3 = q1a13 + q2a23 + q3a33,

l21 = q1b11 + q2b21 + q3b31,

l22 = q1b12 + q2b22 + q3b32.

(4.49)

Consider two time-varying terms ρ1(t) and ρ2(t) for each subsystem that contain
the unmodeled dynamics, internal and external disturbances, error caused by lin-
earization, which is the notion of total disturbance from active disturbance rejection
control and disturbance-observer based control. The compensated system dynamics
can be generally described as

ÿf1 = Ω1(t) + b11u1 + b12u2,

y
(4)
f2

= Ω2(t) + l21u1 + l22u2.
(4.50)

where Ω1(t) = µ1(yt) + ρ1(t),Ω2(t) = µ2(yt) + ρ2(t). Since the transformation Φ is
invertible, it is always possible to introduce a static state feedback

u =

[
b11 b12
l21 l22

]−1 [
v1 − Ω1(t)
v2 − Ω2(t)

]
, (4.51)

and hence the Brunosky’s canonical form is given by

ÿf1 = v1, y
(4)
f2

= v2. (4.52)

The control design of systems in the form of Equation (4.50) can be naturally dealt
with in the framework of ADRC, disturbance-observer based control and neural
network-based control in which various strategies for online estimation or adaptive
approximation of the unknown disturbance term Ω1(t) and Ω2(t) are proposed.

4.3 Problem Formulation

The characterization of the flatness of nonlinear systems is generally not
straightforward, and the problem of finding corresponding flat outputs is also in-
tractable even the accurate mathematical model is given. For linearized system, due
to the relations between controllability and flatness, linear flat outputs that trans-
form the system into controllability canonical form are the common choices. When
only measurement of outputs are available, the local flatness of nonlinear MIMO sys-
tems is possible to be determined by data-driven techniques that construct discrete
controllability matrix or equivalently check the rank condition of some matrices.
The reduced linearized model of MIMO systems can further simplify the structure
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of local flat output. With identified local flat outputs, the uncertainties and ap-
proximation made by linearization and model reduction can be compensated by
disturbance-observer-based control technique, such as ADRC and neural-network-
based observer control. The local flatness greatly expedites the tracking control
design of a class of nonlinear MIMO UMSs.

Therefore, we next focus on finding a special type of linear locally flat output
yf in the form of Equations (4.22) and (4.23) for MIMO nonlinear system (4.7)
without relying on the concrete mathematical equations. Based on the reduced
linearized model, yf can be efficiently identified with linear combination of a few
number of states, and the error caused by approximation will be efficiently compen-
sated through a feedforward channel in the control design. The identification of the
parameterization of original state can be carried out, after yf is found, by applying
parametric estimation, with all or partial signals of yf and its finite number of time
derivatives available in the library. The problem in this chapter can be formalized
as follows.

Problem 3. Given measurements of the state x1, x2 and x3, find the locally flat
output yf in the form given by Equations (4.22) and (4.23) for MIMO nonlinear
UMS around its equilibrium p and hence transform it into controllable canonical
form.

4.4 Identification of Flat Output for MIMO systems

4.4.1 Introduction of Modified FOID (MFOID) Algorithm

Flat output identification (FOID) is a data-driven algorithm that identifies
the locally flat output of the nonlinear systems given measurements of the outputs
and control input. For SIMO system, the locally flat output exists if any output
with relative degree equal to order of the controllable linearization of nonlinear sys-
tem, or full relative degree, exists around its equilibrium. The algorithm presents
the relation between control input and different combination of outputs by calcu-
lating the periodograms and evaluate the relative degree from the corresponding
transfer functions obtained. The relative degree, in this context, can be viewed as
the ’distance’ from non-flat output to flat output, and the flatness of the output can
be characterized when the relative degree is full. The candidates of flat output are
the linear combination of the outputs and the dimension of search space in which
possible candidates lie in can be configured, as a result of compromise between the
availability of measured outputs and computational cost. However, FOID itself has
the limitation that the candidate output has simply one component for SIMO sys-
tem, and therefore the form of candidate flat output might not be true for MIMO
system. The relative degree condition involves more than one output in cases of
MIMO systems and one can not perform FOID for single output to find the flat
output. In fact, since the number of components of flat output of MIMO systems
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equates the number of control input channels, the flat outputs, even the linear ones,
becomes more amorphous.

As we have shown in Section 4.2, the relation between vector relative degree
and local flatness of nonlinear MIMO UMSs is similar as we found for SIMO UMS,
although the number of component of flat output now is more than one. The modi-
fied FOID (MFOID) algorithm is developed to fit the problem of finding locally flat
output for MIMO UMSs without leveraging the mathematical models in details.
The major difficulty to accommodate MIMO situation in FOID is that there are a
variety of choices of flat outputs, and one must determine what linear combination
is going to be used in identification. Thanks to Theorems 4.2.1 and 4.2.4, an off-the-
shelf solution can be found by setting the output function in the form of Equations
(4.22) and (4.23) are treating the nonlinear system as linear one near an equilib-
rium. MFOID is designed to evaluate the vector relative degree and systematically
calculate the unknown coefficients c2 and c3 in Equations (4.20) and (4.21) without
leveraging the details of mathematical equations. The first part of the algorithm
focuses on the evaluation of relative degree of simple outputs like y1 in Equation
(4.22). The second part of the algorithm aims to find a proper compound output in
the form of y2 that satisfies the vector relative degree condition in Theorem 4.2.4.

4.4.2 Relative Degree Evaluation of Simple Outputs

The relative degree of simple outputs which only consists of one state can
be conveniently determined by inspecting the estimated transfer functions. For
linearized reduced model (4.17), the output y1 in Equation (4.22) is simple, and
process of estimating the relative degree of y1 for control inputs u1 and u2 complies
with the procedures in FOID shown as follows:

• Data Preprocessing

The signal of control inputs u1(t) and u2(t) and output y1(t) of the nonlinear
system operating in a ‘linear’ range are first resized and used to calculate the
cross power spectral density. The transfer functions from inputs u1(t) and
u2(t) to the output y1(t) are estimated as G1(jω) and G2(jω), with some
proper filtering, by calculating the periodogram using H1 estimator.

• Frequency Band Selection

A frequency range needs to be selected to evaluate the relative degree from
the transfer function. It is desirable to have the frequency response in the
linear range of system. Such selection can be done manually at the data
preprocessing stage or automatically by providing a lower and upper frequency
bounds based on the physical property of the system, and removing resonances
near the Nyquist frequency.
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• Regression

The data in the selected frequency band can be used to perform regression
so that the relative degree is viewed as the absolute value of the slope of
the fitted line in log-log plot. Different schemes of regression, such as least
mean square method and ridge regression, are adopted for different cases. The
norm of residual of LMS or loss function are evaluated to judge the quality of
regression. To represent the relative degree as an integer, the estimated slope
will be rounded off or truncated.

• Segmentation

There may be more than one collection of the data suitable for regression,
that is, more than one line can be found in the selected frequency band. The
data within the selected band can be further divided into subsets. The data in
each subset shares the same linear relation with the frequencies. As a result,
multiple values of slope will be generated by different subsets of the data.
Abnormal results will be discarded. Generally the maximum absolute value
of all the slopes of the subsets is chosen as the estimate of the relative degree
of the candidate output.

