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SARS-CoV-2 variants evolve convergent strategies to remodel 
the host response

A full list of authors and affiliations appears at the end of the article.

SUMMARY

SARS-CoV-2 variants of concern (VOCs) emerged during the COVID-19 pandemic. Here, we 

used unbiased systems approaches to study the host selective forces driving VOC evolution. We 

discovered VOCs evolved convergent strategies to remodel the host by modulating viral RNA 

and protein levels, altering viral and host protein phosphorylation, and rewiring virus-host protein-

protein interactions. Integrative computational analyses revealed that although Alpha, Beta, 

Gamma, and Delta ultimately converged to suppress interferon-stimulated genes (ISGs), Omicron 

BA.1 did not. ISG suppression correlated with expression of viral innate immune antagonist 

proteins, including Orf6, N and Orf9b, which we mapped to specific mutations. Later Omicron 

subvariants BA.4 and BA.5 more potently suppressed innate immunity than early subvariant 

BA.1, which correlated with Orf6 levels, though muted in BA.4 by a mutation that disrupts the 

Orf6-nuclear pore interaction. Our findings suggest SARS-CoV-2 convergent evolution overcame 

human adaptive and innate immune barriers, laying the groundwork to tackle future pandemics.

IN BRIEF

Systems proteomic and genomic analysis reveals that SARS-CoV-2 variants of concern respond 

to the selective forces of the host immune response by modulating viral protein expression, 

phosphorylation, and virus-host protein-protein interactions. Variants have converged on similar 

strategies for innate and adaptive immune evasion, suggesting implications for predicting viral 

transmission and for tackling future viral pandemics.
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Graphical Abstract

INTRODUCTION

The emergence and spread of coronavirus SARS-CoV-2, the causative agent of the 

COVID-19 pandemic, continues to impact public health and global economies. SARS-

CoV-2 variants of concern (VOCs) emerged in September 2020 (Fig. 1A). Phylogenetic 

studies indicate that the VOCs evolved independently from early-lineage wave 1 (W1) 

viruses, with VOCs Alpha, Delta, and Omicron BA.1 spreading globally whereas Beta 

and Gamma remained geographically restricted. Omicron’s highly mutated Spike protein 

represents the most significant antigenic change to date, escaping adaptive immunity from 

vaccines and prior infections 1–4. Omicron BA.1 and BA.2 were rapidly replaced by 

BA.4 and BA.5, suggesting Omicron was the first VOC to give rise to globally dominant 

subvariants 2,5,6. The emergence and evolution of VOCs were likely driven by selective 

pressures to adapt to a new host (i.e., humans) and escape innate and adaptive immune 

responses, facilitating increased human-to-human transmission.

SARS-CoV-2 Spike mediates cell entry via host receptor ACE2 and is the most-mutated 

VOC protein. However, VOCs have acquired additional non-synonymous mutations in non-

structural, structural, and accessory proteins, including Nsp3, Nsp6, Nsp9, Nsp12, Nsp13, 

nucleocapsid (N), membrane (M), envelope (E), Orf3a, Orf6, Orf7a, Orf7b, Orf8, and Orf9b. 
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Each VOC has 20–29 non-synonymous consensus mutations, while Omicron BA.1 has 62 

non-synonymous consensus mutations, mostly within the Spike protein (Fig. 1B–C, Table 

S1). Each VOC possesses 4–10 non-coding mutations (Fig. 1B). We previously found that 

adaptations outside of Spike affect the host response to infection, evidenced by the Alpha 

variant evolving enhanced innate immune evasion by modulating specific viral protein 

levels 7, likely contributing to enhanced transmission. However, regulation of viral protein 

expression and the impact of mutations outside of Spike across VOCs, including non-coding 

mutations, remains poorly understood.

We propose that the development of prophylactic and therapeutic antivirals depends on 

understanding SARS-CoV-2 evolution and the host responses that variants provoke, which 

could help us confront future variants. Here, we report a comparative proteomic and 

genomic analysis of VOCs to understand how SARS-CoV-2 evolution impacts the host 

molecular landscape. We uncover convergent evolution among VOCs to evade innate 

immune responses and develop human-specific adaptations that likely influence human-to-

human transmission.

RESULTS

Variants remodel the host molecular landscape during infection

To understand the effect of VOC mutations on viral replication and cellular responses, we 

systematically analyzed SARS-CoV-2 variants during infection in human airway epithelial 

cells. We compared the VOCs (Alpha, Beta, Gamma, Delta, and Omicron BA.1) and two 

early-lineage wave 1 (W1) isolates: (i) VIC, isolated in Victoria, Australia and (ii) IC19, 

isolated in Europe, both in early 2020, the latter harboring the Spike D614G mutation. We 

collected VOC-infected Calu-3 cells from two independent infections (experiments 1 and 2) 

harvested at 10 and 24 hours post-infection (hpi) for bulk mRNA sequencing (RNA-seq), 

mass spectrometry abundance proteomics, and phosphoproteomics (Fig. 1D) analysis.

Comparisons require similar numbers of infected cells across the VOCs. To equalize input 

doses across variants, we determined genome levels of viral stocks by quantitative reverse 

transcription PCR (RT-qPCR) instead of using TCID50 or plaque assays because cellular 

tropism is altered by spike mutations in VOCs (Meng et al. 2022; Plante et al. 2021), which 

would confound cellular measurement of viral infectivity. Infections were normalized by 

using 2000 viral RNA copies/cell instead of using TCID50 or plaque assays because cellular 

tropism is altered by spike mutations in VOCs (Meng et al. 2022; Plante et al. 2021), which 

would influence measurements of viral infectivity and confound the analysis. Supporting 

our dosing strategy, we observed equivalent replication kinetics by RT-qPCR detecting viral 

E RNA (Fig. 1E), mRNA sequencing (sum of ssRNA genome reads; Fig. 1F), proteomics 

(sum of non-structural proteins, or Nsps; Fig. 1G), and flow cytometry of fluorescently 

labeled N+ cells (Fig. 1H) for W1 viruses and all VOCs, except for Omicron BA.1, which 

displayed reduced replication (Fig. 1E–H). We also compared viral replication kinetics in 

air-liquid-differentiated primary human airway epithelial (HAE) cells. In HAE’s, replication 

of the VOCs outpaced W1 IC19 consistent with VOC adaptation, providing a replication 

advantage not realized in the Calu-3 model (Fig. S1A–C). This observation illustrates the 

utility of the Calu-3 model in which similar replication permits a detailed genomic and 
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proteomic comparison of host responses. We additionally performed affinity purification-

mass spectrometry (AP-MS) on ectopically overexpressed VOC and W1 proteins to define 

changes in virus-host protein interactions (Fig. 1D).

Across virus and host, our proteomics data captured 58,000–62,000 unique peptides 

(Fig. S1D) mapping to 4800–5100 proteins (Fig. S1E) per sample for abundance, and 

23,000–35,000 unique phosphorylated peptides (Fig. S1F–G) mapping to 3700–4300 

phosphorylated proteins (Fig. S1H), with strong reproducibility across biological replicates 

and experiments (Fig. S1I–J). Most changes were at the RNA (38%) and phosphorylation 

(57%) levels with fewer changes in protein abundance (7%; Fig. 1I). Comparing VOC 

to W1 viruses revealed 16% of changes in virus-host interactions (Fig. 1I). We observed 

a trend of global RNA expression increase and protein decrease at 24 hpi, likely 

representing induction of the inflammatory response to virus at the host RNA level and 

a virus-induced host translational blockade during infection at the protein level 8–10 (Fig. 

1J). Phosphorylation levels were equivalently bi-directional, reflecting the complexity of 

phosphorylation signaling during infection (Fig. 1J).

Systematic comparison of VOCs and W1 viruses revealed three convergent molecular 

strategies used to alter the virus-host molecular landscape, presented in the following 

figures. First, all VOCs had altered viral gene expression during infection. Second, all, 

except Gamma, showed evidence of modulating viral protein phosphorylation, notably on 

the nucleocapsid protein. Third, all contained protein-coding mutations that altered virus-

host protein interactions (Fig. 2A).

