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Abstract

The visual system does not require extensive signal in its inputs
to compute rich, three-dimensional (3D) shape percepts. Even
under highly degraded stimuli conditions, we can accurately
interpret images in terms of volumetric objects. What compu-
tations support such broad generalization in the visual system?
To answer, we exploit two degraded image modalities – sil-
houettes and two-tone “Mooney” images – alongside regular
shaded images. We test two distinct approaches to vision: deep
networks for classification and analysis-by-synthesis for scene
inference. Deep networks perform substantially sub-human
even after training on 18 times more images per category com-
pared to the existing large-scale image sets for object classifi-
cation. We also present a novel analysis-by-synthesis architec-
ture that infers 3D scenes from images via optimization in a
differentiable, physically-based renderer. This model also per-
forms substantially sub-human. Nevertheless, both approaches
can explain some of the key behavioral patterns. We discuss
the insights these results provide for reverse-engineering vi-
sual cognition.
Keywords: analysis-by-synthesis; differentiable rendering;
silhouette; mooney; shape-from-x

Introduction
Vision scientists studied many cues as possible routes to 3D
object shape perception, including texture gradients, shading
patterns, contour geometry, highlights, stereo disparity, and
motion parallax (Bulthoff & Yuille, 1991). A striking ob-
servation across these studies is that the visual system does
not require much signal in its inputs to construct rich, three-
dimensional (3D) shape percepts. Even under highly de-
graded or atypical stimuli conditions, e.g., under dim light,
behind occluders, or at unusual viewpoints, we can accu-
rately interpret images in terms of an underlying volumetric
object. A classical example of such degraded stimulus condi-
tions is the two-tone, black and white “Mooney” images (e.g.,
Mooney, 1957; Moore & Cavanagh, 1998) (Fig. 1). These
two-tone images lack shading, hue, or texture cues entirely,
and can distort outline and contour information. Yet, most
observers report a strong sense of seeing 3D objects and sur-
faces in such images. These observations do not just reflect

curiosities about certain “corner cases”, but instead they illus-
trate how the visual system operates at the “long-tail” of what
can happen in the world. Here we ask: What computations
and representations are needed to accomplish such versatile
processing and broad generalization in the visual system?

To answer, we exploit two highly degraded image modali-
ties: silhouettes and Mooney images, alongside with regular
shaded images. In a behavioral experiment, we first estab-
lish that humans robustly generalize object shape information
despite simultaneous viewpoint and image modality differ-
ences. We hypothesize that such broad generalization can be
understood in terms of three key elements: (i) a hypothesis
space over 3D object shapes, (ii) an internal model of the op-
tical or graphics processes by which 3D scenes are projected
and filtered to individual image modalities, and (iii) an ef-
ficient method to solve the inverse problem of inferring 3D
shapes from image inputs.

We implement this hypothesis in a novel analysis-by-
synthesis (AbS) architecture that builds upon and extends
recent advances in computer graphics: deep implicit sur-
face representations that are learned from an object reposi-
tory to capture an expressive hypothesis space over shapes
(Park, Florence, Straub, Newcombe, & Lovegrove, 2019); a
physically-based differentiable renderer to capture graphics
processes (Nimier-David, Vicini, Zeltner, & Jakob, 2019);
and optimization through this renderer to infer shapes that
best reconstruct input images (Remelli et al., 2020). In this
model, perception of shape is a form of causal inference, go-
ing back from images to their underlying 3D scenes. Thus,
in principle this model can generalize across viewpoints and
image modalities as long as it can account for such variation
using its hypothesis space. Indeed, we find that this model
is able to compute consistent 3D shape percepts across both
regular and degraded image modalities.

