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Abstract

Attention can be biased by the previous learning and experi-
ence. We present an algorithmic-level model of this bias in vi-
sual attention that predicts quantitatively how bottom-up, top-
down and selection history compete to control attention. In
the model, the output of saliency maps as bottom-up guidance
interacts with a history map that encodes learning effects and
a top-down task control to prioritize visual features. We test
the model on a reaction-time (RT) data set from the experi-
ment presented in (Feldmann-Wiistefeld, Uengoer, & Schubdg,
2015). The model accurately predicts parameters of reaction
time distributions from an integrated priority map that is com-
prised of an optimal, weighted combination of separate maps.
Analysis of the weights confirms learning history effects on
attention guidance.

Keywords: Visual attention; Selection history; Integrated pri-
ority map; Self information maximization; Feature integrated
theory; Ex-Gaussian distribution

Introduction

Selective visual attention is a brain function that filters irrel-
evant sensory inputs to facilitate focusing on relevant items.
Bottom-up and top-down mechanisms have traditionally been
proposed to control the process of attention guidance. Object
saliency and environment features shape the attentional pro-
cess in a bottom-up manner while the top-down process is
mostly controlled by observer intentions and preferences.

In addition to top-down and bottom-up contributions also
‘selection history’ can play a significant role in guiding at-
tention toward a specific target (Theeuwes, 2019). Selection
history (as a third category of attentional deployment) comes
into play when an object is emphasized just because of pre-
vious attendance in the same context (Awh, Belopolsky, &
Theeuwes, 2012). To clarify the distinction between top-
down guidance and selection history, Theeuwes argued that
selection history is a fast, effortless, and automatic version of
attention control while top-down selection is slow, effortful,
and controlled (Theeuwes, 2018).

One special form of selection history has been investi-
gated in (Feldmann-Wiistefeld et al., 2015; Kadel, Feldmann-
Wiistefeld, & Schubo, 2017; Henare, Kadel, & Schubo,
2020). These studies combined an associative learning task
with a visual search task. The result showed that observers at-
tend more to a stimulus which was predictive in the preceding
feature discrimination task. Considering to what extent selec-
tion history can be suppressed by top-down process, Kadel et
al. (2017) tested three different top-down-influenced modes
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of task preparations such as pretrial task cuing. As their re-
sults showed, attentional biases induced by selection history
persisted despite the task preparation.

An integrated priority map was proposed by Awh et al. as
a theoretical framework to explain how selection history and
other factors of attention guidance interact (Awh et al., 2012;
Theeuwes, 2019). Priority maps have been successfully em-
ployed by many authors (Fecteau & Munoz, 2006; Zelinsky
& Bisley, 2015; Klink, Jentgens, & Lorteije, 2014; Todd &
Manaligod, 2017; Veale, Hafed, & Yoshida, 2017; Chelazzi
et al., 2014) to explain the result of the processes which shape
attention. In a review, Klink et al. (2014) summarized how
goal-driven and stimulus-driven maps in cortex combine with
a value-based map in midbrain. This combination results in a
priority map for the frontal eye fields.

Stimulus-driven (bottom-up) models of attention were de-
veloped early on (Itti, Koch, & Niebur, 1998). These models
tend to ignore the effects of selection history, task or training
(Itti & Borji, 2015). Itti et al. (1998) implemented feature in-
tegration theory (three feature maps including color, intensity
and orientation), winner-take-all, inhibition of return and a
normalization method to model visual attention in a bottom-
up manner. Veale et al. (2017) validated a neural implemen-
tation of Itti’s model. In another bottom-up model, Bruce
and Tsotsos (2006, 2009) —using self information maximiza-
tion (—log(p(x))), where x is a feature — proposed a com-
putational model of saliency that is called ‘Attention based
on Information Maximization (AIM)’, because attention is
attracted by surprising, i.e. potentially informative, regions
of an image. Furthermore, thanks to deep learning advances,
there has been recent progress in deep visual saliency models
(Borji, 2019).

