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Abstract
Great storytelling takes us on a journey the way ordinary
reality rarely does. But what exactly do we mean by a
“journey”? Recently, literary theorist Kukkonen (2014) pro-
posed that storytelling is “probability design”: the art of giving
an audience pieces of information bit by bit, to craft the jour-
ney of their changing beliefs about the fictional world. A good
“probability design” choreographs a delicate dance of certainty
and surprise in the reader’s mind as the story unfolds from be-
ginning to end. In this paper, we computationally model this
conception of storytelling. Building on the classic Bayesian
inverse planning model of human social cognition, we treat
storytelling as inverse inverse planning: the task of choos-
ing actions to manipulate an inverse planner’s inferences, and
therefore a human audience’s beliefs. First, we use an inverse
inverse planner to depict social and physical situations, and
present behavioral studies indicating that inverse inverse plan-
ning produces more expressive behavior than ordinary “naı̈ve
planning.” Then, through a series of examples, we demon-
strate how inverse inverse planning captures many storytelling
elements from first principles: character, narrative arcs, plot
twists, irony, flashbacks, and deus ex machina are all naturally
encoded in the flexible language of probability design.
This paper reports on work to be presented at SIGGRAPH
2023 (Chandra, Li, Tenenbaum, & Ragan-Kelley, 2023).
Keywords: theory of mind; social cognition; Bayesian mod-
eling; storytelling

Introduction
The famous black-and-white animation by Heider and Sim-
mel (1944) shows two triangles and a circle moving around a
2D plane. Nearly everyone who watches this video interprets
the triangles and circle as intelligent, goal-driven agents, even
ascribing moral judgements to these “characters” and identi-
fying moments of tragedy and redemption.

Even in this severely restricted visual world, storytelling
comes naturally to humans. Fritz Heider wrote in his auto-
biography (1983) that the original 90-second video took him
just a few hours to create, albeit by stop-motion animation.
When provided with a modern touch-screen interface, even
10th-grade students can easily create rich, dramatic anima-
tions in just 15 minutes (Gordon & Roemmele, 2014).

In this paper, we seek to capture this ability computation-
ally. As a first try, we might simply simulate rational behavior
for the agents, as past work has done via planning algorithms
(Netanyahu et al., 2021; Shu et al., 2020). But the resulting
animations do not exhibit the dramatic flair we desire—even
though the agents appear lifelike and often have discernible
goals, the videos rarely evoke elements like suspense, sur-
prise, and irony. This makes sense: we choose to go to the

theater for a good story, even though we could just as well
watch human lives unfold at the supermarket or post office.

What accounts for this gap? Our key insight is that there
is a distinction between acting in a situation and acting out a
situation. When acting in a situation, an agent behaves op-
timally to achieve a goal; when acting out a situation, the
agent instead behaves optimally to manipulate an audience’s
belief about that goal. These behaviors are not always the
same: a storyteller might choose a sub-optimal action if it
has a stronger impact on the audience. This is apparent in
stage violence (where actors move their bodies to depict vio-
lence without actually causing harm) and mime (where actors
create the illusion of invisible objects), but permeates all sto-
rytelling as evidenced by the old adage “show, don’t tell.”

Nonetheless, the predominant approaches to theatrical
“acting” in computer graphics and interactive fiction are all
purely planning-based (Lebowitz, 1985; Martens et al., 2013;
Meehan, 1977; Riedl & Young, 2010; Wampler et al., 2010;
Won et al., 2021). Some ad-hoc heuristics have emerged
for considering specific aspects of audience experience like
suspense and believability (Bae & Young, 2008; Cheong &
Young, 2006; Gerrig & Bernardo, 1994; Riedl & Young,
2004; Szilas, 2003), but a flexible “audience model” remains
a challenge (Kreminski & Martens, 2022).

Here, we model the audience’s experience using Bayesian
inverse planning (Baker, Saxe, & Tenenbaum, 2009; Baker,
Tenenbaum, & Saxe, 2007), thus casting storytelling as in-
verse inverse planning. We were inspired in part by liter-
ary theorist Kukkonen (2014)’s abstract vision of stories as
“probability designs”: sequences of observations presented to
an audience to modulate their beliefs over time. We show how
this general framework naturally captures a wide variety of
storytelling elements (character, plot twists, irony, flashbacks,
narrative arcs). Moreover, our behavioral studies suggest that
it indeed produces the desired effect in human audiences—for
example, by depicting character traits up to 12× more effec-
tively than naı̈ve planning, or “miming” a box to make it look
over 5× heavier than it truly is. Sample code is available on-
line at https://people.csail.mit.edu/kach/a2i2p/.

