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Abstract

A high resolution urban thermal sharpener (HUTS) was developed that increases the resolution
of thermal infrared (TIR) data to that of visible and near infrared (VNIR) data by fitting the
relationship between radiometric surface temperature, normalized difference vegetation index
(NDVI) and surface albedo (o). HUTS was applied to TIR data aggregated to 90 m to represent a
satellite acquired dataset and validated against the measured 10 m data from aircraft over San
Juan, Puerto Rico. HUTS sharpening reduced the root mean square error of surface
temperature at the high resolution by 17 % compared to no sharpening and outperformed
other sharpening methods. HUTS is proposed as a useful tool to study urban meteorology and

climatology at the microscale using ASTER satellite data.
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1. Introduction

Satellites acquire thermal infrared (TIR) data to compute land surface temperature (LST) at a
resolution as high as 60 m (Landsat ETM+). This information can be used to study the impact of
urbanization such as the Surface Urban Heat Island (SUHI) which describes the increase in
(radiometric) LST in an urban area compared to surrounding rural areas (Voogt and Oke, 2003).
UHIs have fundamental impacts on meteorology (e.g. land-sea breezes, Lebassi et al. 2009), air
quality, public health (e.g. heat related deaths, Beniston, 2004), energy consumption, and
economics. The global coverage of satellites allowed quantifying and studying the SUHI in e.g.
Houston, Texas (Streutker 2003), Indianapolis, Indiana (Wilson et al. 2003), and 18 Asian mega
cities (Hung et al. 2006). While satellite TIR resolution resolves the scales of urban-rural LST
differences, it is not sufficient to resolve most urban features (roads, buildings) to study

microclimates and human comfort in urban areas.

As the pace of urbanization increases, studies on the microclimate within urban areas
are becoming more important as urban canyon LST affects pedestrian heat stress (Crutzen
2004) and building energy use (Yaghoobian et al. 2010). High resolution TIR data from remote
sensors flown on aircraft (e.g. NASA’s Advanced Thermal and Land Applications Sensor, ATLAS,
5 m to 10 m resolution, depending on flight altitude) has been used to study the surface
microclimate over Huntsville, Alabama (Lo et al. 1997), and generate thermal, land cover
classification, and urban fabric maps for Atlanta, Georgia, Baton Rouge, Lousiana, Salt Lake City,
Utah, and Sacramento, California (Quattrochi et al. 2000). A one-day intensive experiment was

conducted in Phoenix, Arizona using airborne IR thermography to investigate the UHI at
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different spatial scales (Di Sabatino et al. 2009). Airborne remote sensing campaigns are limited
in spatial extent and repeat cycle due to high cost. As each urban microclimate is unique due to
urban fabric and meteorology, a tool that would allow the downscaling of global satellite
datasets in urban areas would be extremely useful. The utility of global and repeating high
resolution TIR data motivates thermal sharpening, or estimating the TIR data at higher

resolution using complementary information available at that resolution.

Visible and Near Infrared (VNIR) data can generally be acquired at higher resolution than TIR
as a consequence of their shorter wavelength. Kustas et al. (2003) leveraged higher resolution
VNIR data by relating LST to the normalized difference vegetative index (NDVI) at the lower
resolution (96 m) and then applying the relation at the higher resolution available for NDVI (24
m). Agam et al. (2007) replaced NDVI by a simplified fractional vegetation cover and named the
method TsHARP. TsHARP provided reasonably accurate high resolution (60 m) TIR maps from 1
km TIR data, but the accuracy decreased with increased resolution of the sharpened map
(Agam et al., 2008). In urban areas, solar reflectance (albedo) is another determinant of LST.
While LST is a function of land class(e.g. deep water and shadowed areas are cooler than
equally low-albedo sunlit surfaces) , Small (2006) found that within unshaded land classes

albedo correlates well with LST.

Guo and Moore (1998) sharpened LST using the VNIR bands to identify topographic
variations. While LST forareas with varied topography and homogeneous land cover where sun
angle is the driving force for LST differences can be predicted accurately, this method is not

applicable to flat urban areas with very heterogeneous land covers. Nichol (2009) sharpened a
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nighttime ASTER image of Hong Kong using emissivities based on land class from the MODIS
emissivity library. However, emissivity is not the main determinant of LST during the daytime,
and the accuracy of the land class based emissivities is questionable when emissivity libraries

are used.