In the case of Equation (4.22), the relative degree of y1 for both inputs
u1(t) and u2(t) are expected to be 2 if b11 and b12 are nonzero. Otherwise, at
least one of the coefficients is zero or extremely small. The output chosen as one
of the states has two advantages. First, the implementation of the identification
would become extremely efficient because the transfer function for the output y1 is
determined beforehand without extra steps. Second, it makes control design more
straightforward so that one can directly set the output that needs to be controlled
as the flat output component. To complete the identification, the similar steps will
be applied for flat output y2 where some modifications are needed to adapt the
situation of multiple input and output measurements.

4.4.3 Relative Degree Evaluation of Compound Outputs

To satisfy the condition that the sum of vector relative degree is equal to
the dimension of the state space, the second component must have a relative degree
4. The problem is now converted to finding the coefficients c2 and c3 such that
Equation (4.23) can have relative degree 4, that is, taking derivatives with respect
to time up to four times before either input u1 or u2 appears. The number of output
considered hence decreases to one. We are able to use the idea in FOID to validate
the relative degree for single function. The remaining issue is that the solution of
coefficients that makes relative degree become 4 for each input is not unique, and it
is generally hard to find them directly and satisfy both equations (4.20) and (4.21)
simultaneously by random search in the given range.
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Let assume we have a simple first component of flat output chosen as y1 = x1.
The candidate of second component y2 is then a linear combination of x1, x2 and
x3. The estimated transfer functions from input u1(t) and u2(t) to x2 and x3 are
estimated as G2

1(jω), G2
2(jω), G3

1(jω) and G3
2(jω) with some proper filtering, using

the same H1 estimator. The candidates y2 have the form of y2 = x1 + c2x2 + c3x3,
so the estimated transfer functions with respect to both u1 and u2 are given in the
form of Hi(jω) = Gi(jω) + c2G

2
i (jω) + c3G

3
i (jω) (i = 1, 2).

Since the modified algorithm needs to deal with the identification of relative
degree of two inputs, we can implement the estimation of both periodograms in
parallel to evaluate the transfer functions H1(jω) and H2(jω). This process is the
similar to FOID, but with a new parallel loop to deal with extra estimation.

Next, we look for suitable coefficients c2 and c3 to meet the requirement that
the relative degree for both inputs is 4 at the same time. If either of them is not 4,
the vector relative degree will not lead to a local flatness. However, we notice that
for each input, it is impossible to determine the unique solution as the coefficient
has infinitely many solutions if one iterates the coefficient over the search range. For
example, to satisfy that second component y2 has relative degree 4 with respect to
the first input u1, Equation (4.20) must be satisfied. This is not solvable because
we have only one linear equation and the coefficient of b11, b21 and b31 are unknown.
For u1, the second component y2 has to satisfy another set of equations for u2 with
unknown coefficient in the matrix B. Nevertheless, through the FOID algorithm,
if we designate c2 first, then c3 can be estimated by matching the coefficient in
the search space. Implementing the process repeatedly gives a series of data which
consists of pairs of possible solution (c2, c3). Another set of solution can be found
by doing this to the second input. Two series of data provide us with the possibility
to solve for the unique solution of the system of linear equations.

Although the coefficients in input matrix are unknown, it is possible to esti-
mate the intersection of the two data sets such that the unique solution is obtained.
After collecting the data which makes y2 have relative degree 4 for either u1 and
u2, the operation of linear regression can be implemented to generate the function
of line in the 2D-plane that fits the data points. Finally, the flat output identifica-
tion is completed with the unique interpolation solution obtained which is from the
predictions of the fitted function relations between c2 and c3. Figure 4.1 shows the
procedure to implement the MFOID finding local flat output in the chosen search
space. Parallel computing introduced in the second part can improve the efficiency.

4.5 Numerical Simulation

We present two numerical simulation examples to demonstrate the feasibility
and efficiency of the proposed MFOID algorithm.
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Figure 4.1: Flow chart of the MFOID algorithm.
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4.5.1 A Simple Nonlinear MIMO UMS

Consider the equation of motion of a nonlinear underactuated mechanical
system is given as follows:

ẍ1 = −49.452x1 − 34.4652x2 + 14.334x3 − 0.658ẋ1

− 0.2186ẋ2 − 0.1607ẋ3 + 0.7363x31 + 0.5604u1 + 0.1862u2,

ẍ2 = −30.414x1 − 47.267x2 + 27.219x3 − 0.3723ẋ1

− 0.1025ẋ2 − 0.1753ẋ3 + 0.3592 sin(x3) + 0.3717u1 + 0.0233u2,

ẍ3 = −42.599x1 − 30.362x2 + 7.113x3 − 0.8928ẋ1

− 0.4ẋ2 − 0.557ẋ3 + 0.9588 sin(x1)x2 + 0.2747u1 + 0.2576u2.

(4.53)

The system has three degrees of freedom, and x1, x2 and x3 are the corresponding
generalized coordinates. The dynamics of each generalized coordinate is affected by
some linear terms, nonlinear functions of xi, i = 1, 2, 3, and two independent inputs
u1 and u2. The outputs of the system are measured as h1(x) = x1, h2(x) = x2 and
h3(x) = x3. Figures 4.2 and 4.3 show the simulated response of the system and
random inputs. To find the locally flat output of the system, we use the MFOID for
two components since the number of input is known. The form of the locally flat
output is assumed by Equations (4.22) and (4.23).

The goal is to find the proper coefficients c2 and c3 that satisfy the vector
relative degree condition. We first focus on the first component y1. To verify if the
output y1 has relative degree 2 for both inputs, the relative degree with respect to
the input u1(t) and u2(t) are directly estimated by the periodogram generated by
measured input and output data. We manually choose the frequency band between
1 Hz to 100 Hz to estimate the slope of the estimated transfer function. The random
signal for the estimation follows the normal distribution N(0, 0.01). Figures 4.4 and
4.5 show the result of estimated transfer function for two distinct input u1(t) and
u2(t). In Figure 4.4, three segments are generated for relative degree evaluation
after two antiresonance peaks are removed. The segment 1 and 2 are not considered
further because the number of points in each set is lower than the threshold 15% set
by algorithm. The points in Segment 3 is used in linear regression and the slope is
calculated as -1.9996 per decades in frequency, which indicates the relative degree is
approximately 2. Figure 4.5 includes two segments and only segment 2 is considered
valid. Therefore the component y1 = x1 has relative degree 2 as slopes shown in two
figures are approximated around 2. It can easily verified from the equations above
that it indeed can differentiate y1 twice to get both inputs appeared.

