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Elevated blood pressure is a common, heritable cause of cardiovascular disease worldwide. To 

date, identification of common genetic variants influencing blood pressure has proven challenging. 

We tested 2.5m genotyped and imputed SNPs for association with systolic and diastolic blood 

pressure in 34,433 subjects of European ancestry from the Global BPgen consortium and followed 

up findings with direct genotyping (N≤71,225 European ancestry, N=12,889 Indian Asian 

ancestry) and in silico comparison (CHARGE consortium, N=29,136). We identified association 

between systolic or diastolic blood pressure and common variants in 8 regions near the CYP17A1 

(P=7×10−24), CYP1A2 (P=1×10−23), FGF5 (P=1×10−21), SH2B3 (P=3×10−18), MTHFR 

(P=2×10−13), c10orf107 (P=1×10−9), ZNF652 (P=5×10−9) and PLCD3 (P=1×10−8) genes. All 

variants associated with continuous blood pressure were associated with dichotomous 

hypertension. These associations between common variants and blood pressure and hypertension 

offer mechanistic insights into the regulation of blood pressure and may point to novel targets for 

interventions to prevent cardiovascular disease.

The World Health Organization estimated that, in 2005, the annual death toll from 

cardiovascular disease reached 17.5 million worldwide1–3. Increases in systolic and 

diastolic blood pressure (SBP, DBP), even within the normal range, have a continuous and 

graded impact on cardiovascular disease risk and are major contributors in half of all 

cardiovascular deaths 2,3. Lifestyle influences, including dietary sodium intake, alcohol 

excess, elevated body mass index and lack of exercise, are known to increase blood 

pressure4. Studies of familial aggregation suggest that there is also a substantial heritable 

component to blood pressure5. Studies of rare Mendelian disorders of hypertension and 

hypotension have produced the most significant progress toward understanding the heritable 

basis of blood pressure, showing that mutations in genes influencing renal salt handling can 

have a severe impact on blood pressure6. Detailed study of these genes has identified rare 

variants (minor allele frequency [MAF] <0.1%) that impact blood pressure in the general 

population7 and evolving evidence suggests a potential role for common variation in some 

of the same genes8–10.

Identification of common variants affecting blood pressure using genome-wide association 

studies (GWAS) has proved challenging, compared to other common complex 

disorders11,12. However, meta-analysis of multiple studies with large total sample sizes has 

the potential to facilitate detection of variants with modest effects. We therefore formed the 

Global Blood Pressure Genetics (Global BPgen) consortium and conducted meta-analysis of 

GWAS in 34,433 individuals of European ancestry with SBP and DBP measurements (stage 

1), followed by large-scale direct genotyping (stage 2a) and in silico (stage 2b) analyses 

(Supplementary Figure 1). Our analyses identified eight loci demonstrating genome-wide 

significant association with systolic or diastolic blood pressure, with each locus also 

providing substantial evidence for association with hypertension.

RESULTS

Genome-wide association for blood pressure

Global BPgen includes 17 cohorts of European ancestry ascertained through population-

based sampling or case-control studies. In our primary analysis (stage 1), we examined 
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individuals aged ≤70 years from 13 population-based studies and from control groups from 

4 case-control studies (Table 1). Individuals treated for hypertension were imputed to have 

15 mm Hg higher SBP and 10 mm Hg higher DBP than the observed measurementsas this 

has been shown to reduce bias and improve statistical power13. SBP and (separately) DBP 

measures were each adjusted for age, age2, body mass index and any study-specific 

geographic covariates within cohort- and gender-specific regression analyses. Genome-wide 

SNP genotyping was performed on a variety of platforms and subjected to standard quality 

control measures (Methods, Supplementary Table 1). Genotypes for ~2.5M autosomal SNPs 

in the HapMap CEU sample were then imputed in each study and tested for association 

under an additive genetic model with SBP and DBP separately. Test statistics from 

association analysis of SBP and DBP from each cohort were adjusted using genomic 

control14 to avoid inflation of results due to inter-individual relatedness or residual 

population stratification, and to ensure good calibration of test statistics. Meta-analysis of 

results was performed using inverse variance weights. Test statistic inflation post-meta-

analysis was modest (λGC = 1.08 SBP; λGC = 1.07 DBP); genomic control correction was 

applied again. The plots of test statistics against expectations under the null suggest an 

excess of extreme values (cohort-specific and meta-analysis quantile-quantile plots are 

presented in Supplementary Figure 2).

On meta-analysis of results from 34,433 individuals in stage 1, we observed 11 independent 

signals with P < 10−5 for SBP and 15 for DBP, with two results attaining P < 5×10−8, 

corresponding to genome-wide significance when adjusting for ~1m independent common 

variant tests estimated for samples of European ancestry (Supplementary Figure 3)15.

Follow-up of strongest SBP and DBP signals in additional samples

To strengthen support for association we undertook two analyses. First, we selected 12 SNPs 

for follow-up genotyping in up to 71,225 individuals drawn from 13 cohorts of European 

ancestry and up to 12,889 individuals of Indian Asian ancestry from one cohort (stage 2a, 

Table 1, Supplementary Figure 1, Supplementary Table 2). Second, we performed a 

reciprocal exchange of association results for 10 independent signals each for SBP and DBP 

(stage 2b, Supplementary Figure 1, Supplementary Table 3) with colleagues from the 

Cohorts for Heart and Aging Research in Genome Epidemiology (CHARGE) blood pressure 

consortium who had recently meta-analyzed GWAS data for SBP and DBP in 29,136 

individuals, independent of Global BPgen (Table 1). Meta-analysis of the stage 1 Global 

BPgen GWAS and stage 2a direct and stage 2b in-silico association results identified 

genome-wide significant (P < 5×10−8) associations at eight loci: 1p36 in MTHFR, 10q24 

near CYP17A1 and 17q21 in PLCD3 with SBP, 4q21 near FGF5, 10q21 in C10orf107, 

12q24 near SH2B3, 15q24 near CYP1A2, and 17q21 near ZNF652 with DBP (Table 2, 

Figure 1, Supplementary Table 2, Supplementary Table 3, Supplementary Figure 3). Three 

of these loci overlap with genome-wide significant loci identified in the CHARGE analyses 

(10q24 for SBP and 12q24 and 15q24 for DBP).

For SBP, the strongest evidence for association was at 10q24 (rs11191548, MAF = 0.09, 

1.16 mm Hg higher per major allele, P = 7×10−24, Table 2, Figure 1b). This SNP is part of a 

large cluster of associated SNPs spanning a ~430Kb region at 10q24 showing association in 
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our GWAS meta-analysis. The locus includes six genes, most notably CYP17A1, which 

encodes the cytochrome P450 enzyme CYP17A1 (also known as P450c17) that mediates 

steroid 17α-hydroxylase and 17,20-lyase activity. The first enzymatic action is a key step in 

the biosynthesis of mineralocorticoids and glucocorticoids that affect sodium handling in the 

kidney and the second is involved in sex-steroid biosynthesis. Missense mutations in 

CYP17A1 cause one form of adrenal hyperplasia characterized by hypertension, 

hypokalemia, and reduced plasma renin and aldosterone levels16,17. None of the five other 

genes/transcripts in the region (Figure 1b) is an obvious candidate for blood pressure 

regulation.

The second locus associated with SBP was at 1p36 (rs17367504, MAF 0.14, 0.85 mm Hg 

lower SBP/minor allele, P = 2×10−13, Table 2, Figure 1a). This SNP is located in an intron 

of the MTHFR (methylenetetrahydrofolate reductase) gene in a region with many plausible 

candidate genes, including: MTHFR, CLCN6, NPPA, NPPB, and AGTRAP. The strongest 

signal in the locus is 6.4kb away from and uncorrelated with rs1801133 (C677T, A222V r2 

CEU = 0.06), a coding variant that has been related to higher plasma homocysteine 

concentration18, pre-eclampsia19, and variably hypertension20. In Global BPgen rs1801133 

was associated with 0.08 mm Hg higher SBP/T allele (P = 0.56), 0.24 mm Hg higher DBP 

(P = 0.01) and an odds ratio for hypertension of 1.00 (95% CI 0.94-1.05, P = 0.90).