In this study high resolution ATLAS data (Section 2) over urban Puerto Rico is analyzed. Based
on the relationship between TIR derived LSTs and VNIR signals (Section 3), a High-resolution
Urban Thermal Sharpening method (HUTS) is proposed using NDVI and albedo from the VNIR
channels (Section 4). The high resolution ATLAS data are used to quantify the accuracy of HUTS

and TsHARP (Section 5).

2. ATLAS Airborne Data

NASA ATLAS data taken over the greater San Juan, Puerto Rico area on February 16, 2004
(Gonzalez et al. 2005, 2006) at 10 m resolution over 15 spectral channels (Table 1) is used. The
study focuses on a 900 x 720 pixel (9 km x 7.2 km) urban and suburban, cloud-free region from
the 3™ flight line at 5200 m altitude, taken between 1507 and 1512 local standard time (AST,
Fig. 1). Air temperature on this day averaged 26 °C with a high of 28.5 °C and a low of 23 °C,
Humidity was an average of 80%, varying from 59% to 100%. Winds were from the East at an
average 4.5 m s, but were sustained at 7.6 -9.4 m s * during 1407-1612 AST (NWS Daily
Summary). Since the study area is flat, topographic shading is minimal. Shadows will be present
due to (primarily low) buildings and the early afternoon flight time. Considering solar geometry
at the time of the flight, the shadow length for a 3 m tall building would be 2.00 m for a North —

South wall and 2.66 m for an East — West wall. Since shaded areas have small surface
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temperature (Ts) and appear to have a low reflectance, the expected relationship between

reflectance and T is not preserved at shaded surfaces.

ATLAS calibration and correction is described by Rickman et al. (2000). From the spectral
irradiance in each band [W cm™ sr™* p}Jthe following quantities were computed. NDVI was

calculated as in previous ATLAS studies (e.g. Lo et al., 1997) as:

(b6—b3)

NDVI = .
(b6+b3)

(1)
Surface albedo was calculated as the ratio of incident irradiance that is reflected in the VNIR
(bands 1-6). T; was computed assuming an emissivity of 0.98. Since emissivities in an urban
landscape varies from 0.91 to 0.99 (MODIS emissivity library), the surface temperatures used
throughout this study should be considered as thermal energy expressed in temperature units.
A calculation based on actual emissivity would increase T;. Emissivity could be obtained at high
resolution based on land cover class (Nichol 2009) or at low resolution through methods that
utilize multiple TIR bands, e.g. the Grey Body Emissivity (Barducci and Pippi 1996) or
Temperature Emissivity Separation methods (Kealy and Hook 1993). These calculations are left

to future work.

ATLAS data were aggregated to 90 m resolution and to simulate ASTER satellite data. The
original 10 m resolution data is used as the ‘measured temperature’ to evaluate the accuracy of
the sharpening methods similarly as in Agam et al. (2008). NDVI and T, were aggregated by

averaging NDVI and TIR irradiance from the 10 m high resolution pixels, respectively.



103 Table 1: ATLAS bands and approximate band widths. Bands 3 and 6 are used for the NDVI calculation. Band 12 is
104 used to calculate T,.

ATLAS band Approximate Bandwidth (um)
1 0.45-0.52
2 0.52-0.60
3 0.60-0.63
4 0.63-0.69
5 0.69-0.76
6 0.76 - 0.90
7 1.55-1.75
8 2.08-2.35
9 3.35-4.20
10 8.20-8.60
11 8.60-9.00
12 9.00-9.40
13 9.60-10.2
14 10.2-11.2
15 11.2-12.2

105
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Figure 1: 9 x 7.2 km images of corrected and calibrated ATLAS ,measurements over a region of San Juan, Puerto
Rico centered at 18.3933°N, 66.1447°W on February 16, 2004 from 1507-1512 AST. (a) visible composite image;
(b) Surface Temperature; (c) NDVI; (d) albedo. The high albedo features in the northern region are commercial
buildings. The large, white region in the West (Fig. 1a) is suburban residential. The high NDVI regions are densely
vegetated. Rio Hondo river runs North-South from the top of the image.