The second part of MFOID is to find the best set of coefficients to maximize
the relative degree of y2. The relative degree estimation of y2 is similar to FOID,
but there are two individual processes for two inputs. For each process, the value
of c2 iterates over a certain given interval. They are now chosen as same by [10, 20]
with step size only 1. This choice gives us a series of coefficient c2 and hence help
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generate two sets of c3 that makes the second output has relative degree 4. Linear
regression is applied to the two sets of c2 and c3 and the intersection is assumed
to be the solution of flat output finding problem. Figures 4.6 and 4.7 show the
estimated result of c3 when c2 = 1. In Figure 4.6, the candidate y2 will have
relative degree of 4 when c3 is chosen within [−3.90,−3.82] with step size 0.01. The
height of bars are assigned with value of confidence rate or relative data usage [52]
which is a measure of how much portion of data points is used in each estimation
when c3 iterates, and the best value of c3 should be chosen when confidence rate
is highest. In this case, all estimates within [−3.90,−3.82] use the same amount
of data points so the best c3 also follows the rule of least absolute value, that is
−3.82. The corresponding estimated transfer function is shown in Figure 4.7 with
three segments are generated. Due to the drastic change of slope in transfer functions
from inputs to y2, the threshold of picking segments are chosen 5% to avoid skipping
some values of c3 in iteration and improve the accuracy. Segment 2 is chosen for
linear regression since the slope is the largest and it is not close to the Nyquist
frequency. The same example for input 2 when c2 = 1 is shown by Figures 4.8 and
4.9. After generating the full sets of (c2, c3) for both inputs, Figure 4.10 shows that
the solution is c2 = −1.0324 and c3 = −0.6336 by finding the intersection of two
fitted lines. It can be shown that the linearized system of equation above around
origin gives:

ẍ1 = −49.4521x1 − 34.4652x2 + 14.3340x3 − 0.6580ẋ1

− 0.2186ẋ2 − 0.1607ẋ3 + 0.5604u1 + 0.1862u2,

ẍ2 = −30.4147x1 − 47.2673x2 + 27.2193x3 − 0.3723ẋ1

− 0.1025ẋ2 − 0.1753ẋ3 + 0.3717u1 + 0.0233u2,

ẍ3 = −42.5996x1 − 30.3623x2 + 7.1132x3 − 0.8928ẋ1

− 0.4002ẋ2 − 0.5570ẋ3 + 0.2747u1 + 0.2576u2.

(4.54)

One possible locally flat output for this system, rendering full vector relative
degree, is indeed very close to the result of identification,

y1 = x1,

y2 = x1 − 1.0432x2 − 0.6285x3. (4.55)

One important application of the flat output is for control design. For exam-
ple, we point out that the control design within ADRC framework can be formalized
by using the following input-to-flat output relations:

ÿ1 = Ω1(t) + b1u1 + b2u2,

y
(4)
2 = Ω2(t) + l1u1 + l2u2.

, (4.56)

where b1, b2, l1,l2 are nominal input gains chosen, and Ω1(t) and Ω2(t) are time-
varying terms include unknown system dynamics, real-time disturbances and model
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Figure 4.2: Open-loop response of the simple nonlinear UMS.

error caused by choosing nominal gains. An extended state observer (ESO) can
be designed to estimated so-called unknown total disturbance Ω1(t) and Ω2(t) re-
spectively. The MIMO control design is straightforward by cancelling the estimated
terms. Note that the relations between states and flat output y1 and y2 need to be
identified using input-output measured data for leveraging the flatness-based control
design, as we have done in Chapter 3.
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Figure 4.3: Random inputs u1 (top) and u2 (bottom).
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4.5.2 Three-degree-of-freedom Mass-Spring-Damper System

Consider a nonlinear mass-spring-damper system with 3 degrees of freedom
as shown in Figure 4.11.m1

m2

m3

ẍ1ẍ2
ẍ3

+

 d2 −d2 0
−d2 d2 + d3 −d3

0 0 0

ẋ1ẋ2
ẋ3


+

 d1 |ẋ1| ẋ1
0

d3 |ẋ2| (ẋ3 − ẋ2)

+

k1 + k2 −k2 0
−k2 k2 + k3 −k3

0 −k3 k3

x1x2
x3

 =

τ1τ2
τ3

 ,
(4.57)

where m1, m2 and m3 are the mass of the carts, k1, k2 and k3 are the stiffness of
three springs connecting the carts, and τ1, τ2 and τ3 are the forces generated by
DC motors. d1, d2 and d3 are damping coefficients. The first and third dampers
are nonlinear as shown by the nonlinear damping matrix. The three inputs τi are
dependent given by

τ1 = b11u1 + b12u2,

τ2 = b21u1 + b22u2, (4.58)

τ3 = b31u1 + b32u2,

where u1 and u2 are two independent control voltages, and bij are the non-zero
weight coefficients. The system is underactuated. The state-space representation is
given by,

ẋ1 = x4,

ẋ2 = x5,

ẋ3 = x6, (4.59)
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m1
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k2
m1
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u2,

ẋ5 =
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m2
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m2
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m3

x6

+
b31
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u2,
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Figure 4.11: A nonlinear mass-spring-damper system with 3 degrees of freedom.

where xi (1 < i < 6) are the states. m1 = 100kg, m2 = 200kg and m3 = 300kg.
The spring constants are k1 = 100N/m, k2 = 150N/m, k3 = 200N/m. d1, d2 and
d3 are 20N · s/m. The coefficients bij are b11 = 50, b12 = 15, b21 = 22, b22 = 13,
b31 = 16, b32 = 38. We apply the MFOID to this example with inputs as u1 and u2.
The assumed form of the locally flat output is given in Equations (4.22) and (4.23).

To find the proper coefficients c2 and c3 that satisfy the vector relative degree
condition, we apply the same settings as in the first simulation example and choose
the same frequency band for analysis. The open-loop responses are shown in Figure
4.12. Figures 4.13 and 4.14 show the estimated transfer functions for two inputs
u1(t) and u2(t). The output y1 = x1 has relative degree 2 as the slopes shown in two
figures are approximately 2, which can be verified from the equations above. The
second part of MFOID is to find the best set of coefficients to maximize the relative
degree of y2. With the same procedures, Figure 4.15 shows that the solution is
c2 = −5.2535 and c3 = −1.5318. It can be shown that the linearized system around
the origin without considering the damping effect would be given by:

ẍ1 = −2.5x1 + 1.5x2 + 0.5u1 + 0.15u2,

ẍ2 = 0.75x1 − 1.75x2 + x3 + 0.11u1 + 0.065u2,

ẍ3 = 0.6667x2 − 0.6667x3 + 0.0533u1 + 0.1267u2,

(4.60)

One possible locally flat output for this system, rendering the full vector
relative degree, is indeed very close to the identified result,

y1 = x1, (4.61)

y2 = x1 − 5.2866x2 − 1.5287x3.

The procedures of control design using ADRC are similar to the one in the
previous example. We shall not present the control design for this example.

4.6 Conclusions

A modified flat output identification (MFOID) algorithm is presented in this
chapter from experimental data of a dynamic system of known order. The system
can be nonlinear, MIMO and underactuated. No detailed mathematical model of
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Figure 4.12: Open-loop responses of nonlinear mass-spring-damper system.
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the system is needed. Trial output is written as a linear combination of measured
outputs. An optimization problem is proposed to search for the linear combination
that leads to the highest relative degree of the trial output. The identification
is done in the frequency domain by taking advantage of the asymptotic behavior
of transfer functions of linearized systems. Various data handling strategies have
been developed to achieve the best estimate of the relative degree in the presence
of measurement noise, high frequency dynamics and Nyquist digitization effect.
The MFOID algorithm has been tested with two numerical examples of nonlinear
dynamic systems.



