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ABSTRACT

Even though the number transforming growth factor B (TGFB) inhibitors being tested in cancer patients
has grown substantially, clinical benefit from TGFB inhibition has not yet been achieved. The myriad
mechanisms in which TGFB is protumorigenic may be a key obstacle to its effective deployment; cancer
cells frequently employ TGFB-regulated programs that engender plasticity, enable a permissive tumor
microenvironment, and profoundly suppress immune recognition, which is the target of most current
early-phase trials of TGFp inhibitors. Here we discuss the implications of a less well-recognized aspect of
TGFB biology regulating DNA repair that mediates responses to radiation and chemotherapy. In cancers
that are TGFB signaling-competent, TGFB promotes effective DNA repair and suppresses error-prone
repair, thus conferring resistance to genotoxic therapies and limiting tumor control. Cancers in which
TGFB signaling is intrinsically compromised are more responsive to standard genotoxic therapy.
Recognition that TGFf is a key moderator of both DNA repair and immunosuppression might be used to
synergize combinations of genotoxic therapy and immunotherapy to benefit cancer patients.
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INTRODUCTION

Transforming growth factor B (TGFPB) is a cornerstone of homeostasis. It uses many mechanisms
to control cellular development, tissue maintenance, and regeneration in a variety of tissues (1). It is
classified as a major tumor suppressor based on its ability to regulate the cell cycle and cellular
proliferation. Paradoxically, TGFB can convert from being a tumor suppressor to being a tumor promoter
(2). TGFB’s action as a tumor suppressor is commonly ascribed to the exquisite sensitivity of epithelial
cells to TGFB-mediated G1 arrest and differentiation (3). To become cancer, initiated cells must overcome
this barrier; hence, almost all carcinomas are resistant to TGF growth suppression (4). Genetic alterations
in mediators of TGFp signaling occur in about a third of The Cancer Genome Atlas (TCGA) specimens; in
particular, mutations of mothers against decapentaplegic homolog 4 (SMAD4) and TGFB type Il receptor
(TGFBRII) are frequent in pancreatic, colorectal, and head and neck cancers (5). Nonetheless, many TGF
transcriptional responses remain intact even after cancer cells have escaped TGFf’s suppression of
proliferation. In a study of more than 500 breast cancers, 92% were positive for nuclear, phosphorylated
SMAD-2, indicating that activation of the TGFB pathway is commonly maintained (6).

TGFB activity is important in the construction of the tumor enhancing microenvironment and
tumor cells’ immune evasion that together promote the development of clinically evident cancer (7-10).
TGFp can act in a variety of ways to promote tumor progression. Exuberant production and activation of
TGFB by malignant cells suppress the host’s antitumor immune response, enhance the production of
extracellular matrix, and augment angiogenesis (11).

Loss of response to TGFB as a growth inhibitor and increased expression of TGF activity have
been associated with progression in most cancers, including breast, gastric, endometrial, ovarian,
colorectal, and cervical cancers, as well as glioblastoma and melanoma (12). Ultimately, the mechanisms
by which TGFp signaling and activity are corrupted give cancers specific properties. Cancer cells that
maintain the ability to signal via TGFP take advantage of programs that engender plasticity such as
epithelial-to-mesenchymal transition and stem-like self-renewal, enable construction and remodeling of
the tumor microenvironment, and locally suppress immune recognition. Taken together, these
mechanisms thwart effective cancer therapy. The redirection of TGFB biology from tumor suppressor to
tumor promoter during carcinogenesis is the topic of recent comprehensive reviews (7,9,13,14). This
overview of TGFp inhibitors in clinical trials focuses on whether TGFB's lesser-known role in DNA damage
repair provides an exploitable vulnerability for cancer therapy.