Background: Bayesian inverse planning
A long line of work has sought to model human social cogni-
tion with Bayesian inference. These models posit that when
we observe an agent take an action, we infer the agent’s
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goal by applying Bayes’ rule: P(goal | action) ∝ P(action |
goal)P(goal). Here, P(goal) reflects our prior over goals and
P(action | goal) is the likelihood: the more optimal an ac-
tion is for the agent, the likelier it should be (Jara-Ettinger,
Gweon, Schulz, & Tenenbaum, 2016). In short, while plan-
ning outputs a plan for a goal, inverse planning infers a goal
from a plan (Baker et al., 2009, 2007; Jara-Ettinger, 2019).
Inverse planning can model agents that reason about each
other via “theory of mind” (Baker, Goodman, & Tenenbaum,
2008; Shum, Kleiman-Weiner, Littman, & Tenenbaum, 2019;
Tauber & Steyvers, 2011; Ullman et al., 2009), agents who
plan sub-optimally (Zhi-Xuan et al., 2020), human kinematic
motions (Qian, Kryven, Gao, Joo, & Tenenbaum, 2021), and
judgements made by young children (Pesowski, Quy, Lee,
& Schachner, 2020). Recent work has considered how in-
verse planning can model actions humans take to communi-
cate with (Ho, Cushman, Littman, & Austerweil, 2021) and
influence (Ho, Saxe, & Cushman, 2022) each other. This is
closely related to the influential Rational Speech Acts (RSA)
framework (Frank & Goodman, 2012; Goodman & Frank,
2016), which models behaviors like polite speech (Yoon,
Tessler, Goodman, & Frank, 2016, 2017) and behaviors in
pedagogical contexts (Shafto, Goodman, & Griffiths, 2014;
Yoon, MacDonald, Asaba, Gweon, & Frank, 2018) as meth-
ods of influencing pragmatic listeners. The Rational Commu-
nicative Social Actions (RCSA) framework integrates inverse
planning and RSA to model communicative aspects of inti-
macy (Hung, Thomas, Radkani, Tenenbaum, & Saxe, 2022)
and punishment (Radkani, Tenenbaum, & Saxe, 2022). Sim-
ilarly, in the reinforcement learning community, “inverse re-
inforcement learning” methods (Arora & Doshi, 2021; Ng,
Russell, et al., 2000; Ramachandran & Amir, 2007) can infer
reward functions, which can then be applied to influence ob-
servers, e.g. to make a robot’s motion “legible” to humans
(Dragan, 2015; Dragan, Lee, & Srinivasa, 2013; Hadfield-
Menell, Russell, Abbeel, & Dragan, 2016) or oppositely to
strategically fool adversarial viewers about its true intentions
(Pattanayak, Krishnamurthy, & Berry, 2022).

Here, we apply these ideas to theatrical “acting,” where the
aim of the storytellers is to collaboratively influence the au-
dience (collaborating even if they are depicting competition).
Unlike typical settings studied using RSA and RCSA, story-
telling influences not just a single inference, but rather the
trajectory of the audience’s belief over time.

For much of this paper, we will discuss the concrete world
model proposed by Ullman et al. (2009), which consists of
two agents moving in a maze on a grid. In our animations,
we will stylize the agents as two characters: a robot and an
enchanted animate cheese cube in a kitchen. The two agents
take turns moving north/south/east/west through the kitchen
or staying in place. The cheese is “weak” and only succeeds
in moving 60% of the time. However, the robot is “strong”
and can push the cheese cube along. A table in the kitchen
blocks the cheese’s motions, but can be moved by the robot.
Finally, the kitchen floor has two special tiles, pink and green.