VOCs evolved to modulate viral RNA and protein production

To study the functional effects of VOC mutations, we quantified differences in viral 

subgenomic RNA (sgRNA) and protein levels for each virus during replication in Calu-3 

cells, which were normalized to the amount of viral RNA or non-structural proteins, and 

compared to W1 virus VIC (Table S2, see Methods). Large differences in expression of 

sgRNA transcripts and proteins corresponded to structural and accessory genes, which 

are independently expressed by discontinuous transcription (Fig. 2B–C, S2A), but not non-

structural proteins (Nsp) (Fig. 2C), which are expressed from genomic RNA and translated 

as a polyprotein. Each VOC evolved to modulate viral gene expression levels relative to W1 

viruses, with each VOC showing at least a twofold change in expression of at least one viral 

protein (Fig. 2D). Viral RNA and protein expression did not always correlate (Fig. S2B), 

suggesting independent regulation of transcription and protein expression. For example, 

Orf6 expression by Omicron BA.1 showed up-regulated sgRNA but down-regulated protein 

levels, relative to VIC (Fig. 2B–C, S2B), and Orf9b showed increased protein levels for 

Alpha and Delta, but only Alpha had upregulated Orf9b-specific sgRNA levels (Fig. 2E, 

S2B).

We and others previously reported Orf9b expression increases during Alpha infection 
7,11 and hypothesized Orf9b sgRNA and protein expression to be controlled by distinct 

mutations. Orf9b is in an alternative reading frame within N. Two mutations are 

hypothesized to regulate Orf9b expression. First, the triple nucleotide substitution that 

gives rise to N D3L (Fig. 2F) increases complementarity of the genomic transcriptional 
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regulatory sequence (TRS) leader (TRS-L) and the Orf9b TRS body (TRS-B), which should 

increase Orf9b-specific sgRNA expression (Fig. 2G). Second, a single nucleotide deletion 

at position −3 upstream of N changes the N Kozak context and therefore should increase 

Orf9b abundance by increasing leaky ribosomal scanning of the N sgRNA. Alpha contains 

both mutations and upregulates Orf9b sgRNA and protein levels, but Delta contains only the 

−3 deletion and increased Orf9b protein, but not sgRNA, levels (Fig. 2E, S2C). Here, we 

generated a mutant virus with either a N D3L, a −3 A deletion, or both in a W1 background 

(USA-WA1/2020 background, see Methods). mRNAseq and proteomics analyses during 

infection of Calu-3 cells with each virus confirmed that the D3L mutation alters Orf9b 

sgRNA levels while the −3 deletion controls Orf9b protein production, suggesting the latter 

is the principal driver of Orf9b protein expression (Fig. 2H, S2D). Interestingly, Beta and 

Gamma also display upregulated Orf9b protein levels (Fig. 2C), although lower than Alpha 

and Delta, but have neither of the mutations discussed herein (Fig. 2F), indicating that 

additional mechanisms regulate Orf9b expression.

We and others reported expression of a new sgRNA and protein of the Alpha VOC, called 

N* (“N-star”) 7,11, a truncated version of N (i.e., position 210 to the C-terminus of N). 

N* sgRNA and protein were specifically expressed by Alpha, Gamma, and Omicron (Fig. 

S2E), all of which possess the R203K/G204R double substitution in N, leading to a novel 

TRS that should control N* expression (Fig. S2F). To test this, we generated a mutant 

virus with the R203K and G204R mutations (GGG→AAC) in a W1 background. Global 

mRNA sequencing during replication in Calu-3 cells confirmed specific N* expression 

by the R203K/G204R mutant but not the control virus (Fig S2G). N* expression was 

approximately half of that during Alpha infection (Fig. S2H), despite normalization of 

infection levels, suggesting additional mechanisms contribute (e.g., Alpha upregulation of N 

sgRNA may increase N* transcripts).

As the function of N* is still unknown and full-length N is known to play a role in viral 

genome packaging, we evaluated the effect of N* on packaging and infectivity. We used a 

SARS-CoV-2 virus-like particle (VLP) system 12 that contains N, S, M, and E proteins 

and a reporter genome encoding luciferase (Fig. S2I, see Methods). Surprisingly, N* 

packaged RNA and produced infectious VLPs without full-length N (Fig. S2J), even though 

it lacks the canonical N-terminal RNA binding domain, suggesting alternative packaging 

mechanisms, perhaps involving phase separation 13. Using the VLP assay, we compared the 

impact of each VOC N on virion assembly. Omicron BA.1 N produced >10x more infectious 

units than W1 N, as reported 14, and the other N-bearing VLPs produced intermediate 

amounts (Fig. S2K). This suggests that all the VOCs bear adaptations in N that enhance 

genome packaging, particle production and infectivity.

VOCs evolved altered nucleocapsid phosphorylation

We have previously shown that phosphorylation of viral proteins regulates their activity 
7. Therefore, we systematically compared viral protein phosphorylation across every pair 

of VOCs and between VOCs and W1 viruses during infection (Table S2, see Methods). 

Across all viruses, we detected 53 phosphorylation sites, mapping to Nsp1, Nsp3, S, M, 

N, and Orf9b (Fig. S3A). Interestingly, 43% (23/53) of detected phosphorylation sites were 
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differentially phosphorylated between at least one pair of viruses, localized to Nsp3, M, N, 

and Orf9b, with most regulated sites (20/23 or 87%) on N (Fig. 2I). Every VOC, except 

Gamma, displayed altered N protein phosphorylation relative to wave 1 virus VIC (Fig. 

2J). Differential regulation of phosphorylation was observed across the N protein surface, 

with two predominant clusters localized at the N-terminal region (S21-S33) and linker 

region after the RNA binding domain (Y172-S202) (Fig. 2K). Interestingly, we detected a 

strong variant-specific decrease in N-terminal (S23-S26) phosphorylation on N protein for 

Beta compared to all other viruses at 24hpi (Fig. S3B; Omicron BA.1 was excluded due 

to mutations in this region). We also observed increased phosphorylation of the Beta and 

Omicron N linker region (S176, S183, and S184) and decreased phosphorylation of Omicron 

N S79 compared to other viruses (Fig. S3B).

Phosphorylation of N protein impacts RNA binding, packaging, and viral assembly 13,15,16, 

suggesting N phosphorylation by VOCs affects the viral lifecycle, perhaps influencing viral 

genome sensing. For example, phosphorylation of N is enhanced in viruses encoding the 

R203K/G204K mutation 16 (e.g., Alpha, Omicron BA.1), and a differential phosphorylation 

pattern in this region among VOCs may enhance viral replication 16,17. To identify human 

kinases that phosphorylate N, 122 kinases were tested with full-length N using an in 
vitro ADP-GLO assay, selected if they contained a known kinase motif on N 18 or 

were found regulated during infection 10. Twelve/122 kinases (PKCβ [PRKCB], EEF3K, 

PKCɑ [PRKCA], PKCɣ [PRKCG], PKCθ [PRKCQ], PKCΔ [PRKCD], TTBK1, EGFR, 

FGFR4, TTBK2, PKN1, and SPRK2) had equal or greater activity against N than GSK3β 
and SPRK1, previously reported to control N phosphorylation (Fig. 2L) 17. Future work 

will determine the impact of these kinases on regulating N phosphorylation during VOC 

replication.

VOC evolution rewires virus-host protein-protein interactions

To assess the consequences of VOC adaptation, we performed an integrative sequence and 

structure analysis of mutations cataloged by GISAID (Fig. S3C). Our analysis predicted 

VOC mutations would not disrupt protein folding, as expected given protein core disruptions 

are likely disadvantageous. VOC mutations were more likely to be surface accessible, 

consistent with a role in modulating virus-host protein-protein interactions (PPIs).