MECHANICS

Mechanisms Controlling TGFB Activity

To understand TGFB biology and targeting we must understand TGFpB’s secretion as a latent
complex that is targeted to the extracellular matrix. A variety of latency-associated peptides (LAPs) release
TGFpB from its latent state. LAPs are encoded in each of the three mammalian TGFB genes. The latent
complex consists of a highly glycosylated disulfide-bonded LAP homodimer noncovalently associated with
the approximately 24 kD TGFB homodimer that is structurally characterized as a disulfide knot (15). LAP
serves as a chaperone necessary for folding and has the signal sequence for secretion. Most LAP is
covalently linked to latent TGFP binding proteins that serve multiple functions to sequester the complex
in the extracellular matrix.

TGFB is activated when it is released from these complexes. Upon activation, the ligand-binding
TGFp receptor | causes heterodimerization with the type Il receptor. Both receptors are threonine kinases
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that initiate a signaling cascade via phosphorylation of receptor-mediated SMADs. TGFB receptor I
(betaglycan) is not a kinase and is thought to facilitate signaling, particularly from TGFB2 in certain cells.

The mechanisms of TGFp activation can be used to target specific cell types or contexts. Activation
can be controlled in a cell- and milieu-specific manner by binding proteins that include GARP (16) and
LRCC33 on immune cells (17). The LAPs of TGFB1 and 3 contain RGD sites for integrin-mediated activation
by exerting contractile forces to unfold LAP and release active TGFB (15,18,19). In contrast, latent TGFB1
can be broadly and efficiently activated by extracellular oxidation of a LAP methionine that affects the
molecular arrangement of the complex, giving it the ability to sense and signal oxidative stress (20,21), as
seen after exposure to ionizing radiation (22). Compared to normal tissues in which TGFB activity is tightly
controlled, cancers employ all these mechanisms so that active TGFB is often abundant in the tumor
microenvironment.

The mechanics of TGFB regulation provide multiple means to abrogate its activity (Figure 1). In
brief, agents have been designed to block ligand, activation, or signaling. The effectiveness of each
depends on knowing when and where TGFp is activated and the dominant TGFB-regulated mechanism
that inhibits tumor eradication (see below).

Consequences of TGFp Signaling

The complexity of TGFp signaling and its pleotropic effects have been extensively reviewed (7-
9,13,23). Briefly, TGFf activation results in canonical TGFp signaling initiated by the ligand binding to
ubiquitous TGFP receptors, which are serine/threonine kinases that phosphorylate SMAD2 and/or 3 to
activate complexing with SMAD4, the mediator of transcription via SMAD-binding elements in target
genes. One of the more rapid responses is SMAD7 induction, whose feedback inhibits receptor signaling,
among other regulators, limiting the duration of TGFp signaling. In concert with finely tuned activation,
signaling feedback limits TGFp activity in normal tissues, but dysregulated signaling in tumors can lead to
plasticity, motility, and immunosuppression (1).

Cancers may indirectly escape TGFB growth regulation while maintaining tumor-permissive
functions. During carcinogenesis, malignant cells may escape TGFB’s control of proliferation by
reactivating c-Myc (24) or activating Ras (25). Human papillomavirus (HPV) targets TGFB signaling
components to allow squamous epithelial cells to proliferate, which increases infection. HPV protein E5
decreases TGFp signaling (26), E6 renders cells resistant to TGFB-mediated growth control by interacting
with and degrading the TIP-2/GIPC (27), and E7 interacts with SMAD2, 3, and 4 to significantly impede
SMAD4-mediated transcriptional activity (28).

Overexpression of TGFB in preclinical models confers resistance to a range of chemotherapies
that was only evident in vivo and was reversed by administering decorin, a protein that naturally blocks
TGFpB (29). Comparison of phosphorylated SMAD?2 in paired pre- and post-chemotherapy cervical tumor
samples mirrored the effect of TGFB treatment to stimulate SMAD2/3 phosphorylation, cell migration,
and markers related to epithelial-mesenchymal transition and cancer stem cells (30). These effects could
all be abrogated by TGFpB inhibitors, confirming that chemotherapy stimulates TGFB1 expression and
activation. Multiple mechanisms, such as angiogenesis, hypoxia, and metabolism, are implicated in this
phenomenon. Notably, cancer patients have significantly higher than normal levels of circulating TGFB
that may reflect tumor burden or response to therapy (31,32).

