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Abstract

Humans have accumulated a wealth of knowledge over the
course of many generations, implementing a kind of “cultural
ratchet”. Past work has used models and experiments in the
iterated learning paradigm to understand how knowledge is ac-
quired and changed over generations. However, this work has
assumed that learners receive extremely rich testimony from
their teacher: the teacher’s entire posterior distribution over
possible states of the world. We relax this assumption and
show that much sparser testimony may still be sufficient for
learners to improve over time, although with limits on the con-
cepts that can be learned. We experimentally demonstrate this
result by running an iterated learning experiment based on a
classic category learning task.

Introduction
The sciences are impressive; humanity can be proud. How-
ever the work of science can hardly be conceived of, let
alone realized, in a single generation. Data needs to accrue
over time to shine light on different theories; with new in-
formation, the landscape of theories changes, making some
plausible while rendering others unthinkable. In addition to
science, humanity has accumulated a vast body of practical
knowledge and technology which has permitted our adapta-
tion to nearly every environment on Earth (Boyd & Richer-
son, 1988). Our species is distinguished by this accumulation
of knowledge, but our understanding of the process underly-
ing this “cultural ratchet” (Tomasello, 1994, 1999) is in its
early stages.

One aspect of the cultural ratchet’s operation that may have
significant consequences for cultural evolution is the amount
and kind of information that is passed between generations.
Beppu and Griffiths (2009) investigated this aspect of the cul-
tural ratchet in the context of an iterated function learning
task. When participants in this task provided testimony to fu-
ture participants which consisted only of demonstrated data
(assumed to be undifferentiated from data observed “in the
wild”), groups performed no better than single learners who
received only data from the world — no ratcheting effect oc-
curred. However, when participants provided their entire the-
ory about how the world works — in Bayesian learning terms,
their complete posterior beliefs — then the groups eventually
learned the correct function.

We know that when copious and rich information is passed
from generation to generation, the cultural ratchet works
flawlessly; given a steady stream of data from the world, sci-
ence marches forward. We also know that under conditions of

much poorer information passing, the cultural ratchet “slips”;
a constant stream of data does not guarantee progress. Be-
tween these two extremes are a range of possibilities, which
may lie closer to actual human information passing than ei-
ther extreme. What forms of testimony passing are needed
for the cultural ratchet to catch more often than slip? We take
a first step toward addressing this question in this paper.

We construct a simple model of iterated learning with
“sparse” testimony and consider three forms of evaluating
social testimony. We apply this model to a category learn-
ing task and find that limited social testimony may lead to
iterative improvements across generations; however we also
find that these improvements may not allow learners to find
the correct hypothesis. We find that in hard category learning
tasks, with limited personal data, learners may not perfectly
learn the category, although they perform better than the ini-
tial learners in the chain. These predictions are confirmed
by an iterated learning experiment using a similar category
learning task. In the experiment, we find that participant ac-
curacy improved across generations, however in most of the
conditions the amount of improvement is limited depending
on the difficulty of the task and the amount of private data re-
ceived. These results suggest that while passing limited testi-
mony can still be sufficient to improve the accuracy of groups
compared to receiving no testimony, it may not be enough to
learn particularly challenging tasks with limited data.

Iterated Learning and Cultural Evolution
Iterated learning is a widely used computational and exper-
imental paradigm for understanding how inductive biases
might shape linguistic preferences over the course of multiple
generations and influence how languages develop and change
(Kirby, 2000, 2001; Perfors & Navarro, 2011). It has since
been generalized beyond this setting. Griffiths and Kalish
(2007) showed that if learners receive only social testimony
then the long term distribution of beliefs of the population
will be the same as the prior beliefs of each learner.

Much of human learning does not take place purely on
the basis of socially transmitted information. Human learn-
ers also receive data directly from the world: be they scien-
tists measuring the behavior of particles in a laboratory or
hunter-gatherers testing new tools in an unfamiliar environ-
ment. When learners receive outside data as well as testi-
mony, the convergence to the prior shown by Griffiths and
Kalish does not hold, and learners’ long-term behavior de-
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Figure 1: A graphical diagram of iterated learning with external data. Learners receive testimony from the previous learner and private data
from the world which they use to evaluate hypotheses and produce testimony.

pends crucially on the type of testimony being passed. Beppu
and Griffiths (2009) were the first to explore what happens
when an additional source of knowledge was added alongside
testimony. They found that when learners were presented so-
cial testimony in the form of teacher-generated data that was
undifferentiated from environment-generated data, learners’
actions at the end of the chain were no different than a learner
who just received environmental data. However, they also
found that when given the previous learner’s entire set of be-
liefs, learners far down the iterated learning chain would ac-
curately learn the true state of the world, no matter how little
private data was given at each step of the way.