To evaluate the effects directly, we expressed VOC and W1 viral proteins with 2x strep-

tags in HEK293T cells and quantitatively compared virus-host protein-protein interactions 

between VOC and W1 viral proteins by affinity purification-mass spectrometry (AP-MS) 
19,20 (Table S3). This covered 127 non-synonymous mutations spanning 16 viral proteins 

across Alpha (six viral proteins), Beta (9), Gamma (8), Delta (14), and Omicron BA.1 (11). 

Out of 1746 high-confidence interactions, 273 (16%) were significantly different between 

VOC and W1 forms (abs[log2FC]>0.5 & p<0.05), 150 with increased (red) and 123 with 

decreased (blue) affinity for the VOC version (Fig. 2M, left). All VOCs evolved protein-

coding mutations that altered virus-host protein complexes (Fig. 2M, right), and differential 

interactions were observed for most viral proteins, except for Nsp2 and Nsp6 (Fig. S3D). We 

profiled individual mutations or mutation subsets across the VOCs to pinpoint how specific 

mutations impacted the changes (Fig. S4).
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Given that N* is lowly expressed (1–2% of total viral sgRNA reads compared to 15–55% for 

full-length N; Fig. S2C), we hypothesized it has an additional function. The differential PPI 

map revealed a novel and specific association between N* and the RNAPII-associated factor 

(PAF) complex, specifically complex members PAF1, LEO1, IWS1, WRD61, CDC73, and 

CTR9 (Fig. 2N) 21–23, an interaction we confirmed using AP-western blot analysis (Fig. 

S3E). PAF interactions were absent from any of the full-length VOC or W1 N APs (Fig. 

2N, S3E), suggesting the evolution of novel host gene regulation by N*-expressing VOCs 

(Alpha, Gamma, and Omicron), perhaps similar to influenza NS1 protein that targets PAF 
24. Other changes include the enhanced interaction between Delta Orf9b and three MARK 

kinases (MARK1–3; Fig. 2N), validated by AP-western blot analysis (Fig. S3F). MARK2 

is important in cell polarization 25 and an increased interaction with Delta Orf9b could 

modulate epithelial cell apical/basal integrity to increase viral infection. The interaction 

between Orf6 D61L (found in Omicron BA.2 and BA.4) and the nuclear pore complex 

(RAE1 and NUP89; Fig 2N, right) was decreased. Interaction of Orf6 with the nuclear pore 

reduces the innate immune response by suppressing nuclear import of IRF3, STAT2, and 

export of ISG mRNAs (see accompanying paper) 26, suggesting modulation of the innate 

immune response by these variants. The entire VOC differential PPI map is presented in 

Figure 3.

Comparative systems analysis characterizes the cellular host response to VOCs

We next sought to understand how VOC infections affect host cellular biology. To this 

end, we developed an integrative computational analysis of our omics datasets to (i) 

map therapeutic targets for pan-variant antivirals by identifying similarly hijacked cellular 

processes and (ii) uncover how viral evolution leads to divergent host responses. Compiling 

differentially regulated host genes and proteins (as compared to mock) from our datasets 

yielded 5284 genes regulated during infection (Fig. 4A). We overlaid regulated genes onto 

the STRING network 27 and used measures of network proximity to cluster genes into 

85 pathway modules (Fig. 4B, Table S4). Gene regulation per module was quantified as 

the average absolute value log2 fold-change of genes within each module, separately for 

RNA, protein abundance, and phosphorylation, generating a single metric per module, per 

virus (Fig. 4C). Most modules followed a general trend, which we defined as the Average 

Host Response (AHR; average regulation across modules). For example, the AHR was 

greater during Delta than VIC infection. The AHR correlated well with the viral RNA 

(genomic reads; R=0.59) and protein (sum of non-structural proteins; R=0.77) produced 

for each virus, suggesting the AHR represents a generalized cellular response to infection, 

proportional to viral replication (Fig. 4D).

We utilized the AHR to identify similarities and differences in the host response to 

infection across viruses. Systematic correlation of each module versus the AHR revealed 

most processes to be similar across VOCs (Fig. 4E), highlighting the host pathways 

modulated in concert with a general cellular response to infection. The 10 modules with 

the highest correlation coefficients related to cell cycle, protein folding, RNA translation and 

processing, chromosome organization, and the cytoskeleton (Fig. 4F, top). Some correlated 

poorly with the AHR, allowing us to focus on key differences between variants. The 

10 modules with the lowest correlation coefficients included defense response to foreign 
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organisms, innate immune and cytokine response, ion transport, GPCR signaling, and 

metabolic pathways. The functional distinction between modules that correlated well or 

poorly with the AHR was corroborated by visualizing them on a t-distributed stochastic 

neighbor embedding (Fig. 4G), which showed them to be well separated. Because restricting 

our analysis to regulated genes could bias our results, we used network propagation to 

embed all our quantitative data per gene within their pathway network neighborhoods, which 

resulted in similar result (Fig. S5A). An additional, variant-specific, analysis identified 

modules that were regulated by particular variants. These findings (Fig. S5B) included 

regulation of genes in sensory perception of taste during Delta infection and agreed with 

studies linking Delta to frequent loss of taste and smell 28,29.

Host translation inhibitor plitidepsin provides pan-variant therapeutic efficacy in vivo

The translation module had the third highest correlation with the AHR, alongside three other 

translation-related modules, representing a conserved host response across the viruses (Fig. 

4F, S5C). We previously reported that inhibiting eukaryotic translation elongation factor 

1A (eEF1A) with plitidepsin exerted potent antiviral activity against SARS-CoV-2 within 

the nanomolar range 30. Plitidepsin is in phase III clinical trials for treating COVID-19 

(NCT04784559). It retained antiviral efficacy against several VOCs in a cell-culture model 
31. Here, we determined if plitidepsin has antiviral efficacy against five VOCs in vivo. We 

intranasally infected K18-hACE2 mice with each VOC or W1 control, and administered 0.3 

mg/kg of plitidepsin via intraperitoneal injection once daily for 3 days (Fig. S5D). On day 

4, viral titers were quantified from the lungs via TCID50. Viral titers were decreased for 

all VOCs, all significant (p<0.05) except for Gamma, which showed a trend of reduction 

that did not reach significance (p=0.08; Fig. S5E). These results support plitidepsin as a 

therapeutic for SARS-CoV-2 infection and highlight its potential against future variants.

VOCs evolved to alter the immune response landscape

Our integrative computational analysis pinpointed innate immune and inflammatory 

processes as having the lowest correlation with the AHR (Fig. 4F, 4H), suggesting VOCs 

evolved distinct relationships with the host antiviral inflammatory response. To probe this, 

we merged genes from the five inflammation modules and separated them into two groups: 

interferon-stimulated genes (ISGs) and proinflammatory genes (Table S4). We defined 

ISGs as directly induced upon interferon production after infection (containing an ISRE 

promoter) and pro-inflammatory genes as contributors to systemic inflammation that are 

driven by other transcription factors (e.g., NF-kB and AP-1). Many are associated with 

severe COVID-19 32–37. We calculated a log2 fold-change of VOCs versus W1 VIC based 

on the average expression change for genes within each group to compare ISG and pro-

inflammatory gene regulation across the VOCs.