Chapter 5

FOID-NET: A NEURAL NETWORK FRAMEWORK
IDENTIFYING LINEAR DIFFERENTIALLY FLAT

OUTPUT USING MEASUREMENTS

In this chapter we introduce a new framework based on neural network aim-
ing to identify linear differentially flat output only using measurements from linear
or nonlinear systems. We have seen the powerfulness of flatness in trajectory track-
ing control design, and also know that the general characterization of flat output
highly relies on the mathematical equations of system dynamics. FOID and MFOID
algorithm were proposed in the previous chapters to solve the problem of finding lo-
cally flat output and make data-driven flatnes-based control feasible. However, the
control design based on the framework still requires several additional processes,
like characterization of relations between states and flat outputs as we have seen in
chapter 3. The FOID-Net, or flat output identification neural network, in this chap-
ter works as a function approximator to automatically construct the best mapping
between system’s original states and expected flat outputs. Using neural network
model has been shown more concise and understandable in solving the FOID prob-
lem. For single-input systems, the solution also leads to a well-known result for
linear systems, that is, controllability canonical form.

The basics of linear flat output and neural networks will be discussed in Sec-
tion 5.1. Section 5.2 discusses the structure of FOID-Net and its variants according
to systems. In Section 5.3, we propose the several training methods of FOID-Net
and emphasize their importance. In Section 5.4, numerical examples are presented
to support the efficiency and accuracy of the identification from FOID-Net. The
chapter is concluded in Section 5.5.

5.1 Linear Flat Output and Neural Networks

The flat output of the tangent linearization of nonlinear systems near certain
equilibrium, or linear flat output alternatively, is generally a vector of functions that
consist of linear combination of the original states. As it is mentioned in the previous
chapters, the mapping between original states and flat outputs have become purely
linear, hence making the identification process much more efficient and feasible.
In the case of single-input system, the linear flat output becomes a linear scalar

98
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function of states, which renders a clear relation between states and flat outputs
for trajectory tracking control design. Leveraging the property of such local flatness
and online disturbance compensators, like extended-state observers from ADRC, the
problem of trajectory tracking control of a class of nonlinear systems can be solved
straightforwardly.

Neural network is a popular and emerging machine learning and deep learn-
ing model because of its capabilities to capture and learn the underlying feature
or pattern in large sets of data, approximate strong nonlinear relations between
inputs and outputs, and predict time series data. Laying out neural networks in
engineering applications is a megatrend for the future. At the same time, however,
its interpretability is a challenge in many specific engineering problems. With re-
spect to the problem of flat output identification, neural networks can be used to
perform function approximation to help us identify the coordinate transformation
from state to flat output, but in the meantime, the nonlinear relationships brought
by general neural networks will not allow these results to be ’written out’ in math-
ematical expressions explicitly. To circumvent this issue, in the case of linear flat
output identification, we use a purely linear neural network without bias terms, i.e.,
all network layers satisfy a linear proportional relationship between their inputs and
outputs, to carry out the identification process. This method not only helps us to
find the corresponding flat output solely by the measured data from systems, but
also to figure out the mathematical relationship between the flat output, its suc-
cessive time derivatives and the states. All these relations will be linear, thanks to
the linearity of the network, which can be written in mathematical expressions and
completely interpretable. In the next following sections, identification of the linear
flat outputs of SIMO nonlinear mechanical systems will be discussed using neural
network model.

5.2 FOID-NET Structure

We consider a class of nonlinear mechanical systems interested with single-
input that have dynamical equations as Equation (2.1). The controllability of tan-
gent linearization of these system around chosen equilibrium are assumed positive,
which is held true for many mechanical systems [39,54,55]. Many applications of con-
trol theory, such as system identification and feedback control, need the underlying
system to be necessarily controllable. [56] proposes the data-driven controllability
test to determine whether a discrete-time linear time-invariant system is control-
lable. [57] develops a data-driven algorithm that estimates finite-time controllability
gramians of linear time-invariant systems, which also provides a way to check the
controllability of linear systems without dynamical equations. With the aid of data-
driven test of controllability, one may confirm the locally flatness of the system in
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Figure 5.1: General Structure of FOID-Net

the first place before the flat out identification. FOID-Net identifies linear flat out-
put and associated relations between original states for the linearized mechanical
system on the basis of its controllability, i.e., flatness.

5.2.1 Basic Structure

The general structure of FOID-Net is shown by Figure 5.1, which is built
based on the fact that the linear flat output of single-input linearized system is
a linear function of states, and the original state-space states can be recovered
using another inversed mapping from flat coordinates if a proper flat output can
be found. As shown in Figure 5.1, the input layer has 2n input size, where n is
the number of degrees of freedom, and the flat output layer follows with only one
neuron inside. The output of the flat output layer is a purely linear function of
inputs, indicating the flat output candidate would be the product of the weights
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of flat output layer and 2n states from input layer. The candidate is assumed to
have successive time derivatives, up to order of 2n − 1, to complete the expected
flat coordinate. To generate time derivatives of the candidate function, a tracking
differentiator is placed in the next layer. The task of tracking differentiator is not
only to estimate the high-order time derivatives, but also to filter the signal passing
through and attenuate the measurement noises and external disturbances. The
type of tracking differentiator should be chosen according to the dimension 2n, as
the performance of different tracking differentiators, with linear or nonlinear kernels,
varies from case to case. The state output layer predicts the original 2n states from
the output of TD layer using fully connected 2n neurons. The activation function
of state output layer is still purely linear. One necessary condition for obtaining a
good flat output candidate is that the error between predicted states and original
states are minimized as much as possible. In case of finding the flat output for the
underlying linearized system, a mirror layer is introduced and fully connected to a
duplicate of input layer. The output mirror layer is a linear function of input states,
and it is supposed to reproduce the flat coordinates after training. The mirror layer
is served as a validation layer, and its weights also characterize the linear mapping
between states and flat coordinates, which can be taken as the result for flatness-
based control design. The detailed discussion of some specific layers are given in
following subsections.