3. Relationship between VNIR and TIR data

3.1 High resolution (10 m)

The assumption behind any thermal sharpening tool is that a relationship must exist between

the TIR data and the visible and near-infrared (VNIR) data at the high resolution. Since all ATLAS
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bands were acquired at 10 m resolution, this assumption could be tested by investigating the
relationship between NDVI, a, and T; (Fig. 2). Each 10 m pixel was sorted into one of 100 NDVI/ x
100 «a bins, and the average T; of each bin, along with the standard deviation and total number
of pixels in the bin is displayed in Figure 2. This display format also allows visualization of the
relationship of T; to NDVI at any constant a or T; to a at any constant NDVI. For example,
consider the vertical dashed line in Fig. 2a at a = 0.2. Going from NDV/ of 0.0 to 0.6, T;
decreases from about 40 to 30 °C. Fig. 2b shows the variance of the pixels along that same line
to be less than 3 °C (i.e. much less than the observed change in average Ts), while Fig. 2c shows
that the line is in a high density of samples, with over 100 samples contributing to each mean T
and standard deviation pixel. Consequently, T, decreases with NDVI, but the slope is different

for different a.

Figure 2 shows that, a s expected, the highest T; occur for -0.2 < NDVI< 0.0 and 0.1 < a < 0.25,
which are typical properties of unvegetated, man-made urban materials. With increasing NDVI,
Ts decreases as more vegetation leads to more latent heat flux and evaporative cooling. NDVI <
-0.25 shows water bodies with low albedo and negative NDVI. Figure 2 also shows a strong
dependence of T; on a, which differs by NDVI. In the built up region (-0.2 < NDVI < 0.2) an
increase in a leads to a decrease in T, as lighter surfaces reflect more solar radiation. Increasing
a in the vegetative region (NDVI > 0.2) leads to an increase in T since darker vegetative areas
tend to have denser and healthier (more transpiring) vegetation than drier, stressed vegetation.
Overall, for the region with the greatest density of samples, a bivariate function T{(NDVI,a) is

required to fit the data with little scatter (small standard deviation of T in Fig. 2b). Since the
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relationship between T, NDV/ and «a is nonlinear, higher order polynomials are required to

describe it.
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Figure 2: (a) Mean and (b) standard deviation of T, [°C] and (c) histogram [logyo(# of pixels)] vs. NDVI and albedo
for (top) all data and (bottom) region with the majority of the data.

The relationships shown in Fig. 2 also reveal outliers with unrealistic values of a > 0.8 and
seemingly erroneous cases of high T; and high albedo over rooftops. These albedo outliers may

be due to roof coverings such as gravel that have non-lambertian reflectance characteristics.

3.2 Low resolution (90 m)

A strong relationship between T vs. NDVI and «a exists at the 10 m resolution (Fig. 2). When
applying sharpening techniques to satellite data, however, only low resolution T will be
available for training this relationship. To test the assumption of scale-invariance, the
relationship of T vs. NDVI and a were again compared at the low resolution (Figure 3). Though

the low resolution data cover a smaller NDV/ and a range than the high resolution data, the
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NDVI relationship is consistent. The analysis in Section 3 motivates the development of the
sharpening method, which consists of fitting a 4™ order, bivariate T{(NDVI, a) polynomial to the
low resolution training data (Section 4.3). The aim of the model is to fit Fig. 3 to recreate the
true relationship observed in Fig. 2a and use it to assign high resolution T,. Assuming this can be
done accurately, random errors in the sharpened temperatures will be due primarily to

deviations shown in Fig. 2c.

45

40

35

NDVI

30

25

o

Figure 3: NDVI and albedo vs. T, [°C] at the aggregated resolution of 90 m. Due to the low number of pixels, the
majority of the bins contain less than 5 pixels, making histogram and standard deviation figures (as used in Fig.
2) irrelevant.

4. Sharpening Methodology

4.1 UniTrad

UniTrad is the base case, where the high resolution T; is assumed to be uniform within the

underlying low resolution pixel (Kustas, 2003).

4.2 TsHARP
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The TsHARP method (Agam et al. 2007) is applied by calculating a simplified fractional
vegetation cover (f.so0 = (1 — NDVI4,)?¢2%) at the low 90 m resolution. A linear regression

between f.sq0 and T; at the low resolution yields the coefficients ¢y and c; in equation (2):

Ts90 = o + €1f Lg90- (2)

Each high resolution pixel is then assigned a temperature based on the high resolution NDVI:

T, = cg + ¢, (1 — NDVI)%625 + dT, (3)
and a difference dT; = Tsqo — Tso0 Which corrects for the difference in T, between measured
Ts90 and Tsqo, the mean value of the sharpened surface temperature within each low

resolution pixel. The addition of dT; conserves energy within each low resolution pixel such

that aggregating the sharpened T reproduces the original low resolution Tsgp.

4.3 High resolution Urban Thermal Sharpener (HUTS)

Four steps were defined that outline the approach to sharpening which are similar to the

procedure in TSHARP. Each step was individually optimized in the development of HUTS.

