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URRENT
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Electrophysiological biomarkers of diagnosis and

outcome in neurodevelopmental disorders

Shafali S. Jeste, Joel Frohlich, and Sandra K. Loo

Purpose of review

The heterogeneity in clinical presentation and outcome in neurodevelopmental disorders such as attention
deficit hyperactivity disorder (ADHD) autism spectrum disorder (ASD) necessitates the identification and
validation of biomarkers that can guide diagnosis, predict developmental outcomes, and monitor treatment
response. Electrophysiology holds both practical and theoretical advantages as a clinical biomarker in
neurodevelopmental disorders, and considerable effort has been invested in the search for
electroencephalography (EEG) biomarkers in ADHD and ASD.

Recent findings

Here, we discuss the major themes in the evaluation of biomarkers and then review studies that have
applied EEG to better inform diagnosis, focusing on the controversy surrounding the theta:beta ratio in
ADHD; prediction of risk, highlighting recent studies of infants at high risk for ASD; and treatment
monitoring, presenting new efforts in the redefinition of outcome measures in clinical trials of ASD

treatment.

Summary

We conclude that insights gained from EEG studies will contribute significantly to a more mechanistic
understanding of these disorders and to the development of biomarkers that can assist with diagnosis,
prognosis, and infervention. There is a need, however, to utilize approaches that accommodate, rather
than ignore, diagnostic heterogeneity and individual differences.
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Neurodevelopmental disorders are a group of
heterogeneous conditions characterized by a delay
or disturbance in the acquisition of skills in a variety
of developmental domains, including motor, social,
language, and cognition, as defined by the Diagnos-
tics and Statistics Manual [1] (DSM-5; APA 2013).
Diagnoses include attention deficit hyperactivity
disorder (ADHD) autism spectrum disorder (ASD),
global developmental delay (GDD), and intellectual
disability (ID), with major revisions made in diag-
nostic criteria from DSM-IV. Some common clinical
features exist across this group of neurodevelop-
mental disorders that warrant the identification
and validation of biomarkers that can guide
diagnosis, predict developmental outcomes, and
monitor treatment response. In this review, we will
focus on the most commonly diagnosed neuro-
developmental disorders in childhood, namely
ADHD and ASD, and discuss the clinical features
that necessitate the search for biomarkers. We then
will consider the criteria used to evaluate biomarkers
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in these populations, focusing on the method of
electrophysiology [electroencephalography (EEG)],
and highlight recent investigations in electro-
physiological biomarkers for diagnosis, prediction
of diagnosis/risk status, and treatment monitoring
in ADHD and ASD.

Both ASD and ADHD are commonly referred to as
a final common pathway for multiple etiologic
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KEY POINTS

e The heterogeneity in presentation and outcome in
neurodevelopmental disorders necessitates the
identification and validation of biomarkers that can
guide diagnosis, predict developmental outcomes, and
monitor treatment response.

e From both a theoretical and practical standpoint, EEG
serves as an ideal biomarker for informing diagnosis,
prediction of risk and outcome in neurodevelopmental
disorders.

e Although several factors may have contributed to the
declining support for TBR in ADHD, the diagnostic
utility of this EEG measure has not been empirically
supported by recent studies.

e Given the heterogeneity apparent in ADHD and ASD, it
is more likely that a multivariate biomarker can capture
more variance than a single measure.

e Current and future studies in diagnostic and predictive
biomarkers must move beyond group-level comparisons
and focus on the stratification of individuals by relating
EEG characteristics with core behaviors, such as
language, social communication skills, executive
function, or overall intellectual function.

variables, reflecting heterogeneity in the underlying
genetic and environmental (and interactions
therein) mechanisms and also in the phenotypic
expression and range of symptomatology. More-
over, because these disorders are often diagnosed
in early childhood, across different stages of devel-
opment, there exists considerable variability in
degree of change over time, both with and without
intervention.

ADHD is the more prevalent neurodevelopmen-
tal disorder in children and is defined by inatten-
tion, hyperactivity, impulsivity, or a combination of
these symptoms to a degree that causes functional
impairment across contexts. ASD is defined by a
dyad of impairments in social communication skills
and the presence of repetitive patterns of behavior
or restricted interests in the early developmental
period. The variability in clinical presentation is
rooted in severity of impairment and co-morbidities
[2]. The clinical heterogeneity of these disorders
presents confounds in disease stratification and pre-
diction of outcome. For instance, it is unclear why a
substantial subgroup of children with ASD (up to
30%) fails to gain spoken language despite interven-
tions [3]. Standardized clinical measures are limited
in their ability to distinguish pre-verbal from non-
verbal individuals and, moreover, to capture the
variability in language comprehension, reading,
and overall cognitive function in this group of
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children. Such an understanding would greatly
inform the choice of targets in language-based
interventions for individual children. As another
example of the challenges rooted in heterogeneity
of presentation, in ADHD, stimulants are the gold
standard of treatment, yet a significant minority
(approximately 30%) demonstrates a suboptimal
response and/or significant adverse side-effects.
Efforts to identify latent subgroups using neuropsy-
chological measures [4], temperament dimensions
[5%], and resting state connectivity [6], in both
ADHD and typical development, suggest that a
reconceptualization of classification efforts may be
needed.