This dichotomy is evident when TCGA is interrogated with a chronic TGF gene signature (33).
Because the signature is composed of TGFB gene targets (in contrast to pathway members), only cancers
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in which TGFP activity is high and cells are competent to transduce signal will score high. The robust
expression of this signature across cancer types shows that TGFp activity and signaling competency are
indeed high in the majority of cancers (34). However, there is a subset of cancers, represented in each
tissue, in which expression of target genes is very low, either because the ligand abundance is low or cells
are incompetent for signaling. This is an important distinction because the use of TGF inhibitors in the
context of loss of signaling versus low ligand abundance should have different consequences, which has
implications for patient stratification (see below).

TGFB and Genotoxic Therapy Resistance

TGFB plays a major role in DNA damage response (DDR), as first demonstrated in 1996 when Glick
et al. used a stringent genome amplification assay to show that Tgfb1 null murine keratinocytes were
profoundly unstable (35). Consistent with these studies in mouse cells, TGFB inhibition was shown to
impair DDR and increase genomic instability in a non-malignant human MCF-10A cell line (36,37). Some
type of DNA repair deficit is required to generate genetic diversity during carcinogenesis, but compared
to proliferation, the knowledge that TGFB dysregulation provides an avenue to genomic instability is
generally understudied.

However, faulty DNA repair is a hallmark of cancer, and specific repair defects can provide the
basis for response to specific therapies (38), hence the recognition of TGFB’s role in genomic integrity
prompted the question of whether TGFp regulation of DDR is evident in the response to genotoxic cancer
therapies. The translational potential of these findings was shown in a variety of mouse and human cancer
cell lines in which blocking TGFp increased sensitivity to radiation in clonogenic assays and tumor control
(33,39-42). TGFB blockade compromises ataxia telangiectasia-mutated (ATM) kinase activity, which is
necessary for DNA repair by homologous recombination (HR) and non-homologous end-joining (NHEJ).
TGFPB suppresses ATM kinase by inhibiting miR-182, which degrades FOX03 (33); FOXO3 promotes ATM
autophosphorylation and kinase activity (43). TGFB regulation of miR-182 positively regulates BRCA1,
another key player in HR (33,44). TGFp is also implicated in nucleotide excision repair (45) and is coupled
to mismatch repair in colorectal cancer (46). Cancer cells in which TGFB signaling is partially maintained
have more effective DNA repair, and hence a mechanism of therapy resistance, whereas cancer cells that
are TGFB-incompetent because of mutations or downregulation of a key component have exploitable DDR
vulnerabilities.

TGFB is directly implicated in DNA damage response following exposure to ionizing radiation,
which activates TGFB (47,48). TGFp inhibition in preclinical glioblastoma (GBM) models improves tumor
response to standard of care chemoradiation (41,48-50). Huber and colleagues reported that a small
molecule inhibitor of TGFB receptor kinase improved control of preclinical GBM tumors to combination
treatment with radiation and the oral alkylating agent temozolomide (49,50). Interestingly, glioma-
initiating cells produce more TGFB, which confers relative resistance by potentiating an effective
molecular DNA damage response and increasing cancer stem cell self-renewal. Blocking TGFB increased
glioma-initiating cells’ sensitivity to radiation nearly 3-fold (41,50).

HPV-positive head and neck squamous cell carcinoma (HNSCC)is remarkably responsive to
cisplatin and radiotherapy compared to HPV-negative HNSCC (51). Although this difference has been
attributed to RB and p53, HPV-positive HNSCC primary tumors, patient-derived xenografts, and cell lines
are unable to phosphorylate SMAD2/3 in response to TGFp. In line with TGFB control of BRCA1 levels and
ATM kinase activity, HPV-positive HNSCC exhibits decreased HR and NHEJ in response to DNA damage.
Blocking TGF signaling in HPV-negative cells phenocopies the DDR deficiencies of HPV-positive HNSCC
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cells, which increases sensitivity to cisplatin, poly(ADP-ribose)polymerase (PARP) inhibition, and radiation
(33,34).