Aggregation consists of averaging NDVI and a over each low resolution pixel.

Training is conducted by applying multi-variate regression to solve for the vector P (P = [p; p> ...
p1s]) of coefficients for the 4t order, bivariate regression of T¢99 based on the 90 m resolution

NDVI and a.

Sharpening s conducted by applying Eq. 4 to the NDVI and a of each high resolution pixel to

obtain the high resolution T:
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T, = pyNDVI* + p,NDVI3a + psNDVI?a? + p,NDVIa® + psa* + psNDVI® + p,NDVI?a +

pgNDVIa? + poa® + p;oNDVI? + p;;NDVIa + pj,a? + p;sNDVI + pia + pys (4)

Quality control is then performed, as the regression is poorly fit outside of the region with a
high density of data points. A reasonable temperature is defined as 27 °C < T, < 60 °C, where
the lower limit is set by the water surface temperature and the upper limit is 5 °C larger than
the highest value of T,g. If the temperature is outside the acceptable range, it is defined
through an interpolation of the surrounding 5x5 pixel block weighted by distance. In the case
that the surrounding 5x5 pixel block does not contain a pixel with an acceptable T, an iterative
process is used until all pixels have been assigned a Ts. Finally, the sharpened pixel
temperatures are corrected by applying the same energy balance procedure used for TsHARP.
[An uncertainty weighted correction was also attempted, where the uncertainty metric was
assigned to each pixel based on the variability of Ts within its range of NDVI and a and whether
or not it was acquired through interpolation. The uncertainty was then used as a weighting
factor where the pixels with the greatest uncertainty were changed the most to achieve energy

balance. However, this method resulted in larger sharpening errors and was discarded.]

5. Results

5.1 Sharpened images and qualitative analysis

Figure 4 shows the measured 10 m T;, the unsharpened 90 m image, and the sharpened

image from both HUTS and TsHARP. Water pixels (from the rivers) can be ignored as they were
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not taken into consideration when training the sharpening method, though the error in their
estimation contributes to the error metrics in section 5.3. The improvement of both TsHARP
and HUTS over UniTrad is evident in Fig. 4. Major landscape features such as parks are clearly
delineated in TSHARP and HUTS. Small urban features such as roads which are barely visible in
UniTrad become well resolved in TSHARP and HUTS. However, smaller urban features which
cause variability at the high resolution (e.g. in and around the black box) are not depicted
accurately. Consequently, the quality of sharpening of smaller urban features requires further

investigation.

Figure 5 shows the same results zoomed into a mixed urban and suburban region. In the
suburban areas (region A) HUTS accurately resolves the T, patterns over roads, yards, and
buildings, but not as distinctly as the measured T;. TSHARP, however, inaccurately shows roads
to be cooler than buildings since they have a higher NDVI. There are some regions where HUTS
is visibly superior to TsHARP, but both do not resolve or represent microscale variability. Region
B highlights a parking lot, where HUTS captures the variability between the lot and surrounding
buildings that TsSHARP does not. Region C highlights a boundary between an asphalt road and
dirt to the North which is resolved by HUTS but not in TSHARP. Both TsHARP and HUTS do not
represent the true variability of T; which is a result of the averaging through the regression
polynomial. There sometimes occur large gradients in T along the boundaries of the coarse
pixels (e.g. north-west part of Fig. 5), which is a result of forcing energy conservation across the
low resolution pixels. The very cold (very warm) ‘outlier’ high resolution pixels are
overpredicted (underpredicted) by the sharpening polynomial leading to a erroneous decrease

(increase) in temperature for all high resolution pixels once energy conservation is applied.
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Measured TS UniTrad

230

231 Figure 4: T, maps of the area shown in Fig. 1 including measured surface temperature at 10 m, unsharpened
232 surface temperature at 90 m (UniTrad), and sharpened temperature for both HUTS and TsHARP. The 900 x 720
233 pixel image covers a region of 9.0 x 7.2 km. Black boxes outline the close-up region shown in Fig. 5.
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Figure 5: Sharpened T, zoomed in to a 100 x 100 pixel urban region (centered at 18.390698°N, 66.153084°W) at

10 m resolution. The figure shows a major highway intersection (Cll 2 and Carr 174). To the south of the east-
west highway are mostly residential neighborhoods with trees, while parks, parking lots, and commercial
buildings are to the north. West of the north-south highway is a waterway.