In 1998, the National Institutes of Health (NIH)
Biomarkers Definitions Working Group defined a
biomarker as ‘a characteristic that is objectively
measured and evaluated as an indication of normal
biological processes, pathogenic processes, or
pharmacologic responses to a therapeutic inter-
vention’ [7]. In neurodevelopmental disorders, the
search for biomarkers has focused on measures of
brain structure and function and, more specifically,
those capturing cortical connectivity. These bio-
markers can be divided into three primary areas,
as will be expanded in following sections: diagnostic
classification, risk categorization and prediction of
outcome, and treatment monitoring.

Several considerations must be made in the
evaluation of a brain-based biomarker in neuro-
developmental disorders (Table 1). First, the
measure must have practical feasibility. Specifically,
data should be collectible across multiple sites (from
research settings to a doctor’s office or school) and
across a heterogeneous population that ranges in
age, developmental level, cognitive ability, and
overall behavioral compliance with testing. Data
also should be able to be collected in large popu-
lations in a timely and cost-effective manner. A
biomarker should be stable and robust to state
variables outside of experimental manipulation,
what some may consider test-retest reliability. It
should demonstrate high sensitivity and specificity
to distinguish a clinical population from typical
development. Furthermore, a biomarker should
vary continuously in the population, relating to
specific traits such as social motivation, attention,
or even intellectual ability (IQ), which can then help
to stratify individuals within a diagnostic category.
From the standpoint of treatment monitoring, bio-
markers must be sensitive to meaningful change
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Table 1. Goals for and criteria used to evaluate biomarkers for neurodevelopmental disorders, from early prediction to

diagnosis and treatment monitoring

Infancy/Prodromal
Period

Diagnosis

Intervention and outcome
monitoring

(1) Predictors of diagnosis
(2) Precursors to atypical
behavior

Goals of biomarker development

(3) Risk categorization
Criteria to evaluate biomarkers

(1) Confirmation of or improved
diagnosis
(2) Clinical stratification

(1) Treatment response monitoring
(2) Treatment target engagement

(3) Outcome prediction

(3) Establishment of treatment targets

-Collectable across multiple sites

Collectable across heferogeneous populations

-Testretest reliability

-Quantitative: varies continuously in population

-Relates to typical
development

-Sensitive to developmental
change

-Relates to specific clinically
relevant/core deficits

-Reflects underlying neural
mechanisms

-Sensitive to clinically meaningful
change

Reflects mechanisms of treatment
targets

over time, either because of intervention, matu-
ration, or developmental changes. Most impor-
tantly, the biomarker must be neurobiologically
meaningful, grounded in pathophysiogical mech-
anisms of atypical development.

From both a theoretical and practical standpoint,
EEG serves as an ideal biomarker for characterizing
neurodevelopmental disorders. EEG provides a
direct measure of postsynaptic brain activity and
has several orders of magnitude greater temporal
resolution than functional MRI, allowing it to
resolve neurophysiological oscillations and dynam-
ics on millisecond scale. Evoked potentials are
traditionally studied by averaging out noise across
many trials to quantify the neural response to events
or stimuli, such as face processing, whereas neural
oscillations are studied by means of Fourier analysis,
amethod that treats signals as a linear superposition
of sinusoids [8].

Compared with MRI, EEG is much more tolerant
of motion artifacts, and recordings are possible in
naturalistic settings, both of which facilitate the
study of infants and young children [9]. Such feasi-
bility has led to arich understanding of EEG patterns
of brain development, thereby providing a founda-
tion for the study of atypical development. More-
over, EEG provides a method to measure the
presumed mechanisms underlying neurodevelop-
mental disorders, such as aberrant neural connec-
tivity and disruption of cortical excitation and
inhibition balance (E/I balance), both of which
are rooted in aberrations of cortical interneurons
and gamma-aminobutyric acid (GABA), receptors
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[8,10-17]. Resting-state oscillations undergo a well
documented maturation in early childhood, with a
decrease in slow oscillations, (theta and delta
bands), increase in higher frequency activity (beta
and gamma bands), and increase of interhemi-
spheric coherence [18-20].

