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Long-lead predictions of eastern United States hot
days from Pacific sea surface temperatures
K. A. McKinnon1*, A. Rhines2, M. P. Tingley3 and P. Huybers4

Seasonal forecast models exhibit only modest skill in predicting extreme summer temperatures across the eastern US.
Anomalies in sea surface temperature and monthly-resolution rainfall have, however, been correlated with hot days in the
US, and seasonal persistence of these anomalies suggests potential for long-lead predictability. Here we present a clustering
analysis of daily maximum summer temperatures fromUSweather stations between 1982–2015 and identify a region spanning
most of the eastern US where hot weather events tend to occur synchronously. We then show that an evolving pattern
of sea surface temperature anomalies, termed the Pacific Extreme Pattern, provides for skillful prediction of hot weather
within this region as much as 50 days in advance. Skill is demonstrated using out-of-sample predictions between 1950 and
2015. Rainfall deficits over the eastern US are also associated with the occurrence of the Pacific Extreme Pattern and are
demonstrated to o�er complementary skill in predicting high temperatures. The Pacific Extreme Pattern appears to provide
a cohesive framework for improving seasonal prediction of summer precipitation deficits and high temperature anomalies in
the eastern US.

The twenty-first century has already featured a number of
costly1 and ill-predicted2 heat waves with negative impacts on
crop production3 and human health4. Climate change has the

potential to increase the frequency and magnitude of heat waves5,
underscoring the importance of skillful seasonal and subseasonal
forecasts6. Present seasonal forecast models have modest skill in
predicting summer temperature across the eastern US (ref. 7)
but tend to underestimate the probability of extremes at lead
times longer than a week8. A complementary approach is to take
advantage of certain mid-latitude conditions that may precede
hot weather. Monthly-resolution precipitation deficits have been
correlated with high temperatures in the following month9 and
anomalous mid-latitude sea surface temperature (SST) patterns
have been highlighted as preceding heatwave episodes10–13. In the
following we further explore and quantify the degree to which
precipitation and sea surface temperatures provide for skillful
prediction of high summer temperatures.

Defining hot weather
Our focus is on hindcasting the occurrence of high temperature
anomalies during the 60 hottest days of summer (hereafter simply
summer) recorded in the Global Historical Climatology Network14.
We identify regions that tend to experience hot days synchronously
through a clustering algorithm that groups stations together on the
basis of simultaneously recording temperature anomalies above the
95th percentile during summer (see Methods). Clustering stations
into five regions results in interpretable climate zones: the maritime
west coast, the arid interior west, the semiarid and subtropical
southwest, tropical Florida, and the humid and continental eastern
US (Supplementary Fig. 1a). We focus on the eastern US cluster,
comprising 1,613 stations, because it contains major population
centres and primary regions of agriculture, both of which tend
to be disproportionally affected by heat events3,15. Other levels
of clustering are possible (Supplementary Fig. 1), and our choice

represents a balance between specificity of events and inclusivity
of data.

To obtain a single quantity representative of both the magnitude
and spatial extent of high temperatures for each summer day, we
calculate the spatial 95th percentile of temperature anomalies across
the easternUS cluster, referred to as T95 (Data set 1). Figure 1 shows
the values of T95 for the summer of 2012, which had a maximum
T95 value of 10.4 ◦C on 29 June, meaning that 5% of the eastern
US experienced temperatures at least 10.4 ◦C warmer than their
climatological summer average. The average value and standard
deviation of T95 between 1982 and 2015 are 4.4 ◦C and 2.1 ◦C,
respectively, and we define hot days as those exceeding one standard
deviation above this mean, or 6.5 ◦C. By definition, there are 321
hot days out of the 2,040 summer days (Fig. 1b and Supplementary
Fig. 2). Results presented in the main text are based on predicting
the occurrence of hot days, but similar results are obtained when
predicting only the start date of consecutively occurring hot days
(see Methods and Supplementary Fig. 3).