Actual testimony likely falls between these two extremes.
Human testimony is richer than just providing extra, undif-
ferentiated examples. Even in the case when learners provide
examples, the examples are often crafted to teach the learner
about a more general phenomenon, and are interpreted by the
learner in a different way than non-socially produced exam-
ples (Csibra & Gergely, 2009). Humans also have the abil-
ity to directly transmit abstract concepts through writing and
speech. These abstract concepts are likely richer than exam-
ples and may provide direct support for certain theories about
how the world works. Yet a teacher almost certainly does not
tell the learner everything they know about the world, or even
a single subject.

When given social testimony to evaluate, learners face the
task of integrating this testimony with concrete data from
their own experiences. This is a probabilistic inference prob-
lem that has not previously been addressed in the context of
iterated learning. Given that passing a full posterior may be
either costly or inefficient, it is important to understand how
knowledge can accumulate under limited information trans-
mission. To do this, we analyze a model of iterated learning
from testimony.

Modeling the Effects of Testimony
Past work on iterated learning has focused on understanding
the stationary distribution of the beliefs of learners after a
large number of generations. In order to understanding how
knowledge can accumulate under the condition of limited so-
cial testimony, we analyze learners who use Bayes’ rule to

evaluate hypotheses, h, about the world given private data, d,
and testimony t,

p(h|d, t) ∝ p(d, t|h)p(h). (1)

Formal models of iterated learning calculate the probability
that a learner at generation i adopts a belief, hi after hearing
testimony from a learner at time i− 1 with belief hi−1. This
can be expressed as the conditional probability p(hi|hi−1),
and can often be found by marginalizing over the testimony
and the data the learner receives,

p(hi|hi−1) = ∑
d,t

p(d|hi−1)p(t|hi−1)
p(d, t|hi)p(hi)

p(d, t)
. (2)

Beppu and Griffiths (2009) analyzed this model for two
different types of testimony. They first looked at a data pass-
ing condition, where teachers selected a hypothesis from their
posterior belief and then generated data consistent with that
hypothesis. The learners receive a mix of data generated by
their teachers and data generated from the world. Beppu and
Griffiths found that at the end of the chain, the performance of
individual learners was no different from the performance of
learner who just received data from the world; social learning
led to no long-term benefit.

Conversely Beppu and Griffiths analyzed a posterior pass-
ing condition, where teachers passed their entire posterior be-
lief about the system. In this model, learners use their teach-
ers’ posterior belief to form their own prior belief, which is
then refined using the learner’s private data. This analysis
showed that posterior-passing was equivalent to each teacher
passing the accumulation of all of the private data witnessed
previously in the chain to each new learner. A basic result in
Bayesian learning gives that with increasing amounts of data,
the posterior likelihood of the correct hypothesis will tend to
one; social learning will lead to perfect accuracy for learners
far down the chain.

These two conditions provide an upper and lower bound on
the richness of testimony that can be passed between learn-
ers. However when learners pass testimony that is neither
data generated from a teacher’s posterior belief (undifferenti-
ated from data from the world), nor is a full accounting of the
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Figure 2: A visualization of three of the six category types from
Shepard et al. (1961). Black dots indicate category members, the
axes represents values of three binary features.

teacher’s posterior belief, the outcome of iterated learning is
unknown. In many cases it may be intractable to formal anal-
ysis. To understand this problem, we analyze the specific case
where learners are given a category learning task and pass a
“sparse” form of testimony.

Bayesian Category Learning
In a traditional category learning task, participants learn how
to use the features of a set objects to place the objects into
categories. In our task learners must separate eight objects
which vary along three binary features into two categories
of four objects each. Not all categories are equally easy to
learn. Shepard, Hovland, and Jenkins (1961) classified the
possible categorizations into six types and found that the the
difficulty in learning these categories were in the following
order: Type I < Type II < (Type III, Type IV, Type V) < Type
VI. Figure 2 gives a visualization of Types I, II, and VI. The
remaining categories, Types III-V, can be described as a Type
1 category with a single exception. The difficulty of learning
each category type has been replicated a number of times (e.g.
Nosofsky, Gluck, Palmeri, McKinley, & Glauthier, 1994).