5.2.2 Input State Layer

The FOID-Net needs 2n state signals as inputs to implement the identifica-
tion. For general linear or nonlinear systems, the full-state availability is usually not
satisfied, and for this reason, the FOID-Net is not useful to the problems in which
states cannot be measured directly or estimated by algorithms. But for mechanical
systems with dynamical equations as Equation (2.2), the generalized coordinates
chosen are usually angles and displacement, which can be measured by various sen-
sors directly and nicely. Their first-order time derivatives, angular velocities or
velocities, are also measurable in case where gyroscope, tachometer or other veloc-
ity sensors exist. So do the second order derivatives of them. There are some state
estimators or tracking differentiators to estimate the velocities or acceleration, or
higher-order time derivatives of generalized coordinates even if those states were not
measured from sensors. For these systems, the relations between states are clear and
understandable, and they can be used in improving the prediction and identifica-
tion performance of FOID-Net. Therefore, 2n states can be divided into two sets: n
generalized coordinates and their n generalized velocities. In following context, the
full-state availability is assumed with n generalized coordinates measured, and the
rest n states are well-estimated accordingly using a differentiator, as next subsection
shows.
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5.2.3 TD Layer

The choices of tracking differentiator in FOID-Net remains open. Related
work can be found in [58–61]. They can either estimate the remaining n states in
input layer, or form the expected flat coordinates in TD layer. Although high-order
derivatives of good quality (order greater than 3) are generally hard to obtain due
to noise and disturbances, one can still seek the common filter method for ad hoc
solution. When the input signals do not fluctuate rapidly with time and noise level
is controlled relatively well, the filter expressed by following transfer function GD(s)
handles the derivatives estimation problems:

GD(s) =
r4f

(s+ rf )4
. (5.1)

The fourth-order linear filter with parameter r affecting the position of poles can be
also expressed in state-space representation [62]:

ẋ1 = x2, (5.2)

ẋ2 = x3,

ẋ3 = x4, (5.3)

ẋ4 = f,

f = −rf (rf (rf (rf (x1 − v(t)) + 4x2) + 6x3) + 4x4),

where v(t) is the input of the filter, state x1, x2, x3, x4 are the filtered v(t) and
its time derivatives up to order of 3. The function f itself can be viewed as the
fourth-order time derivatives of v(t) if needed. The parameter r can be tuned to
satisfy better performance while balancing the effect of noise, however overlarge r
could cause numerical issue during computation. Implementing such filter during
neural network is time-consuming and computationally expensive. In next section,
some data preprocessing techniques are adopted to optimize the training process
and accelerate the updating of the weights.

5.2.4 State Output Layer

The weights of state output layers form a 2n × 2n matrix that maps flat
output candidate and its time derivatives to original states. The linear activation
function guarantees the interpretability of the mapping in concrete mathematical
expressions. If the 2n states are from mechanical systems and have direct differen-
tial relations as stated before, the weight matrix can have some special structures
that contain some zeros entries and repeated patterns, and hence becomes relatively
sparse. This feature indicates that the predicted states are linear functions of se-
lective flat coordinates. So in the actual training process, the state output layer
needs not to be a single layer with 2n neurons, but may split into several layers with
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fewer number of neurons. In next section, an example of fourth-order linearized
mechanical system is given to discuss this issue further.

5.2.5 Mirror Layer

The mirror layer and the duplicate input layer constitute a network that
validates the correctness of flat coordinates and provides the linear relation between
these two layers. The weights of mirror layer is also a 2n × 2n matrix and it is
exactly the inverse matrix of weights of state output layer. The output of first
neuron in mirror layer should be exactly the output of the flat output layer, that is,
the flat output candidate. Therefore, the first row or column (depending on how it
lays out) of weight matrix of mirror layer should equal to the weight vector of flat
output layer. These constraints all contribute to the design of loss functions, which
we shall continue to discuss next. The weights of the mirror layer is the essential
information for designing tracking trajectories in flatness-based control, as we have
done in Chapter 3.

5.3 Training FOID-NET

The training process of neural network plays an important role in guaran-
teeing its satisfactory prediction performance and fast convergence. The FOID-Net
has customized TD layer that requires heavy computation during training , and
hence non-optimized training process could cause extremely slow convergence and
may also trap neural network into undesirable local optimal solution. Data prepro-
cessing method is proposed in this section to improve the efficiency of training. The
loss functions and optimizer are also given. Due to the non-convexity of the problem
and the large number of training parameters, we use a stepwise training approach
to approximate the global optimal solution. FOID-Net will be trained several times,
and the constraints of the weight parameters will be released step by step, and the
initial values of each training can be inherited to the next training until the loss
function reaches a preset level.

5.3.1 Data Preprocessing

Assume 2n state signals are inputs to FOID-Net. For every update of the
weights of flat output layer, the TD block re-computes the 2n potential flat coor-
dinates, for example, using the proposed fourth-order filter. However, it is possible
to avoid implementing TD block repeatedly by preparing the derivatives of states
before training starts. Due to the linearity of the flat output candidate function,
denoted by yf , the i-th time derivatives of yf can be written as

y
(i)
f = WT

f x(i), 0 6 i 6 2n− 1, (5.4)
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where Wf is the weight vector of flat output layer, and x =
[
x1 x2 . . . x2n−1

]T
is

the original 2n state vector. The TD block can be implemented few times to get x(i)

and the derivatives of yf are computed by Equation (5.4) directly. Therefore, the
TD layer is actually implemented indirectly with data matrices for x(i) precomputed.
These raw data can pass through additional filters to further attenuate noises with
specific band of frequency. So the result of data preprocessing stage is that filtered
state matrix Wx ∈ N × 2n and their derivatives matrices Wx(i) , 1 6 i 6 2n− 1 are
generated for computing the flat output candidate and its time derivatives.

5.3.2 Loss Functions

The loss functions are several criteria defined for FOID-Net to reach opti-
mized performance. The goal of training is to find the proper weight vector of flat
output layer that characterizes the flat output for the underlying system, and also
the weight matrix of state output layer and mirror layer for mathematical relations
between states and flat coordinates. Let xp denote the output, predicted state vec-
tor, of the state output layer, and the predicted states are x1p, x

2
p, ..., x

2n
p . The loss

function L1 is defined to measure the error of state prediction as follows:

L1 =MSE(x,xp) =
1

2n

2n∑
i=1

(xi − xip)2. (5.5)

Denote the 2n× 2n weight matrix defined by state output layer by Wp, the output
vector, flat coordinates, of TD layer by yf . The loss function L1 above can be also
given by,

L1(Wp; x) =MSE(x,Wpyf ) =
1

2n

2n∑
i=1

(xi −wi
pyf )

2,

where wi
p is the i-th row of Wp. The loss function L2 is defined for error between

ym, the output of mirror layer and yf :

L2(Wm,Wf ; x, ẋ, ...,x
(i−1))=MSE(ym,yf ) (5.6)

= MSE(Wmx,yf )

=
1

2n

2n∑
i=1

(wi
mx− y(i−1)f )2

=
1

2n

2n∑
i=1

(wi
mx−WT

f x(i−1))2.