The natriuretic peptides encoded by NPPA and NPPB, also located within the 1p36 

associated interval, have vasodilatory and natriuretic properties and the NPPA knockout 

mouse has salt-sensitive hypertension21. A recent study found that the minor allele of 

rs5068 (43 kb from rs17367504, r2 CEU = 0.26), in the 3′ untranslated region of NPPA, is 

associated with higher plasma atrial natriuretic peptide and B-type natriuretic peptide, as 

well as lower SBP, DBP and odds of hypertension22. In the Global BPgen stage 1 meta-

analysis we confirmed association of the minor allele of rs5068 with 0.97 mm Hg lower 

SBP (P = 3×10−4), 0.60 mm Hg lower DBP (P = 1 × 10−3) and 10% lower odds of 

hypertension (P = 0.04). Whether the associations of rs5068 and rs17367504 reflect the 

same or different underlying signals remains to be established. The less well-characterized 

gene CLCN6, also at the 1p36 locus, encodes a neuronally-expressed chloride channel that 

has not previously been implicated in blood pressure physiology, although rare mutations in 

other renally-expressed chloride channels have been associated with extremes of blood 

pressure23,24. Lastly, AGTRAP (encoding angiotensin II receptor-associated protein) 

negatively regulates angiotensin II signaling by interacting with the angiotensin II type 1 

receptor, a critical component of the renin-angiotensin-aldosterone system and a target of 

antihypertensive therapy25.

The third locus associated with SBP was at 17q21 (rs12946454, MAF 0.28, 0.57 mm Hg 

higher SBP/minor allele, P = 1×10−8, Table 2, Figure 1c). This SNP is located in an intron 

in PLCD3 (phospholipase C-delta isoform), and is part of a cluster of associated SNPs. 

PLCD3 is a member of the phospholipase C family of enzymes; these are important in 

vascular smooth muscle signaling and are activated by the vasoactive peptides angiotensin II 

and endothelin26. Other genes of interest in the region include: HEXIM1 and HEXIM2 

(encoding hexmethylene bis-acetamide inducible proteins 1 and 2). Both have been 

implicated in myocardial growth27, cardiac hypertrophy and inflammation28.
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The DBP SNP with the strongest association evidence on joint analysis is rs1378942 (MAF 

= 0.36, 0.43 mm Hg higher/minor allele, P = 1×10−23, Table 2, Figure 1g), which is in an 

intron of CSK at 15q24. This is one of a cluster of associated SNPs spanning ~72kb. Genes 

in the region include CYP1A2 (cytochrome P450 enzyme), CSK (c-src tyrosine kinase), 

LMAN1L (lectin mannose-binding1 like) and ARID3b (encoding AT Rich Interacting 

Domain protein). Other nearby genes include CYP1A1 (~60kb) and CYP11A1 (~418kb). 

Cytochrome P450 enzymes are responsible for drug and xenobiotic chemical metabolism in 

the liver and cellular metabolism of arachidonic acid derivatives29, some of which influence 

renal function, peripheral vascular tone and blood pressure. CYP1A2 is widely expressed, 

representing 15% of CYP450 enzymes produced in the liver and mediating the metabolism 

of multiple medications (http://www.medicine.iupui.edu/Flockhart/table.htm). A correlated 

SNP, rs762551 (MAF = 0.31, r2 = 0.63, HapMap CEU) in an intron of CYP1A2 has been 

found to influence caffeine metabolism and recently association has been suggested between 

myocardial infarction risk and the allele associated with slow caffeine metabolism30. The 

ARID3B gene is embryonic lethal when knocked out in mouse, with branchial arch and 

vascular developmental abnormalities31, but is potentially interesting because of the 

presence of ARID5B at the 10q21 locus described below.

The second DBP SNP is rs16998073 (MAF = 0.21, 0.50 mm Hg higher/minor allele, P = 

1×10−21, Table 2, Figure 1d) which lies 3.4kb upstream of FGF5 (fibroblast growth factor 

5) on 4q21. The FGF5 protein is a member of the fibroblast growth factor (FGF) family that 

stimulates cell growth and proliferation in multiple cell types, including cardiac myocytes, 

and has been associated with angiogenesis in the heart32.

The third DBP SNP, rs653178 (MAF = 0.47, 0.46 mm Hg lower DBP/major allele, P = 

3×10−18, Table 2, Figure 1f) at 12q24 is in an intron in the ATXN2 (Ataxin) gene. The SNP 

is in a cluster of strongly associated SNPs spanning 200kb. This SNP is perfectly correlated 

with a missense SNP in SH2B3 (rs3184504, R262W, r2 in CEU to rs653178 = 1.0, DBP P = 

3×10−7 in stage 1 GWAS, change in log10(P) = 0.3 compared to rs653178). The minor 

allele of rs3184504, which is associated with higher DBP, has recently been associated with 

increased odds of type 1 diabetes33,34, celiac disease33,34, and most recently with 

eosinophil count, myocardial infarction, with a weak association with hypertension35. The 

SH2B3 protein (also known as lymphocyte-specific adapter protein, LNK) is one of a 

subfamily of SH2 domain-containing proteins and is implicated in growth factor, cytokine, 

and immunoreceptor signaling. In mice, it is primarily expressed in hematopoietic precursor 

cells, brain, testis and muscle36. There is some support for hypertension having an 

inflammatory component, possibly involving the adaptive immune system37. There are no 

prior studies linking blood pressure with type 1 diabetes or celiac disease. To explore this 

further, we looked up SNPs reported to be associated with T1D, celiac disease or myocardial 

infarction in the Global BPgen GWAS results and failed to find convincing association other 

than that for the SH2B3 missense SNP (data not shown). It is possible that the SH2B3 

missense SNP impacts blood pressure through an action specific to cells outside of the 

immune system and that no direct link between blood pressure and autoimmune diseases 

exists.

Newton-Cheh et al. Page 5

Nat Genet. Author manuscript; available in PMC 2010 September 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.medicine.iupui.edu/Flockhart/table.htm


The fourth DBP SNP, rs1530440 (MAF = 0.19, 0.39 mm Hg lower/minor allele, P = 

1×10−9, Table 2, Figure 1e) at 10q21 is intronic and one of a cluster of SNPs in C10orf107, 

an open reading frame of unknown function. Nearby genes include ARID5B (AT rich 

interactive domain 5B (MRF1 like)), TMEM26 (transmembrane protein 26), RTKN2 (RhoA 

GTPase effector, rhotekin-2) and RHOBTB1 (RhoBTB GTPase). The Rho family of 

GTPases converts guanine triphosphate to inactive guanine diphosphate. The actions of 

other GTP-modulating enzymes may modulate salt-sensitive hypertension38,39. The 

ARID5B gene is a member of the AT-rich interaction domain family of transcription factors 

and is highly expressed in cardiovascular tissue and involved in smooth muscle cell 

differentiation40.

The fifth DBP SNP, rs16948048 (MAF 0.39, 0.34 mm Hg higher DBP/minor allele, P = 

5×10−9, Table 2, Figure 1h) at 17q21 is upstream of ZNF652 (zinc finger protein 652) and 

PHB (prohibitin). Neither gene has previously been implicated in hypertension or other 

cardiovascular phenotypes.

We observed no significant interaction between the eight genome-wide significant SNPs and 

gender (P > 0.01, Supplementary Table 5). There was also no evidence of heterogeneity of 

effect across the samples examined for the eight SNPs (Q-statistic P > 0.05).

While we describe here promising candidates at each locus identified, the causal gene could 

be any of the genes around the association signal in each locus (Figure 1). Fine mapping and 

resequencing will be required to refine each association signal and to identify likely causal 

genetic variants which could be studied further in humans and in animal models.

All variants are related to both blood pressure traits

It remains to be clarified whether SBP or DBP is the better target for genetic investigation of 

blood pressure. The two traits are correlated and heritable, and both show strong increases 

with age, with DBP starting to plateau and in some individuals fall at ages above 60–65. 

Some have advocated the study of pulse pressure (SBP-DBP), which increases with 

advancing age, and is correlated positively with SBP and negatively with DBP and also 

shows evidence of heritability. In our GWAS and follow up, we chose a priori to consider 

SBP and DBP as separate traits. Thus, validation was only attempted for either SBP or DBP, 

according to the trait for which the stage 1 P value was lowest. Because SBP and DBP are 

correlated (r~0.50–0.70), it is perhaps not surprising to see that all eight genome-wide 

significant SNPs are associated with both SBP and DBP with the same directions of effect 

(Table 3, Figure 2). Thus, our presentation of results as SBP- or DBP-associated is 

somewhat arbitrary. The observation that each SNP shows stronger association with one trait 

or the other (typically by 1–2 orders of magnitude) could reflect sampling variation, small 

effect sizes or true differences in the underlying biologic basis of one trait or the other. A 

study designed to examine pulse pressure would be expected to show weaker (if any) 

association signals for the variants identified which all showed concordant effects on SBP 

and DBP.
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All variants are related to hypertension

We did not perform a global GWAS of hypertension, which is expected to be underpowered 

to detect common variants of modest incremental effects on continuous blood pressure. For 

the eight SNPs that were genome-wide significant in continuous trait analysis, we examined 

the association with hypertension (SBP ≥ 140 mm Hg or DBP ≥ 90 mm Hg or 

antihypertensive medication use) compared to normotension (SBP ≤ 120 mm Hg and DBP ≤ 

85 mm Hg and no antihypertensive medication use) in planned secondary analyses (N range 

= 57,410 – 99,802). All alleles associated with continuous blood pressure were also 

associated with odds of hypertension in directions consistent with the continuous trait effect 

(Table 4, Figure 2). The relative yields of the two approaches remain to be fully evaluated 

and will only become clearer upon completion of large ongoing GWA studies of 

dichotomous hypertension case-control samples. However, when we examined the 

hypertension association of each of the 8 SNPs genome-wide significantly associated with 

continuous SBP or DBP in just the stage 1 Global BPgen samples, 4 had 0.01 < P ≤ 0.10. 