Precipitation deficits predict hot days
Previous work identified a significant correlation between hot
summer days and antecedent precipitation deficits in parts of the
US on monthly timescales9. The relationship between precipitation
and temperature can be understood through local energy balance
considerations, whereby low precipitation results in decreased soil
moisture and reduces latent heat fluxes in favour of sensible heat
fluxes.We first extend this work by resolving the relationship at daily
timescales and assessing prediction skill as a function of lead time.

Precipitation variability is quantified using the standardized
precipitation index (SPI; ref. 16) with a running integration period
of 30 days (see Methods). Hot days are predicted based on eastern
US SPI falling below a threshold, which is set to the average SPI
for the following example. Lead times are counted following the
last day over which precipitation is averaged. For predictions at a
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Figure 1 | Hot days and heat events are defined from station measurements of daily maximum summer temperature. a, The lower panel shows the time
series of T95 for 2012, which featured three heat events, identified with filled circles as events 1, 2 and 3. Average daily maximum temperature (TMAX)
anomalies at individual weather stations during the hottest day of each of these heat events are shown in the upper panels. Stations comprising the hottest
5% of the domain are outlined in black, and the colour bar is saturated at 8 ◦C. Hot days (indicated by red shading in the time series) are defined as T95
exceeding one standard deviation above the mean, where mean and standard deviation are calculated from all summers between 1982–2015. b, The
distribution of T95 for each year of the study (1982–2015). Distributions are estimated using a kernel density smoother with a bandwidth of 0.5. The
median value for each distribution is shown with a black horizontal line, and the dashed line is at one standard deviation above the mean of T95.

30-day lead time, below-average SPI values correspond to hot days
occurring with a true positive rate of 71% and a false positive rate
of 46%. These rates can be translated into an odds ratio, defined as
[TPR(1−FPR)] / [FPR(1−TPR)], equal to 2.8, or almost a three-
fold increase in the probability of a hot day (Supplementary Fig 4a).

The choice of threshold for a prediction can be varied depending
on tolerance for true and false positives, with more negative SPI
thresholds decreasing both the true and false positive rate. This
trade-off is formalized by relative operating characteristic (ROC)
curves17 that represent the relationship between true and false
positive rates as a function of threshold (Fig. 2). ROC curves are
assigned a score by integrating the area under the curve. These
scores are used as the skill metric throughout the analysis because

they are appropriate for assessing both binary and unusual events,
whereasmany conventional skill scores tend to zero for rare events18.
A model that always has the same true and false positive rate has
a ROC score of 0.5, and is no more useful than a coin flip. A
relevant baseline for comparison is a seasonal prediction model19
that yielded ROC scores for extreme temperature events between
0.50–0.52 when applied to various regions across the globe.

At zero lead time, SPI-based predictions of hot days have a ROC
score of 0.73, consistent with the expected relationship between dry
soils and sensible heating. ROC scores decrease with lead time and
are no longer significant (ROC score< 0.6) by a lead time of 45 days.
Significance is estimated by bootstrapping and is presented at the
0.05 level throughout the paper (see Methods).
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Figure 2 | Precipitation deficits and the Pacific Extreme Pattern skillfully predict hot days at long-lead times. a, Relative operating characteristic (ROC)
curves for predictions of hot days at lead times of 20, 30, 40 and 50 days using the negative standardized precipitation index (SPI) with an integration time
of 30 days. ROC scores for each lead time are shown in parentheses in the legend. b, As in a, but using the Pacific Extreme Pattern (PEP) as a predictor.
Thresholds used to calculate true and false positive rates are indicated from the 0th (upper right squares) to the 100th (lower left squares) percentile of
negative SPI (a) or PEP (b) in steps of 10%. ROC scores greater than or equal to 0.6 indicate significant (p-value< 0.05) skill. c, ROC scores for predicting
hot days at individual stations using PEP. Hot days at individual stations are defined as having a temperature anomaly exceeding one standard deviation
above their summer average.