Category learning is an inference problem, where learners
are given private data, d, in the form of the category mem-
bership of n objects, and are asked to infer the correct catego-
rization of the remaining 8− n objects. In the iterated learn-
ing case, learners may receive social testimony t to help guide
their decision. We use Bayes’ rule to compute the probability
of a given category c,

p(c|d, t) ∝ p(d|c)p(t|c)p(c). (3)

We compute this probability in three parts: the likelihood of
the private data, the likelihood of the social testimony and the
prior probability of each category. We consider these three
parts in turn.

Private Data
We assume learners calculate the likelihood of the private
data, d, that they received by assuming that each example
was drawn randomly from examples of the category, c. If the
categorization of any object is inconsistent with the category
c, we set p(d|c) = 0. Otherwise, we set p(d|c) = 1/

(8
n

)
which

is the chance of drawing a specific set of n objects from a set
of 8 objects.

Evaluating Testimony
We analyze three models of evaluating testimony: a posterior
passing model, a testimony generalization model and a no
generalization model.

Posterior Passing In the posterior passing model, we as-
sume that teachers are able to pass their entire posterior be-
liefs about the system on to the next learner in the chain.
Learners then use their teacher’s beliefs to evaluate their own
private data. In this model, we assume that each learner uses
their teacher’s posterior belief, p(c|d′, t ′), as their prior belief,
where d′ and t ′ are the teacher’s observed data and testimony.
We set p(t|c)p(c) ∝ p(c|d′, t ′).

Testimony Generalization In the testimony generalization
model, learners receive testimony from their teacher in the
form of a single, complete categorization of the objects. We
assume that learners use this category to infer the teacher’s
beliefs about similar categorizations. Let ct be the category
given as testimony, and d(c,ct) be the number of objects that
differ between ct and c. We let p(t|c) ∝ qd(c,ct ) where q is
a free parameter between 0 and 1 that governs how much
weight is placed on other hypotheses. High values of q make
similar hypothesis more likely.

No Testimony Generalization In the no testimony gener-
alization learners do not generalize support for a single cate-
gory to similar categories. We set p(t|c) = 1− ε if t supports
the categorization c, and p(t|c) = δ otherwise.

Prior probability of categories
Past work on category learning has discovered that individ-
uals have a non-trivial prior belief on categories, preferring
“simpler” categories over more complex ones (Kemp, 2012).
We assume that a learner’s prior on the six category types are
free parameters with the following order: p(Type I)> p(Type
II) > p(Type III), p(Type VI), p(Type V), p(Type VI). We
fit all model parameters to minimize the mean-squared error
with participant responses from the two example condition of
the experiment presented later in this paper.1 The parame-
ters of the posterior passing, testimony generalization, and no
testimony generalization models were fit separately.

Model Predictions
We estimated learners’ performance on a series of iterated
learning chains with this category learning task. Each chain
represents the average number of errors at each generation,
marginalized over all possible chains. We varied the amount
of private data people received (either two, four, or six ex-
amples), and the category learning type (Type I, Type II, and
Type VI). To make the total number of examples shown in
each chain equal across conditions we ran the two-example
chain for 30 generations, the four-example chain for 15 gen-
erations and the six example chain for 10 generations. We
found that the amount of private information received heavily
impacted the accuracy of learner’s in each chain. Accuracy

1Final parameter values for the posterior passing model were:
p(Type I) = .56, p(Type II) = .15, p(Type III, VI, V, VI) = .07;
testimony generalization: p(Type I) = .56, p(Type II) = .15, p(Type
III, VI, V, VI) = .07, q = .52; no testimony generalization: p(Type
I) = .48, p(Type II) = .17, p(Type III, VI, V, VI) = .09, ε = .2,
δ = .01. For all models, the priors were fit without constraints on
relative ordering.
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Figure 3: Model predictions for the category learning task for three forms of testimony. Model parameters were fit to the experimental data
independently for each form of testimony.

also depended on the type of category being learned. Model
predictions are shown in Figure 3.

The posterior passing results are consistent with previ-
ous work on Bayesian iterated learning (Beppu & Griffiths,
2009), indicating that learners will always be able to learn the
correct category when passing their posterior beliefs about the
world. Interestingly, this is not the case in either the gener-
alization or no-generalization conditions. In these conditions
social learning does improve the performance of the group.
However, the benefit that social learning provides plateaus
after a small number of generations. Our sparse form of testi-
mony passing results in qualitatively novel long-term learning
behavior. When fit to to experimental data, the generalization
and no-generalization models provide similar predictions.