These SNPs would not have been selected for follow-up genotyping had these tests been 

conducted as part of a hypertension GWAS. Thus, the study of continuous blood pressure 

allowed us to identify effects on risk of hypertension that would not have been readily 

discovered in a GWAS of hypertension drawn from these samples.

Extension to non-European samples

To date, the majority of complex disease association signals reaching genome-wide 

significance have been concentrated in populations of European ancestry, and it remains 

unclear whether these findings will transfer to individuals with other genetic backgrounds. 

We genotyped all stage 2a SNPs (four of which were not confirmed in the European 

ancestry analyses) in a separate Indian Asian sample of up to 12,889 individuals. We 

replicated the association of the SNP at 4q21 near FGF5 (rs16998073, P = 5×10−4, 

Supplementary Table 2) and the SNP at 10q24 near CYP17A1 (rs11191548, P = 0.008, 

Supplementary Table 2). We did not replicate association of the SNP rs1378942 at CYP1A2 

(P = 0.17, same direction), which could reflect limited power to detect the modest effect 

size, differences in linkage disequilibrium patterns in Indian Asians compared to Europeans, 

or simply lack of association in individuals of Indian Asian ancestry. The marked allele 

frequency differences between the European samples (C allele frequency ~0.35), the Indian 

Asian samples (0.77) and HapMap YRI (1.00) suggest distinct patterns of genetic variation 

at this locus across populations. A signal of positive selection has been suggested at the 

locus41 raising the potential functional importance of genetic variation in the region.

DISCUSSION

The eight loci described here and the additional loci reported by our colleagues in the 

CHARGE consortium are among the first confirmed associations between common genetic 

variants and blood pressure. Each association explains only a very small proportion of the 

total variation in SBP or DBP (~0.05–0.10%, approximately 1 mm Hg/allele SBP or 0.5 mm 

Hg/allele DBP, Table 2). However, the variants identified here have an aggregate effect on 

blood pressure, acting throughout the range of values (not just hypertensive), which has been 

shown to produce meaningful population changes in cardiovascular and stroke risk. For 
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example, 2 mm Hg lower SBP, across the range of observed values, has been estimated to 

translate into 6% less stroke and 4% less coronary heart disease.42

Given the modest effects observed here and the limited power of this study to detect such 

effects, it is likely that many more common variants exist with weak effects upon blood 

pressure. This study illustrates the value of well-powered meta-analysis and follow-up 

genotyping, accompanied by in silico analysis, requiring the coordinated efforts of 

investigators across multiple studies, to establish definitively the relationship of these loci 

with blood pressure regulation in the general population.

In a companion paper, the CHARGE consortium reports as genome-wide significant 3 of the 

8 loci that reached genome-wide significance in our Global BPgen joint analysis of stages 

1+2. CHARGE also reports common variants at 5 additional genome-wide significant loci 

at: 11p15 (Global BPgen P = 0.009), 3p22 (P = 0.01), 12q21 (P = 0.008), 12q24 (P = 0.05), 

and 10p12 (P = 0.004, see companion CHARGE paper). While these SNPs did not appear 

among our top 10 SNPs for either blood pressure trait, the Global BPgen results from in 

silico exchange and for the same alleles are clearly consistent with the conclusions of the 

CHARGE investigators. Among the 10 SBP and 10 DBP loci at the top of the Global BPgen 

results, five loci were represented in the CHARGE top 10 results (Supplementary Table 3). 

With the modest effect sizes we observed, it is not surprising that the top 10 loci for each 

blood pressure trait would exhibit only partial overlap.

We acknowledge that some limitations apply to our study. The participants in the individual 

studies comprising Global BPgen and our follow-up cohorts were ascertained using diverse 

criteria, had their blood pressure measured in a variety of ways, and exhibited a broad range 

of age and treatment profiles. Even small differences in these factors could reduce power to 

detect the association of genetic variants with modest effect, although such heterogeneity 

should not increase the false-positive rate. Even though SBP and DBP are dynamic 

phenotypes resulting from multiple competing influences, estimates of the test-retest 

reliability of blood pressure measurements are approximately 0.65–0.75 in studies focused 

on blood pressure43,44. Moreover, a graded relationship between BP measures and 

cardiovascular risk has been consistently observed, despite variability in BP measures2. At 

the individual level, genetically-determined alteration of 1 mm Hg SBP or 0.5 mm Hg DBP 

would be difficult to detect in the clinic, but large sample sizes use group-level differences 

in means to detect small genetic effects.

Exposures such as dietary sodium and potassium intake or excessive alcohol use also 

contribute to inter-individual differences in blood pressure. These were measured in a 

minority of our samples and thus we could not meaningfully adjust for these in our study. 

Under the assumption that these do not alter blood pressure systematically by genotype, we 

would only expect this omission to reduce power slightly.

We chose a priori to adjust for body mass index, which explains ~6–8% of the total 

variation in SBP and DBP, with the goal of reducing potential non-genetic contributions to 

blood pressure variability. Genetic variants could influence blood pressure acting through 
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BMI as an intermediate, but such variants are best identified through BMI GWA studies 

such as those recently reported by Loos et al45 and Willer et al46.

We adjusted for use of antihypertensive therapy by adding 15 mm Hg and 10 mm Hg to SBP 

and DBP, respectively. This approach has been shown to be superior to ignoring 

antihypertensive treatment or to excluding individuals on therapy13. However, it is clear 

that factors such as medication number and dosage, and variation in prescription patterns in 

different countries and time periods make this adjustment scheme an oversimplification. 

Again, such effects should generally bias our findings toward the null.

There are many classes of widely used therapies with strong antihypertensive effects. We 

examined the association of common variants at the loci extending 100kb on either side of 

the genes encoding the targets for thiazide diuretics (NCCT), loop diuretics (NKCC2), ACE 

inhibitors (ACE), angiotensin II receptor type 1 blockers (AGTR1), beta adrenoreceptor 

blockers (ADRB1, ADRB2), alpha adrenoreceptor antagonists (ADRA1A, ADRA1B, 

ADRA1D), calcium channel blockers (CACNA1S, CACNA1C, CACNA1D, CACNA1F), and 

aldosterone antagonists (CYP11B2). No results exceeded chance expectations. This does not 

exclude the existence of variants of weaker effects or variants that were missed because they 

were not covered by existing arrays. Obviously, it would be interesting to examine the 

impact of common variants in these genes on individual responses to therapies, which we 

have not done.

Moreover, the strength of association of variation in a gene with a trait (or lack thereof) says 

nothing about the potential strength of a drug designed to agonize or antagonize the product 

of that gene. For example, a common variant in HMGCR has only a modest effect on fasting 

lipids,47 yet statin therapy, which inhibits the HMGCR enzyme to lower LDL cholesterol, 

substantially lowers risk of cardiovascular disease. Thus, the implication of modest common 

variant genetic effects is not just a function of the ability to identify tendency toward higher 

or lower blood pressure in carriers of alternate alleles, but also the ability to recognize 

relevant targets for therapy that have defined in vivo relevance in human beings.

While targeted pharmacotherapy has theoretical appeal, clinical trials to demonstrate the 

utility and cost-effectiveness of such approaches will be required before such personalized 

medicine could be endorsed. The association signals identified here will need to be refined 

through fine mapping, and resequencing will be needed to define more fully the allelic 

spectrum of variants at each locus that contributes to inter-individual differences in blood 

pressure. Our findings offer initial insights into the genetic basis of a problem of global 

proportions and the potential for an improved understanding of blood pressure regulation. 

These loci may point to new targets for blood pressure reduction and ultimately additional 

opportunities to prevent the growing public health burden of cardiovascular disease.

METHODS

Overall study design

An expanded description of the methods is provided in the Supplementary Methods. The 

study comprised two staged analyses performed separately for SBP and DBP. Stage 1 was a 
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meta-analysis of directly genotyped and imputed SNPs from individuals of European 

descent in 17 samples drawn from population-based or control samples in case-control 

studies in the Global BPgen consortium. In stage 2a, we selected 12 SNPs for genotyping in 

up to 71,225 individuals of European descent from 13 studies and up to 12,889 individuals 

of Indian Asian ancestry from one study. In stage 2b, we selected 20 SNPs (10 SBP, 10 

DBP) for in silico analysis in 29,136 individuals of European descent from the CHARGE 

consortium (stage 2b, see Supplementary Figure 1).