We compare this analysis-by-synthesis architecture to the
current standard approaches in vision based on deep convolu-
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Figure 1: Example stimuli used in the experiment showing shaded images (top row), Mooney images (middle row), and
silhouettes (bottom row) from four different object categories including tables, airplanes, chairs, and cars and viewpoints
(canonical and randomized).

tional neural networks (DCNNs; LeCun, Bengio, & Hinton,
2015) trained to classify (object category or identity infor-
mation) through a hierarchy of non-linear transformations.
Unlike our analysis-by-synthesis model, which aims to ex-
plain the variation in the image via a generative model, the
functional goal in these models is to “untangle” the category
(or identity) information, learning to classify objects despite
variation in viewing conditions (DiCarlo, Zoccolan, & Rust,
2012). These models have not only enabled impressive engi-
neering applications (LeCun et al., 2015), but they can also
explain aspects of the variance in neural data along the visual
processing hierarchy (Yamins et al., 2014; Khaligh-Razavi &
Kriegeskorte, 2014). However, they are brittle to novel im-
age modalities (e.g., line drawings, “stylized” images, etc.;
Geirhos et al., 2018) and require further training (or fine-
tuning) in each such domain to attain invariance. In this work,
we explore how much training is needed for DCNNs to gener-
alize across the viewpoints and image modalities we consider
here.

We evaluate these models by comparing their performance
to that of human observers on a shape generalization task
across viewpoints and image modalities. Extending previ-
ous behavioral work (Hayward, Tarr, & Corderoy, 1999), we
consider everyday object categories (including chairs, cars,
airplanes, and tables) with complex geometries and test three-
way generalization across not only silhouettes and shading
images, but also two-tone black and white images.

We find that human performance in this task is still the
golden standard. Humans substantially outperform both the
best performing DCNN variant as well as the analysis-by-
synthesis model (by about 10%). We find that even after train-
ing on thousands of images on each category (as high as 18
times the number of images per category in the large-scale,
industry-standard ImageNet dataset (Deng et al., 2009)), the
DCNNs still perform considerably below the human-level
performance. The analysis-by-synthesis model performs as
well as the best DCNN and thus still performs below human-
level. In finer-grained comparisons between behavior and

models, we find that the analysis-by-synthesis model and a
variant of the DCNN model robustly explain some of the vari-
ance in human performance. These results provide insights as
to the nature of computational substrate needed to understand
the versatility of human shape perception and cognition.

Task: Generalizing shape information across
viewpoints and image modalities

We studied shape generalization abilities in humans, DC-
NNs, and in a novel analysis-by-synthesis architecture using
a match-to-sample task that required matching across view-
points and image modalities (Fig. 2).

The stimuli for this task were generated using 3D models
of 60 unique objects from each of the following four everyday
object categories: airplanes, cars, chairs, and tables. This
resulted in a total of 240 meshes to create 120 unique mesh
pairs (30 pairs per category).

The two meshes in a pair were rendered multiple times to
produce 6 trials for each pair of meshes: one trial per per-
mutation of the 3 images modalities across the target item,
matching item, and distractor item. Thus, on each trial, all
three image modalities were present, but their assignment
to the target, matching, and distractor items were varied.
This results in a total of 120 · 6 = 720 trials, uniformly dis-
tributed across categories and each trial featuring all three
image modalities. The target item was always rendered at
a canonical viewpoint (three-quarters view; see Fig. 2 top
images). The two test items were rendered at random view
points (spanning [-30◦; 30◦] roll, [0◦; 360◦] yaw, and [-30◦;
30◦] pitch).

Physically-based rendering
Rendering was performed using a differentiable, physically-
based renderer (Mitsuba2; Nimier-David et al., 2019). In
contrast to the standard shaders such as Phong and Gouraud,
physically-based rendering allows us to more realistically
capture shadow patterns including ambient occlusion via ray-
tracing, which is crucial in the context of producing Mooney
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Figure 2: Three example trials from our match-to-sample task. The target item (the top image in each triplet) is a shaded image
on the left panel, a silhouette on the middle panel, and a Mooney image on the right panel.

images that induce a strong 3D percept.

Shading images In rendering shading images, we use an
area light (in the shape of a rectangle) that is located at x=y=4
units distance relative to the object. The camera is fixed at 45◦

azimuth , 15◦ elevation, and 3.5 units distance relative to the
object; for new viewpoints, we rotate the object instead. Each
object is rendered with a homogeneous texture that ensures a
smooth surface appearance and equates texture-related varia-
tions.

Mooney images To create Mooney images, we first apply
a differentiable Gaussian filter to the shading image. Then
we compute a threshold using the average illumination of the
blurred image ignoring the background. A final differentiable
thresholding operation using Pytorch’s tanh function (Paszke
et al., 2019) effectively assigns high and low illumination to
lighter and darker regions, respectively.