More refined EEG measures have more recently
been introduced to measure signal properties such
as complexity and information content [21]. EEG
complexity depends on delicate E/I balance in neu-
ral circuits. Multiscale entropy (MSE) is a complexity
metric that quantifies the unpredictability of a time
series across several time scales [22]. In addition to
MSE, frequency variance (FV) has been introduced
as a complexity measure that examines variability in
signal frequency. A recent study of preschool age
children discovered a negative correlation between
FV and age in resting-state EEG signals, indicating
increased stability of cortical frequency states
with development [23"]. Functional connectivity —
statistical dependencies between functional brain
signals — can also be assessed using EEG recordings
by a variety of methods, most commonly through the
coherence of signals recorded from different electro-
des. Two EEG signals are coherent if they exhibit a
constant phase difference and common frequency.
Hyper-synchrony between two cortical regions —
driven by a loss of inhibition — might lead to elevated
functional connectivity and reduced complexity of
EEG signals [24,25].

Perhaps the most widely cited EEG biomarker for
ADHD is the theta:beta ratio (TBR) recorded by a
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single electrode at the vertex (Cz). This marker was
first proposed by Lubar (1991) and was hypothesized
to reflect cortical hypoarousal or slowing [26,27].
Over the following decade, several studies suppor-
tive of the link between ADHD and the TBR were
published by a handful of research groups, several of
which had scientific conflicts of interest. In 2006,
Snyder and Hall [28] published a meta-analysis that
claimed an effect size of 3.08 for the TBR in ADHD,
which they suggested was predictive of sensitivity
and specificity of 94%. They subsequently published
an empirical study that reported 87% sensitivity,
94% specificity, and 89% overall accuracy for ADHD
diagnosis that was relatively invariant according
to psychiatric comorbidity, developmental level
(child, adolescent), sex, and racial group [29].
These data were used in part by NEBA Health (for
whom Snyder works) to apply for Food and Drug
Administration approval of the TBR as a diagnostic
aide, which was subsequently issued in July 2013.
Although the TBR appears to be a success story
for EEG biomarkers for diagnosis, controversy
continues.

The controversy results from a series of recent
studies by independent research groups that were
not supportive of the association between the TBR
and ADHD [30-36]. These negative findings were
reflected in a recent meta-analysis by Arns et al.
(2013) who concluded, ‘excessive TBR cannot be
considered a reliable diagnostic measure of ADHD
[37].” In addition, there was a very strong and sig-
nificant negative correlation (r=-0.97, P<0.001)
between year of publication and TBR effect size,
reflecting the recent and significant decline in sup-
port for the TBR in ADHD.

To what factors can the shift be attributed? One
possible factor is an increase in the TBR among
control populations (potentially driven by
decreased sleep duration among youth) that attenu-
ates the TBR difference between ADHD and non-
ADHD populations [37]. Another source of differ-
ence may lie in developmental factors that were
uncontrolled. For example, Buyck and Wiersema
(2014) reported a low diagnostic accuracy of the
TBR for ADHD [area under the curve (AUC)=0.55];
however, they obtained a much higher age
classification rate (AUC=0.97) [30]. In earlier
studies, wide age ranges were typically matched
but age was not used as a statistical covariate.
Finally, consistent with the earlier discussion
regarding ADHD heterogeneity, it is likely that
there is a subgroup of individuals with ADHD with
an TBR that may have been overrepresented in
earlier studies because of sampling procedures.
Although several factors may have contributed
to the declining support for TBR in ADHD, the

1350-7540 Copyright © 2015 Wolters Kluwer Health, Inc. All rights reserved.

diagnostic utility of this EEG measure has not
been empirically supported by recent studies. Given
the heterogeneity apparent in ADHD, it is more
likely that a multivariate biomarker can capture
greater variance than a single measure (for a
more complete discussion, see Lenartowicz and
Loo [38"]).