Stage 1 samples

The Global BPgen consortium comprises 17 GWAS studies: the Baltimore Longitudinal 

Study of Aging (BLSA), British 1958 Birth Cohort (B58C-T1DGC and B58C-WTCCC), 

Cohorte Lausannoise (CoLaus), Diabetes Genetics Initiative (DGI), European Prospective 

Investigation of Cancer-Norfolk-Genome Wide Association Study (EPIC-Norfolk-GWAS), 

Fenland Study, Finland-United States Investigation of NIDDM Genetics (FUSION) study, 

Invecchiare in Chianti (InCHIANTI), Kooperative Gesundheitsforschung in der Region 

Augsburg (KORA), the Myocardial Infarction Genetics Consortium (MIGen), Northern 

Finland Birth Cohort of 1966 (NFBC1966), SardiNIA, Study of Health in Pomerania 

(SHIP), the Precocious Coronary Artery Disease (PROCARDIS), Supplementation en 

Vitamines et Mineraux Antioxydants (SU.VI.MAX), and TwinsUK. We excluded 

individuals >70 years of age and individuals ascertained on case status for type 1 or 2 

diabetes (DGI, FUSION), coronary artery disease (MIgen, PROCARDIS) or hypertension 

(BRIGHT), leaving 34,433 individuals for analysis (Table 1). A detailed description of the 

study design and phenotype measurement for all cohorts can be found in the Supplementary 

Methods.

Genome-wide genotyping

Genotyping arrays and quality control filters are provided in Supplementary Table 1.

Imputation

Imputation of allele dosage of ungenotyped SNPs in HapMap CEU v21a or v22 was 

performed using MACH48 or IMPUTE49 with parameters and pre-imputation filters as 

specified in Supplementary Table 1. SNPs were excluded from analysis if the cohort-

specific imputation quality as assessed by r2.hat (MACH) or .info (IMPUTE) metrics was 

<0.30. In total, up to 2,497,993 genotyped or imputed autosomal SNPs were analyzed.

Phenotype modeling

In individuals taking antihypertensive therapies, blood pressure was imputed by adding 15 

mm Hg and 10 mm Hg for SBP and DBP, respectively13. Continuous SBP and DBP were 

adjusted for age, age2, body mass index, and any study-specific geographic covariates in 

gender-specific linear regression models. In FUSION and SardiNIA, which included family-

based samples, gender-pooled linear regression was performed with the addition of gender 

as a covariate. Residuals on the mm Hg scale were used as univariate traits in genotype-

phenotype analysis.
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In secondary analyses, hypertension was defined by the presence of SBP ≥ 140 mm Hg or 

diastolic blood pressure ≥90 mm Hg or self-report of taking a medication for the treatment 

of hypertension. Normotensive controls were defined as individuals not taking any anti-

hypertensives and having a SBP ≤120 mm Hg and a DBP ≤85 mm Hg.

Genotype-phenotype association analysis

Genotype-phenotype association of SBP and DBP residuals was performed under an 

additive model using software as specified in Supplementary Table 1. Analysis of 

hypertension for eight genome-wide significant continuous blood pressure loci was 

performed using logistic regression to adjust for age, age2, gender, body mass index.

Meta-analysis of stage 1 samples

All cohort-specific effect estimates and coded alleles were oriented to the forward strand of 

the NCBI35 reference sequence of the human genome, using the alphabetically higher allele 

as the coded allele. For example, for a G/T SNP coded GG=0, GT=1, TT=2, the coded allele 

would be T. To capture the power loss due to imperfect imputation, we estimated “N 

effective”, which was the sum of the sample-specific products of the imputation quality 

metric and the sample size. No filtering on minor allele frequency was used. Genomic 

control14 was performed on cohort- and gender-specific test statistics. Lambda estimates are 

given in Supplementary Table 1; quantile-quantile plots are shown in Supplementary Figure 

2. Meta-analysis in stage 1 was performed using inverse variance weights. Stage 1 meta-

analysis results were genomic controlled.

Selection of SNPs for stage 2

12 SNPs were selected for follow-up in stage 2a from among the results with P < 10−5 

during interim analyses. For in silico exchange with the CHARGE consortium (stage 2b), 

we identified the top independent loci to select 10 SBP and 10 DBP SNPs. If a SNP in one 

top 10 list was also among the top 10 for the alternate blood pressure trait, we kept the locus 

with the lower p-value and went to the next locus on the list for the alternate blood pressure 

trait. Because a SNP at the 3q26 locus (MDS1) was selected in an interim analysis for direct 

genotyping, it was retained as the tenth locus for DBP even though its significance was 

reduced in the final stage 1 DBP GWAS analysis.

Stage 2a samples

We genotyped 12 SNPs in up to 71,225 individuals of European descent from 13 studies – 

Utrecht Atherosclerosis Risk in Young Adults (ARYA), British Genetics of Hypertension 

(BRIGHT), EPIC-Italy, EPIC-Norfolk-REP, Finrisk97, FUSION2, London Life Sciences 

Population (LOLIPOP), Malmö Diet and Cancer-Cardiovascular Cohort (MDC-CC), 

Metabolic Syndrome in Men (METSIM), Malmo Preventive Project (MPP), The Prevention 

of REnal and Vascular ENd stage Disease (PREVEND), Prospect-EPIC, and the Utrecht 

Health Project (UHP) – and in up to 12,889 individuals of Indian Asian ancestry from the 

LOLIPOP study. Summary demographics are shown in Table 1 and cohort information in 

the Supplementary Methods).
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Stage 2a follow-up genotyping

For genotyping methods and platforms see Supplementary Methods.

Stage 2b in silico samples

We obtained results based on the analysis of the Cohorts for Heart and Aging Research in 

Genome Epidemiology (CHARGE) consortium, which comprises 29,136 samples from five 

population-based cohorts.

Pooled analysis of first and second stage samples

Meta-analysis of stage 1, 2a and 2b results was performed using inverse variance weighting. 

Standard errors were multiplied by the square root of the lambda estimate for genomic 

control and are presented throughout the text. Nominal P values after genomic control14 are 

presented. We considered associations genome-wide significant if they exceeded P = 

5×10−8, a Bonferroni correction for the estimated 1M independent common variant tests in 

the human genome of European-derived individuals14,15.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Regional association plots of eight blood pressure loci. For each locus, we show the region 

extending to within 500kb of a SNP with P < 10−4 on either side. Statistical significance of 

associated SNPs at each locus are illustrated on the - log10(P) scale as a function of 

chromosomal position (NCBI Build 35). The sentinel SNP at each locus is shown in red. 

The correlation of the sentinel SNP to other SNPs at the locus is shown on a scale from 

minimal (gray and blue), to maximal (red). The meta-analysis result for stage 1 is shown 

with a red square. The joint analysis result (combined P) for stage 1+2a+2b is shown with 

an arrow. Fine-scale recombination rate from Myers et al50 is plotted in aqua.
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Figure 2. 
Relationship of genome-wide significant loci to SBP, DBP and hypertension. Shown are the 

effects of each variant on continuous SBP and DBP and on the odds ratio for dichotomous 

hypertension compared to normotension (see Methods). For comparability, SBP and DBP 

effects are shown on the standard deviation scale (SBP SD = 16.6 mm Hg, DBP SD = 10.9 

mm Hg). Alleles are coded as shown in Table 2.

Newton-Cheh et al. Page 21

Nat Genet. Author manuscript; available in PMC 2010 September 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Newton-Cheh et al. Page 22

T
ab

le
 1

St
ud

y 
sa

m
pl

e 
ch

ar
ac

te
ri

st
ic

s

St
ud

y 
ch

ar
ac

te
ri

st
ic

s 
ar

e 
sh

ow
n 

fo
r 

co
ho

rt
 s

am
pl

es
 e

xa
m

in
ed

 in
 s

ta
ge

 1
 m

et
a-

an
al

ys
is

 (
po

pu
la

tio
n-

ba
se

d 
an

d 
co

nt
ro

ls
 f

ro
m

 c
as

e-
co

nt
ro

l s
tu

di
es

),
 s

ta
ge

 2
a 

(d
ir

ec
t g

en
ot

yp
in

g 
fo

llo
w

-u
p)

 a
nd

 s
ta

ge
 2

b 
(i

n 
si

li
co

 f
ol

lo
w

-u
p 

w
ith

 th
e 

C
H

A
R

G
E

 c
on

so
rt

iu
m

).
 P

op
ul

at
io

n 
C

oh
or

ts
: T

he
 B

al
tim

or
e 

L
on

gi
tu

di
na

l S
tu

dy
 o

f 

A
gi

ng
 (

B
L

SA
),

 B
ri

tis
h 

19
58

 B
ir

th
 C

oh
or

t-
 W

el
lc

om
e 

T
ru

st
 C

as
e 

C
on

tr
ol

 C
on

so
rt

iu
m

 (
B

58
C

-W
T

C
C

C
),

 B
ri

tis
h 

19
58

 B
ir

th
 C

oh
or

t –
 T

yp
e 

1 
D

ia
be

te
s 

G
en

et
ic

s 
C

on
so

rt
iu

m
 (

B
58

C
-T

1D
G

C
),

 C
oh

or
te

 L
au

sa
nn

oi
se

 (
C

oL
au

s)
, E

ur
op

ea
n 

Pr
os

pe
ct

iv
e 

In
ve

st
ig

at
io

n 
of

 C
an

ce
r-

 N
or

fo
lk

-G
en

om
e 

W
id

e 

A
ss

oc
ia

tio
n 

St
ud

y 
(E

PI
C

-N
or

fo
lk

-G
W

A
S)