Cancer cells in which HR or NHEJ is defective use a backup mechanism described as alternative
end-joining (alt-EJ) (52). Alt-EJ is highly error-prone because it relies on microhomologies at processed
ends, which leads to deletions and insertions (52,53). Cancer cells using alt-EJ are more sensitive to
genotoxic chemotherapy or radiotherapy (54,55). TGFpB inhibition decreases HR and NHEJ and increases
repair by alt-EJ by suppressing the expression of POLQ, LIG1, and PARP1, which are required for alt-EJ (34).
Hence, TGFB not only promotes DNA repair but actively inhibits error-prone alt-EJ (Figure 2). This
observation suggests that cancers that maintain this TGFB-directed biology would be less responsive to
DNA-damaging therapies.

This idea was tested using transcriptomic analysis of the chronic TGFp target signatures described
above and a gene signature curated from genes identified in a functional alt-EJ screen (54). In keeping
with their functional relationship, TGFB and alt-EJ signatures are significantly correlated with their
respective biological readouts, SMAD2/3 phosphorylation and unrepaired DNA damage, and both
signatures and readouts are anticorrelated (56). These signatures are significantly anticorrelated across
almost all solid cancers (34). The highly significant signature anticorrelation among cancer cell line
transcriptomes indicates that the relationship is cell intrinsic. Given that cell lines are grown in TGFB-rich
serum, thereby removing abundance as a signal-limiting factor, the anticorrelation of low TGFp target
expression and high alt-EJ genes indicates loss of TGFp signaling competency.

Consistent with functional alt-EJ, cancers in which low expression of the TGFB signature is
anticorrelated with high expression of alt-EJ genes have more mutations, more genome alterations, and
an indel mutational signature pathognomonic of microhomology-mediated repair (34). Use of alt-EJ is
predicted to increase sensitivity to genotoxic agents. Consistently, patients with cancers in which
transcriptomic evidence of low TGFp signaling is anticorrelated with high alt-EJ expression, regardless of
tumor type, fare better in response to DNA damaging therapy than those in which TGFf signaling is high.
As evident when TGF signaling is truncated in HPV-positive HNSCC, patients in which TGFp signaling is
defective experience significantly better overall survival in response to chemotherapy and/or
radiotherapy compared to those who are TGF signaling-competent.

In addition to the SMAD4 and TGFBRII mutations, TGFB signaling may be abrogated by other
means. For example, MED12, a component of the mediator transcription regulation complex, negatively
regulates TGFB receptor Il through physical interaction, and its loss confers chemoresistance in BRCA-
mutant breast cancer (57). Resistance to cisplatin and PARP inhibitors is associated with compromised HR
and replication fork stability in MED12-deficient cells (58). Alternatively, chemotherapy-induced TGFB
activity in bone marrow is a mechanism of PARP resistance by facilitating DNA repair activity in leukemia
cells (59). Hence, in cancers that maintain signaling, increasing TGFf activity compels effective DNA repair
by positively regulating HR and NHEJ and suppressing alt-EJ, which makes them resistant to genotoxic
therapy. But cancers in which this control by TGFB is lost are susceptible to chemoradiation and vulnerable
to drugs that capitalize on defective DDR, which includes PARP inhibitors. Thus, compromised TGFB
signaling creates specific DNA damage deficits that can be exploited in combination with the current
repertoire of genotoxic therapy.