The Pacific Extreme Pattern (PEP) predicts hot days
We next focus on the relationship between oceanic boundary
conditions and the probability of hot days. To identify potential SST
precursors to hot days, we create averages of daily SST anomalies
with respect to hot days during the summers of 1982–2015 for a
range of lead times. The average SST anomaly pattern synchronous
with hot days shows coherent spatial structures in the mid-latitude
oceans (Fig. 3), with a zonal tripole pattern in the mid-latitude
Pacific composed of anomalies having magnitudes greater than
0.5 ◦C. Importantly for prediction, the mid-latitude anomalies can
be traced back in time, with significant precursor anomalies evident
at lead times out to 50 days in the domain between 20–50◦N and
145–230◦ E (green box in Fig. 3). We call the evolving pattern of
SST anomalies that precedes hot days the Pacific Extreme Pattern,
or PEPτ , where the subscript indicates the lead time, defined as the
number of days prior to a hot day. Although PEP represents an
average, this evolving structure can also be seen for individual events
(Supplementary Figs 5 and 6).

To quantitatively predict hot days, we compute the spatial
covariance between PEPτ and SST anomalies in the same domain
for every combination of τ and day to produce Pτ ,t . Data from

a given year are excluded when calculating PEP for that year
(Supplementary Fig. 7), so the relationship between hot days and
P is out of sample. Excluding only the predicted year from the
analysis is sufficient because P shows no interannual correlation,
consistent with previous results showing that mid-latitude summer
SST anomalies rarely persist formore than sixmonths20. Predictions
based on P have significant skill (ROC score≥ 0.6) for lead times up
to 50 days. Skill peaks at a lead time of four days, with a ROC score
of 0.72, and generally decreases with increasing lead time (Fig. 2b).

Predictions can also be resolved at the station level (Fig. 2c and
Supplementary Fig 8), where a hot day is defined as a temperature
anomaly greater than one standard deviation above the mean of
summer anomalies for that station. Extreme events at stations in the
interior of the domain are better predicted than those on the edges,
probably owing to a combination of coastal effects and typical loca-
tions of blocking highs (Fig. 3h). Although skill at individual stations
is generally lower than that for the region as a whole, the model
retains significant skill (ROC score ≥ 0.6) at 74%, 73%, 52% and
14% of stations for lead times of 20, 30, 40 and 50 days, respectively.

Finally, we conduct an out-of-sample examination of skill using
pre-1982 data from HadSST3 (ref. 21). Analysis is conducted from
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Figure 3 | SST anomalies, geopotential height anomalies and wave activity fluxes associated with eastern US hot days. a–h, Anomalies in SST (colours)
and 300 mb height (contours) and wave activity flux31 (red arrows, 5 m2 s−2 scale bar in lower left of each panel) for lead times of 50 (a), 40 (b), 30 (c),
20 (d), 15 (e), 10 (f), 5 (g) and 0 (h) days. PEP is defined inside the green box. SST anomalies that are significant at the 0.05 level are stippled. Note that
the colour bar for SST anomalies is saturated at±0.4 ◦C. Height contours are in 10 m increments, with negative contours dashed and the zero contour
suppressed. See Supplementary Methods for a movie containing the same fields at each lead time between 50 and−10 days.

1950 to 1981, coinciding with an earlier interval for which there is
still good data coverage in the Pacific (Supplementary Fig. 9). Owing
to the temporal resolution of the HadSST3 data set, predictions can
be made only on monthly timescales, and we make two-month lead
time predictions because PEP changes rapidly as a function of day
for τ less than 15 days. The two-month lead time prediction using
HadSST3 data has a ROC score of 0.59 (Supplementary Fig. 10),
which is significant at the 0.05 level because the null distribution
of ROC scores is narrower when using monthly data. Owing to
concerns about data availability, we do not extend our analysis
to before 1950, and therefore do not assess if our methods could
have predicted the extreme heat experienced in the US during the

1930s. Prior work, however, indicates that SST anomalies in the
springs of 1934 and 1936 were of opposite sign to those identified
here13. The prolonged drought andhigh temperature associatedwith
the Dust Bowl years probably involve mechanisms different from
those associated with the synoptic-scale temperature events focused
on here22.