, F
en

la
nd

 S
tu

dy
 (

Fe
nl

an
d)

, I
nv

ec
ch

ia
re

 in
 C

hi
an

ti 
(I

nC
H

IA
N

T
I)

, K
oo

pe
ra

tiv
e 

G
es

un
dh

ei
ts

fo
rs

ch
un

g 
in

 d
er

 

R
eg

io
n 

A
ug

sb
ur

g 
(K

O
R

A
),

 N
or

th
er

n 
Fi

nl
an

d 
B

ir
th

 C
oh

or
t o

f 
19

66
 (

N
FB

C
19

66
),

 S
ar

di
N

IA
, S

tu
dy

 o
f 

H
ea

lth
 in

 P
om

er
an

ia
 (

SH
IP

),
 S

up
pl

em
en

ta
tio

n 
en

 

V
ita

m
in

es
 e

t M
in

ér
au

x 
A

nt
io

xy
da

nt
s 

(S
U

.V
I.

M
A

X
) 

an
d 

T
w

in
sU

K
. C

on
tr

ol
s 

fr
om

 c
as

e-
co

nt
ro

l s
tu

di
es

: D
ia

be
te

s 
G

en
et

ic
s 

In
iti

at
iv

e 
(D

G
I)

, F
in

la
nd

-

U
ni

te
d 

St
at

es
 I

nv
es

tig
at

io
n 

of
 N

ID
D

M
 G

en
et

ic
s 

(F
U

SI
O

N
),

 th
e 

M
yo

ca
rd

ia
l I

nf
ar

ct
io

n 
G

en
et

ic
s 

C
on

so
rt

iu
m

 (
M

IG
en

),
 th

e 
Pr

ec
oc

io
us

 C
or

on
ar

y 
A

rt
er

y 

D
is

ea
se

 (
PR

O
C

A
R

D
IS

) 
st

ud
y.

 D
ir

ec
t g

en
ot

yp
in

g:
 T

he
 U

tr
ec

ht
 A

th
er

os
cl

er
os

is
 R

is
k 

in
 Y

ou
ng

 A
du

lts
 (

A
Y

R
A

),
 B

ri
tis

h 
G

en
et

ic
s 

of
 H

yp
er

te
ns

io
n 

st
ud

y 
– 

hy
pe

rt
en

si
on

 c
as

es
 (

B
R

IG
H

T
-H

T
N

),
 B

R
IG

H
T

 s
tu

dy
 n

or
m

ot
en

si
ve

 c
on

tr
ol

s 
(B

R
IG

H
T

-N
T

),
 E

PI
C

-I
ta

ly
, E

PI
C

-N
or

fo
lk

-R
ep

lic
at

io
n 

co
ho

rt
 (

E
PI

C
-

N
or

fo
lk

-R
E

P)
, F

in
ri

sk
97

, F
U

SI
O

N
 s

ta
ge

 2
 c

on
tr

ol
s 

(F
U

SI
O

N
2)

, L
on

do
n 

L
if

e 
Sc

ie
nc

es
 P

op
ul

at
io

n 
(L

O
L

IP
O

P)
, M

al
m

ö 
D

ie
t a

nd
 C

an
ce

r 
C

ar
di

ov
as

cu
la

r 

C
oh

or
t (

M
D

C
),

 M
al

m
ö 

Pr
ev

en
tiv

e 
Pr

oj
ec

t (
M

PP
),

 P
re

ve
nt

io
n 

of
 R

E
na

l a
nd

 V
as

cu
la

r 
E

N
d 

st
ag

e 
D

is
ea

se
 (

PR
E

V
E

N
D

),
 M

et
ab

ol
ic

 S
yn

dr
om

e 
in

 M
en

 

St
ud

y 
(M

E
T

SI
M

),
 P

ro
sp

ec
t-

E
PI

C
 c

oh
or

t, 
U

tr
ec

ht
 H

ea
lth

 P
ro

je
ct

 (
U

H
P)

. N
A

 =
 n

ot
 a

va
ila

bl
e.

 H
T

N
 =

 h
yp

er
te

ns
io

n

St
ud

y
N

%
 w

om
en

A
ge

 (
SD

) 
ye

ar
s

SB
P

 (
SD

) 
m

m
 H

g
D

B
P

 (
SD

) 
m

m
 H

g
B

M
I 

(S
D

) 
kg

/m
2

%
 H

T
N

#
%

 a
nt

i-
hy

pe
rt

en
si

ve
 t

he
ra

py

St
ag

e 
1 

– 
G

W
A

S

P
op

ul
at

io
n-

ba
se

d 
co

ho
rt

s

B
L

SA
70

8
44

42
.4

 (
13

.2
)

11
9.

5 
(1

5.
0)

77
.3

(1
0.

2)
24

.5
(3

.6
)

23
.2

5.
2

B
58

C
 –

 T
1D

G
C

*
2,

58
0

51
44

.3
 (

0.
3)

12
1.

7 
(1

5.
3)

79
.4

 (
10

.5
)

27
.4

 (
4.

9)
20

.5
4.

7

B
58

C
 –

 W
T

C
C

C
*

1,
47

3
50

44
.9

 (
0.

4)
12

6.
7 

(1
5.

2)
79

.1
(1

0.
2)

27
.4

(4
.7

)
17

.4
4.

2

C
oL

au
s

4,
96

9
53

51
.7

 (
9.

5)
12

7.
3 

(1
7.

4)
79

.4
(1

0.
8)

25
.8

(4
.6

)
33

.9
16

E
PI

C
- 

N
or

fo
lk

 -
 G

W
A

S
2,

10
0

54
57

.2
 (

7.
8)

13
6.

7 
(1

9.
1)

83
.9

(1
1.

9)
26

.3
(3

.9
)

45
.6

16

Fe
nl

an
d

1,
40

1
56

45
.0

 (
7.

3)
12

2.
8 

(1
6.

3)
75

.5
 (

10
.7

)
27

.1
 (

4.
9)

18
.8

5.
5

In
C

H
IA

N
T

I
56

2
55

56
.9

 (
14

.5
)

13
8.

4 
(2

0.
1)

81
.4

(1
0.

1)
27

.1
(4

.2
)

59
.6

23
.7

K
O

R
A

1,
64

4
51

52
.5

 (
10

.1
)

13
3.

4 
(1

8.
5)

81
.8

(1
0.

9)
27

.3
(4

.1
)

20
.9

17

N
FB

C
19

66
*

4,
76

1
52

31
*

12
5.

2 
(1

3.
8)

77
.5

(1
1.

7)
24

.6
(4

.2
)

21
.7

2

Sa
rd

iN
IA

3,
99

8
57

40
.8

 (
15

.3
)

12
8.

7 
(2

8.
4)

79
.7

(1
7.

3)
25

.1
(4

.6
)

29
.5

10

SH
IP

3,
31

0
53

45
.0

 (
13

.9
)

13
3.

1 
(2

0.
2)

83
.5

(1
1.

3)
26

.9
 (

4.
7)

40
.9

16
.3

SU
V

IM
A

X
1,

82
3

60
50

.5
 (

6.
2)

12
0.

9 
(1

2.
3)

78
.0

(8
.1

)
23

.5
(3

.3
)

19
.0

0

T
w

in
sU

K
87

3
10

0
45

.8
 (

11
.9

)
12

2.
9 

(1
5.

4)
78

.2
(1

0.
3)

24
.8

(4
.6

)
27

.3
22

Nat Genet. Author manuscript; available in PMC 2010 September 21.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Newton-Cheh et al. Page 23

St
ud

y
N

%
 w

om
en

A
ge

 (
SD

) 
ye

ar
s

SB
P

 (
SD

) 
m

m
 H

g
D

B
P

 (
SD

) 
m

m
 H

g
B

M
I 

(S
D

) 
kg

/m
2

%
 H

T
N

#
%

 a
nt

i-
hy

pe
rt

en
si

ve
 t

he
ra

py

C
on

tr
ol

s 
fr

om
 c

as
e-

co
nt

ro
l s

tu
di

es

D
G

I 
co

nt
ro

ls
1,

27
7

51
56

.1
 (

8.
7)

13
3.