CLINICAL IMPLICATIONS
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Many TGFp inhibitors have been developed for clinical investigation (9,14,60). Multiple means of
inhibition have been or are currently in trials, including small molecule inhibitors of type 1 receptor kinase,
neutralizing antibodies, TGFp traps, and antibodies that block integrin-mediated activation or stabilize LAP
to prevent activation (FIGURE 1). Use of these agents as monotherapies is limited but combining them
with other treatment modalities is of considerable interest. Given the durable response to immune-
targeted monotherapy observed in 25-40% of patients, considerable effort has focused on identifying
who will likely respond and why. TGFp signaling provides multifaceted mechanisms of immune evasion
via the generation of immunosuppressive stromal fibroblasts (61,62), myeloid cells (63), T regulatory cells
(23), and mediating cell interactions (64,65). Blocking these immunosuppressive mechanisms is a major
goal of TGF inhibition (7,8,66). A signature of TGFp treated fibroblasts is also associated with resistance
to immunotherapy; it is thought to represent a mechanism restricting T cell infiltration (61). Consistent
with detriment, an unbiased analysis of breast cancers of patient treated with a combination of
chemotherapy and immunotherapy found elevation of the TGFB pathway in the tumors of patients who
had residual disease compared to breast cancer patients who experience a pathological complete
response (67).

Clinical Trials

Data from phase 1 clinical trials of the first small molecule inhibitor of TGFp signaling (68) and the
first neutralizing antibody (69) were reported in 2014. Results from completed trials have been published
for fresolimumab, PF-03446962 (anti-ALK1 receptor monoclonal), bintrafusp alfa (a bispecific anti-PD-L1
and TGFp trap), and galunisertib, a small molecule receptor kinase inhibitor (60). While these clinical
studies are early-phase monotherapy trials with limited numbers of patients in different disease settings
and different lines of prior therapy, all were well-tolerated and showed some benefit in some indications
(Figure 3).

Fifteen trials have been completed with galunisertib, a small molecule, in various disease settings,
including advanced metastatic disease, GBM, and pancreatic cancer (70). Both pancreatic cancer and GBM
produce abundant TGFB that drives a tumor-permissive microenvironment. As discussed above,
preclinical GBM treated with radiation and temozolomide showed improved response (41,48-50). In a
randomized phase 2 clinical trial for which overall survival (OS) was the primary endpoint, patients with
unresectable pancreatic cancer treated with galunisertib and gemcitabine had improved OS compared to
gemcitabine alone (71). However, patients with recurrent GBM (NCT01582269) treated with galunisertib
and lomustine failed to demonstrate improved OS relative to placebo and lomustine (72). A next-
generation compound, LY3200882, was well-tolerated as monotherapy and in combination with
gemcitabine and nab-paclitaxel in treatment-naive patients with advanced pancreatic cancer. Six of 12
patients achieved a partial response and 3 demonstrated stable disease, for an overall 75% disease-
control rate with the combination of LY3200882, gemcitabine, and nab-paclitaxel (73). Studies of this drug
were discontinued in 2020 by the manufacturer.

Of 7 studies testing fresolimumab (GC10008), the humanized form of a murine monoclonal that
neutralizes all 3 TGFB isoforms, only 2 have reported results. Trials were terminated before most patients
were enrolled when the manufacturer discontinued further development of the antibody for oncology
indications. The immunoregulatory effects of fresolimumab in 13 patients with relapsed malignant pleural
mesothelioma (NCT01112293) suggested that patients who produced antitumor antibodies benefited, as
evidenced by a doubling of the median OS (15 vs 7.5 months, P < 0.03) compared with those who did not
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(74). A feasibility study of the combination of focal irradiation and fresolimumab in 23 patients with
metastatic breast cancer randomized to receive high- or low-dose fresolimumab reported that median OS
doubled (16 vs 7.8 months, P = 0.039) in those treated with a high dose (10 mg/kg) compared to those
receiving a low dose (1 mg/kg). The high-dose combination also elicited more circulating CD8 central
memory T cells (75).