All VOCs, except Omicron BA.1, suppressed ISG protein expression with respect to W1 

virus (Fig. 4I–J, S5F–I, S6A, S6C), consistent with a model where VOCs convergently 

evolved to suppress host innate immune responses. Alpha and Beta suppressed ISGs 

at RNA and protein levels (Fig. 4I–J), which was reflected in reduced IRF3 nuclear 

translocation in infected cells at 10hpi (Fig. S5J). Gamma and Delta induced similar levels 

of IRF3 translocation (Fig. S5J) and ISG transcription (Fig. 4I) but suppressed ISG protein 
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expression (Fig. 4I). IRF3 nuclear translocation levels in uninfected bystander cells were 

low (Fig. S5K). Suppression of ISG responses at the protein versus RNA level suggests 

evolution of more effective and selective host translational inhibition while leaving viral 

translation intact. Surprisingly, Omicron BA.1 triggered a greater type-I interferon response 

and accompanying ISG RNA and protein levels than W1 (Fig. 4I–J S6A, S6C), despite 

lower levels of replication in Calu-3 than other viruses (Fig. 4K), also seen with independent 

VOC isolates (Fig. S5I). Interestingly, we found greater rescue of Omicron replication, 

compared to Alpha and Delta, upon administration of the JAK/STAT signaling inhibitor 

ruxolitinib, underscoring how the interferon response to Omicron is partially responsible for 

its poor replication in this model (Fig. 4L).

To further compare VOC immunomodulation, the ISG vs pro-inflammatory gene induction 

signatures (mRNA) were plotted for each VOC, relative to VIC (Fig. 4M). Alpha and Beta 

had robust antagonism of ISG and pro-inflammatory gene expression. Gamma regulated 

inflammatory gene expression similarly to W1 VIC. Delta displayed greater induction of 

proinflammatory genes than other VOCs, despite similar replication kinetics. Strikingly, 

Omicron BA.1 clustered with none of the variants due to increased induction of ISGs and 

pro-inflammatory genes.

To determine if inflammatory pathway regulation by the VOCs was associated with viral 

protein expression, as reported for Alpha 7, we correlated viral protein and RNA levels 

with pathway module regulation and ranked viral genes according to their correlation 

with inflammatory response modules (modules 8, 13, 31, 43, and 53). Expression of N 

and Orf6, both well-studied innate immune antagonist proteins 26,38,39, were the most 

anticorrelated with inflammatory response module regulation, consistent with the notion 

that their increased expression suppresses the host innate immune response (Fig. 4N). Each 

virus evoked different host inflammatory responses during infection; early VOCs Alpha and 

Beta tend to induce muted responses, whereas later VOCs Delta and Omicron tend to drive 

greater inflammatory responses. These data suggest step-wise evolution of an increasingly 

sophisticated and more nuanced manipulation of host responses to promote VOC replication 

and transmission.

To better understand the contribution on innate immune suppression of different up-

regulated accessory proteins, we first probed Orf9b function by reverse genetics to generate 

an Orf9b deletion virus in the Alpha background (Fig. S5L). Orf9b KO virus triggered 

a greater innate immune response during infection in Calu-3 cells than wild-type Alpha 

infection (Fig. S5M), supporting involvement of Orf9b in innate immune suppression. Using 

an Alpha Orf6 KO virus in Calu-3, we previously showed that Orf6 is a potent innate 

immune antagonist 40. The fact that Omicron BA.1 does not upregulate Orf6 expression and 

only slightly upregulates Orf9b, a weaker innate antagonist, suggests Omicron BA.1 may not 

have enhanced expression of the full complement of antagonists required for effective innate 

immune suppression. Mutations in Omicron and Delta Orf9b might affect their functional 

potency. Intriguingly, the Alpha Orf9b KO virus had a defect in replication in primary 

HAEs, which was not rescued by inhibiting interferon signaling with ruxolitinib, suggesting 

Orf9b has additional roles in replication (Fig. S5N).
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Omicron subvariants evolved enhanced innate immune antagonism by modulating Orf6

Phylogenetic studies indicate that the five VOCs evolved independently from W1 virus. 

However, Omicron subvariants (BA.2, BA.4, and BA.5) evolved from a common Omicron 

ancestral variant in a complex and incompletely understood way involving recombination 
5,41. Omicron subvariants co-circulated, becoming globally or locally dominant, and may 

have adapted to evade innate immune responses 5,40. To probe the molecular mechanisms 

underlying their differences, we globally quantified mRNA and protein levels in Calu-3 cells 

infected with equal doses of Omicron subvariants BA.1, BA.2, BA.4, or BA.5 alongside 

Alpha, Delta, and W1 IC19 (Fig. 5A). Because Omicron subvariant replication was lower 

than prior VOCs, we compared them to each other and focused on a later (48 hpi) time point 

to better capture the viral and host response to infection.

Assessment of viral replication by viral genome counts in RNAseq data demonstrated 

that BA.1 and BA.5 replicated comparably and more efficiently than BA.2 and BA.4, 

which replicated similarly to each other (Fig. 5B). Compared to BA.1, BA.2 stimulated a 

stronger innate immune response despite reduced replication, whereas host responses during 

BA.4 infection were reduced, particularly for pro-inflammatory gene induction (Fig. 5B–F). 

Replication rates did not correlate with host innate immune responses to infection as BA.5 

had high rates of replication but the lowest ISG response at RNA and protein levels (Fig. 

5C–F, S6B, S6D). Comparing host responses to Omicron subvariants with those to Alpha 

and Delta indicates that BA.5 is closest to Alpha (Fig. S7A–B), the best overall innate 

immune suppressor, consistent with convergent evolution between BA.5 and Alpha and the 

possibility that BA.5 could evolve further Alpha-like host adaptations to more effectively 

antagonize innate immune activation.

From these and previous observations 40, we hypothesized that Omicron subvariants evolved 

enhanced innate immune suppression by modulating expression of the same viral proteins 

that inhibit interferon responses as Alpha to Delta. Interrogation of global viral RNA and 

protein expression during infection revealed differences in the production of structural 

and accessory proteins, but not non-structural proteins, across the Omicron subvariants 

(Fig. 5G–H, S7C–E), as we found above (Fig. 2B–C). Interestingly, Orf6 and N protein 

expression was increased in BA.4 and BA.5, both known innate immune antagonists. 

Although Orf6 viral sgRNA was increased in BA.4, it was not for BA.5, suggesting a 

selective control mechanism underlies Orf6 protein production for BA.5. Similarly, we 

observed increased viral sgRNA but decreased Orf6 protein production for BA.1, above 

(Fig. 2B–C). Computational analysis found N and Orf6 were the most anticorrelated with 

the innate immune response (Fig. 4N), underscoring their role in innate immune regulation 

and the convergence between Alpha to Delta and Omicron BA.1–5 evolution. To validate 

the impact of Orf6 on the innate immune response, we used an Orf6 deletion virus in the 

Alpha background. The Orf6-deleted virus strongly induced ISG expression, compared to 

WT Alpha, reaching similar levels as Omicron BA.1 (Fig. 5I, S7F). This was consistent with 

the fact that BA.1 showed lower Orf6 protein expression than other VOCs (Fig. 2C). These 

results agree with Orf6 being a regulator of the innate immune response during infection, 

likely contributing to the evolved immunomodulatory profile of Omicron subvariants.
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With similar Orf6 protein levels, we were surprised that BA.4 and BA.5 induced different 

degrees of innate immune responses, with BA.5 suppressing ISG expression more strongly 

than BA.4 (Fig. 5C). However, BA.4 and BA.2 contain a protein-coding mutation in Orf6 

(D61L), which strongly reduced the interaction between Orf6 and nuclear pore components 

mRNA transport factor RAE1 and nucleoporin NUP98 (Fig. 5J, 2N, 3). Orf6 binds these 

proteins to prevent the nuclear translocation of ISG-associated transcription factors (e.g. 

STAT1), as well as modulate the nuclear export of ISG mRNAs for cytoplasmic translation 
26,42. Thus, a decreased interaction between Orf6 and RAE1/NUP98 may contribute to the 

reduced replication and suppression of ISGs during BA.4 and BA.2 infection. Interrogation 

of the RAE/NUP98/Orf6 crystal structure (PDB 7VPG) 43 using the SSIPe program 44, 

allowed us to predict a model of the mutated complex and compute the difference of 

free energy change between mutant and W1 forms (ΔΔG = ΔGbind,D61L - ΔGbind,wt). 

This analysis confirmed the D61L substitution unfavorably affects the RAE/Orf6 binding 

stability (ΔΔG = 1.2 kcal mol−1). D61 forms a hydrogen bond with RAE1 R239 (Fig. 5K). 