Ideally, the mirror layer should duplicate the flat coordinates and the weights should
be adjusted to express the inversed mapping of Wp. Therefore this introduces
another loss function:

L3(Wm,Wp) =MSE(WmWp, I2n×2n). (5.7)
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The structure of Wp satisfies some special feature that one can make use of to save
the cost of training. Since first n states for the interested mechanical systems are
integrated signals of last n states, the expression of them in flat coordinates must
not contain derivative terms of yf that have order higher than 2n − 2. A clear
example when n = 2 is illustrated. The predicted states should be a function of flat
coordinates. Let the first and second state be the generalized coordinate we choose,
then they can be written by

x1 = w1
p1yf + w1

p2ẏf + w1
p3ÿf (5.8)

x2 = w2
p1yf + w2

p2ẏf + w2
p3ÿf , (5.9)

where wipj is the element of i-th row and j-th column of Wp. The rest 2 states x3, x4

are the time derivative of them, which are given by

x3 = w3
p2ẏf + w3

p3ÿf + w3
p4

...
y f = ẋ1 = w1

p1ẏf + w1
p2ÿf + w1

p3

...
y f (5.10)

x4 = w4
p2ẏf + w4

p3ÿf + w4
p4

...
y f = ẋ2 = w2

p1ẏf + w2
p2ÿf + w2

p3

...
y f , (5.11)

This information indicates that Wp has zero elements, or zero weights that does not
require training. The matrix Wp shows a ’shifted’ structure since the coefficients
for first and last n states do not change:

Wp =


w1
p1 w1

p2 w1
p3 0

w2
p1 w2

p2 w2
p3 0

0 w1
p1 w1

p2 w1
p3

0 w2
p1 w2

p2 w2
p3

 ,when n = 2. (5.12)

The special structure also inspires us to create a new single layer, with number
of neurons equal to 2n − 1, to replace state output layer to predict the 2n states
respectively. The layer should have 2n−1 inputs and is supposed to have n outputs.
The input signals of this layer are first and last 2n−1 elements of yf . In this way, the
number of trainable weights in Wp is decreased and hence improve the performance
of FOID-Net. Another loss function L4 we design to involve the weight vector of the
flat output layer Wf directly is aimed to double check the accuracy of the predicted
states and Wp:

L4(W
−1
p ,Wf ) =MSE(w1

ip,W
T
f ), (5.13)

where w1
ip is the first row of the W−1

p . The total loss function could be the sum of
all loss functions defined before, with different weights assigned if necessary:

L = L1 + L2 + L3 + L4. (5.14)

The adaptive moment estimation, or Adam, optimizer is used in training
FOID-Net, which is the most popular stochastic optimization method in machine
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Figure 5.2: The structure and loss functions of FOID-Net for two degrees-of-
freedom underactuated mechanical systems.
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learning and deep learning community. The details of Adam optimization can be
found in [63]. Traditional stochastic gradient descent(SGD) algorithm maintains
a single learning rate to update all weights, and the learning rate does not adap-
tively change during the training process. In contrast, Adam provides each trainable
weight with its own adaptive learning rate by computing first-order moment esti-
mates and second-order moment estimates of the gradient. The gradient needed for
Adam will be calculated from the partial derivatives of loss function L for all train-
able weights in corresponding weight matrix. Figure 5.2 shows the actual structure
when implementing the FOID-Net and illustrates the loss function definition.

5.3.3 Re-initialization with Weight Constraints

There are infinitely many solutions for a flat output candidate of single-
input system even if the system has low dimension in state-space model. Therefore,
many sets of weights in flat output layer, or the elements in Wf , can theoretically
minimized the loss functions, which are all considered correct. When n is getting
larger, the number of trainable weights in each layer grow so that the training task
gets extremely hard and the neural network could trap itself into local minima even
if with numerous training epochs. The different result of initialization of the weights
in each layer could cause cause them to converge locally to undesirable values. If n is
relatively not that large (n = 2, 3), we introduce the re-initialization technique which
re-trains the FOID-Net with initial weights immigrated from previous pre-trained
FOID-Net. More specifically, we put some weight constraints to the weight vector of
flat output layer Wf that last n weights that represent the coefficients of generalized
velocities in expression of flat output candidate are set to zero in the first-time
training, which agrees with our assumption of reduced linearized model. Many flat
output of linearized mechanical systems have dominant components with generalized
coordinates, i.e., first n states. When the damping and Coriolis force effect can
be ignored, the flat output would be purely a linear combination of generalized
coordinates, as we have shown in Chapter 3. After the first training reaches the
expected loss, the trained weights are immigrated to initialize next training, where
the weight constraints for Wf are released. In this way, the training is going to hit
the endpoint with satisfactory results better than the one from random initialization
and large-epoch iteration.

5.4 Numerical Simulation

5.4.1 Furuta Pendulum

5.4.1.1 Simulation Setting

We use Furuta pendulum model from Chapter 2 to generate the data of states
for FOID-Net training. The dynamic equations are given by Equation (2.16) and



108

0 5 10 15 20

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

Figure 5.3: Closed-loop Response of Furuta Pendulum with θδ and φδ outputs.

Equation (2.17). The four gains of the LQR control is given by

Ke =
[

33.4754 11.9579 −1.0000 −1.9512
]
.

As we have mentioned before, such closed-loop control does not change the flat
output or flatness of the system. The input signal is a simple signal u(t) = sin(t) +
cos(t), which alleviates the burden of TD to calculate the derivatives of output states
and improve the accuracy of the result. The output equation is given as Equation,
so only two states, φδ and θδ, are assumed to be measurable. The sample frequency
fs is 1kHz, the data length for each output state is of 20 second simulation time.
The closed-loop responses collected for data preprocessing is shown in Figure 5.3.

The FOID-Net structure is designed as Figure 5.2 has shown. The filter
described by Equation (5.3) is adopted to retrieve the first-order derivatives of φδ
and θδ, completing the full-state assumption, and to estimate the data matrices
Wx(i) for constructing the flat coordinates. The parameter rf is chosen 150 by
inspecting the output of filter before training, and this number should not be too
large to prevent numerical instability issue. The initial stepsize or learning rate α of
Adam optimizer is chosen as 0.5. FOID-Net is built and tested in the environment
of Tensorflow v2.7.0 using APIs from Keras module.

5.4.1.2 Simulation results

Two trainings with different initialization of weights can be carried out. The
first initialization is set up by random normalized numbers from Keras API, alias
’random normal’.The learning rate α are decreased from 0.5 to 0.001 in second
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Table 5.1: Result of 1st training FOID-Net for Furuta Pendulum

Description Value
Number of Epochs 2500
learning rate α 0.5
Best Ratio Cr −0.8969067931175232
Min Total Loss L 2.0981655× 10−10

Loss L1 5.681606574103881× 10−11

Loss L2 1.0597643596010897× 10−10

Loss L3 4.584249299610654× 10−11

Loss L4 1.1815586486649265× 10−12

WT
f

[
−0.07344062, 0.12577936, 0, 0

]
Wp


−2.079355,−0.3350958,−0.97297806, 0
4.9324055,−1.0919425,−1.2145464, 0

0,−2.079355,−0.3350958,−0.97297806
0, 4.9324055,−1.0919425,−1.2145464


Wm


−0.15758981, 0.14609472,−0.00404385, 0.01143858
−0.0509068,−0.01741791,−0.16682577, 0.13230194
−0.63749486,−0.10790826, 0.16682497,−0.04175542
0.37350577, 0.01207666,−0.86133194,−0.23466454


Weights Initialization Random Normal

training. In the first training, we manually set the last 2 weights of Wf to zero.
The ratio of first two states and value of loss function is observed. For each epoch, we
feed the whole batch of data of length 19800 to FOID-Net. First 200 elements of each
column of the data matrices Wx(i) are cut because of the common bad transition
behavior of the TD. The minimum value of loss function and the corresponding ratio
and weight matrices are recorded for each training.