Beside above mentioned models, Itti and Borji (2015) re-
viewed more than 50 computational bottom-up models. They
also reviewed some computational top-down models. Such
models (Navalpakkam & Itti, 2005; Hwang, Higgins, & Pom-
plun, 2009; Borji, Sihite, & Itti, 2014) are less well re-
searched than saliency models, which might be due to the fact
that they require information not available from the stimulus.
There are also some models on how bottom-up and top-down
work together in attentional guidance (Chikkerur, Serre, Tan,
& Poggio, 2010; Kimura et al., 2008). Chikkerur et al. (2010)
used a Bayesian framework to explain how a combination of
bottom-up and top-down attentional guidance work together



in cortex.

Despite substantial progress in building models of atten-
tion, there are still many open questions. Selection history has
hardly been modeled. One exception is Tseng et al.’s model
of the influence of inter-trial priming — a type of selection his-
tory effect — on attention guidance (Tseng, Glaser, Caddigan,
& Lleras, 2014). They implemented a Ratcliff-type diffusion
model (Ratcliff, 1978) for a 2-forced-choice task and showed
that the history can affect Ratcliff diffusion model parame-
ters.

In this paper we introduce an algorithmic-level model (in
the sense of Marr (1982)) to show how bottom-up, top-down
and selection history compete against each other to guide vi-
sual attention toward a specific target. By selection history
here we mean the effect of learning from previous experi-
ence on the current task (see (Feldmann-Wiistefeld et al.,
2015; Kadel et al., 2017; Henare et al., 2020)). The model
comprises priority maps to integrate goal-driven, saliency-
based and history-related biases in a winner-take-all man-
ner. Bottom-up guidance, feature maps and subsequently
saliency maps are made based on ‘feature integration the-
ory’ (Treisman & Gelade, 1980) and ‘self information max-
imization’ (AIM) (Bruce & Tsotsos, 2009). To reflect the
effect of selection history and learning in the model, a history
map contributes to the integrated priority map. Finally, task-
relevant information controls the map integration weights that
generate predictions for responses and response times. These
integration weights are our model for the top-down influ-
ences. We test this model on a behavioral database from an
experiment by Feldmann-Wiistefeld et al. (2015). The model
can predict the reaction time distribution parameters for each
participant and also across the experimental groups. To find
the best distribution of reaction times, several probability den-
sity functions are compared maximizing log-likelihood and
the best fitting one — an ex-Gaussian distribution (Matzke &
Wagenmakers, 2009)— is used in the model.

Materials and methods
Experiment

The data used in this study comes from the first experiment of
Feldmann-Wiistefeld et al. (2015). They investigated the im-
pact of associative learning on covert selective visual atten-
tion. The experiment consisted of a ‘practice’ and a ‘main’
phase, in which two types of tasks (learning and search)
were performed. A central fixation cross was presented on
the screen, which was then surrounded by eight different el-
ements on an imaginary circle (Figure 1). 28 participants
were divided randomly into 2 different groups, namely ‘color
group’ and ‘shape group’. They were first naive about their
group membership, but had to learn it on a trial and error basis
in the practice phase.

In the ‘practice phase’, participants had to learn that either
color or shape was the response relevant dimension in this
learning task (see Figure 1A). Members of the color group
had to report the color of the color singleton (blue or green),
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whereas members of the shape group had to respond to the
shape of the shape singleton (triangle or pentagon). They had
to use their left hands to press one of two buttons that were
placed on the left side of the response pad. Auditory feedback
indicated whether they pressed the incorrect key.

In the ‘main phase’ a second visual search task was added,
and participants performed both tasks in random order. In
the search task (Figure 1B), all participants had to report the
orientation of a line presented inside a diamond shape target.
In half of the trials, a response-irrelevant red circle was pre-
sented as distractor. Participants used their right hand to press
one of two buttons on the right side of the pad to indicate the
line orientation (horizontal versus vertical).