The two characters can have a variety of natural goals in the
kitchen. The cheese and the robot could each “want” to sit on
either the pink or green tile. Additionally, because the robot
is strong enough to move the cheese, it could want to “help”
or “hinder” the cheese from reaching its goal. These dynam-
ics can be formalized as a multi-agent Markov Decision Pro-
cess (MDP): the state space S encodes the positions of the
robot, cheese, and table. The action space A for each agent is
{←,→,↑,↓,stay}. The transition function for each agent en-
codes how each action affects the state (the transition function
for the cheese is stochastic because the action may fail). The
reward function for each agent captures the agent’s goals. The
cheese and the robot each receive a fixed reward if they are
on their respective goal tiles (pink or green), and pay a small
cost for moving instead of staying in place. In addition, the
robot receives a “social reward” based on the cheese’s reward
on this turn. Specifically, if the cheese earns reward rcheese,
then the robot earns a bonus reward ρrobot · rcheese where the
robot’s “alignment” ρrobot ∈ {−3,−1,0,+1,+3} is positive
if the robot is helping, negative if hindering, and zero if neu-
tral. For this MDP, Ullman et al. compute optimal policies
for the two agents by running value iteration Bellman (1966).
They use a hierarchical softmax strategy, first computing a
policy for the cheese assuming the robot moves uniformly at
random, and then computing a policy for the robot assuming
the cheese selects actions via the softmax of its Q-function.
This allows for two recursive levels of “theory of mind” in
the planner: the robot models the cheese modeling the robot.

Finally, we describe Ullman et al.’s inverse planner, which
makes inferences about the agents’ (hidden) goals from
their (observable) actions. Let a hypothesis be a tuple H =
⟨Gcheese ∈ {p,g},Grobot ∈ {p,g, /0},ρrobot ∈ {0,±1,±3}⟩.
For fixed H, we can use value iteration to compute
QH

robot(s,a) and QH
cheese(s,a) for state s ∈ S and action

a ∈ A . Assuming the softmax-rational model above, this
induces a probability distribution over each character c’s
actions: P(s → a | H) ∝ exp

(
β ·QH

c (s,a)
)
. Thus, if we

observe an agent take action a from state s, we can apply
Bayes’ rule to update our belief about the characters’ goals:
P(H | s→ a) ∝ P(s→ a | H)P(H).

Figure 1 shows a sample animation we generated by run-
ning the optimal policy for a helpful robot in a random
scenario (i.e. in a random state, with a random H where
ρrobot > 0). As we argue in the caption, this is a poor de-
piction of helpfulness. The inverse planner agrees: the model
is not confident that the robot is helping. In the next section,
we show how inverse inverse planning can create animations
that do effectively depict helping and other scenarios.

Inverse inverse planning
Next, we create new animations by inverse inverse plan-
ning—that is, by optimizing over Bayesian inference.1 To

1All animations referenced and described in this sec-
tion are available at https://osf.io/gyh8a/?view only=
0558bbedab964ae49e552ec3263227cf. Section labels in the text
are also hyperlinked to respective individual videos.
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The cheese moves itself onto the 
pink goal tile and stops.

The robot begins to move, while 
the cheese stays on the pink goal.

The robot reaches the green goal 
tile and stops.

Both characters are motionless 
for the rest of the animation.
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Robot helps cheese (naïve planning; poor depiction)
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Robot moving to green
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Figure 1: (top) Suppose we animate a robot that is helping the cheese reach its goal, by having both characters follow their
optimal policies from some initial state (“naı̈ve planning”). This produces a poor depiction: it is not clear that the robot wants
to help the cheese, only that it wants to go to green. (bottom) The inverse planner agrees. It infers that the cheese wants pink
(plot #1), and that the robot wants green (plot #1; notice bump at t = 10 when the robot reaches green and stays). But it remains
uncertain about the robot’s alignment (plot #3), because the robot’s behavior is consistent with both indifference to the cheese
and wanting to help the cheese (but doing nothing because the cheese is already at its goal). See video and compare to Figure 2.

be precise, we optimize scripts, which correspond to the se-
quence of observations presented to the audience over the
course of a story. A script σ of length T is given by
an initial state s0 and a sequence of valid transitions σt =
⟨arobot

t ,acheese
t ,st⟩ for 1 ≤ t ≤ T . Note that st is not uniquely

determined by st−1 and ⟨arobot
t ,acheese

t ⟩ because state transi-
tions may be non-deterministic. For example, the optimizer
should be able to choose not only that the cheese attempts to
move, but also whether the move succeeds or fails.