Table 5.1 shows the result of first training after 2500 epochs. We trained
first two weights to some level where the total loss L reaches a local minimum at
645-th epoch and it maintains the minimum for next 1500 epochs. Therefore an
early stop of training is called because the minimum loss is already at a low value
and overtraining the neural network may cause overfitting problem since we have
two trainable weights in Wf set to be zeros. The results are used to initiate next
training where we use smaller learning rate for Adam. Figure 5.4 and Figure 5.4
manifest the ratio change and the epoch in which value of L hits the local minimum
during the training.

Table 5.2 shows the result of second training after 3250 epochs. The learning
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function L between 600 and 700 epochs. At 645-th epoch, value of L
reaches the minimum. Zoom view of Figure 5.4.
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rate is decreased because we are expected to search a solution based on our baseline
model, the model with our previous trained WT

f ,Wp,Wm. In the second training,
we let the 4 weights in WT

f become trainable and may add a optional new penalty
term in loss function to ’punish’ the norm of last two weights, which is based on
our knowledge of the system that it is lightly damped. In the simulation case, we
have linearized the Furuta pendulum around the origin, so the damping terms are
actually removed from the dynamics, which has been validated by the result shown
in the Table 5.2. Figure 5.6 and Figure 5.7 gives the ratio change and value of loss
function close to the minimum. We rearrange the order of states and write out the
matrices of closed-loop state-space representation of the linearized Furuta pendulum
with all variables substituted:

x =


θδ
φδ
θ̇δ
φ̇δ

 ,A =


0 0 1 0
0 0 0 1

−611.4987 19.2397 −230.0666 37.5404
−571.2377 17.2605 −206.3995 33.6786

 ,B =


0
0

19.2397
17.2605

 .
(5.15)

The transformation matrix for x to become flat coordinates can be found through
process of transforming controllable pair (A,B) into controllability canonical form
(Ac,Bc). Let yf = Tx, the transformation matrix T and its inverse T−1 are given
by

T=


0.0021 −0.0023 0 0

0 0 0.0021 −0.0023
0.0520 0 0 0

0 0 0.0520 0

 , (5.16)

T−1=


0 −0.0001 19.2397 0

−435.6687 0.0001 17.2605 0
0.0520 0 −0.0001 19.2397

0 −435.6687 0.0001 17.2605

 . (5.17)

One can immediately get the one of the flat output of the linearized Furuta pendulum
is

yf = 0.0021θδ − 0.0023φδ = 0.0023(−0.8971θδ + φδ). (5.18)

WT
f trained is

[
0.20245,−0.22568,−1.2678× 10−6, 1.2313× 10−6

]
, which is roughly

100 times of the first row of T. It gives us another flat output of the form:

yfnn = 0.20245θδ − 0.22568φδ − 1.2678× 10−6θ̇δ + 1.2313× 10−6φ̇δ ≈ 100yf . (5.19)

Wm is the identified matrix of T, it also satisfies that Wm ≈ 100T. And Wp, the
estimate of the T−1, is around 1/100T−1. Hence we could prove that identified yfnn
is indeed a linear flat output of the Furuta pendulum near origin.
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Table 5.2: Result of 2nd training FOID-Net for Furuta Pendulum

Description Value
Number of Epochs 3250
learning rate α 0.001
Best Ratio Cr −0.8971047401428223
Min Total Loss L 9.639888× 10−14

Loss L1 9.009180493367141× 10−15

Loss L2 7.182695735928613× 10−14

Loss L3 1.499903750734697× 10−14

Loss L4 5.637120731007616× 10−16

WT
f

[
0.20245,−0.22568,−1.2678× 10−6, 1.2313× 10−6

]
Wp


−3.9985× 10−7,−6.8630× 10−7, 0.19568, 0
−4.4311,−2.7582× 10−5, 0.17554, 0

0,−3.9985× 10−7,−6.8630× 10−7, 0.19568
0,−4.4311,−2.7582× 10−5, 0.17554


Wm(×10−8)


2.0245× 107,−2.2568× 107,−111.31, 143.56
−3072.6,−10.289, 2.0245× 107,−2.2568× 107

5.1104× 108,−47.308, 327.68,−126.40
2.2089× 10−5, 4.1427× 10−8, 5.1103,−5.5076× 10−7


Weights Initialization WT

f ,Wp,Wm from previous training
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Figure 5.6: Ratio between first 2 weights in Wf within (−1,−0.5) and Value of
Loss function L within 3250 epochs. At 3122-th epoch, value of L
reaches the minimum.
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Figure 5.7: Ratio between first 2 weights in Wf within (−0.8990,−0.8960) and
Value of Loss function L between 3000 and 3250 epochs. At 3122-th
epoch, value of L reaches the minimum.

5.4.2 A Nonlinear Fourth-Order UMS

We consider a two degrees-of-freedom nonlinear UMS. The linearized system
is controllable near the origin. By defining the first two states x1, x2 as its two
generalized coordinates, the state-space equations are given by

ẋ1 = x3,

ẋ2 = x4,

ẋ3 = −15.4737x1 + 27.13x2 + 13.5185x3 + 16.8618x4

+ 0.8751x31 + 0.422 sin(x2)x2 − u(t),

ẋ4 = 18.7105x1 − 34.1949x2 − 17.2778x3 − 22.7927x4

+ 0.4080 sin(x3) + 0.1280x34 + 1.5u(t),

where u(t) is the input signal. Signals of first two states as outputs are collected
from simulation. The sample frequency fs is 1kHz and the simulation time is 20
seconds. The input signal is chosen u(t) = 0.1H, where H is unit step function. The
system is slightly stimulated around the origin to get the linearized state information.
In this simulation, we assume the outputs are measured with some level of noise.
The occurrence of noise in FOID-Net certainly would affect the performance of
identification to some degree. We set the singal-to-noise ratio level of output channel
to 80dB. The responses of first two outputs are given by Figure 5.8. At the data
preprocessing stage, we use the proposed fourth-order filter to filer the these two
signals, and generate their first-order derivatives. The phase is compensated by
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Figure 5.8: Open-loop response x1, x2 of a fourth-order nonlinear UMS

shifting the 4 outputs of the filter until the phase of original states can match with
the filtered states. The r is set to 10 because the level of noise is high.