Comparison to other predictors
North Atlantic SSTs have previously been correlated with hot days
in the US on seasonal timescales13, and we find significant North
Atlantic SST anomalies in our composites across a range of lead
times (Fig. 3). We perform the same analysis applied to the PEP
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domain, but using the region identified in ref. 16 (37.5–52.5◦N,
302.5–317.5◦ E) to test if Atlantic anomalies are also predictive of
hot days, rather than simply correlated with them. ROC scores for
the Atlantic-based predictions are insignificant (ROC < 0.6) for all
lead times between 0 and 50 days, averaging 0.53 (Supplementary
Fig. 11a,c), leading us to focus exclusively on Pacific SST anomalies.

It is also relevant to consider if more established modes of
variability permit for predictability of eastern US hot days. To
compare to these standard modes, Pτ ,t is averaged for lead times
of 15–45 days across summer days to obtain a single value for
each year. The resulting values explain 52% of the interannual
variance (p-value< 0.01) of the summermedian of T95. In contrast,
none of the monthly values for January through August of the
indices associatedwith the PacificNorthAmerica pattern, theNorth
Atlantic Oscillation, the Pacific Decadal Oscillation, the Northern
Annular Mode, and the El Niño–Southern Oscillation explain more
than 9% of the interannual T95 variance, and all correlations are
insignificant (p-value> 0.05).

The lack of skillful predictions based on tropical indices is con-
sistent with minimal tropical influence on the Northern Hemi-
sphere mid-latitudes during summer23. Whereas a causal relation-
ship between tropical Pacific sea surface temperature anomalies
and Northern Hemisphere weather is well established for winter
conditions24,25, the lack of a similar relationship for summer26,27 can
be understood from seasonal differences in both the magnitude
of tropical anomalies and the mean atmospheric circulation28,29. It
follows that daily-resolution tropical SSTs also confer no significant
predictive skill for eastern US hot days (Supplementary Fig. 11b,d).

Links between PEP, circulation, and precipitation
The co-evolution of Pacific SST anomalies and atmospheric
circulation provides insight into the origin of PEP’s predictive
skill. At a lead time of 50 days, PEP is characterized by an
enhancement of the background climatological gradient in SST
in the Pacific (Fig. 3a). Positive (negative) atmosphere-to-ocean
heat fluxes are co-located with positive (negative) SST anomalies,
suggesting the role of atmosphere–ocean heat fluxes in the
intensification of SST anomalies over the next 40 days (Fig. 3a–f and
Supplementary Fig. 12). Such intensification of SST anomalies may
result from the integrated effects of essentially random atmospheric
perturbations30.

A pattern of high pressure is observed downstream from
the anomalously warm SSTs in the centre of the PEP domain,
both near the surface and aloft (Fig. 3 and Supplementary
Fig. 13). Atmospheric simulations indicate that such barotropic
pressure anomalies in the central Pacific have a large influence
on atmospheric circulation in the US during summer29, and we
find a corresponding tendency towards high pressure and low
precipitation over the eastern US. For example, SPI in the eastern
US is more than 0.8 standard deviations below average when Pτ
averaged across lead times of 15–45 days is above one standard
deviation (Supplementary Fig. 14). These results suggest that PEP
derives part of its predictive skill through a relationship with eastern
US precipitation anomalies.

PEP changes rapidly, beginning at lead times of roughly 15 days,
with the establishment of a low-pressure pattern upstream from
the central Pacific high. The resulting cyclone–anticyclone pair
is associated with southerly wind anomalies and heat fluxes that
precede the transformation of the Pacific anomaly pattern from a
meridional dipole to a zonal tripole (Supplementary Figs 12 and 15).
This tripole is in quadraturewith atmospheric circulation anomalies
and is associated with an eastward-propagating wave activity flux31
that converges over the easternUS (Fig. 3). Northward travel of wave
activity across the Rocky Mountains suggests that orography may
influence the phase of the disturbance. In the final few days before a
hot day, the high over the easternUS grows rapidly (Fig. 3g,h), where

associated stationary dry and clear conditions increase the radiative
heating of the surface.