Other Orf6 residues, including E59, E56, D53, and E55, formed similar interactions with 

RAE1. M58 is inserted into a hydrophobic pocket within RAE1, providing a tight binding 

interface (see accompanying paper for functional characterization). Given the number of 

other residues regulating the Orf6/RAE1 interaction, we predict the D61L mutation to 

reduce, but not completely abolish, the interaction, in accordance with our AP-MS results.

In summary, we hypothesize that poor Orf6 expression and gain of the D61L mutation by 

BA.2 contribute to reduced replication and poor interferon antagonism compared to BA.1. 

Although BA.4 has upregulated Orf6 expression, the D61L mutation reduced its innate 

immune antagonism, again resulting enhanced ISG expression and possibly contributing 

to reduced replication. In contrast, BA.5 upregulated expression of fully functional Orf6, 

consistent with high levels of replication and the strongest suppression of innate immune 

activation among the Omicron subvariants studied (Fig. 5L).

DISCUSSION

In this study, we sought to understand the biology and selective forces underlying the 

evolution of SARS-CoV-2 VOCs. Although most previous work has focused on Spike, 

mutations outside Spike influence the host response. We applied an unbiased global systems 

approach to understand VOC infection biology and the impact of viral adaptation on 

replication and host cellular responses.

The VOCs converged on enhancing innate immune antagonism by increasing expression 

of key viral innate immune antagonist proteins. The VOCs each independently evolved 

from an early lineage W1 virus, but enhanced the same set of viral proteins (e.g., N, Orf6, 

Orf9b; Fig. 2, S2). This strongly suggests convergent evolution of related strategies to 

subvert host innate immune defenses to improve replication and ultimately transmission. 

Here, we defined key VOC mutations for regulating expression of Orf9b and N*, although 

the changes that regulate Orf6 expression remain elusive. All VOCs, except Gamma, have 

altered N protein phosphorylation, which may affect viral assembly and/or replication 

(Fig. 2). Furthermore, we linked adaptation of host-virus PPIs to specific viral mutations 

(Fig. 3, S4), discovering all VOCs possessed protein-coding mutations that significantly 
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altered virus-host protein complexes. Notably, we showed the novel VOC-specific protein 

N* interacted with the host RNAPII-associated factor complex (PAFc), suggesting VOCs 

evolved to influence host gene expression through N*. Overall, our results highlight the 

plasticity of viral protein evolution and host-virus interactions, showing that viral point 

mutations, including non-coding changes, affect function.

One of the most striking features of SARS-CoV-2 VOCs is their sequential replacement 

of the single dominant VOC (e.g., Alpha replacing W1, Delta replacing Alpha, Omicron 

replacing Delta) rather than continuous global co-circulation. A wealth of data implicates 

Spike adaptation to escape adaptive antibody responses, but VOC evolution likely is more 

complex. The most divergently regulated cellular pathways were those connected to innate 

immune and cytokine responses (Fig. 4). This suggests that improving the capacity to 

regulate host innate immune responses contributed to VOC dominance likely through 

improving transmission. This likely reflects a strong selection imposed by the human innate 

immune system on the virus, whose ancestor likely adapted to evade innate immunity 

in a non-human species. However, we do not know why some VOC lineages did not 

become dominant, but we can link viral genetics to host innate immune activation and its 

suppression. Nonetheless, we propose that a major force in shaping virus-host adaptations 

is related to evasion of innate and adaptive responses (Fig. 6) 45, in agreement with recent 

reports that evasion of innate immune responses defines pandemic HIV-1 46.

A significant event in SARS-CoV-2 evolution is the emergence of Omicron. Omicron 

represents the biggest change in Spike, leading to the evasion of the host adaptive immune 

responses (Fig. 6A). Omicron Spike mutations effectively changed the virus to a new 

serotype, altering the biology of viral entry by reducing dependence on TMPRSS2 and 

surface fusion for cathepsin and endosomal fusion, as well as altering in vivo tropism 

for the upper airway 4,47,48. Our data show that Omicron is less effective in suppressing 

innate immune responses than Alpha or Delta. One hypothesis for this phenomenon 

may be related to its arising in a chronically ill and immunocompromised patient 49,50. 

Subsequent Omicron lineages, particularly BA.5, enhanced this capacity by expressing 

higher levels of Orf6 and effectively suppressing interferon responses. We propose that 

Omicron, after successfully escaping widespread adaptive immune responses to Spike, 

subsequently experienced the next strongest selective pressure, leading to enhanced innate 

immune evasion via upregulation of viral protein antagonists, as we have seen in previous 

VOCs 7. A simple model of enhanced innate immune evasion by increased expression of 

Orf6 is confounded by the Orf6 D61L mutation in the Omicron sublineages BA.2 and 

BA.4. However, this mutation weakens the interaction with RAE1 and NUP98, suggesting 

reduced inhibition of nuclear transport for mediators of the inflammatory response (see 

accompanying paper for functional characterization). Strikingly, D61L is encoded by the 

same three nucleotide substitutions in BA.2 and BA.4, suggesting this mutation occurred 

only once, perhaps in BA.2 and then arose in BA.4 by recombination.

VOCs provoked different pro-inflammatory cytokine responses (Fig. 4). Cytokines (e.g., 

IL-6, CCL5, IL-8, TNF, IL-1ꞵ) are with increased COVID-19 severity and poor prognosis 
32–37. Whether such differences account for VOC-specific pathogenicity (e.g., more severe 

disease with Delta 51–54 or late Omicron sublineages 55–59) is confounded by pre-existing 
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immunity. Thus, while VOCs may drive less severe disease than Delta, which appears 

to be particularly inflammatory, dissecting the differences in the mechanisms driving 

pathogenicity and disease severity remains a necessary challenge. Although no model is 

perfect, a combination of cell lines, primary human cell models, and in vivo rodent models 

may produce the richest understanding of functional VOC evolution and its links to disease 

severity 60–62.

Our analysis pinpointed cellular pathways that are similarly modulated across the VOCs 

during infection and represent putative targets for pan-coronavirus antivirals. Our previous 

work showed plitidepsin has strong antiviral activity against early SARS-CoV-2 strains 

in vivo and the VOCs in vitro 19,30,31. Here, we showed plitidepsin is also effective 

against VOCs in vivo. Thus, targeting a host factor essential for viral replication (i.e., 

eEF1A) provides a suitable strategy for new antivirals. We propose combination therapy 

approaches to tackle emerging or future variants: one targeting the adaptive immune 

response (e.g., vaccines, antibody treatments) and another inhibiting viral innate immune 

antagonist proteins (e.g., Orf6 and Orf9b) or activating the innate inflammatory responses 

(Fig. 6B).

Overall, our integrative systems multiomics platform enables the rapid evaluation of 

emerging viral mutations and their mechanistic consequences on viral replication and 

pathogenicity. Our analyses pinpoint conserved pathways that are central to the SARS-

CoV-2 life cycle, paving the way to uncover broad antivirals for existing and future viral 

strains. Additionally, we uncover how viral evolution has led to divergent host responses, 

with implications for disease pathology, severity, and transmission in humans.

Limitations of the Study

Our study possesses several important limitations. First, although we collected omics data at 

two time points post infection, a higher resolution time course would reveal how different 

variants impact dynamical patterns in a more comprehensive manner. For instance, the 

dynamical nature of viral protein expression or phosphorylation may vary across the VOCs 

and could underlie phenotypic outcomes. Second, since our cellular response analyses 

are primarily conducted in cell models, future studies should perform these types of 

omics studies in infected animal models. Third, our findings should be further explored 

in human clinical samples to assess whether similar trends (e.g., viral protein expression, 

phosphorylation, innate immune antagonism) are observed.

STAR METHODS

RESOURCE AVAILABILITY

Lead Contact—Further information and requests for resources and reagents should 

be directed to and will be fulfilled by the Lead Contact, Nevan J. Krogan (Nevan. 