Suppose, like before, that we wanted an animation that de-
picted the robot as helping the cheese. We can express this
task in a simple objective function over scripts:

fhelp(σ) = ∑
1≤t≤T

P(ρrobot > 0 | σ1:t)

The objective fhelp is maximized for scripts where at every
time t, based on observing the animation up to time t (i.e.
σ1:t ) a viewer has a strong belief that the robot is helping (i.e.
ρrobot > 0). Notice that we do not have to specify whether we
want ρhelp = +1 (slightly helping) or +3 (strongly helping),
only that it is greater than zero. Notice also that fhelp does not
say anything about Gcheese, Grobot, or even the initial positions
of the characters in s0, all of which are to be optimized auto-
matically. In this way, fhelp abstractly captures the essence of
the storytelling goal.

To optimize fhelp, we use beam search, where the search
heuristic is the objective applied to the current script “prefix.”
When we run the optimizer with T = 15, we get a rendered
animation within just a couple of minutes (Figure 2; video).
The cheese moves to pink; the robot pushes it along and then
steps back. Upon watching this animation, a rational viewer
would infer that the cheese wanted pink (because of its initial

motion towards pink), and that the robot wanted to help the
cheese (because it pushed the cheese to pink and stepped back
afterwards). This is a more effective depiction than the one
we generated earlier by “naı̈ve planning” (Figure 1; video).

Similarly, we can ask for an animation of a hindering robot.
In the generated animation, the cheese first moves to green.
Then the robot pushes it into a corner and blocks the way to
green. In comparison, with naı̈ve planning the robot moves to
green, blocking the cheese. It is unclear whether the robot is
intentionally hindering, or indifferent to the cheese and itself
wanting green. Inverse inverse planning avoids this ambigu-
ity because the robot never moves onto green (video).

Behavioral experiment 1
We asked whether inverse inverse planning better depicts the
relationship between the two characters (i.e. helping, hin-
dering, or indifferent). We generated 20 animations each of
helping, hindering, and indifference (using random seeds 0-
19), via both inverse inverse planning and naı̈ve planning, for
a total of 20×3×2= 120 animations. We recruited 98 online
participants, showed each participant a random shuffled sub-
set of 15 of these animations, and for each animation asked
them to report whether the robot was helping the cheese, hin-
dering it, indifferent to it, or whether the animation was un-
clear. For each animation, we measured the proportion of
responses matching the desired depiction target.

Figure 3 shows the results of this experiment. When de-
picting helping, the average inverse inverse planning ani-
mation caused 73% of viewers to report “helping,” while
the average naı̈ve planning animation caused only 6% to
(p < 0.01 by two-tailed binomial test). When depicting hin-
dering, inverse inverse planning was also significantly better
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The cheese moves towards pink. The robot pushes the cheese along. It deposits the cheese on pink. Finally, it recedes to the corner.

1 2 43

Robot helps cheese (inverse inverse planning; better depiction)
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Figure 2: (top) Using inverse inverse planning, we can optimize an animation (including the initial state, or “setting”) to
maximize the inverse planner’s belief that the robot is helpful. This finds a much more effective depiction. (bottom) Now, it is
clear that the robot is helping, and indeed the model is confident of that throughout the entire video (plot #3). See video.

than naı̈ve planning (63% vs. 29%, p < 0.01). Both methods
were equivalently effective at depicting indifference (73% vs.
75%, n.s.). In summary, we find that inverse inverse planning
better depicts the robot’s relationship with the cheese, partic-
ularly in cases that are challenging for naı̈ve planning.

The differences across conditions reveal that depiction
tasks vary in difficulty for naı̈ve planning. Not all situations
allow for actively helping (e.g. if the cheese is already close
to its goal), whereas most circumstances allow for actively
hindering (but might require the robot to go irrationally out of
its way to hinder). Indifferent characters rarely interact, and
thus easily telegraph their indifference to audiences. Hence,
naı̈ve planning performs worst when helping, a little better
when hindering, and best when indifferent. In comparison,
inverse inverse planning does well across all conditions.