A similar mid-latitude atmospheric circulation pattern was
shown to predict US heat waves up to 15 days in advance in an atmo-
spheric simulation and reanalysis, although results were statistically
significant only when assessing a very long model simulation32.
We suggest that our focus on a clustered region of the US aids in
identifying statistically significant precursors to hot weather.

Hindcasting the summer of 2012
To illustrate specific predictions that could be made using PEP, we
present a case study for the summer of 2012 at a 40-day lead time.
See Supplementary Figs 17–50 for the values of P used to make
predictions for all years in 1982–2015, and the corresponding T95.

The extraordinarily hot summer of 2012 was not well predicted:
on 17 May, the Climate Prediction Center’s seasonal forecast
was for normal June–August temperatures for the northeast and
midwest, and a 33–40% chance of above normal temperatures for
the southeast33. Instead, the summer featured three major heat
events, beginning on 25 June, 16 July and 29 July (Fig. 1). Increased
likelihood of these events was indicated by PEP as early as 15 May,
when the value of Pτ=40 exceeded the 80th percentile, indicating
just over a threefold increase in the probability of hot days around
24 June. PEP intensified over time and, fifteen days later, Pτ=40
indicated an almost 3.5 times increase in the odds of hot days
around 9 July (Supplementary Fig. 4b). Eastern US temperatures
decreased to slightly below average after 9 August. Although this
shift was not predicted at 40-day lead times, Pτ=20 was negative
and decreasing by 21 July, predicting an end to the hot conditions
(Supplementary Fig. 47).

We also examine predictions that could have been made using
SPIτ=30 for 2012. A 30-day lead time is chosen such that skill is
comparable to predictions using PEPτ=40 (Fig. 2). Although the
early spring of 2012 was very dry, precipitation deficits were largely
erased by a strong Nor’easter that hit the eastern US in mid-April,
leading to positive values of SPI through 15 May. But from 25 May
to 5 June, SPI was in the lower 20th percentile, associated with a
3.5-fold increase in the probability of hot days from 24 June to
5 July. SPI then decreased further, dropping into the lower 10th
percentile by 16 June, associated with over a fourfold increase in the
probability of hot days for 6–15 July (Supplementary Fig. 4a). Below-
average temperatures at the end of the summer would not have been
predicted by SPI, which remained negative until September.

The results presented here link two previously identified
precursors to hot days—precipitation deficits9 and an anomalous
atmospheric wave train32—with the occurrence of PEP. Predictions
are cross-validated, at daily resolution, and assessed using a skill
metric that accounts for true and false positives, making the
results applicable to real-time predictions. The identification of
predictive skill at a seven-week lead time is an important advance
over current seasonal forecast models that tend to underpredict
the probability of extremes8, although full comparison between
our results and seasonal forecast models should also account
for differences in forecast update times and prediction horizons.
Long-lead predictions such as those presented here could be
applied to reducing the impacts of extreme heat through advance
warning6, although there remain numerous avenues for further
work, including combining PEP- and SPI-based predictions in
an optimal manner. More broadly, few studies have explored the
influence of the mid-latitude ocean on the atmosphere during
the summer, and it would be useful to better determine whether
the ocean forces, feed backs on, or simply acts as a passive
recorder of atmospheric anomalies in the months preceding hot
weather. Better determining the role of boundary conditions on the
summer atmospheric circulation should allow for further increases
in predictive skill.
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Methods
Methods and any associated references are available in the online
version of the paper.
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published online 28 March 2016
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Methods
Data. Summer temperature observations are daily maxima from the Global
Historical Climatology Network-Daily database (GHCND; ref. 14). We rely on
weather station observations of near-surface daily maximum air temperature14, as
opposed to reanalyses that infer near-surface conditions34 without necessarily
ingesting station data35.