DIAGNOSTIC BIOMARKERS IN AUTISM
SPECTRUM DISORDER

Several studies have investigated EEG patterns that
may differentiate individuals with ASD from age-
matched typically developing controls, but none
have attempted to validate these measures as being
sensitive or specific to diagnosis. Not surprisingly,
because of the wide range in ages and phenotype
of the ASD group being studied, no single EEG
biomarker has been identified that consistently dis-
tinguishes individuals with ASD from those without
ASD. In the most comprehensive review of resting-
state EEG studies in ASD, Wang et al. identified a
possible ‘U shaped’ profile of EEG power alterations,
with excess power displayed in low frequency and
high frequency bands and reduced power in alpha
and beta bands compared with typically developing
individuals. The authors speculated that, in part,
this profile results from abnormal GABAergic tone
in inhibitory circuits [39]. Studies of functional
connectivity have identified a general pattern of
long-range under-connectivity and short-range
over-connectivity in ASD, with results varying based
on regions and frequency bands of interest [40-42].
Functional connectivity and coherence during
cognitive and perceptual tasks have also yielded
some promising findings in distinguishing ASD
from typical development, with differences in con-
nectivity patterns, particularly in interhemispheric
coherence, during tasks such as face and object
processing, picture naming, set-shifting [43-46].
Arecent study by Eldridge et al. (2014) examined
signal complexity through MSE in EEG recordings
from an auditory oddball event-related potential
(ERP) paradigm in young children ages 6-10 years
old and found that MSE is a useful feature for
classification of children as ASD or typically devel-
oping [47"]. In an effort to understand the relation-
ship between connectivity and complexity in ASD,
Ghanbari et al. (2015) identified a significant differ-
ence between children with ASD and age-matched
typically developing children in the relationship
between connectivity and complexity using magne-
toencephalography (MEG). Specifically, there were
significant group differences in patterns of complex-
ity based on brain region and frequency band. In
ASD, there was an inverse relationship between
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functional connectivity in the ASD group, sug-
gesting that perhaps diminished connectivity leads
to more ‘unregulated and therefore complex’ signals
and increased entropy [48]. This study highlights
the need to consider not only signal characteristics
but also the relationship between variables as a
diagnostic biomarker, as these relationships may
shed light on underlying pathophysiological mech-
anisms of disease.

EEG can also inform neurophysiological mech-
anisms of disease in high-risk genetic variants, there-
fore bridging the gap from genes to behavior. For
instance, duplications on chromosome 15q11-q13
(‘Dupl5q syndrome’) confer a very high risk for
global developmental delay, hypotonia, ASD,
ADHD, and epilepsy [49-51]. Quite notably, a sub-
group of children with Dup15q syndrome exhibit a
classic EEG pattern of excessive beta (12-30 Hz)
frequency activity, a feature often found in patients
treated with GABAergic medications such as benzo-
diazepenes [52]. This signature in Dup15q syndrome
likely reflects the upregulation of several GABA
receptor genes located in the duplicated region.
Current studies are underway to better characterize
this excessive beta activity, both in mouse models
and in patients, to understand the mechanism
underlying this EEG pattern and to investigate
whether this EEG signature relates to or predicts
clinical outcomes, particularly the development of
epilepsy or ASD.

Current and future studies in diagnostic bio-
markers must move beyond group-level compari-
sons and focus on the stratification of individuals
by relating EEG characteristics with core behaviors,
such as language, social communication skills, exec-
utive function, or overall intellectual function.
Because EEG measures such as spectral power, coher-
ence, and complexity are continuous and relate to
typical development, they hold tremendous poten-
tial for the creation of clinically meaningful sub-
groups within the spectra of neurodevelopmental
disorders.

BIOMARKERS OF RISK PREDICTION IN
AUTISM SPECTRUM DISORDER

Neurodevelopmental disorders likely result from a
complex interaction of genetic susceptibility and
environmental influence, and it is likely that aber-
rant connectivity and neural integration precede
clinical evidence of developmental delay. Given
that early diagnosis facilitates early intervention,
which, in turn, can improve developmental out-
comes, there has been tremendous interest in the
identification of early predictors of atypical develop-
ment. Most studies in early risk prediction have
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focused on infant siblings of children with ASD,
as these infants have a 20% risk of developing
ASD [53]. In children who develop ASD, atypical
behaviors or delayed development do not consist-
ently emerge until the second year of life [54]. In
that setting, investigations have focused on the
characterization of EEG patterns that reflect
neuronal connectivity in early infancy.