Miming by “inverse inverse physics”

Next, we consider a more naturalistic physics-based set-
ting. We were inspired by the short animated film Sisy-
phus (Jankovics, 1974), which depicts Sisyphus from Greek
mythology pushing a heavy boulder up a hill. The anima-
tion is striking in how dramatically it conveys the boulder’s
weight. We wondered if inverse inverse planning could evoke
that effect: that is, make a character “mime” a heavy object.

To model this scenario, we created a physics-based en-
vironment consisting of a “Luxo lamp”-style hopping robot
(Witkin & Kass, 1988) attached to a box on a hill (Figure 4a).
For planning, we built a differentiable physics simulator for
this environment and used it to train a controller to pull the
box up the hill using the Short-Horizon Actor-Critic algo-
rithm (Xu et al., 2022). Actor-critic algorithms jointly train
two neural networks: a policy π(s;θ) that computes actua-
tions for the hopper at state s, and a value function V (s;φ)
that computes the optimal-long term reward attainable from
s. We optimized controllers for two box weights, light (0.1)

and heavy (0.5) to obtain θ{0.1,0.5} and φ{0.1,0.5}. Next, we
used inverse planning to model a viewer’s impression of the
box weight: following Battaglia, Hamrick, and Tenenbaum
(2013)’s Bayesian model of intuitive physics, we used hypo-
thetical simulations of the physical system in the light and
heavy conditions to infer the conditions of the observed tra-
jectory. Finally, we used inverse inverse planning to animate
the hopper “miming” a heavy box: we optimized a trajec-
tory that maximizes the inverse planner’s confidence that the
box is heavy (even though the box was actually light in the
simulator), thus fooling the model into believing the illusion
(Chandra, Li, Tenenbaum, & Ragan-Kelley, 2022). The hop-
per then pretends to struggle as it pulls the box (video).

Behavioral experiment 2

We asked whether the inverse inverse planning hopper is in-
deed a convincing “mime.” We recruited 35 online partici-
pants and showed them each a series of 12 pairs of anima-
tions. Each animation was randomly either an “honest” hop-
per with a heavy or light box, or a “mime” with a light box
pretending that it is heavy. Participants selected which anima-
tion contained a heavier box. They were not told that hoppers
could mime. Each video had a different-colored box to em-
phasize that their weights may vary.

Figure 4b shows the results of this experiment. As ex-
pected, participants were at chance (50%) when the anima-
tions had the same condition, and between heavy and light
boxes they selected the heavy box 97% of the time (p < 0.01
by two-tailed binomial test). The mime convinced 95.7% of
viewers that its box was heavier than the light box, despite
being of the same (light) weight (p < 0.01). Furthermore, it
convinced 68.6% of viewers that it was heavier than the heavy
box despite being 5× lighter (p< 0.01). We conclude that the
mime successfully convinces viewers that the box is heavier
than it truly is.
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Figure 3: We compare inverse inverse planning and naı̈ve planning on three depiction tasks: showing the robot to be helping,
hindering, or indifferent. Participants viewed the resulting animations and reported their impression of the robot (help / hinder
/ indifferent / unclear). Each bar represents a separate animation (from a different random seed), showing the proportion of
participants who reported the desired response for that animation. Horizontal dashed lines are averages across animations
for each condition (higher is better). Inverse inverse planning is significantly more effective than naı̈ve planning for depicting
helping and hindering (p< 0.01 for both), and equally effective for indifference. Shaded regions span 95% confidence intervals.
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“Miming,” and the video.
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bling” below, and the video.

Figure 4: Inverse inverse planning in a physics-based setting.

Flexibility of inverse inverse planning (all videos)
Finally, returning to the multi-agent grid-world, we give a va-
riety of examples of encoding classic storytelling elements as
inverse inverse planning. We encourage readers to imagine
how they would depict these scenes themselves before look-
ing at our system’s outputs. Note that these are not cherry-
picked: all examples presented here are created with the same
random seed (0); simple variations emerge with other seeds.