Bintrafusp alfa, a novel bifunctional agent consisting of a PD-L1 antibody and TGFp trap, was
developed to target the nonredundant immune-related actions of the TGFB pathway and PD-L1 signaling,
supported by evidence that TGFB may reduce the efficacy of, or even lead to resistance to, anti-PD-L1
therapies (76). Phase 1 second-line bintrafusp alfa in patients with non-small cell lung cancer (NSCLC)
previously treated with platinum-based agents showed promising efficacy and manageable tolerability
(77). A phase 3 study in which bintrafusp alfa was directly compared to anti-PD-1 pembrolizumab showed
the therapy was unlikely to further improve progression-free survival in the first-line setting of stage IV
NSCLC with high PD-L1 expression (NCT03631706). Another study determined that bintrafusp alfa was
associated with an objective response rate of just 10% in first-line treatment for patients with locally
advanced or metastatic biliary tract cancer in combination with cisplatin and gemcitabine (NCT03833661;
NCT04066491). The confirmed objective response rate in 59 patients with advanced, pretreated,
checkpoint inhibitor-naive, HPV-associated cancers in phase 1 (NCT02517398) and phase 2 trials
(NCT03427411), was 30.5%; 5 patients had complete responses and 8 had stable disease (78). Trials are
underway for several other indications, including thymoma and metastatic breast cancer.

Recognition that TGF is a key moderator of both DNA repair and immunosuppression provides a
rationale for combinations with genotoxic therapy. Radiotherapy can achieve both control and cure
through the use of technically advanced modalities that specifically generate DNA damage in the tumor.
A phase 1 trial combining fresolimumab and radiation in metastatic breast cancer was designed to detect
out-of-field (abscopal) radiation effects and immune monitoring indicative of antitumor immunity (71).
One to 3 lesions of highly distributed disease were irradiated with 3 fractions of 8 Gy in patients receiving
fresolimumab (NCT01401062). Although evidence of abscopal responses was rare (1/27 patients),
patients receiving 10 mg/kg fresolimumab had a significantly lower risk of death compared with 1 mg/kg
(HR 2.73 with 95% Cl: 1.02, 7.30; P = 0.039). The median survival time doubled in women treated with a
high dose of fresolimumab who also had a favorable systemic immune response. Likewise, results of an
investigator-initiated, single-arm, phase 2 study of galunisertib and radiotherapy in previously untreated,
locally advanced rectal adenocarcinoma are encouraging (75). Patient objective response was evaluated
5 to 9 weeks after oral galunisertib before and during fluorouracil-based or oral capecitabine and
fractionated radiotherapy (NCT02688712). The regimen was well-tolerated and resulted in a 32%
complete response rate compared to historical response rates ranging from 8% to 13% for
chemoradiotherapy alone. Consistent with an on-target effect, phospho-SMAD2 decreased in tumors
after treatment with galunisertib.

FUTURE DIRECTIONS

These completed trials support the safety of TGFB inhibition over the course of a few months;
moreover, a few responsive patients were safely treated for years. Yet to date, no TGFB-targeting agents
have FDA approval for cancer treatment. Given the plethora of detrimental biological mechanisms by
which TGFP promotes cancer, the conundrum is why these trials have not achieved a clear signal of
benefit. The reasons for this are complex. Target access, patient selection, drug efficacy, complex and
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dynamic biology, and compensatory pathways could all contribute, as has been discussed
elsewhere(14,60).

The growing body of evidence that TGFB orchestrates a response to DNA damage opens a new
perspective on what might be achieved by TGFp inhibition. Faulty DDR is a hallmark of cancer, in which
the specific deficit is often the basis for response to a specific type of therapy (38). Therapeutic control is
thus determined by the degree and type of DNA damage inflicted and the cellular capacity to repair that
damage. As is evident from the concerted effort to develop specific inhibitors of DNA repair (79),
compromised DNA repair is a high-value target. The active enforcement of DNA repair by TGFp is
concordant with its role as a tumor suppressor, but control of the DNA damage response also underlies
the riddle of why tumors maintain TGFB signaling even though it is an extremely potent inhibitor of
proliferation. Cancers that maintain signaling are resistant to genotoxic therapy, as is evident in studies
across a range of preclinical cancer models that show that TGFB inhibition increases response to
radiotherapy (41,42,48-50,80,81). Hence, using TGFp inhibitors in conjunction with chemoradiation (82)
could potentially move TGFp inhibition to the frontline of cancer therapy.