Krogan@ucsf.edu).

Materials Availability—Materials including cell lines, viral strains, and plasmids will be 

made available upon request from the Lead Contact pending a material transfer agreement 

(MTA) and proper safety approvals, when applicable.
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Data and Code Availability—Further information and requests for resources and 

reagents should be directed to and will be fulfilled by NJK (nevan.krogan@ucsf.edu). 

The raw mass spectrometry proteomics infection proteomics and affinity purification mass 

spectrometry (APMS) data files have been deposited to the ProteomeXchange Consortium 

(http://proteomecentral.proteomexchange.org) via the PRIDE partner repository 65 with the 

dataset identifiers PXD036968 and PXD036798, respectively. All raw mRNA sequencing 

data files have been deposited in NCBI’s Gene Expression Omnibus 66 and are accessible 

through GEO Series accession number GSE213759. RNA, peptide, and protein counts, 

as well as quantitative statistical data, can be accessed via Mendeley Data (doi: 10.17632/

prs6zjts7b.1). All other data are available in the main text or the supplementary materials.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Calu-3 and Caco-2 cells—Calu-3 cells were purchased from ATCC (HTB-55) or 

AddexBio (C0016001) and Caco-2 cells were a gift from D. Bailey. Cells were cultured 

in Dulbecco’s modified Eagle’s medium (DMEM) supplemented with 10% heat-inactivated 

FBS (Labtech) and 100 U ml−1 penicillin–streptomycin, with the addition of 1% sodium 

pyruvate (Gibco) and 1% Glutamax. All cells were passaged at 80% confluence and were 

frequently monitored for mycoplasma contamination. For infections, adherent cells were 

trypsinized, washed once in fresh medium and passed through a 70-μm cell strainer before 

seeding at 0.2 × 106 cells per ml into tissue-culture plates. Calu-3 cells were grown to 60–

80% confluence before infection as described previously 7. For stimulation with poly:IC 

(Peprotech), 250ng of poly:IC were transfected using lipofectamine 2000 (ThermoFisher).

Human Airway Epithelial (HAE) cells—Primary normal (healthy) bronchial epithelial 

(NHBE-A) cells were acquired from Epithelix (Cat# EP51AB), cultured for five to seven 

passages, and differentiated at an air-liquid interface as previously described 7,40. After 21–

24 days of differentiation, cells were used in infection experiments.

Vero and A549-ACE2 cells—Vero E6 (ATCC, CRL-1586) and Vero TMPRSS2 cells 

(BPS Bioscience Cat# 78081) were maintained in Dulbecco’s modified Eagle’s medium 

(Corning) supplemented with 10% fetal bovine serum (Peak Serum), non-essential amino 

acids (Gibco), HEPES (Gibco) and penicillin/streptomycin (Corning) at 37 °C and 5% 

CO2. A549-ACE2 67 were maintained in Dulbecco’s modified Eagle’s medium (Corning) 

supplemented with 10% fetal bovine serum (Peak Serum) and penicillin/streptomycin 

(Corning) at 37 °C and 5% CO2. All cell lines used in this study were regularly screened 

for Mycoplasma contamination, using the Universal Mycoplasma Detection Kit (ATCC, 

30–1012K).

HEK-293T cells—HEK-293T cells were cultured in Dulbecco’s modified Eagle’s 

medium (DMEM; Corning) supplemented with 10% fetal bovine serum (FBS; Gibco, 

Life Technologies) and 1% penicillin–streptomycin (Corning) and maintained at 37 °C in 

a humidified atmosphere of 5% CO2. HEK293T cells were procured from the UCSF 

Cell Culture Facility, now available through UCSF’s Cell and Genome Engineering 

Core ((https://cgec.ucsf.edu/cell-culture-and-banking-services); cell line collection listed 

here: https://ucsf.app.box.com/s/6xkydeqhr8a2xes0mbo2333i3k1lndqv (CCLZR076)). STR 
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analysis by the Berkeley Cell Culture Facility on 8 August 2017 authenticated HEK-293T 

cells with 94% probability. Cells were tested on 4 October 2021 using the MycoAlert PLUS 

Mycoplasma Detection Kit (Lonza LT07–710) and were negative: B/A ratio < 1 (no detected 

mycoplasma).

Viruses—SARS-CoV-2 lineages Alpha (B.1.1.7) 7,68, Beta (B.1.351), Gamma (P.1), Delta 

(B.1.617.2) 4 and Omicron (lineage 375 B.1.1.529.1/BA.1 and lineage B.1.1.529.2/BA.2) 

isolates were a gift from Wendy Barclay (Imperial 376 College London, UK). Beta 

(B.1.351), Omicron BA.4 (lineage B.1.1.529.4) and BA.5 (lineage B.1.1.529.5) were a 

gift from Alex Sigal and Khadija Khan (Africa Health Research Institute, Durban, South 

Africa) 5. Early-lineage isolate VIC was provided by NISBC and IC19 a gift from Wendy 

Barclay 7. Viruses were propagated by infecting Caco-2 cells in DMEM culture medium 

supplemented with 10% FBS and 100U/ml penicillin/streptomycin at 37 °C as previously 

described 7,68. Virus stocks used in experiments comparing Omicron subvariants, virus 

stocks were prepared in DMEM culture medium supplemented with 1% FBS and 100U/ml 

penicillin/streptomycin, which was maintained in Calu-3 infections. Virus was collected at 

72 hpi and clarified by centrifugation at 2,100xg for 15 min at 4°C to remove any cellular 

debris. Virus stocks were aliquoted and stored at −80 °C. Virus stocks were quantified by 

extracting RNA from 100 μl of supernatant with 1 μg/ml carrier RNA using Qiagen RNeasy 

clean-up protocol, before measuring viral E RNA copies per ml by RT-qPCR 7,68. Cells 

were infected with SARS-CoV-2 viruses under BSL3 containment in accordance with the 

biosafety protocols developed by each institution, including University College London and 

the Icahn School of Medicine at Mount Sinai.

METHOD DETAILS

Description of each experiment—Global proteomics and transcriptomics studies were 

collected across seven (7) separate experiments. Experiment 1 contains Alpha, Beta, 

Gamma, Delta, IC19, VIC, and mock infections in Calu-3 cells harvested at 10 and 24 hpi 

and was processed for mRNA sequencing, abundance proteomics, and phosphoproteomics. 

Experiment 2 contains Alpha, Delta, Omicron BA.1, IC19, VIC, and mock infections 

in Calu-3 cells harvested at 10 and 24 hpi and was processed for mRNA sequencing, 

abundance proteomics, and phosphoproteomics. Experiment 3 contains Alpha Orf6 KO, 

Alpha wild-type, IC19, VIC, mock infections and polyIC treatment in Calu-3 cells harvested 

at 10 and 24 hpi and was processed for mRNA sequencing, abundance proteomics, and 

phosphoproteomics. Experiment 4 contains Omicron BA.1, BA.2, BA.4, BA.5, Alpha, Delta, 

IC19, VIC, and mock infection in Calu-3 cells harvested at 24 hpi and Omicron BA.1, BA.2, 

BA.4, and BA.5 in Calu-3 cells harvested at 48hpi and processed for abundance proteomics 

only. Experiment 5 contains Omicron BA.1, BA.2, BA.4, BA.5, Alpha, Delta, IC19, VIC, 

and mock infection in Calu-3 cells harvested at 24 and 48 hpi and processed for mRNA 

sequencing only. Experiment 6 contains viral RNA and protein counts from global mRNA 

sequencing and abundance proteomics, respectively, for Washington wild-type and N D3L 

+ −3 deletion mutant virus in Washington background infection in A549-ACE2 cells at 24 

and 48hpi. Experiment 7 contains viral RNA counts from global mRNA sequencing for 

R203K/G204R mutant virus in Wuhan virus background infection in Calu-3 cells at 24hpi. 