The results of this study showed that the history of selec-
tion acquired in the learning task affected the participants’
performance in the search task. Stimuli that were predictive
of the relevant dimension in the learning task biased atten-
tion in the visual search task. The authors suggested that the
participants’ history of either shape or color selection in the
practice phase had resulted in a selection history bias.

We presented a model of this selection history bias in the
current study based on the behavioral data from the main
phase, which comprises at total of 28672 trials across all par-
ticipants. More details about the experiment can be found in
(Feldmann-Wiistefeld et al., 2015).

The Algorithmic Model

Based on the theoretical considerations outlined in the in-
troduction and a preliminary data analysis, we assembled
an algorithmic-level model to explain how top-down and
bottom-up influences competitively interact with visual se-
lection history to guide attention toward a specific stimulus.
The results of this preliminary analysis, that was aimed at
determining experimental factors influencing responses and
reaction times, are not shown here for space constraints. In-
spired by the integrated priority maps in (Awh et al., 2012),
we used a ‘history map’ reflecting the influence of selection
history on current attention deployment, see Figure 2. Addi-
tionally, there is an overall saliency map for bottom-up influ-
ences. How these maps combine into an integrated priority
map is controlled by the task in a top-down fashion. Fig-
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Figure 1: Learning task (A): Participants in the color group
had to respond to the color (green vs. blue) and participants
in the shape group had to respond to the shape (pentagon vs.
triangle). Search task (B): The orientation (horizontal vs. ver-
tical) of the line embedded in the diamond had to be reported.
Distractor-absent trial (left). Distractor-present trial (right).



ure 2 also shows how the output of the integrated priority map
feeds into a two-part neural network that predicts ex-Gaussian
distribution parameters (Luce, 2008) of reaction times (left
exit path in the figure) and response likelihoods (the right exit
path).

The input stage of the model is based on feature-integration
theory (Treisman & Gelade, 1980). The model extracts three
types of features (color, shape and orientation) and feature
maps —as shown in Figure 2— are computed. In the next pro-
cessing step, saliency maps that model the effect of bottom-
up control on visual attention (Koch & Ullman, 1985) are
formed from the feature maps. Shannon’s measure of Self-
Information is applied, similar to Attention Based on Infor-
mation Maximization (Bruce & Tsotsos, 2009), to compute
saliency maps. Eq (1) and Eq (2) show the actual calcula-
tions behind map computation. Feature maps are M x N X K
vectors where M is the number of trials, N is the number
of objects in each trial and K is the number of distinct val-
ues that each feature can take on, i.e. we are using l-out-
of-K encoding for the features, with the value 1 indicat-
ing which feature value is present. In the current experi-
ment M = 1024 (for each participants), N = 8 and K = 4.
Figure 3 illustrates the method of building feature maps for
some example trials. For all trials, we take the feature maps
fi for i € {color,shape,orientation} and compute the self-
information X;:

N
Vk : X;[k] = —log( Y filn] [k]/N) )]
n=1
which yields the saliency of all trials s;[n]:
Vn:sin] =X; {arg max( f;[n] [k])] 2)
k

where, due to the 1-of-K feature encoding, we can use
argmax to pick the self-information corresponding to the cur-
rent feature value.

Saliency maps s; are fed into the integrated priority map
along with history information (4) to compete in a soft
winner-take-all model (Theeuwes, 2019) for the predicted re-
sponse target. Selection history, the third category of atten-
tional guidance (Awh et al., 2012), carries the effect of learn-
ing (participants learned about color or shape in our experi-
ment) into the priority map (p):

L

Vm,n : plm][n] = softmax (Z (wy, * si[m][n])
fwhlnll]) O

The weights (w;, for history and w, for i €
{color,shape,orientation}) are used to combine the
history map and the saliency maps and reflect the effect of
the task in a top-down manner. The softmax function is
used to ensure that the winning location receives the most
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attention while keeping the map interpretable as a probability
distribution. In our model, Eq 3 can be interpreted as the first
layer of a (two-layer) neural network. The second layer is a
(linear) mapping from the integrated priority map to reaction
time distribution parameters:

N
Vm:d = Z(p[m][n]*wd)+3d 4)
n=1

When w and B are weights and biases of ex-Gaussian distri-
bution parameters’ for d[m] € (u[m],c[m],t[m]).