Plot twists (video) We first consider the “plot twist,” a sto-
rytelling device where an unexpected event radically alters
the audience’s expectations. For example, a classic plot twist
reveals that a seemingly friendly character was adversarial all
along. Here, we ask for an animation where the robot ap-
pears to be helpful at first, but at t = T/2 is revealed to be
hindering.

ftwist(σ) = ∑
t

{
P(ρrobot > 0 | σ1:t) if t ≤ T/2
P(ρrobot < 0 | σ1:t) if t > T/2

In the generated animation, the robot “helpfully” pushes the
cheese to pink. However, upon reaching pink it continues
pushing, trapping the cheese along the wall. This surprising
action reveals that the robot’s true intention was to hinder all
along. We can also ask for the reverse, a video where the

robot appears to be hindering but was helping all along. In
the generated animation, the cheese moves to pink and the
robot approaches as if to push it off (hindering). However,
the cheese continues moving, revealing that it wanted green
all along. The robot helpfully pushes it there.

Irony (video) Next, we consider dramatic irony, which oc-
curs when the audience has a different understanding of a sit-
uation than the characters in that situation. Here, we design
an objective function for scenes where the robot appears to
be trying to help, but mistakenly hinders because of its false
belief about the cheese’s goal. We use conditional probabil-
ity to express that the robot should appear to be helpful if the
cheese had a different goal.

firony(σ) = ∑
t
+P(Gcheese = green | σ1:t)

+P(ρrobot < 0 | σ1:t ,Gcheese = green)
+P(ρrobot > 0 | σ1:t ,Gcheese = pink)

In the generated animation, the cheese moves to green, but the
robot pushes it off and towards pink. When the cheese tries
to move back, the robot “helpfully” guides it back to pink.
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Flashbacks (video) Nonlinear discourse is a storytelling
technique where information in a story is revealed out of
chronological order. For example, a “flashback” can re-
contextualize a scene, giving it heightened significance or
new meaning. Imagine we saw a glimpse of the robot pushing
the cheese east, away from the pink and green goals. Can we
show a flashback that casts this action as helping? Let c(σ)
be the script σ with a single transition appended, in which
the robot pushes the cheese east. We can now apply the ob-
jective function for “helping” over c(σ): fflashback-help(σ) =
fhelp(c(σ)). In the generated flashback, the cheese is trying
to go all the way around the room to pink because the table
blocks a door along the shortest path. This casts the “push”
as helpful.

If we instead substitute fhinder, we get a flashback that casts
the action as hindering. The cheese tries to move directly west
to pink, casting the robot’s eastward push as hindering.

Narrative arc (video) American writer Kurt Vonnegut’s
master’s thesis (famously unpublished, but see this lecture)
argues that all stories have simple “shapes” defined by the
trajectory of the protagonist’s fortunes over time (Kiley et al.,
2016; Vonnegut, 2005). Reagan et al. (2016) analyze novels
to extract story shapes, and suggest that future work investi-
gate the “opposite direction” of generating stories for given
shapes. We can do this by inverse inverse planning.

We would like to optimize for animations where the robot’s
fortunes decline and then rise again, creating a “story arc.” To
heighten the effect, we add a mechanism for characters’ for-
tunes to change based on external events. Since ancient times,
storytellers have propelled or resolved plots by introducing a
new element from outside the world of the story, a pattern
literary theorists call “deus ex machina.” We create the pos-
sibility for “deus ex machina” by creating a special type of
transition ⟨deus,x,y⟩ where the obstructing table “falls from
the sky” into the kitchen at position (x,y). Note that the char-
acters’ learned policies do not account for the possibility of
this transition occurring; nor do audiences know to expect
it—it is a surprise from “outside” the fictional world.

With this enhancement, we can search for stories where the
value function of the robot (learned by value iteration) shows
a rise-fall-rise pattern, which we model as 1.5 periods of a
sinusoid:

farc(σ) = ∑
t
+ sin(t/T ·3π) ·E

[
V H

robot(st) | σ1:t
]

−0.1 ·DKL(H1:t−1 ∥ H1:t)

We do not specify anything else about the story. However, we
introduce a new term to enforce that the characters’ apparent
goals do not change over time. Otherwise, we might get sto-
ries where the robot’s apparent fortune changes because its
apparent goal changes. To enforce this consistency, we min-
imize the KL-divergence between our beliefs about the char-
acters’ goals before and after each observed action. Here, H1:t
is a random variable with probability distribution P(H | σ1:t).