The purpose of experiment 7 was to assess the expression of N*.
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Generating mutant viruses by reverse genetics—Alpha Orf6 deletion virus (Alpha 

ΔOrf6) was achieved by mutation of the first two methionines: M1L (A27216T) and M19L 

(A27200T). Alpha Orf9b deletion virus (Alpha ΔOrf9b) was achieved by introducing the 

following synonymous mutations into N: I15I (T28318A) and N29N (T28360C), resulting 

in Orf9b L12Stop and M26T. Wuhan-Hu-1-D614G with R203K/G204R was achieved 

by introducing mutations R203K (G28881A, G28882A) and G204R (G28883C). Reverse 

genetics (RG) derived viruses were generated essentially as previously described 69,70. 

Rescued RG SARS-CoV-2 viruses were sequenced using Oxford Nanopore as previously 

described 71.

To generate N and Orf9b D3L, −3A, and D3L/−3A mutants we used the bacterial 

artificial chromosome (BAC) system harboring the entire viral genome of SARS-CoV-2 

USA-WA1/2020 strain (Accession No. MN985325), as previously described 72. The 

mutations of D3L/−3A, D3L, and −3A were achieved in viral fragment 1 by site-directed 

mutagenesis. After confirming the mutations by Sanger sequencing, fragments containing 

the mutations were released and reassembled into the BAC using BamHI and RsrII 

restriction endonucleases. Then, the BAC containing the mutations were maxi prepared and 

transfected into Vero AT (ACE2/TMPRSS2) cells using Lipofectamine 2000 (ThermoFisher 

Scientific) according to the manufacturer’s instruction. At 12 hours post-transfection, the 

supernatant was replaced by post-infection media (DMEM+1% FBS+1% PSG), and the 

supernatant was collected at 72 hours post-transfection, aliquoted, labeled as P0, and stored 

at −80 °C. The P1 stocks were generated by infecting monolayer of Vero AT cells with 

the P0 stocks (MOI 0.001). At 48 hours post-infection, the cell culture supernatant was 

collected, clarified, aliquoted, labeled as P1, and stored at −80 °C. After confirmation by 

deep sequencing, the P1 stocks were titrated and used for experiments.

Primers used for generation of mutant rSARS-CoV-2

Primer names Primer sequences (5’3’)

D3L/-3A-F catctaaacgaacaaactaaatgtctCTAaatggaccccaaaatcagcgaaatg

D3L/-3A-R ttcgctgattttggggtccattTAGagacatttagtttgttcgtttagat

D3L-F aacgaacaaactaaaatgtctCTAaatggaccccaaaatcagcgaaatg

D3L-R ttcgctgattttggggtccattTAGagacattttagtttgttcgtttag

−3A-F catctaaacgaacaaactaaatgtctgataatggaccccaaaatcag

−3A-R ggggtccattatcagacatttagtttgttcgtttagatgaaatctaaaac

All work with SARS-CoV-2 viruses, including the generation of the recombinant wild-

types or mutants used in this publication, was conducted in BSL3 laboratories following 

rigorous safety protocols, including strict adherence to personal protective equipment and 

decontamination procedures. Furthermore, we do not consider our work to constitute 

gain-of-function research. The recombinant SARS-CoV-2 viruses were generated using 

reverse genetics approaches based on the Wuhan-1 original strain. Aside from the mutations 

introduced, the sequence of the recombinant SARS-CoV-2 viruses were identical to that 

of the Wuhan-1 strain. Therefore, compared to currently circulating viruses, they have 

not undergone extensive evolution and would be highly unlikely to compete with the 
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currently circulating SARS-CoV-2 Omicron variants. Second, the mutations introduced in 

the recombinant SARS-CoV-2 used in this study have been found in natural/clinical SARS-

CoV-2 isolates and thus represent mutations found in nature.

Infection of Calu-3 cells—For Calu-3 infections, inoculi were calculated using E copies 

per cell as indicated. Cells were inoculated with diluted virus stocks for 2 h at 37 °C, 

subsequently washed once with PBS and fresh culture medium was added. At the indicated 

time points, cells were collected for analysis as previously described 7.

Infection of HAE cells—For primary HAE infections, cells were washed once with PBS 

on the apical side before addition of diluted virus stocks for 2–3 h at 37°C. Supernatant 

was then removed and cells were washed twice with PBS. All liquid was removed from 

the apical side and basal medium was replaced with fresh PneumaCult ALI medium for 

the duration of the experiment. Virus release was measured at the indicated time points 

by extracting viral RNA from apical PBS washes. To this end, cells were incubated with 

PBS for 30 minutes at 37°C at the indicated time points. Cellular RNA was collected 

by lysing cells at the experimental endpoint in RLT (Qiagen) supplemented with 0.1% 

beta-mercaptoethanol (Sigma) and extracted as previously described 7.

Infection of A549-ACE2 with mutant rSARS-CoV-2 N D3L and −3 deletion 
viruses—Unless otherwise specified, infections were performed in viral growth media 

(VGM): Dulbecco’s modified Eagle’s medium (Corning) supplemented with 2% fetal 

bovine serum (Peak Serum), non-essential amino acids (Gibco), HEPES (Gibco) and 

penicillin/streptomycin (Corning) at 37°C and 5% CO2 as previously described 73. For 

proteomic samples, one day before infection, 8×105 A549-ACE2 cells per biological 

replicate were seeded in 6-well plates in complete media. Cells were then infected with 

the indicated viruses under BSL3 containment in accordance with the biosafety protocols 

developed by the Icahn School of Medicine at Mount Sinai. At the appropriate time post 

infection, cells were washed three times in ice cold 1x PBS and lysed in 500uL/well of 6M 

guanidine hydrochloride (Sigma) in 100mM Tris-HCl (pH 8.0). Samples were then boiled 

for 5 minutes at 95C to inactivate proteases, phosphatases, and virus. Samples were frozen 

at −80°C until further processing. For RNAseq analysis, one day before infection, 4×105 

A549-ACE2 cells per biological replicate were seeded in 6-well plates in complete media. 

Cells were then infected with the indicated viruses under BSL3 containment in accordance 

with the biosafety protocols developed by the Icahn School of Medicine at Mount Sinai. At 

the appropriate time post infection, cells were washed three times in ice cold 1x PBS and 

lysed by adding 1mL/well of Trizol reagent (Thermo Fisher).

RT-qPCR of infected Calu-3 cells—cDNA was synthesized from RNA using 

SuperScript IV (Thermo) with random hexamer primers (Thermo). RT-qPCR was performed 

using Fast SYBR Green Master Mix (Thermo) for host gene expression and subgenomic 

RNA expression or TaqMan Master mix (Thermo Fisher Scientific) for viral RNA 

quantification. Reactions were performed on the QuantStudio 5 Real-Time PCR systems 

(Thermo Fisher Scientific). Viral E RNA copies were determined as described previously 68. 
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Host gene expression was determined using the 2−ΔΔCt method and normalized to GAPDH 

expression. The following probes and primers were used:

GAPDH fw: 5’-ACATCGCTCAGACACCATG-3’, rv: 

5’-TGTAGTTGAGGTCAATGAAGGG-3’; IFNB fw: 5’-

GCTTGGATTCCTACAAAGAAGCA-3’, rv: 5’-ATAGATGGTCAATGCGGCGTC-3’; 

CXCL10 fw: 5’-TGGCATTCAAGGAGTACCTC-3’, rv: 5’-

TTGTAGCAATGATCTCAACACG-3’; IFIT1 fw: 5’-CCTCCTTGGGTTCGTCTACA-3’, 

rv: 5’-GGCTGATATCTGGGTGCCTA-3’, IFIT2 fw: 5′-

CAGCTGAGAATTGCACTGCAA-3′, rv: 5′-CGTAGGCTGCTCTCCAAGGA-3′.