We also compute a 1-out-of-K representation of the target
information (g[m][n] in Eq 5, see also Figure 3) which is used
for machine-learning the weights with which the history map
and the saliency maps are combined. The weights (wy,, wy,
and wy) for a task are determined by maximizing the log of
the joint distribution of the reaction times (RT), the target g
under the distribution predicted by the integrated priority map
and the prior distributions over the model parameters d:

L = Y log(ExG(RT|m]|ulm),olm],<m]))

m=1
M N

+ (X

m=1n=

llog(p[m} [n])  g[m][n]) + & (5)

where ExG is ex-Gaussian distribution function. & is com-
puted as the sum of the logs of the following prior distribu-
tions:

w~ 2A(0.0,1.0)
B, ~ N(600.0,100.0)
B ~ N\(75.0,4.0) (6)
B: ~ 2((200.0,20.0)

Mean and standard deviation of these distributions are se-
lected in a way that matches results from similar experiments
(Feldmann-Wiistefeld et al., 2015; Kadel et al., 2017). To
find the weights and biases that maximize the joint proba-
bility (Eq 5), we draw random initial values from these dis-
tributions and then optimize using Python 3.7.6, PyTorch
1.6.0 and Adam optimizer with learning rate 0.2. Code and
training data for the models can be found here: http://
dx.doi.org/10.17192/fdr/64.2

Results and Discussion

To investigate how selection history quantitatively influences
attentional guidance, three versions of the model with dif-
ferent history maps are tested. In the first version, the his-
tory map contains the response-relevant features in the learn-
ing phase (blue and green for the color group, triangle and
pentagon for the shape group). In the second version of the
model, the history map includes all color singletons (for par-
ticipants in the color group) and all shape singletons (for par-
ticipants in the shape group). The assumption is that the par-
ticipants have learned response-predictiveness on the dimen-
sional level (color or shape), not on the level of single features
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Figure 2: An overview of the algorithmic model. The blue arrows show the direction of data flow from visual input to response
and gray arrows show the direction of feedback. wg, wy, and w, are map weights. wy has three elements for color, shape and
orientation. wy has also three elements for distribution parameters(u,c,T). By is distribution parameters’ bias containing B,

Bs and B;.

(such as green or blue). So not only blue, green, triangle and
pentagon but also red and diamond are included. In the third
version we exclude the history map from the model testing
the assumption that only top-down and bottom-up guidance
direct attention. To compare these versions of the model,
we use a Laplace-approximation. We compute a second-
order approximation of the marginal log-probability of the
data given the different models’ assumptions. We employ
these log-probabilites for two Bayesian model comparisons
(Bishop, 2006; Barber, 2012; Endres, Chiovetto, & Giese,
2013): fitting one model per participant, and one model per
group. In both cases, a model that includes a history map and
maps for those features that were predictive during the learn-
ing phase is at least 10?° as probable as the alternatives. For
more details about the model evidences see Figure 4.

Under the assumption that there is a linear mapping from
the priority map to the reaction time distribution parameters,
the model machine-learns to predict the history map weight
(wp), saliency map weights (wy) and also the distribution pa-
rameters weights and biases (wy, By) (see Figure 2). To com-
pare the weights and also to see how they vary between the
color and the shape group see Figure 5, which shows the
weights for model version one.

As can be seen in Figure 5, the ‘history map’ has a higher
weight in the color group than in the shape group: to solve the
learning task, the color group model has to rely on its learning

history features (blue and green) in half of the trials, i.e. in
the learning task. Although these colors could be found in
the ‘color map’ as well, there is another color (red) in this
map which is task-irrelevant and has to be suppressed. This
may be the reason for the increased attention capture by the
red distractor in color group members which is reported in
(Feldmann-Wiistefeld et al., 2015).