Testing the Model Predictions
To test our model predictions, we performed an iterated learn-
ing experiment with a category learning task. Participants
were shown eight blocks that had to be split into two cate-
gories, “blickets” and “non-blickets”. Participants were pro-
vided with external data by showing them between two to
six of the eight blocks being placed on a “blicket detector”,
which provided (noisy) evidence of whether or not a block
was a blicket. They also received a complete categorization
of all eight blocks from the previous participant, indicating
whether or not the previous participant thought each block
was a blicket. This is equivalent to the type of testimony
passed in both the “testimony generalization” and “no tes-
timony generalization” models, above.

We manipulated the category being learned (Type I, II or

VI), and the number of examples participants are given (either
two, four, or six). To match the total number of examples
shown in each chain, we ran the two example chains for 30
generations, the four example chains for 15 generations, and
the six example chains for 10 generations.

Based on our model, we predict that the average number
of errors will decrease over the first few generations, but will
then plateau, making learners farther down the chain no more
accurate than previous learners.

Methods

Participants A total of 927 participants were
recruited through Amazon Mechanical Turk
(http://www.mturk.com). Participants were compen-
sated $0.50 for their time. They were randomly assigned
to one of nine conditions: learning from Type I, II, and VI
categories, and seeing either 2, 4, or 6 blocks on the machine.
Five chains were run for each condition.

Stimuli and Procedure The experiment was a web-
administered survey. Participants were placed in one of 45
chains (five per condition). Participants received testimony
from the previous person in the chain.

During the experiment, participants were shown eight
blocks and were told that some of them were blickets. The
blocks varied along three binary features: cubes or spheres,
blue or red, and the presence of a black or white diagonal
stripe. Blickets were determined by the condition (Type I, II
or IV; see Figure 2 for a visualization). To control for fea-
ture salience, we randomized how categories mapped on to a
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Figure 4: Results for Experiment 1. (a) Average number of errors in each generation across chains. (b) Five generation wide averages of the
number of errors in each generation. Error bars represent one standard error.

specific set of features (see Love & Markman, 2003).
Participants were given testimony from the previous par-

ticipant, and were told the previous participant saw two, four,
or six of the blocks tested on the machine. The testimony
was a categorization of the eight blocks into blickets or non-
blickets. The first person in each chain received no testimony.
Participants were then shown either two, four, or six of the
blocks placed on a machine. Each block was placed on the
machine five times. The machine lit up 90% of the time if the
block was a blicket and 10% of the time otherwise.

At the end of the experiment, participants were told to
choose which blocks they thought were blickets. This infor-
mation was passed along to the next participant in the chain.
At the end of the survey, we asked participants to give a writ-
ten description of what made the blocks blickets. These an-
swers were not passed on to the next participant and were not
analyzed by the researchers.

Participants were excluded from the survey (and their re-
sults not passed on to future participants) if they either failed
an attention check (how many green blocks did you see? Cor-
rect answer: zero) or inaccurately categorized three or more
example blocks. A total of 93 participants failed an attention
check and four were dropped for inaccuracy.

Results
We analyze changes in participant accuracy across genera-
tions, average participant accuracy compared to chance lev-
els, and participant accuracy across learning tasks.

Iterated Improvement The model predicted that learners
in all conditions should improve after the first generation, but
may not substantially improve after that. To analyze this, we
split up each chain into five-generation long blocks and ana-
lyzed the difference in averages between blocks.

We found that when learning from two or four examples
the first social learning block performed better than the initial

generation of learners. The difference between the first gener-
ation of learners and the next five generations of learners was
significant in all conditions when learners received two data
points (Type 1: t(28) = 2.45, p < 0.01; Type II: t(28) = 1.73,
p < 0.51; Type VI: t(28) = 1.90, p < .05).2 When learners
received four data points, it seems as if there was some small
iterated improvement in the first five generations. Learners in
the first five generations did not significantly perform better
than learners in the first generation (Type II: t(28) = 1.23,
p = 0.11; Type VI: t(28) = 1.04, p = 0.15), but learners
in the next five generations performed significantly better
than learners in both the first generation(Type II: t(28) = 2.5,
p < 0.01; Type VI: t(28) = 1.78, p < 0.05), and only signif-
icantly better than the first five generation in the Type II con-
dition (t(48) = 3.58, p < 0.001) and only marginally better
than the Type VI condition (t(48) = 1.47, p = 0.07). We also
saw that when learning from six examples, social testimony
did not seem to greatly increase participant accuracy, instead
they had enough data to perform well on the task without us-
ing social information.