The analysis is confined to the 60 warmest days of summer based on the
average climatology across US weather stations (24 June–22 August on a non-leap
year, and 23 June–21 August on a leap year). These climatologically warmest days
of summer are when further warming may be expected to have the greatest
implications for health and crops. Records from individual weather stations are
included only if they have at least 80% coverage during June, July and August for at
least 80% of the years considered in the analysis. There are 1613 stations in the
eastern US that fulfil these requirements for the 1982–2015 period, and 1092 for
the longer 1950–2015 period. Changing the data coverage requirement to focus
specifically on the 60 hottest days of summer has essentially no effect on the results,
because>99.5% of the stations that pass the coverage requirement for June, July
and August also pass the requirement for peak summer.

Daily SST data are from the NOAA OI SST2 data set36, which is available at
daily resolution beginning in September 1981. SST data are re-gridded from 1/4◦
to 1◦ spatial resolution. Daily geopotential height and wind fields beginning in 1979
are from the NCEP-DOE II reanalysis37 at 2.5◦ resolution. Atmosphere–ocean
fluxes from 1985 to 2009 are from the OAFlux project38 at 1◦ resolution. Monthly
SST data are from the 5◦ resolution HadSST3 data set21, which uses only in-situ
measurements from ships and buoys. All analyses are in terms of anomalies that are
calculated by removing the first three annual harmonics, and then removing a
linear trend.

Clustering and area weighting. The region of study is defined by grouping stations
together using hierarchical agglomerative clustering that minimizes the average
intra-cluster Jaccard distance39 between stations. The Jaccard distance is modified
to permit the use of missing data, so that the number of positive matches is
normalized only by the number of possible comparisons between the two time
series and is, therefore, symmetric and non-negative. The comparison variable is an
indicator function of whether or not a station has a temperature above the 95th
percentile of its peak summer climatology on the same day as another station. The
median fraction of available data across pairs of stations is 0.91. The algorithm
incorporates no geographic information, but produces spatially distinct groups of
stations (Supplementary Fig. 1). We use hierarchical agglomerative clustering
rather than the k-means method because of our choice of distance metric, and
because k-means clustering tends to produce circular clusters of similar size, which
are not necessarily representative of the underlying data set40.

Station areas are calculated using a spherical Voronoi tessellation41 that
determines the area around a given station such that all points in the area are closer
to that station than any other. Areas are truncated at the coast, but with a 4 km
buffer zone extending outside the high-resolution USGS coastline database in
order to ensure coastal stations are not excluded from the analysis domain.
A similar buffer is applied to the interior of the Great Lakes. Smaller bodies of
water are treated as contributing to the land surface fraction. Station areas are
capped at the 98th percentile of their distribution to prevent undue influence of
stations that are on the edge of the domain.

Precipitation data and the standardized precipitation index. Precipitation data is
from the Climate Prediction Center gauge-based gridded data set, and anomalies
are calculated for the region co-located with the stations in the eastern US cluster.
Precipitation deficits are quantified using the standardized precipitation index (SPI;
ref. 16), which serves the dual purpose of integrating precipitation anomalies over a
pre-specified time period, and mapping the distribution of integrated anomalies to
a normal distribution. We calculate the SPI using integration periods of 30, 60, 90
and 180 days, but focus on the 30-day integration period in the main text because it
is the most skillful predictor of hot days. Results using other integration periods are
shown in Supplementary Fig. 16.

Hot days and heat events. Consecutive hot days are grouped into heat events,
defined to occur if there are two or more hot days in a row (Fig. 1a). Heat events
that are less than three days apart from each other are grouped into a single event,
leading to a total of 64 heat events observed during the study period. Heat events
are associated with their starting dates. Skill is slightly greater for predicting hot
days than heat events, perhaps because the most intense heat events during the
study period tend to be both long and well predicted, and are thus counted multiply
as successful predictions of hot days.

True and false positive rates. The true positive rate is defined as the number of
correct predictions of a hot day (true positives) normalized by the total number
of hot days. The false positive rate is defined as the number of incorrect
predictions of a hot day (false positives) normalized by the total number of
non-hot days.

Wave activity fluxes.Wave activity fluxes (WAFs) are calculated following
the methods of Takaya and Nakamura31, which generalizes Plumb fluxes42 to
allow for a zonally variable mean state. We use the summer (JJA) average fields
for the mean state, with no further smoothing, and calculate the WAFs for the
anomaly composites at each lead time. The z300 composites (Fig. 3) indicate
a Rossby wave train that is largely stationary, as required for the
WAF calculation.