We totally perform 2 trainings to identify the best flat output for the given
fourth-order system. Table 5.3 and Table 5.4 have shown the result of two consecu-
tive trainings. We set the last two states to zero in the first training, and release the
constraint in the second training. The results show that the flat output candidate
is

yf = 2.9593787x1 + 1.9837099x2 − 0.13599189x3 − 0.08895281x3 (5.20)

To verify the accuracy of this flat output candidate function. We find the best
linearized system assosciated with yf

Ay =


0 0 1 0
0 0 0 1

−15.564 27.202 13.419 16.865
18.764 −34.194 −16.743 −22.747

 ,By =


0
0

−0.9786
1.4955

 ,
where

WmAyW
−1
m ≈


0 1 0 0
0 0 1 0
0 0 0 1

−22.099 −34.369 −27.193 −9.342

 , 1

30.8642
WmBy =


0
0
0
1

 .
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Figure 5.9: The response of system (Ay,By) with outputs xy1, x
y
2 and of system

(Ac,Bc) with outputs xc1, x
c
2 when input is chosen as u(t) = 0.1(sin(t)+

cos(1
2
t))

Therefore we know Wm tranforms system (Ay,By) to controllability canonical form.
We compare the open-loop responses from system (Ay,By) with one from linearized
system (Ac,Bc) around origin of original nonlinear system given by,

Ac =


0 0 1 0
0 0 0 1

−15.4737 27.13 13.5185 16.8618
18.7105 −34.1949 −16.8698 −22.7927

 ,Bc =


0
0
−1
1.5

 .
Figure 5.9 has shown the simulation difference between system (Ay,By) and lin-
earized system (Ac,Bc). We can see yf defines a canonical transformation for sys-
tem (Ay,By) and their responses are pretty close, which proves the choice of yf is
excellent. We further find that the canonical transformation matrix of linearized
system (Ac,Bc) is

Tc =


0.1051 0.0704 −0.0024 −0.0016
0.0072 −0.0104 0.0997 0.0664
−0.2990 0.4318 0.2336 0.1557
−0.7008 1.0122 0.2317 0.8212

 ≈ 1

30.8642
Wm.

Such relationship between them again validates yf .

.
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Table 5.3: Result of 1st training FOID-Net for 4D UMS

Description Value
Number of Epochs 15000
learning rate α 0.5
Best Ratio Cr 1.439252495765686
Min Total Loss L 7.050812× 10−5

Loss L1 2.2563683899079479× 10−7

Loss L2 6.911051605129614× 10−5

Loss L3 1.1718325367837679× 10−6

Loss L4 1.3576725854669291× 10−10

WT
f

[
3.1899514, 2.2163947, 0, 0

]
Wp


0.21257, 0.078292,−0.033500, 0
0.14524,−0.11268, 0.048215, 0
0, 0.21257, 0.078292,−0.033500
0, 0.14524,−0.11268, 0.048215


Wm


3.1900, 2.2164,−1.4047× 10−6,−7.6989× 10−5

−1.1735× 10−3,−4.1814× 10−3, 3.1867, 2.2217
−9.6222, 1.4022, 7.4215, 5.2362
−22.4910, 32.753, 7.7297, 26.317


Weights Initialization Random Normal
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Table 5.4: Result of 2nd training FOID-Net for 4D UMS

Description Value
Number of Epochs 15000
learning rate α 0.001
Best Ratio Cr 1.4918404817581177
Min Total Loss L 6.444609× 10−6

Loss L1 1.8805332047122647× 10−7

Loss L2 6.386674067471176× 10−5

Loss L3 3.895050895152963× 10−7

Loss L4 1.7926575779370069× 10−9

WT
f

[
2.9593787, 1.9837099,−0.13599189,−0.08895281

]
Wp


0.23190, 0.094644,−0.031693, 0
0.15815,−0.11820, 0.048464, 0
0, 0.23190, 0.094644,−0.031693
0, 0.15815,−0.11820, 0.048464


Wm


2.9594, 1.9837,−0.13599,−0.088947

0.44390,−0.65242, 2.6268, 1.7183
−8.5725, 12.536, 6.8313, 4.4821
−22.356, 32.700, 8.0806, 25.957


Weights Initialization WT

f ,Wp,Wm from previous training
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5.5 Conclusions

In this chapter, a novel neural network framework called FOID-Net is pro-
posed to solve FOID problem for tangent linearized UMSs. We use the time se-
ries of data and their derivatives, generated by tracking differentiator, to train a
autoencoder-like neural network. The basic structure of FOID-Net, definitions of
loss functions and training techniques are discussed. The numerical simulations
have shown that FOID-Net can identify the flat output of linear system and locally
flat output of nonlinear systems around equilibrium point. It has good capability
of rejecting noise as long as the TD has strong noise rejection feature. A convincing
result can be obtained if sufficient training is available. As the dimension of the un-
derlying systems grows, a more systematic training method needs to be developed
in the future.



Chapter 6

SUMMARY AND FUTURE WORK

6.1 Concluding Remarks

This thesis mainly discusses how data-driven approach can be used to iden-
tify the flat output of a nonlinear UMSs at the equilibrium point. The identification
method involves transfer function estimation in the frequency domain, data fit-
ting and regression, sparse identification, algebraic method dealing with high-order
derivatives estimation, and the construction and training of neural networks. The
results of the identification can be combined with the ADRC framework, or other
disturbance-observer-based control for the tracking control design of the UMS. This
set of approaches allow the trajectory tracking control of many UMSs that are not
inherently differentially flat to be handled using properties of differentially flat sys-
tems, which greatly simplifies the control design of this special class of mechanical
systems. Moreover, the data-driven framework does not rely heavily on model infor-
mation, which reduces the difficulty of control design to a large extent further, even
if it has not achieved completely model-free control yet. For fully actuated systems,
this approach can still be applied, which is one of the advantages of this framework.
A lot of significant research problems, such as implementation of high-order ESO in
practical control application, can be derived from the topic. We believe the data-
driven thoeries and methods on flatness-based control and ADRC could be further
developed in a bright future.

6.2 Future Work

6.2.1 FOID-Net For MIMO System

It is not hard to extend the current FOID-Net to MIMO system, while the
training of network may become extremely hard when the number of inputs in-
creases. Indeed, the number of trainable weights may become too large for one
to find a satisfactory solution from the network. Nevertheless, the MIMO version
of FOID-Net has a chance to work for lower number of inputs, for example, 2 or
3. The flat output is no longer a single function but has two components that are
functions of all states. MIMO FOID problem may be solved with practical training
approaches in the future work.
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6.2.2 Nonlinear Flat Output Identification

Nonlinear flat output, due to its complex mathematical expression in terms of
states, is not the primary function aimed to be identified in this thesis. With struc-
ture of FOID-Net, we may use nonlinear activation function in flat output layer and
state output layer to approximate the nonlinear mapping between states and flat
coordinates. Then the nonlinear mapping needs to be reinterpreted by new func-
tion approximators or a neural network that provide us with better mathematical
interpretability. For example, if polynomials of states can approximate the identi-
fied nonlinear mapping well, we may replace the trained nonlinear mapping with a
simpler and more understandable expression between state and flat coordinates. In
this way, a data-driven nonlinear flat output identification can be done.
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[16] Lévine J (2011) On necessary and sufficient conditions for differential flatness.
Applicable Algebra in Engineering, Communication and Computing 22(1), 47–
90

[17] Yong SZ, Paden B, Frazzoli E (2015) Computational methods for mimo flat
linear systems: Flat output characterization, test and tracking control. 2015
American Control Conference (ACC) pp 3898–3904

[18] Campbell SL, Terrell WJ (1995) Determining flatness for complex nonlinear
systems. In: Proceedings of IEEE Southeastcon’95: Visualize the Future, pp
118–122

[19] Sira-Ramı́rez H, Oliver-Salazar MA (2012) On the robust control of buck-
converter dc-motor combinations. IEEE Transactions on Power Electronics
28(8), 3912–3922
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