3 
(1

8.
4)

80
.1

(1
0.

0)
26

.7
(3

.8
)

41
.4

18

FU
SI

O
N

 N
G

T
 c

on
tr

ol
s

1,
03

8
49

58
.2

 (
10

.7
)

13
9.

4 
(1

9.
3)

81
.5

(1
0.

3)
27

.1
(4

.0
)

51
.8

21

M
IG

en
 c

on
tr

ol
s

1,
12

1
38

48
.9

 (
8.

3)
12

7.
1 

(1
7.

8)
80

.2
 (

11
.6

)
27

.1
 (

5.
2)

36
.4

13
.4

PR
O

C
A

R
D

IS
 c

on
tr

ol
s

79
5

37
58

.9
 (

6.
9)

13
4.

7 
(1

8.
6)

82
.8

(1
0.

0)
25

.9
(3

.7
0)

15
.0

2

St
ag

e 
2-

fo
llo

w
 u

p

2a
. C

oh
or

ts
 w

it
h 

di
re

ct
 g

en
ot

yp
in

g 
da

ta

A
R

Y
A

73
6

52
57

.0
 (

6.
0)

12
5.

0 
(1

3.
0)

72
.0

(8
.0

)
25

.0
(4

.0
)

15
.8

1

B
R

IG
H

T
-H

T
N

2,
44

5
59

57
.1

 (
10

.8
)

15
3.

9 
(2

0.
8)

94
.0

 (
11

.0
)

27
.4

 (
3.

8)
10

0
91

.2

B
R

IG
H

T
-N

T
67

3
77

55
.5

 (
8.

5)
11

1.
1 

(6
.9

)
71

.2
 (

6.
6)

24
.4

 (
3.

2)
0

0

E
PI

C
-I

ta
ly

3,
90

9
37

49
.0

 (
7.

6)
13

2.
5 

(1
5.

5)
83

.7
(9

.0
)

26
.0

(3
.6

)
43

.1
12

.7

E
PI

C
-N

or
fo

lk
-R

E
P

15
,8

58
48

56
.2

 (
7.

6)
13

3.
8 

(1
7.

5)
82

.3
 (

11
.0

)
26

.3
 (

3.
8)

44
15

Fi
nr

is
k9

7
7,

02
3

51
47

.1
 (

12
.4

)
13

4.
9 

(1
9.

4)
82

.3
 (

11
.3

)
26

.6
 (

4.
5)

45
.5

12
.4

FU
SI

O
N

2
1,

16
2

37
57

.5
 (

6.
8)

13
8.

2 
(1

9.
5)

83
.9

 (
10

.1
)

26
.8

 (
3.

8)
8.

9
1

L
ol

ip
op

 (
E

ur
op

ea
ns

)
6,

00
6

35
51

.2
 (

10
.3

)
13

0.
4 

(1
9.

1)
79

.6
 (

10
.6

)
27

.5
 (

5.
1)

39
.9

20

L
ol

ip
op

 (
In

di
an

 A
si

an
s)

12
,8

23
36

48
.8

 (
9.

9)
12

9.
9 

(1
9.

1)
80

.8
 (

10
.8

)
27

.4
 (

4.
5)

42
.9

25

M
D

C
-C

C
5,

33
0

58
57

.4
 (

5.
9)

14
1.

0 
(1

9.
0)

87
.0

(9
.5

)
25

.7
(4

.0
)

63
.8

17

M
E

T
SI

M
5,

93
4

0
58

.1
 (

6.
0)

14
2.

0 
(1

7.
9)

89
.8

 (
10

.2
)

27
.3

 (
4.

2)
69

.6
40

.5

M
PP

**
14

,2
49

34
45

.3
 (

7.
1)

12
5.

0 
(1

4.
0)

83
.0

(9
.1

)
24

.4
(3

.4
)

34
.8

4

PR
E

V
E

N
D

7,
27

2
51

47
.5

 (
11

.4
)

12
7.

7 
(1

9.
3)

73
.6

 (
9.

7)
25

.9
 (

4.
2)

22
.0

13
.7

Pr
os

pe
ct

-E
PI

C
1,

68
0

10
0

57
.0

 (
6.

0)
13

3.
0 

(2
0.

0)
79

.0
(1

1.
0)

26
.0

(4
.0

)
42

.4
N

A

U
tr

ec
ht

 H
ea

lth
 P

ro
je

ct
2,

82
9

52
40

.0
 (

12
)

12
8.

0 
(1

9.
0)

79
.0

 (
11

.0
)

25
.0

 (
4.

0)
32

.9
N

A

2b
. C

oh
or

ts
 w

it
h 

in
 s

ili
co

 d
at

a

C
H

A
R

G
E

**
*

29
,1

36

* Su
bj

ec
ts

 f
ro

m
 th

e 
N

or
th

 F
in

la
nd

 B
ir

th
 C

oh
or

t 1
96

6 
w

er
e 

ex
am

in
ed

 a
t a

ge
 3

1 
an

d 
fr

om
 th

e 
B

ri
tis

h 
19

58
 B

ir
th

 C
oh

or
t s

am
pl

es
 w

er
e 

ex
am

in
ed

 a
t a

ge
s 

44
–4

5.

**
T

he
 M

al
m

ö 
Pr

ev
en

tiv
e 

Pr
oj

ec
t s

am
pl

e 
ex

cl
ud

es
 a

ll 
in

di
vi

du
al

s 
w

ho
 c

on
tr

ib
ut

ed
 to

 th
e 

M
al

m
ö 

D
ie

t a
nd

 C
an

ce
r 

C
ar

di
ov

as
cu

la
r 

A
rm

 (
M

D
C

-C
C

)

**
* Fu

ll 
ch

ar
ac

te
ri

st
ic

s 
of

 C
H

A
R

G
E

 c
on

st
itu

en
t c

oh
or

ts
 a

re
 p

re
se

nt
ed

 in
 m

an
us

cr
ip

t s
ub

m
itt

ed
 b

y 
C

H
A

R
G

E
.

# G
lo

ba
l B

Pg
en

 d
ef

in
iti

on
 o

f 
hy

pe
rt

en
si

on
 is

 S
B

P 
≥ 

14
0m

m
 H

g 
or

 D
B

P 
≥ 

90
m

m
 H

g 
or

 ta
ki

ng
 a

nt
i-

hy
pe

rt
en

si
ve

 m
ed

ic
at

io
n.

Nat Genet. Author manuscript; available in PMC 2010 September 21.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Newton-Cheh et al. Page 24

T
ab

le
 2

L
oc

i a
ss

oc
ia

te
d 

w
it

h 
bl

oo
d 

pr
es

su
re

Sh
ow

n 
is

 th
e 

to
p 

SN
P 

fo
r 

ea
ch

 in
de

pe
nd

en
t l

oc
us

 a
ss

oc
ia

te
d 

w
ith

 s
ys

to
lic

 o
r 

di
as

to
lic

 b
lo

od
 p

re
ss

ur
e 

(P
 <

 5
×

10
−

7 )
 o

n 
jo

in
t a

na
ly

si
s 

in
 u

p 
to

 1
34

,2
58

 in
di

vi
du

al
s 

of
 E

ur
op

ea
n 

an
ce

st
ry

 f
ro

m
 G

lo
ba

l B
Pg

en
 

G
W

A
S 

(s
ta

ge
 1

),
 f

ol
lo

w
 u

p 
ge

no
ty

pi
ng

 (
st

ag
e 

2a
) 

an
d 

in
 s

il
ic

o 
ex

ch
an

ge
 w

ith
 th

e 
C

H
A

R
G

E
 c

on
so

rt
iu

m
 (

st
ag

e 
2b

).
 T

he
 e

ig
ht

 g
en

om
e-

w
id

e 
si

gn
if

ic
an

t l
oc

i (
P<

5×
10

−
8 )

 a
re

 s
ho

w
n 

in
 b

ol
d.