In the generated animation, the robot starts helping the
cheese to pink. However, the table falls onto pink at the last
moment. Then the robot moves the table out of the way, al-
lowing the cheese to finally reach pink.

Stumbling (video) We can also show “narrative arcs” in the
physics-based domain. We use gradient descent to optimize a
trajectory in which value function V (st ;φ0.5) dips from time
ts to time t f :

farc(s) = ∑
t

V (st ;φ0.5) ·

{
−1 ts ≤ t ≤ t f

+1 else

As before, we optimize residuals over the optimal policy θ0.5.
The resulting animation shows the hopper “stumble” at time
ts (i.e. reaching a physically precarious state with low value
function), and then “recover” at time t f (Figure 4c).

Discussion
In this paper, we modeled storytellers as inverse inverse plan-
ners, who choose actions to influence the audience’s beliefs
over time. We implemented inverse inverse planning compu-
tationally by optimizing over Bayesian models of audiences.
We then presented behavioral studies validating that inverse
inverse planning depicts social and physical characteristics
more effectively than naı̈ve planning. Finally, we showed
how a variety of sophisticated storytelling elements emerge
naturally from inverse inverse planning, thus giving a formal
computational account of Kukkonen’s theory of “probability
designs.”

For now, computational models of inverse inverse planning
are limited primarily by scalability. The difficulty grows with
the complexity of the state space, hypothesis space, and space
of possible scripts. In this paper we worked with small proof-
of-concept domains and simple algorithms at each recursive
level, but more sophisticated algorithms could likely scale
this framework significantly. They would also enable other
forms of interaction, such as human-computer improvisa-
tional theater. Pinhanez (1999) considers “building computer-
actors able to improvise with human actors in a performance
to be an extremely difficult goal that will require the solving
of many Al issues related to contextual and common sense
reasoning.” While we were able to prototype such a system
in the grid-world domain using inverse inverse planning, it is
for now too slow to use for real-time behavioral experiments.

Another promising future direction is to augment the audi-
ence model to reason about emotion (Houlihan, Ong, Cusi-
mano, & Saxe, 2022; Ong, Soh, Zaki, & Goodman, 2019;
Ong, Zaki, & Goodman, 2015, 2019; Saxe & Houlihan,
2017): either to evoke certain emotions in the audience, or
to use characters’ visible emotions as degrees of freedom in
story design. For example, if a villain captures a hero, show-
ing the hero’s sidekick to be happy would cause the audience
to infer that the sidekick was secretly aligned with the villain
all along. This in turn could evoke anger at the betrayal. We
hope to explore these extensions, and more, in future work.
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Z. (2010, jul). Character animation in two-player
adversarial games. ACM Trans. Graph., 29(3). Re-
trieved from https://doi.org/10.1145/1805964
.1805970 doi: 10.1145/1805964.1805970

Witkin, A., & Kass, M. (1988). Spacetime constraints.
ACM Siggraph Computer Graphics, 22(4), 159–168.
Retrieved from https://dl.acm.org/doi/pdf/10
.1145/378456.378507

Won, J., Gopinath, D., & Hodgins, J. (2021, jul). Control
strategies for physically simulated characters perform-
ing two-player competitive sports. ACM Trans. Graph.,
40(4). Retrieved from https://doi.org/10.1145/
3450626.3459761 doi: 10.1145/3450626.3459761

Xu, J., Makoviychuk, V., Narang, Y., Ramos, F., Matusik,
W., Garg, A., & Macklin, M. (2022). Acceler-
ated policy learning with parallel differentiable simu-
lation. ICLR. Retrieved from https://arxiv.org/
pdf/2204.07137.pdf

Yoon, E. J., MacDonald, K., Asaba, M., Gweon, H., &
Frank, M. C. (2018). Balancing informational
and social goals in active learning. In Cogsci.
Retrieved from https://sll.stanford.edu/docs/
2018 cogsci/Yoon et al 2018 cogsci.pdf

Yoon, E. J., Tessler, M. H., Goodman, N. D., & Frank, M. C.
(2016). Talking with tact: Polite language as a balance
between kindness and informativity. In Proceedings
of the 38th annual conference of the cognitive science
society (pp. 2771–2776). Retrieved from http://
socsci-dev.ss.uci.edu/˜lpearl/courses/
readings/YoonEtAl2016 Politeness.pdf