5.2 Distribution of sharpened T vs. NDVI and o
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The distribution of sharpened T; stratified by NDV/ and a is shown in Fig. 6 to determine how

the relationships are represented after sharpening. Despite the limitations of the low resolution

training set, HUTS recreates the high resolution relationship more accurately than TsHARP.

Most of the differences are in regions of high T variability. There, the 4™ order polynomial

cannot resolve the differences in Ts or application of energy conservation over the low

resolution pixel may result in erroneous corrections. Presumably other (unobserved) variables

such as geometrical or physical properties of the urban fabric would have to be considered to

explain the T variability. However, HUTS shows a decreases in error compared to TsHARP

especially for the higher albedo for both vegetated (NDVI ~ 0.4) and urban pixels (NDVI ~ 0).

NDVI

NDVI

P = S

0.150.20.250.3 0.35 0.150.20.250.3 0.35
o o

0.15 0.20.250.30.35
o

Figure 6: T; vs NDVI and a for UniTrad (a), TsHARP (b), and HUTS (a) (top) and difference to measured T;

(bottom) in °C.

5.3 Error and correlation metrics and accuracy by land class
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Root Mean Square Error (RMSE), Mean Absolute Error (MAE), and correlation coefficient (R)
were used to quantify the difference between sharpened and measured T at high resolution
for the entire 900 x 720 pixel image (Table 2). Over the entire image, HUTS improves upon
TsHARP about as much as TsHARP improves upon UniTrad for both error measures. Comparing

HUTS directly to UniTrad shows a 17% reduction in RMSE and 22% reduction in MAE.

Table 2: Error in the estimation of sharpened T; over the image in Fig. 4.

Method RMSE [K] MAE [K] R MBE [K]
UniTrad 3.33 2.48 0.712 0.000
TSHARP 3.07 2.17 0.765 -0.019
HUTS 2.76 1.94 0.813 -0.015

Since HUTS is developed specifically for use in urban areas it is useful to examine its accuracy
within various land classes. For classification a training set was developed based on manual
selection of pixels and the classification function in MATLAB’s image processing toolbox was

used on high resolution ATLAS bands 1, 2, 3, 5, 7, 8, as well as NDVI and «a (Fig. 7).

The land classes used were motivated by Nichol (2009) and included ‘Forest’, “Water’, ‘Dry
Grassland’, ‘Other Vegetation’, ‘Urban’, and ‘Soil/Sand’. However, ‘Urban’ was replaced by
‘Suburban’, ‘Warehouse’, ‘Road’, and ‘Recreation’. The classification also contains a ‘misfit’
class with pixels that were not highly matched with any class (‘highly matched’ = >80%

agreement with algorithm-defined parameters for any class).
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Misfit

Recreational

Soil/Sand

Road

Warehouse

Suburban

Other Veg

Dry Grassland

Water

Forest

Figure 7: Scene (same as Fig. 4) with land cover classification into 9 classes. The class ‘misfit’ contains pixels with
less than 80% fit to any category.

RMSE, MAE, mean bias error (MBE) and correlation coefficient were calculated within each land
cover class (Figure 8). Since ‘Other Vegetation’ has a much lower number of pixels than the
other classes, the result may not be significant. The high errors in ‘warehouse’ class are partially
due to the high albedo ‘outliers’ observed in Fig. 2 which account for many pixels in the

‘warehouse’ class.

The ‘suburban’ class is poorly defined since at 10 m resolution it is a combination of landcover
types. Instead of using the image processing toolbox to determine suburban pixels, the ‘road’,
‘water’, and ‘recreational’ pixels were excluded from a residential area of 200 x 200 pixels to
form the suburban class. While the MBE for all methods in the suburban class is nearly zero,

HUTS has a significantly higher correlation, meaning that it better captures the variability in
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suburban LST caused by houses, yards, and mixed pixels. For the other land classes, HUTS
performs measurably better than both TsSHARP and UniTrad, especially for classes defining

small scale features such as ‘road’ and ‘soil/sand’.
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Figure 8: Graphical representation of correlation coefficient, MAE, RMSE, and MBE in sharpened T by land class.
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6. Conclusions