 F
or

 s
ta

ge
 1

 a
nd

 2
b 

re
su

lts
 b

as
ed

 o
n 

im
pu

te
d 

ge
no

ty
pe

s,
 a

n 
ef

fe
ct

iv
e 

sa
m

pl
e 

si
ze

 is
 e

st
im

at
ed

 to
 b

e 
th

e 
su

m
 o

f 
th

e 
co

ho
rt

-s
pe

ci
fi

c 
pr

od
uc

ts
 o

f 
th

e 
im

pu
ta

tio
n 

qu
al

ity
 m

et
ri

c 
an

d 
th

e 
sa

m
pl

e 
si

ze
. T

he
 to

ta
l s

am
pl

e 
si

ze
 is

 th
e 

su
m

 o
f 

th
e 

ef
fe

ct
iv

e 
sa

m
pl

e 
si

ze
s 

an
d 

th
e 

di
re

ct
 g

en
ot

yp
in

g 
sa

m
pl

e 
si

ze
. E

ff
ec

t s
iz

es
 a

re
 o

n 
th

e 
m

m
 H

g 
sc

al
e 

fo
r 

in
cr

ea
si

ng
 c

op
y 

of
 th

e 
co

de
d 

(a
lp

ha
be

tic
al

ly
 h

ig
he

r)
 a

lle
le

 a
s 

es
tim

at
ed

 b
y 

th
e 

be
ta

 c
oe

ff
ic

ie
nt

 in
 li

ne
ar

 

re
gr

es
si

on
. T

he
 p

ro
po

rt
io

n 
of

 v
ar

ia
nc

e 
ex

pl
ai

ne
d 

by
 e

ac
h 

SN
P 

is
 s

ho
w

n 
(r

2 )
. M

et
a-

an
al

ys
is

 w
as

 p
er

fo
rm

ed
 u

si
ng

 in
ve

rs
e 

va
ri

an
ce

 w
ei

gh
tin

g.
 N

ot
e 

th
at

 lo
ci

 1
0q

21
 a

nd
 1

5q
24

 s
ho

w
 r

es
ul

ts
 f

or
 tw

o 
SN

Ps
 

se
le

ct
ed

 f
or

 v
al

id
at

io
n 

ge
no

ty
pi

ng
 in

 a
n 

in
te

ri
m

 a
na

ly
si

s 
(r

s1
53

04
40

, r
s1

37
89

42
) 

th
at

 w
er

e 
ge

no
m

e-
w

id
e 

si
gn

if
ic

an
t o

n 
jo

in
t a

na
ly

si
s 

of
 s

ta
ge

 1
+

2a
+

2b
. T

he
se

 tw
o 

SN
Ps

 a
re

 h
ig

hl
y 

co
rr

el
at

ed
 w

ith
 a

lte
rn

at
e 

SN
Ps

 a
t t

he
 lo

cu
s 

(r
s4

59
08

17
, r

s4
88

66
06

, r
es

pe
ct

iv
el

y)
 w

ith
 s

lig
ht

ly
 s

tr
on

ge
r 

si
gn

if
ic

an
ce

 in
 th

e 
fi

na
l s

ta
ge

 1
 m

et
a-

an
al

ys
is

. T
he

 o
ri

gi
na

lly
 s

el
ec

te
d 

SN
Ps

 a
re

 s
ho

w
n 

th
ro

ug
ho

ut
 th

e 
te

xt
 f

or
 c

on
si

st
en

cy
.

C
hr

om
os

o
m

e
G

en
es

N
ea

rb
y

B
P

T
ra

it

SN
P

 I
D

(p
os

 N
C

B
I3

5)
fu

nc
ti

on
C

od
ed

al
le

le
St

ag
e

C
od

ed
al

le
le

fr
eq

N
B

et
a 

(S
E

)
m

m
 H

g
P

B
et

a
(S

E
)

P
N

to
ta

l

Jo
in

t 
an

al
ys

is
 s

ta
ge

s 
1+

2a
+2

b

M
T

H
F

R

1p
36

C
L

C
N

6
SB

P
rs

17
36

75
04

G
1

0.
14

34
,1

58
−

0.
79

 (
0.

17
)

1×
10

−
5

N
P

P
A

N
P

P
B

(1
1,

79
7,

04
4)

2a
0.

16
19

,7
51

−
0.

93
 (

0.
22

)
2×

10
−

5
r2 =

0.
07

%

A
G

T
R

A
P

in
tr

on
 M

T
H

F
R

2b
0.

16
29

,0
64

−
0.

85
 (

0.
20

)
3×

10
−

5
-0

.8
5 

(0
.1

1)
2×

10
−

13
82

,9
73

10
q2

4
c1

0o
rf

26
SB

P
rs

11
19

15
48

T
1

0.
91

33
,1

23
1.

17
 (

0.
23

)
3×

10
−

7

C
Y

P
17

A
1

c1
0o

rf
32

A
S3

M
T

(1
04

,8
36

,1
68

)
2a

0.
91

71
,2

25
1.

19
 (

0.
15

)
9×

10
−

15
r2 =

0.
08

%

C
N

N
M

2

N
T

5C
2

in
te

rg
en

ic
 C

N
N

M
2/

N
T

5C
2

2b
0.

92
28

,2
04

1.
05

 (
0.

27
)

9×
10

−
5

1.
16

 (
0.

12
)

7×
10

−
24

13
2,

55
2

17
q2

1
SB

P
rs

12
94

64
54

T
1

0.
28

32
,1

20
0.

68
 (

0.
15

)
4×

10
−

6

P
L

C
D

3

A
C

B
D

4

H
E

X
IM

1
(4

0,
56

3,
64

7)
2a

0.
25

17
,8

77
0.

43
 (

0.
21

)
0.

04
5

r2 =
0.

04
%

H
E

X
IM

2

Nat Genet. Author manuscript; available in PMC 2010 September 21.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Newton-Cheh et al. Page 25

C
hr

om
os

o
m

e
G

en
es

N
ea

rb
y

B
P

T
ra

it

SN
P

 I
D

(p
os

 N
C

B
I3

5)
fu

nc
ti

on
C

od
ed

al
le

le
St

ag
e

C
od

ed
al

le
le

fr
eq

N
B

et
a 

(S
E

)
m

m
 H

g
P

B
et

a
(S

E
)

P
N

to
ta

l

F
M

N
L

1

in
tr

on
 P

L
C

D
3

2b
0.

27
27

,6
93

0.
50

 (
0.

17
)

0.
00

4
0.

57
 (

0.
10

)
1×

10
−

8
77

,6
90

3q
26

M
D

S1
D

B
P

rs
19

18
97

4
T

1
0.

54
32

,6
74

−
0.

28
 (

0.
09

)
1×

10
−

3

(1
70

,6
48

,5
90

)
2a

0.
55

26
,9

10
−

0.
18

 (
0.

08
)

0.
04

r2 =
0.

03
%

in
tr

on
2b

0.
53

28
,3

07
−

0.
35

 (
0.

09
)

8×
10

−
5

-0
.2

7 
(0

.0
5)

8×
10

−
8

87
,8

91

4q
21

D
B

P
rs

16
99

80
73

T
1

0.
21

26
,1

06
0.

65
 (

0.
11

)
7×

10
−

9

P
R

D
M

8

F
G

F
5

(8
1,

54
1,

52
0)

2a
0.

29
53

,5
08

0.
50

 (
0.

07
)

6×
10

−
13

r2 =
0.

09
%

C
4o

rf
22

up
st

re
am

 F
G

F
5

2b
0.

24
22

,0
09

0.
36

 (
0.

12
)

0.
00

3
0.

50
 (

0.
05

)
1×

10
−

21
10

1,
62

3

10
q2

1
D

B
P

rs
15

30
44

0
T

1
0.

19
32

,7
18

−
0.

51
 (

0.
11

)
3×

10
−

6

c1
0o

rf
10

7

T
M

E
M

26

R
T

K
N

2
(6

3,
19

4,
59

7)
2a

0.
18

19
,8

84
−

0.
21

 (
0.

11
)

0.
05

r2 =
0.

04
%

R
H

O
B

T
B

1

A
R

ID
5B

in
tr

on
 c

10
or

f1
07

2b
0.

19
27

,6
51

−
0.

44
 (

0.
12

)
1×

10
−

4
-0

.3
9 

(0
.0

6)
1×

10
−

9
87

,2
73

12
q2

4
D

B
P

rs
65

31
78

T
1

0.
53

30
,8

53
−

0.
46

 (
0.

09
)

1×
10

−
7

SH
2B

3
(1

10
,4

70
,4

76
)

2a
0.

54
19

,6
89

−
0.

40
 (

0.
10

)
3×

10
−

5
r2 =

0.
09

%

A
T

X
N

2

in
tr

on
 A

T
X

N
2

2b
0.

52
29

,1
19

−
0.

50
 (

0.
09

)
2×

10
−

8
-0

.4
6 

(0
.0

5)
3×

10
−

18
79

,6
61

15
q2

4
D

B
P

rs
13

78
94

2
C

1
0.

36
34

,1
26

0.
48

 (
0.

09
)

6×
10

−
8

C
Y

P
1A

1

C
Y

P
1A

2

C
SK

(7
2,

86
4,

42
0)

2a
0.

35
71

,0
86

0.
41

 (
0.

06
)

2×
10

−
12

r2 =
0.