Silhouettes To create silhouette images, we remove the
area light and replace it with an ambient light. We also change
the texture color of the object to black. Rendering such scenes
results in silhouettes with white background; to equate with
other image modalities, we invert the pixel values.

Task-specific training with DCNNs
We first explore DCNNs as one approach to solve our gen-
eralization task. Here the idea is that if we can aggregate
datasets for each new generalization domain, and train or fine-
tune neural networks on those specific domains, they will ac-
complish generalization. Here we empirically explore how
much data might be needed to accomplish human-level gen-
eralization in our task. What is the order of magnitude of the
required number of images for human-level generalization?

Answering this question in the general case requires a the-
ory of DCNNs, which so far has proven elusive. Thus, we
have to make decisions about the architectural details, loss
function, learning rate, optimization method, and training set
distribution. Here, we followed a methodology in which we
first explored the following dimensions in preparatory simu-
lations semi-systematically.

• We explored two pre-trained backbones for training in-
cluding a small network VGG-11 (Simonyan & Zisserman,

Figure 3: Accuracy plot for DCNNs trained on data generated
from different numbers of unique meshes and different num-
bers of unique images per category. The dashed line indicates
the average human performance in our task.

2014) and a large one, Inception-v2 (Szegedy, Vanhoucke,
Ioffe, Shlens, & Wojna, 2015).

• We explored several embedding sizes to use for the classi-
fication layer including 10, 20, 30, 50, and 100.

• We explored three learning rate parameters:
10−3,10−4,10−5.

• We explored two optimization methods including Stochas-
tic Gradient Descent (SGD) and Adam (Kingma & Ba,
2017).

Based on these initial explorations, the most promising set-
tings were as the following: VGG-11 as the pre-trained back-
bone, classification layer size of 20, learning rate of 10−3, and
SGD optimizer with momentum = 0.9.

Given these settings, we directed our effort to investigating
the training set sizes systematically. To that end, we consid-
ered two dimensions: the number of unique meshes and the
number of unique images per category. The number of unique
meshes per category could be 5, 10, 100, 300, 1000, or 2000.
The number of unique images per category was 9 times (3
image modalities times 3 stimuli items) the number of mesh
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pairs, resulting in the following number of unique images per
category: 45, 90, 900, 2,700, 9,000, and 18,000. We con-
sidered all pairings of unique number of meshes and images
where the number of images was greater than or equal to 9
times the number of unique meshes.

Given the meshes and the number of images, we con-
structed the training sets using the same rendering pipeline
that underlies our task stimuli (Fig. 1). Using triplets from
these images, we trained DCNNs using a triplet margin loss
that minimizes the distance between target and matching
items while maximizing the distance between target and dis-
tractor items. During training (and evaluation), if the target-
matching distance was smaller than the target-distractor dis-
tance for a given triplet, that triplet was considered a ”hit”.
We find that increasing the size of the training set in terms of
the number of images is key to improve performance of the
networks on this task (see Fig. 3): Highest generalization per-
formance was achieved by selecting a moderately sized pool
of unique meshes (100) and a large number of unique images
rendered from them (18,000). Because these 18,000 images
are obtained from 2000 mesh pairs out of 100 unique meshes,
we refer to this model as DCNN-2000/100 in the following
sections.

Analysis-by-synthesis (AbS) Model
We also explored analysis-by-synthesis (AbS) as an alterna-
tive approach to accomplishing generalization in our task.
AbS involves computations that are distinct from the feed-
forward non-linearities learned in DCNNs for pattern clas-
sification. In AbS, shape perception amounts to inverting a
generative model (or a “synthesis” function) that describes
how 3D scenes form and project to images. Importantly, un-
like DCNNs, AbS uses 3D scenes to explain the variation
in the image (“analysis”) in terms of the synthesis function.
In order to perform our generalization task, we built a novel
analysis-by-synthesis architecture that consists of three com-
ponents (see Fig. 4): (i) an expressive category-specific, hy-
pothesis space over 3D shapes for each category, (ii) a dif-
ferentiable, physically-based renderer projecting 3D shapes
to images (including degraded image modalities) using ray-
tracing, and (iii) an optimization procedure that inverts this
process to map images to their underlying shapes. In the fol-
lowing, we describe the synthesis function (components (i)
and (ii)) and then the analysis function (step (iii), the opti-
mization procedure).