Albedo and vegetation are expected to be important determinants of land surface
temperatures (LST) in urban areas. The High-resolution Urban Thermal Sharpener (HUTS)
method was motivated by analysis of the high resolution relationship between the TIR and VNIR
signal (NDVI and albedo) from 10 m resolution ATLAS data over Puerto Rico. It was
demonstrated that a low resolution (90 m) NDVI and albedo training set preserved the
observed relationship to LST at high resolution. The training relationship was applied to
estimate high resolution LST from 90 m LST sharpened using the VNIR signal at 10 m resolution
over a 900 x 720 pixel image. Since HUTS can express the complex non-linear relationship
between LST, albedo, and NDVI, it performed significantly better than both no sharpening
(UniTrad) and an approach solely based on NDVI (TsHARP) based on qualitative comparison and
RMSE, MAE, and correlation coefficient. Overall, HUTS showed an improvement of over 0.5 °C
and over 17% in MAE and RMSE from no sharpening, more than twice the improvement from
the TsHARP method. A land classification was applied to the image, and sharpening accuracy
was assessed in each land class. The low MBE of HUTS indicated that the average LST of various
land classes in the HUTS sharpened image is a more realistic input to models for urban

microclimate or building energy use.

Since HUTS is a redistribution of LST based on assumed relationships, the source of error is
twofold. The first is variance of high resolution LST at constant NDVI and albedo. This is
quantified for the study area in Fig. 2b, and is less than 3 °C for the majority of the study area.

The second source of error is from the ability to train the high resolution relationship from the
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310 low resolution data. This is quantified for the study area in Fig. 6¢, and is less than 0.75 °C for
311  the majority of the study area. The assumed relationships are accurate, and the reallocation

312  results in higher accuracy than other sharpening methods.

313  While HUTS was trained in the same study area that was used for validation, since the

314  validation data (high resolution LST) is not used in the training this serves as an independent
315 validation of HUTS. However, our study does not evaluate whether the relationship between Ts,
316 NDVIand albedo is applicable across measurements platforms. While only a small area is

317  presented in this manuscript, HUTS was applied to other regions of the dataset with similar

318  results. Any other high resolution urban dataset could also be used for validation, and similar

319  results are expected.

320 HUTS s proposed as a method for providing an estimate of the TIR signature at the same

321  resolution as VNIR satellite data. Since it is based on physical parameters as opposed to lower
322 level parameters (direct numerical (DN) value, radiance at sensor, etc), HUTS is applicable to
323  calibrated datasets acquired from many remote sensing platforms. For example, HUTS can be
324  applied to widely available ASTER images to estimate LST at the 15 m VNIR resolution from the
325 measured 90 m TIR resolution. HUTS may also be applicable to lower resolution data such as
326  that from MODIS, where it could increase thermal IR resolution from 1000 m to ~ 250m. While
327 the MODIS resolution is too coarse to be of interest for many urban microclimate applications,
328  TsHARP was found to be more accurate when sharpening to lower resolutions (Agam et al.,
329  2008). In heterogeneous urban areas HUTS sharpened LST will provide more accurate input

330 data for studies on how varied land classifications and land use (LCLU) affect the thermal
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response of the urban fabric and the urban microclimate. The scale of heterogeneity in surface
roughness impacts turbulent parameters such as blending height (Bou-Zeid and Parlange,
2007). Similarly, micro-scale heterogeneity in surface heat flux will impact flow and mixing in
urban canyons (Castillo et al. 2009), and HUTS can provide measured high-resolution surface

heat fluxes to input into simulations.
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Appendix A: Sensitivity of HUTS

Since various options exist for the implementation of HUTS, a brief justification on the

implementation and sensitivity to different options is included here.

Using an entire flight path for training Eq. 4, covering mountains and natural vegetation as well
as the urban area, made the sharpened T; biased low and increased the RMSE and MAE by 0.1-
0.2 °C. This could be a result of lower terrain or the urban surface heat island effect that heats
urban surfaces compared to surrounding terrain with the same NDVI and albedo. A higher error
associated with a larger training set indicates that there are competing land cover types of

different T in the same NDVI and a ranges and that the relationships developed through this
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study are not universal. Rather, the training should only be conducted for the urban area where

the sharpening will be applied.

The training data was also used to generate a look-up table based on Fig. 3 to find the
sharpened T and the regression (Eq. 4) was only used on empty bins. While this method had a
significantly shorter computational time, the error measures increased by 10-20%. In addition,
the order of the regression was varied from 3 — 6. The 4" order regression was the most

accurate, with RMSE and MAE within 0.05 °C for the other orders.

The ‘reasonable range’ of T; was chosen with the river temperature as the lower limit (for many
other urban areas an ocean temperature could be a good choice) and 5 °C higher than the
maximum low resolution temperature as the upper limit. Varying these limits by 5 °C changed
RMSE and MAE by less than 0.1 °C. Overall, while many aspects of HUTS can be changed, it

proves to be robust over a reasonable range of parameters.
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