07
%

L
M

A
N

1L

C
P

L
X

3

Nat Genet. Author manuscript; available in PMC 2010 September 21.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Newton-Cheh et al. Page 26

C
hr

om
os

o
m

e
G

en
es

N
ea

rb
y

B
P

T
ra

it

SN
P

 I
D

(p
os

 N
C

B
I3

5)
fu

nc
ti

on
C

od
ed

al
le

le
St

ag
e

C
od

ed
al

le
le

fr
eq

N
B

et
a 

(S
E

)
m

m
 H

g
P

B
et

a
(S

E
)

P
N

to
ta

l

A
R

ID
3b

in
tr

on
 C

SK
2b

0.
33

29
,0

46
0.

43
 (

0.
09

)
3×

10
−

6
0.

43
 (

0.
04

)
1×

10
−

23
13

4,
25

8

17
q2

1
D

B
P

rs
16

94
80

48
G

1
0.

39
34

,0
52

0.
40

 (
0.

09
)

5×
10

−
6

Z
N

F
65

2
(4

4,
79

5,
46

5)
2a

0.
37

19
,7

52
0.

23
 (

0.
10

)
0.

02
r2 =

0.
04

%

P
H

B

up
st

re
am

 Z
N

F
65

2
2b

0.
37

28
,6

37
0.

29
 (

0.
09

)
0.

00
2

0.
31

 (
0.

05
)

5×
10

−
9

82
,4

41

Nat Genet. Author manuscript; available in PMC 2010 September 21.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Newton-Cheh et al. Page 27

T
ab

le
 3

R
el

at
io

ns
hi

p 
of

 S
N

P
s 

at
 8

 g
en

om
e-

w
id

e 
si

gn
if

ic
an

t 
lo

ci
 t

o 
bo

th
 b

lo
od

 p
re

ss
ur

e 
tr

ai
ts

Fo
r 

ea
ch

 o
f 

ei
gh

t S
N

Ps
, t

he
 u

pp
er

 r
ow

 s
ho

w
s 

as
so

ci
at

io
n 

st
at

is
tic

s 
fo

r 
th

e 
bl

oo
d 

pr
es

su
re

 tr
ai

t u
se

d 
fo

r 
th

e 
an

al
ys

is
 in

 w
hi

ch
 th

ey
 w

er
e 

se
le

ct
ed

 (
SB

P 
or

 

D
B

P)
. T

he
 lo

w
er

 r
ow

 (
in

 b
ol

d)
 s

ho
w

s 
th

e 
eq

ui
va

le
nt

 a
ss

oc
ia

tio
n 

st
at

is
tic

s 
fo

r 
th

e 
al

te
rn

at
e 

bl
oo

d 
pr

es
su

re
 tr

ai
t. 

R
es

ul
ts

 a
re

 s
ho

w
n 

fo
r 

th
e 

34
,4

33
 

in
di

vi
du

al
s 

in
 th

e 
st

ag
e 

1 
G

lo
ba

l B
Pg

en
 G

W
A

S 
sa

m
pl

es
.

SN
P

 I
D

C
hr

P
os

it
io

n 
(N

C
B

I3
5)

C
od

ed
 a

lle
le

N
on

co
de

d 
al

le
le

C
od

ed
 a

lle
le

 f
re

qu
en

cy
N

 (
ef

fe
ct

iv
e)

T
ra

it
B

et
a 

m
m

 H
g

SE
P

rs
17

36
75

04
1

11
,7

97
,0

44
G

A
0.

14
34

,1
58

SB
P

−
0.

79
0.

18
1×

10
−

5

D
B

P
−

0.
50

0.
12

3×
10

−
5

rs
11

19
15

48
10

10
4,

83
6,

16
8

T
C

0.
91

33
,1

23
SB

P
1.

17
0.

22
3×

10
−

7

D
B

P
0.

56
0.

15
2×

10
−

4

rs
12

94
64

54
17

40
,5

63
,6

47
T

A
0.

28
32

,1
20

SB
P

0.
68

0.
15

4×
10

−
6

D
B

P
0.

34
0.

09
6×

10
−

4

rs
16

99
80

73
4

81
,5

41
,5

20
T

A
0.

21
26

,1
06

D
B

P
0.

65
0.

11
7×

10
−

9

SB
P

0.
74

0.
17

1×
10

−
5

rs
15

30
44

0
10

63
,1

94
,5

97
T

C
0.

19
32

,7
18

D
B

P
−

0.
51

0.
11

3×
10

−
6

SB
P

−
0.

43
0.

16
7×

10
−

3

rs
65

31
78

12
11

0,
47

0,
47

6
T

C
0.

53
30

,8
53

D
B

P
−

0.
46

0.
09

1×
10

−
7

SB
P

−
0.

47
0.

13
3×

10
−

4

rs
13

78
94

2
15

72
,8

64
,4

20
C

A
0.

36
34

,1
26

D
B

P
0.

48
0.

09
6×

10
−

8

SB
P

0.
62

0.
13

2×
10

−
6

rs
16

94
80

48
17

44
,7

95
,4

65
G

A
0.

39
34

,0
52

D
B

P
0.

40
0.

09
5×

10
−

6

SB
P

0.
41

0.
13

2×
10

−
3

Nat Genet. Author manuscript; available in PMC 2010 September 21.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Newton-Cheh et al. Page 28

T
ab

le
 4

A
ss

oc
ia

ti
on

 o
f 

8 
SB

P
- 

an
d 

D
B

P
-a

ss
oc

ia
te

d 
lo

ci
 w

it
h 

hy
pe

rt
en

si
on

Sh
ow

n 
ar

e 
th

e 
re

su
lts

 f
or

 th
e 

to
p 

SN
P 

fr
om

 e
ac

h 
ge

no
m

e-
w

id
e 

si
gn

if
ic

an
t S

B
P 

or
 D

B
P 

lo
cu

s 
fr

om
 a

 lo
gi

st
ic

 r
eg

re
ss

io
n 

an
al

ys
is

 o
f 

th
e 

od
ds

 o
f 

hy
pe

rt
en

si
on

 c
om

pa
re

d 
to

 n
or

m
ot

en
si

on
 (

se
e 

M
et

ho
ds

).
 F

or
 c

om
pa

ri
so

n,
 th

e 
ef

fe
ct

 o
f 

th
e 

co
de

d 
al

le
le

 o
n 

th
e 

co
nt

in
uo

us
 b

lo
od

 p
re

ss
ur

e 
tr

ai
t i

s 
sh

ow
n.

 

T
he

 in
ve

rs
e-

va
ri

an
ce

-w
ei

gh
te

d 
m

et
a-

an
al

ys
is

 r
es

ul
ts

 a
re

 s
ho

w
n.

 B
P 

=
 b

lo
od

 p
re

ss
ur

e,
 O

R
 =

 o
dd

s 
ra

tio
.

SN
P

 I
D

C
hr

po
si

ti
on

 (
N

C
B

I3
5)

C
on

ti
nu

ou
s 

T
ra

it
C

od
ed

 a
lle

le
C

od
ed

 a
lle

le
 f

re
qu

en
cy

C
on

ti
nu

ou
s 

B
P

 e
ff

ec
t

H
T

N
 O

R
H

T
N

 9
5%

 C
I

H
T

N
 P

N

rs
17

36
75

04
1

11
,7

97
,0

44
SB

P
G

0.
14

↓
0.

89
0.

86
 –

 0
.9

3
2×

10
−

9
62

,8
03

rs
11

19
15

48
10

10
4,

83
6,

16
8

SB
P

T
0.

91
↑

1.
16

1.
11

 –
 1

.2
1

3×
10

−
13

99
,1

53

rs
12

94
64

54
17

40
,5

63
,6

47
SB

P
T

0.
28

↑
1.

07
1.

04
 –

 1
.1

1
2×

10
−

5
57

,4
10

rs
16

99
80

73
4

81
,5

41
,5

20
D

B
P

T
0.

19
↑

1.
10

1.
07

 –
 1

.1
3

7×
10

−
10

73
,7

56

rs
15

30
44

0
10

63
,1

94
,5

97
D

B
P

T
0.

19
↓

0.
95

0.
91

 –
 0

.9
8

2×
10

−
3

83
,1

56

rs
65

31
78

12
11

0,
47

0,
47

6
D

B
P

T
0.

53
↓

0.
93

0.
91

 –
 0

.9
6

8×
10

−
7

60
,0

30

rs
13

78
94

2
15

72
,8

64
,4

20
D

B
P

C
0.

37
↑

1.
10

1.
07

 –
 1

.1
2

2×
10

−
14

99
,8

02

rs
16

94
80

48
17

44
,7

95
,4

65
D

B
P

G
0.

39
↑

1.
06

1.
03

 –
 1

.0
9

1×
10

−
4

62
,4

11

Nat Genet. Author manuscript; available in PMC 2010 September 21.