The synthesis function
In order to capture the detailed shape of objects such as those
present in our stimulus set, we equip the AbS model with
a recently proposed learning-based model that can express
high-quality shapes as continuous Signed Distance Func-
tions (SDF) (Park et al., 2019). This model learns to map
a latent vector z and a query point in 3D space x ∈ R3 to
the signed (indicating outside or inside) distance between x
and the learned shape surface via a Multi-Layer-Perceptron
(MLP; this architecture is also referred to as auto-decoder;

Fig. 4). The shape surface is therefore the zero-level-set of
the learned implicit function that we further use to produce
an explicit mesh-based surface representation using March-
ing Cubes (Lorensen & Cline, 1987). We train one shape
model per category with 300 unique meshes from that cate-
gory following the data-preparation and training procedure in
Park et al. (2019).

The synthesis function also includes the same differen-
tiable, physically-based renderer and the differentiable image
modality filters for two-tone Mooney images and silhouettes
(Fig. 4; see the Task section).

The analysis function (Inference)

We infer shapes from stimuli by inverting the generative
model using optimization. We initialize optimization with
a random latent vector z, read out the corresponding shape
from the generative model, produce an (optionally filtered)
image given a viewpoint, and compute L2 loss between the
output image and observed stimulus. Exploiting the closed-
form expression of the derivative of a surface sample with
respect to the underlying implicit field (Remelli et al., 2020),
we preserve end-to-end differentiablity of loss with respect
to z despite the raytracing-based renderer. We update z us-
ing Stochastic Gradient Descent (SGD) with a learning rate
of 0.005 following (Remelli et al., 2020). We found 100 iter-
ations to be sufficient to reliably infer shape for most of the
stimuli. Fig. 5 showcases detailed shape reconstructions of
an observed example stimulus under each of the three image
modality conditions.

In our current implementation, object shape is the exclusive
target of inference while lighting, viewpoint, image modal-
ity, and object category are fixed at their true values. (We
note that we found image modality and, to a lesser extent,
object category to be linearly decodable from the later layers
of VGG-11 pre-trained on ImageNet (Deng et al., 2009) us-
ing just five meshes and a small number of images from each
category. See Discussion for future work in the context of
building hybrid architectures.)

Simulation details

For each image in the stimulus set, we perform 6 randomly
initialized optimization runs, collect the latent vectors associ-
ated with the smallest loss in each run, and compute the aver-
age of these 6 latent vectors. We determine “hit” for a given
triplet if the linear correlation between ztarget and zmatching is
higher than the linear correlation between ztarget and zdistractor.
We refer to this model as AbS in the following.

Behavioral Experiment
Participants

We recruited 15 subjects over Prolific, a crowdsourcing plat-
form, each compensated $3.00. We implemented the match-
to-sample task in the psiTurk framework (Gureckis et al.,
2016).
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Figure 4: Analysis-by-synthesis (AbS) Model. Inference in this model is via SGD-based optimization to reduce the L2 loss
with respect under a differentiable physically-based renderer and differentiable image filters.

Figure 5: AbS shape inference examples. The object in
the observed images is accurately reconstructed for all im-
age modalities. Reconstruction: Same viewpoint with same
rendering settings used for inference. Re-rendered: Different
viewpoints at higher quality.

Stimuli and Procedure

We used the stimuli described in the Task section. Each trial
displayed all three images (the target item, matching item,
and distractor item) simultaneously. Those three images were
spatially organized such that one of them –the target image–
was presented at the top and the other two images were pre-
sented at the bottom. The images were presented for an un-
limited period of time, until the participant responded by in-
dicating their match judgment.

The participants performed 10 training trials before pro-
ceeding to 120 test trials. They were provided feedback in the
form of a running average of their performance every 10 tri-
als. We recorded their choices as well as their response times.
For each participant, the 120 test trials were drawn from the
population of 720 trials, equating samples from each category
and controlling for the number of permutations. The order of
the trials was randomized for each participant.