Some clinical trials in immuno-oncology have sought to exploit DNA damage as a means to
stimulate an immune response (83). One thesis is that radiation would act as an “in situ vaccination” in
which immunogenic antigen release upon cell death would stimulate antitumor immunity (84). Preclinical
data suggest that radiation potentiates pre-existing immunity (85). However, therapy-induced TGFB
activity and hence potent immunosuppression could thwart potential synergy between radiotherapy and
immunotherapy.

TGFB regulation of DNA repair competency, together with its role in immunosuppression,
suggests that compromised DDR upon TGFp signaling inhibition in combination with genotoxic therapies,
particularly radiotherapy, would lead to increased cell killing and thus increased antigen release that could
promote an immune response. The association of response to immunotherapy in colon cancer patients
whose cancers exhibit mismatch repair or high microsatellite instability (86) promoted a basket trial based
on selection of these phenotypes (87). By analogy, one might anticipate that the association of the low
TGFB and high alt-EJ signature with greater genome alterations (88) might also associate with response
to immunotherapy. Indeed, the combination of radiation and TGFp inhibition synergizes with checkpoint
inhibitors (81,89). Bintrafusp alfa, the bispecific anti-PD-L1 and TGFp trap, also effectively synergized with
radiotherapy in multiple therapy-resistant murine tumor models with poor immune infiltration and
protection from radiation lung toxicity (90). Hence, the rationale for dual targeting of TGFB and immune
checkpoint inhibitors, either in combination or with new bifunctional agents, is compelling.

The challenge for effective deployment of any of these agents is to determine the dominant mechanism
for which to select appropriate indications among diverse patient populations based on biomarkers to
stratify and monitor patients. TGFP gene expression signatures that reveal its biological effects in the
stroma (61) or pathway components (67) or signaling competency (34,56) are associated with response
to cancer therapies, which offers a means to select those patients whose cancers are modulated by TGF.
Benefit will be realized when the rationale for the regimen, patient population and biomarker are aligned.
The most compelling example of which is the high rate of pathological complete response of colorectal
cancer patients classified as deficient mismatch repair to immune checkpoint inhibitors (91). Aiming for
this level of precision is necessary to realize the unequivocal rationale for TGFB inhibition in cancer.
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FIGURE LEGENDS

Figure 1. Mechanics and targets of TGFp in cancer.

Schematic of TGFp inhibitors and potential biological target mechanisms. 1) Activation can be blocked
with antibodies to LAP or integrins. 2) TGFp ligand is captured by neutralizing antibodies or traps. 3) Type
| receptor kinase inhibition by small molecules. Each of these agents that impede TGFp activity in a tumor
might be deployed to abrogate the tumor-permissive stroma, escape from immunity, malignant
phenotypes associated with epithelial-mesenchymal transition, or impede DNA repair. TBR: TGFf
receptor; EMT: epithelial-mesenchymal transition
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Figure 2. Schematic of TGFB’s impact on DDR and consequences of inhibition.
Left: TGFB promotes HR and NHEJ DNA damage repair by regulating BRCA1 and ATM via miR-182 and
inhibiting (faded) error-prone alt-EJ, which makes cells resistant to cytotoxic therapy. Right: Cells that are
TGFB-unresponsive or in which TGFp signaling is inhibited are deficient in HR and NHEJ and resort to alt-
EJ, which increases sensitivity to DNA damage and response to genotoxic chemoradiation.
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Figure 3. Overall response rate of selected TGFB-targeting agents in clinical trials.
Summary of overall response rate (ORR) in clinical trials using various agents that block TGFp signaling as

monotherapies in the indicated disease settings (69,77,78,92-108).
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