Pacific Extreme Pattern and predictions. The SST pattern associated with eastern
US hot weather is termed the Pacific Extreme Pattern (PEP) and is calculated by
compositing daily SST anomalies with respect to hot days at a range of lead times.
The ‘Extreme’ in PEP refers to the association with extreme heat in the eastern US,
not that the SST anomalies are necessarily extreme themselves. The similarity
between an observed SST anomaly and PEP is used as a predictor for hot days.
Quantitatively, we calculate the spatial covariance between SST anomalies and
PEPτ for each day and lead time, P∗

τ ,t=COV(PEPτ , SST′t). P∗τ ,t is then normalized to
have unit variance for each lead time, yielding the normalized index relied on for
prediction, Pτ ,t . Note that both subscripts are generally omitted throughout the
text. To allow for the expected variability in the evolution of a given atmospheric
circulation pattern, all predictions for lead times greater than 30 days are
assessed in terms of predicting a hot day within a 7-day window centred on the day
of prediction.

Significance assessment. All significance estimates are based upon creating a null
distribution of the quantity of interest using a block bootstrap with a block size of
one year. Specifically, the time series of the predictand (either hot days or the
starting date of a heat event) is shuffled 10,000 times, preserving the intra-seasonal
ordering, to produce a surrogate predictand time series. Then, the original analysis
is performed, but using the surrogate predictand rather than the actual one. An SST
anomaly is designated as significant if its magnitude is greater than 95% of the
surrogate-based SST anomalies. Similarly, a ROC score that is greater than or equal
to 0.6 is found to be significant for predictions of daily-resolved hot days using
either P or SPI. Owing to the different temporal characteristics of the predictand,
ROC scores for predicting the start date of heat events are significant when they are
greater than 0.56. ROC scores for monthly-resolved predictions using HadSST3 are
significant when they are greater than 0.58.

Data and code availability. All data used in the analysis are publicly available.
NCEP-DOE II reanalysis fields for geopotential height and 10-m zonal and
meridional winds are available at http://www.esrl.noaa.gov/psd/data/gridded/
data.ncep.reanalysis2.html. Daily SST data from NOAA OI SST V2 are available at
ftp://ftp.cdc.noaa.gov/Datasets/noaa.oisst.v2.highres. Monthly SST data from
HadSST3, version 3.1.1.0 are available at http://www.metoffice.gov.uk/hadobs/
hadsst3/data/download.html. Ocean–atmosphere heat flux data from the WHOI
OAFlux Project are available at http://oaflux.whoi.edu/heatflux.html. Precipitation
data from the CPC Unified Gauge-Based Analysis of Daily Precipitation are
available at http://www.esrl.noaa.gov/psd/data/gridded/data.unified.daily.
conus.html. Daily temperature data are from the Global Historical Climatology
Network-Daily database, available from http://www1.ncdc.noaa.gov/pub/
data/ghcn/daily.

Monthly values for the Pacific North America pattern, North Atlantic
Oscillation, and El Niño–Southern Oscillation indices are from the Climate
Prediction Center, and are available at http://www.cpc.ncep.noaa.gov/products/
precip/CWlink/pna/norm.pna.monthly.b5001.current.ascii, http://www.cpc.ncep
.noaa.gov/products/precip/CWlink/pna/norm.nao.monthly.b5001.current.ascii,
and http://www.cpc.ncep.noaa.gov/data/indices/sstoi.indices, respectively. Monthly
values for the Pacific Decadal Oscillation and Northern Annular Mode indices
are from the Joint Institute for the Study of the Atmosphere and Ocean, and
are available at http://jisao.washington.edu/pdo/PDO.latest and
http://research.jisao.washington.edu/analyses0302/#data, respectively.

See https://github.com/karenamckinnon/PEP.git for code and formatted
data that allow for reproduction of the results depicted in the main
text figures.
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