Yoon, E. J., Tessler, M. H., Goodman, N. D., & Frank,
M. C. (2017). “i won’t lie, it wasn’t amazing”:
Modeling polite indirect speech. In Cogsci. Re-
trieved from https://cogsci.mindmodeling.org/
2017/papers/0679/paper0679.pdf

Zhi-Xuan, T., Mann, J., Silver, T., Tenenbaum, J., & Mans-

911

https://social-intelligence-human-ai.github.io/docs/camready_12.pdf
https://social-intelligence-human-ai.github.io/docs/camready_12.pdf
https://escholarship.org/content/qt47g8d89h/qt47g8d89h.pdf
https://escholarship.org/content/qt47g8d89h/qt47g8d89h.pdf
https://www.aaai.org/Papers/IJCAI/2007/IJCAI07-416.pdf
https://www.aaai.org/Papers/IJCAI/2007/IJCAI07-416.pdf
https://epjdatascience.springeropen.com/articles/10.1140/epjds/s13688-016-0093-1
https://epjdatascience.springeropen.com/articles/10.1140/epjds/s13688-016-0093-1
https://www.academia.edu/download/30704104/025_riedlm_story.pdf
https://www.academia.edu/download/30704104/025_riedlm_story.pdf
https://www.jair.org/index.php/jair/article/download/10669/25501
https://www.jair.org/index.php/jair/article/download/10669/25501
https://daeh.info/assets/pubs/saxe2017cop.pdf
https://daeh.info/assets/pubs/saxe2017cop.pdf
https://www.sciencedirect.com/science/article/pii/S0010028514000024
https://www.sciencedirect.com/science/article/pii/S0010028514000024
https://www.tshu.io/HeiderSimmel/CogSci20/Flatland_CogSci20.pdf
https://www.tshu.io/HeiderSimmel/CogSci20/Flatland_CogSci20.pdf
https://ojs.aaai.org/index.php/AAAI/article/view/4574/4452
https://ojs.aaai.org/index.php/AAAI/article/view/4574/4452
https://cogsci.mindmodeling.org/2011/papers/0585/paper0585.pdf
https://cogsci.mindmodeling.org/2011/papers/0585/paper0585.pdf
https://www.tomerullman.org/papers/nips2010.pdf
https://www.tomerullman.org/papers/nips2010.pdf
https://doi.org/10.1145/1805964.1805970
https://doi.org/10.1145/1805964.1805970
https://dl.acm.org/doi/pdf/10.1145/378456.378507
https://dl.acm.org/doi/pdf/10.1145/378456.378507
https://doi.org/10.1145/3450626.3459761
https://doi.org/10.1145/3450626.3459761
https://arxiv.org/pdf/2204.07137.pdf
https://arxiv.org/pdf/2204.07137.pdf
https://sll.stanford.edu/docs/2018_cogsci/Yoon_et_al_2018_cogsci.pdf
https://sll.stanford.edu/docs/2018_cogsci/Yoon_et_al_2018_cogsci.pdf
http://socsci-dev.ss.uci.edu/~lpearl/courses/readings/YoonEtAl2016_Politeness.pdf
http://socsci-dev.ss.uci.edu/~lpearl/courses/readings/YoonEtAl2016_Politeness.pdf
http://socsci-dev.ss.uci.edu/~lpearl/courses/readings/YoonEtAl2016_Politeness.pdf
https://cogsci.mindmodeling.org/2017/papers/0679/paper0679.pdf
https://cogsci.mindmodeling.org/2017/papers/0679/paper0679.pdf


inghka, V. (2020). Online bayesian goal inference
for boundedly rational planning agents. Advances in
Neural Information Processing Systems, 33. Retrieved
from https://arxiv.org/pdf/2006.07532.pdf

912

https://arxiv.org/pdf/2006.07532.pdf

	Introduction
	Background: Bayesian inverse planning
	Inverse inverse planning
	Behavioral experiment 1
	Miming by ``inverse inverse physics''
	Behavioral experiment 2
	Flexibility of inverse inverse planning (all videos)

	Discussion