Several studies have demonstrated differences in
high-frequency oscillations (particularly the gamma
band 30-80 Hz), which reflect the binding of neural
information from different networks. Elsabbagh
et al. [55] found higher baseline and lower event-
related gamma power in high-risk infants during
an eye-gaze processing paradigm, whereas Tierney
et al. reported lower gamma power at age 6 months
and a flattened slope of gamma change over the first
2 years of life in high-risk infants [56]. These find-
ings suggest a delayed maturation of cortical con-
nections or local temporal binding, particularly in
response to social stimuli. Whether they reflect a
pathway specific to social communication deficits
rather than overall delayed development remains to
be investigated, ideally through the study of other
high-risk groups, such as those with specific high-
risk genetic syndromes or variants. Another study by
the same group reported a distinctive and atypical
pattern of hemispheric organization, based on alpha
band (6-9 Hz) asymmetry, in high-risk infants
regardless of ASD diagnosis. In an effort to better
quantify neural integration across brain regions,
Righi et al. [57"] studied linear coherence (which
represents the correlation between phase and power
of two EEG signals in a frequency range) and found
that infants at high risk for ASD exhibited signifi-
cantly lower functional connectivity between fron-
tal and parietal regions compared with low-risk
infants. Finally, Bosl et al. [58] investigated non-
linear complexity in high-risk infants by performing
amachine learning algorithm using MSE as a feature
vector and found different developmental trajec-
tories for MSE in high and low-risk infants, with a
classification accuracy of 80% based on risk status.

Notably, these studies have distinguished
infants by risk status, independent of ASD diagnosis,
with several studies (such as Righi et al.) actually
performing secondary analyses in which they
remove those infants who later developed ASD, to
confirm that these differences truly represent bio-
markers of risk status also known as endopheno-
types, or heritable markers that relate to the
disorder. Such an analysis, therefore, identifies
associations between genetic predisposition for
ASD and aberrant neural integration and connec-
tivity. The lack of success, thus far, in identifying
EEG patterns predictive of ASD diagnosis likely
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stems from the relatively small sample size of
children who develop ASD in these cohorts and
the likelihood that a variety of genetic variants will
contribute to the development of ASD in these
infant siblings, each of which may result in a
unique electrophysiological signature representing
distinctive neural mechanisms of disease. Neverthe-
less, from a clinical standpoint, if electrophysiologi-
cal patterns can predict overall risk for ASD, such
stratification could still justify the implementation
of early, developmentally appropriate interventions
to enhance cognitive and behavioral outcomes
regardless of the final diagnosis.

BIOMARKERS OF TREATMENT
MONITORING IN AUTISM SPECTRUM
DISORDER

As discussed in earlier sections, EEG studies have
largely focused on disease and risk status categoriz-
ation. In the only published study of EEG outcomes
withinterventionin ASD, Dawson et al. randomized
toddlers (ages 18-30 months) to a standardized,
well validated behavioral intervention (Early
Start Denver Model: ESDM) or a community inter-
vention for 2 years. Children who had received
the ESDM intervention demonstrated patterns of
face processing, electrophysiological, similar to
typically developing controls. Moreover, cortical
activation to faces, as defined by an alpha:theta
ratio, correlated with gains in social behavior
with treatment [59]. The findings suggest that the
intervention, focused on social engagement, may
enhance childrens’ attention to and interest in
social information which can then be quantified
by EEG oscillatory patterns. The absence of base-
line EEG assessments in the study precluded the
characterization of change in oscillatory patterns
with intervention. However, the study did high-
light the potential utility of using neurophysio-
logical measures of resting state and social
communication function to capture specific
mechanisms of change with intervention which,
in turn, may elucidate the neural targets being
engaged with treatment.

Recently, the National Institutes of Mental
Health began an initiative called FAST-AS (Fast-Fail
Trials in Autism Spectrum Disorders), which aims to
spur on discovery of new medications through
identification of brain targets within ASD and use
of these biomarkers to test novel compounds. EEG
measures were selected to be the primary dependent
variables for the multisite FAST-AS trial. A multi-
variate EEG biomarker was developed using the
following criteria: high discriminant validity
between ASD and typically developing controls

1350-7540 Copyright © 2015 Wolters Kluwer Health, Inc. All rights reserved.

and significant medication effects of the compound
being tested. The EEG biomarker is now being used
as an inclusion criterion (thus reducing hetero-
geneity in ASD subjects) for the clinical trial and
will be used to monitor treatment response to a
novel compound in ASD. Although results are not
yet available as the trial is still ongoing, this study
represents a unique, first-of-its-kind investigation in
using EEG biomarkers for treatment response
monitoring.

CONCLUSION

Given the broad spectrum of trajectories in both
typical and atpyical development, and the uncer-
tainty that often surrounds the diagnosis of neuro-
developmental disorders, it is likely that we will
need to develop multivariate markers and more
complex measures that represent domains of func-
tioning, rather than diagnostic categories, to cap-
ture variance within disorders. EEG is well poised to
address this unmet need and to contribute signifi-
cantly to a more mechanistic understanding of neu-
rodevelopmental disorders. Although this area of
investigation is still rapidly evolving and growing,
integration of electrophysiological biomarkers with
clinical measures not only informs, but also reforms,
the way in which we diagnose, predict outcomes,
and monitor progress with treatment in these dis-
orders.
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