Results
Human observer accurately generalized across viewpoints
and image modalities with an average performance of 91%.
Observers’ average performance per category is shown in Fig.
6B. We can see that the performances across all categories
are all high, but not uniform: the airplane and car trials were
harder than the table and chair trials. In the next section, we
use models to understand this level of accuracy and its vari-
ability across categories.

Model vs. behavior comparisons
We present the average accuracy of models and compare to
behavior, in terms of both the average performance and a
finer-grained trial-level comparison. Strikingly, we find that
none of the models we explored reach human-level perfor-
mance – in fact, humans dominate the best models (AbS and
DCNN-2000/100) by more than 10% (Fig. 6A). It is not clear
how many more images per category it would take to bring
the DCNN models to human-level; possibly another 18,000
images per category (cf., Fig. 3).

Notice that the shape prior in the AbS model is category-
specific, although this shape prior was learned in a manner
agnostic to the generalization task at hand. It is possible that
if we trained category-specific DCNNs (one DCNN per cate-
gory), that could help bring the performance of these mod-
els to human-level, or at least improve over the category-
general models. To test this possibility, we trained a separate
DCNN for each category using the best-performing configu-
ration from Fig. 3 (18,000 images, 100 unique meshes). We
refer to this model as “DCNN-2000/100-spec”. Surprisingly,
we found that the average performance of these category-
specific DCNN models was almost identical to the category-
general model (80% vs. 79%; Fig. 6). This indicates that
the underlying DCNN architecture had sufficient capacity for
category-general training.

Despite their overall lower performance, both models cap-
tured the main pattern observed in the accuracy levels of the
human observers: Their accuracy was lower for the car and
airplane categories than the chair and table categories. En-
couraged by this correspondence, we finally compared the
models to behavior at the level of individual mesh pairs. Re-
member, our total of 720 task trials come from 120 unique
mesh pairs. This allows for an opportunity to compare mod-
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Figure 6: Comparisons between models and behavior. (A) Overall accuracy. (B) Category-wise accuracy. (C) Linear correlation
between human and model accuracy based on all 120 mesh pairs. (D) Model vs. human accuracy in-depth for AbS and DCNN-
2000/100-spec based on all 120 mesh pairs. Error bars/regions depict 95% CI.

els to behavior at a fine level of granularity while still leav-
ing capacity to average accuracy across multiple trials. We
would expect a small effect size for all models, but we ask
if any of the models can explain any significant variance in
the data. Correlations of the models to behavior are shown in
Fig. 6C. We observe that only two models, the AbS and the
category-specific DCNN (DCNN-2000/100-spec) show sig-
nificant correlations with the data (Fig. 6C, D).

Discussion
Our work dovetails and extends computational and behavioral
studies reported in Erdogan and Jacobs (2017) and Moore
and Cavanagh (1998). We extend this approach to familiar
object categories (but unfamiliar individual examplars from
those categories) by utilizing a flexible, learning-based prior
over shapes. We go beyond their work by modeling multiple
image modalities at once (not just shaded images as they do,
but also Mooney images and silhouettes).

In a study using two-tone Mooney images, Moore and Ca-
vanagh (1998) argued that perception of such scenes involves
“top-down” processing where the scene illumination is fac-
tored out in the context of familiar objects retrieved from the
memory. Here we provide concurring evidence and go be-
yond to show how these mechanisms can be implemented in
a computational model. Consistent with this proposal and ex-
tending it, we find that the category-specific models (DCNN-
2000/1000-spec and AbS) are the only models that signifi-
cantly correlate with behavior. We wish to further explore this
interesting concurrence by using the unfamiliar stimuli from
Erdogan and Jacobs (2017) under our stimulus conditions to
dissect the nature and impact of shape hypothesis spaces un-
derlying our generalization abilities.

We note we are not claiming that a DCNN cannot learn to

generalize in our task. However, in the settings we have ex-
plored them, such generalization would require implausibly
many images, on the order of, approximately 30,000 images
per category (extrapolating from Fig. 3). Still, this sample
ineffiency can be improved with further research in this area.
However, we are most excited about hybrid architectures that
take advantage of optimization at both learning and test time,
for example by integrating amortized proposals for making
inferences about image modalities or categories to then drive
inferences in the AbS model.
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