Average Participant Accuracy The benefit of social in-
formation can also be examined by examining how well
participants performed on unobserved blocks. We found
that participants correctly categorized the unobserved blocks
above chance levels on Type I categories (two examples:
t(149)=−12.61, p< 0.001; four examples: t(149)=−12.2,
p < 0.001; six examples: t(149) = −11.9, p < 0.001), and
Type II categories (two examples: t(149) = −2.5, p < 0.01;
four examples: t(149) = −3.6, p < 0.001; six examples:
t(149) = −4.8, p < 0.001) and generally above chance on
Type VI categories, except for learning from two examples
(two examples: t(149) = −0.12, p = 0.45; four examples:
t(149) = −1.69, p < 0.05; six examples: t(149) = −2.9,

2Unless otherwise noted, statistical tests were one tailed t-tests
based on the model predictions.
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p < 0.01). This result suggests that even though continual
improvement across chains may not occur, participants per-
form better than a single learner would on their own.

Category Learning Difficulty We also reconstruct the tra-
ditional ordering on category learning difficulty in each con-
dition. We found that participants generally performed better
on Type I categories than Type II categories (two examples:
t(298) = 7.44, p < .001; four examples: t(298) = 4.73, p <
.001; six examples: t(298) = 2.28, p< .05), and Type II cate-
gories than Type VI categories (two examples: t(298) = 1.72,
p < .05; four examples: t(298) = 1.29, p = .09; six exam-
ples: t(298) = 1.2, p < .11). However the difference between
Type II and Type VI categories was smaller than previously
thought. This may be due to the way we measure participant
accuracy. Unlike previous work which tends to track whether
or not the participant learned the entire category correctly, we
track the number of errors in their category predictions. This
measurement provides substantially better scores for learning
Type III, IV, and V categories which all can be closely ap-
proximated by a Type I category. It provides slightly better
scores for Type II and VI categories.

Discussion
We examined how passing limited testimony can change how
much knowledge accumulates in a group of learners. We pre-
sented three computational models: one looks at a maximum
amount of information that can be passed, the entire poste-
rior belief, and the other two examine learning from testi-
mony that supports a single hypothesis. In all three models
learners’ accuracy will increase over time. However, unlike
the posterior passing model, when learners learn from limited
testimony the improvement in accuracy will plateau; after a
few generations no significant improvement in accuracy will
occur. The models predict that the difficulty of the task and
the number of examples individuals are shown will change
where this plateau is, and how how long it takes to reach it.

These predictions were confirmed by a category learning
experiment. In the experiment learners who received social
information performed better than learners at the beginning
of each chain, who did not. We also found slight evidence for
iterative improvement. When learners learned a Type II or
Type VI category and received four examples, learners in the
first five generations were more accurate than the initial set
of learners, and that learners in the next five generations were
even more accurate, but future learners were no more accu-
rate than these learners. This pattern was mirrored (although
not significantly) when learners were given six examples. The
experiment confirms the model predictions: individuals who
received sparse testimony were more accurate than those who
receive no testimony, however in all cases the accuracy of the
group plateaued; the cultural ratchet reached a point beyond
which it could not “catch”. Category difficulty and the con-
centration of data influence where and when the ratchet fails.

Our work speaks to the conditions needed for a culture to
accumulate knowledge over time. If each individual in a cul-

ture sees only a limited piece of the world, difficult-to-learn
ideas may never fully be learned. Our model demonstrates
that a culture is then not just a shared repository of data. The
information that individuals pass alters how well knowledge
is accrued. These results shine light on the process by which
information is gained across generations. People often times
only pass along small amounts of abstract information to oth-
ers. We demonstrate that even with this limited testimony,
cultural knowledge can still accumulate. However we only
examine a single task with a single form of testimony. This
work can be extended by examining a broader range of learn-
ing tasks and richer forms of testimony passing. This will
allow us to shine light on a central question: how exactly
has humanity gathered such a large amount of cultural knowl-
edge, and how can we gain even more?
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