For the search task, a high orientation weight is employed
by the color group model, since this task can be solved by
spotting an orientation singleton, cf. Figure 1, B.

In contrast, the shape group model can afford to rely less
on its ‘history map’ because the items in its history (triangle
and pentagon) exist in the ‘shape map’ too (triangle, pentagon
and diamond), and there is no shape distractor. Therefore, by
using a high shape map weight, both the learning task can
be solved, and attention can be guided to the shape singleton
containing the target in the search task (diamond).

To summarize, the weight of the ‘orientation map’ is larger
in the color group than in the shape group, indicating that the
color group model employs orientation saliency in the search
task. Using orientation saliency, it does not need to attend to
the shape singleton in the search task. However, the shape
group model focuses on the ‘shape map’ which is response-
relevant in both tasks.

Also, the weight of the ‘color map’ was higher in the color
group than in the shape group model, since the latter can ig-
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Figure 3: Feature maps, history map and goal-driven infor-
mation for two random trials. We use 1-out-of-K encoding
for the feature vectors, i.e. all components but one are zero.
The nonzero component indicates the feature value (see the
green box). In each row of history map the location of learned
feature is marked. In the target (goal-driven) information the
location of response-relevant feature is marked.

nore color altogether.

The model approximates the reaction time distribution pa-
rameters (u,0,T) very well (as can be seen in Figure 6). To
quantify how close the model-predicted distributions are to
the best fit to the data, we evaluate an approximation to the
KullbackLeibler (KL) divergence (Bishop, 2006):

B p(RT)
KL(pllg) = [ p(RT)log (Cimy) kT ™)
1 ¥ 1 ¥
~ M,,Lzz"l log p(RT,,) — Mmzl logq(RT,,)

where RT,, is the reaction time in trial m, p(RT) and q(RT) are
model-predicted and best-fit distributions respectively. For
both color and shape group RTs, we find KL(p||q) < 10~#
which is very close to the minimal possible value.

Conclusion

We presented a model of selection history in visual atten-
tion. The model implements the idea that selection history
has a role in attention guidance as claimed by Feldmann-
Wiistefeld et al. (2015). We compared different versions of
the model and the results show that the one which includes
selection history, beside bottom-up and top-down control, is
best suited for a quantitative description of the behavioral
(RT) results. Our model successfully implements an inte-
grated priority map as proposed by Awh et al. (2012). To
determine if this integrated priority map approach is indeed
the best description of human behavior, future research needs
to investigate non-integrated alternatives. Furthermore, as hu-
mans use their attention system in a large variety of situa-
tions, a model of task switching needs to be added, rather
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Figure 4: Model comparison. We computed a Laplace-
approximation to the Bayesian model evidence across partic-
ipants. Bigger evidence is better. Model version one, whose
history map contains relevant features, scores best. For model
descriptions, see text.

map weights (model parameters)

maps
history
color
shape
orientation

weights (predicted by the model)

N =

T
color group
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group membership

Figure 5: Map weights. For both color group and shape
group, optimal map weights for model one are shown. A
higher weight means a stronger influence of the correspond-
ing map onto the response and reaction time. The error bars
represent the standard deviations of the posterior, i.e. stan-
dard errors.

than training one model per task. The search for such alter-
natives might be facilitated if we knew what the attentional
system is actually trying to achieve on a quantitative level.
This is a question situated on the ‘computational level’ (Marr,
1982). Therefore, we intend to build a computational model
in a Bayesian/optimal feedback control framework for both
ideal and non-ideal observer-actors. Stochastic evidence ac-
cumulation approaches — that have been applied in some other
models such as Race Models (Mordkoff & Yantis, 1991) and
Drift Diffusion models (Luce, 2008) — might be useful to
this end. Another interesting avenue of investigation, which
would help in constraining the model, would be the addition
of physiological variables. For example, adding EEG sig-
nals to disentangle target and related sub-processes (such as
enhanced target processing or distractor suppression) would
shed further light on attentional guidance processes.
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