ELISA of infected Calu-3 cells—Cytokine release by infected Calu-3 cells was 

measured in culture supernatants at 48 hpi. IFNβ and CXCL10 were measured using 

Human IFN-beta Quantikine ELISA Kit or Human CXCL10/IP-10 DuoSet ELISA reagents 

(biotechne R&D systems) according to the manufacturer’s instructions.

Western blotting of infected Calu-3 cells—For western blotting, whole-cell lysates 

were separated by SDS-PAGE, transferred onto nitrocellulose and blocked in PBS with 

0.05% Tween 20 (v/v) and 5% skimmed milk (w/v). For detection of Spike, N, Orf6, Orf9b, 

spike, MX1, IFIT1 and β-actin expression membranes were probed with rabbit-anti-IFIT1 

(CST, #14769, clone D2X9Z), rabbit-anti-MX1 (CST, #37849, clone D3W7I) rabbit-anti-

SARS spike (Invitrogen, PA1–411-1165), rabbit-anti-Orf6 (Abnova, PAB31757), rabbit-anti-

Orf9b (ProSci, 9191), Cr3009 SARS-CoV cross-reactive human-anti-N antibody (a gift from 

Laura McCoy, UCL) and rabbit-anti-beta-actin (SIGMA), followed by IRDye 800CW or 

680RD secondary antibodies (Abcam, goat anti-rabbit, goat anti-mouse or goat antihuman). 

Blots were imaged using an Odyssey Infrared Imager (LI-COR Biosciences) and analyzed 

with Image Studio Lite software.

Flow cytometry of infected Calu-3 cells—Adherent cells were recovered by 

trypsinization and washed in PBS with 2 mM EDTA (PBS/EDTA). Cells were stained 

with fixable Zombie UV Live/Dead dye (BioLegend) for 6 min at room temperature. 

Excess stain was quenched with FBS-complemented DMEM. Unbound antibody was 

washed off thoroughly and cells were fixed in 4% PFA before intracellular staining. 

For intracellular detection of SARS-CoV-2 nucleoprotein, cells were permeabilized for 15 

min with intracellular staining perm wash buffer (BioLegend). Cells were then incubated 

with 1 μg ml−1 CR3009 SARS-CoV-2 cross-reactive antibody (a gift from L. McCoy) 

in permeabilization buffer for 30 min at room temperature, washed once and incubated 

with secondary Alexa Fluor 488-donkey-anti-human IgG (Jackson Labs). All samples were 

acquired on a BD Fortessa X20 using BD FACSDiva software. Data were analyzed using 

FlowJo v.10 (Tree Star).

Immunofluorescence of infected Calu-3 cells—Infected cells were fixed using 4% 

PFA/formaldehyde for 1 hour (h) at room temperature and subsequently washed with 

PBS. A blocking step was carried out for 35h at room temperature with 10% goat 

serum/1%BSA/0.001 Triton-TX100 in PBS. IRF3 and dsRNA staining to was performed 

by primary incubation with rabbit-anti-IRF3 antibody (sc-33641, Santa Cruz), mouse-anti-
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dsRNA (MABE1134, Millipore) antibody for 18h and washed thoroughly in PBS. Primary 

antibody detection occurred using secondary anti-rabbit-AlexaFluor-488 and anti-mouse-

AlexaFluor-594 conjugates (Jackson ImmunoResearch) for 1h. All cells were labeled 

with Hoechst33342 (H3570, Thermo Fisher). Images were acquired using the WiScan® 

Hermes 7-Colour High-Content Imaging System (IDEA Bio-Medical, Rehovot, Israel) at 

magnification 10X/0.4NA. Four channel automated acquisition was carried out sequentially. 

Images were acquired across a well area density resulting in 31 FOV/well and ~20,000 cells. 

Images were pre-processed by applying a batch rolling ball background correction in FIJI 

ImageJ software package 74 prior to quantification. IRF3 translocation analysis was carried 

out using the Athena Image analysis software (IDEA BioMedical, Rehovot, Israel) and data 

post-processed in Python. Infected cell populations were determined by thresholding of 

populations with greater than 2 segmented dsRNA punctae.

mRNA extraction and sequencing of infected cells—RNA was extracted using the 

RNeasy Micro Kits (Qiagen) following manufacturers instructions or TRIzol (Invitrogen). 

Library preparation and sequencing were performed by Azenta Life Science using the 

following conditions: rRNA depletion for mRNA and long noncoding species, standard 

RNAseq run in Illumina® HiSeq 4000™ with a depth of 20–30 million reads per sample.

Mass spectrometry proteomics sample preparation of infected cells—Samples 

were lysed in 6M guanidine hydrochloride (Sigma), boiled at 95°C for 5 minutes, and 

stored on dry ice. Lysed samples were thawed and sonicated using a probe sonicator 1x 

for 15 seconds at 20% amplitude. Insoluble material was pelleted by spinning samples at 

max speed (~13,000 rpm) for 10 minutes. Supernatant was transferred to a new protein 

lo-bind tube and protein was quantified using a Bradford assay. Approximately 500ug of 

protein sample was used for further processing, starting with reduction and alkylation using 

a 1:10 sample volume of tris-(2-carboxyethyl) (TCEP) (10mM final) and 2-chloroacetamide 

(4.4mM final) for 5 minutes at 45°C with shaking. Prior to protein digestion, the 6M 

guanidine hydrochloride was diluted 1:6 with 100mM Tris-HCl pH8 to increase the activity 

of trypsin and LysC proteolytic enzymes, which were subsequently added at a 1:100 (wt/wt) 

enzyme-substrate ratio and placed in a 37°C water bath overnight (~16–20 hours). Following 

digestion, 10% trifluoroacetic acid (TFA) was added to each sample to a final pH of 

~2. Samples were desalted using a vacuum manifold with 50mg Sep Pak C18 cartridges 

(Waters). Each cartridge was activated with 1 mL 80% acetonitrile (ACN)/0.1% TFA, then 

equilibrated with 3 × 1 mL of 0.1% TFA. Following sample loading, cartridges were 

washed with 3 × 1 mL of 0.1% TFA, and samples were eluted with 1 × 0.8 mL 50% ACN/

0.25% formic acid (FA). Ten percent (10%) of the resulting volume (~50μg) was reserved 

for protein abundance measurements, and the remainder was used for phosphopeptide 

enrichment (thus, the same starting material was used for the abundance proteomics 

and phosphoproteomics analysis). All samples were dried by vacuum centrifugation. For 

phosphopeptide enrichment of samples for phosphoproteomics, IMAC beads (Ni-NTA from 

Qiagen) were prepared by washing 3x with HPLC water, incubating for 30 minutes with 

50mM EDTA pH 8.0 to strip the Ni, washing 3x with HPLC water, incubating with 50mM 

FeCl3 dissolved in 10% TFA for 30 minutes at room temperature with shaking, washing 

3x with and resuspending in 0.1% TFA in 80% acetonitrile. Peptides were enriched for 
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phosphorylated peptides using a King Fisher Flex (KFF). For a detailed KFF protocol, 

please contact the authors.

Mass spectrometry proteomics data acquisition of infected cells—Digested 

samples were analyzed on an Orbitrap Exploris 480 mass spectrometry system 

(Thermo Fisher Scientific) equipped with an Easy nLC 1200 ultra-high pressure liquid 

chromatography system (Thermo Fisher Scientific) interfaced via a Nanospray Flex 

nanoelectrospray source. For all analyses, samples were injected on a C18 reverse phase 

column (25 cm × 75 μm packed with ReprosilPur 1.9-μm particles). Analytical columns 

were equilibrated with 6 μl of mobile phase A with a max pressure of 650 bar. For 

abundance proteomics (phosphoproteomics same unless indicated in parentheses) mobile 

phase A consisted of 0.1% FA, and mobile phase B consisted of 0.1% FA / 80% ACN. 

Peptides were separated by an organic gradient from 4% (2%) to 30% (25%) mobile phase 

B over 62 min followed by an increase to 45% (40%) B over 10 min, then held at 95% B 

for 8 min at a flow rate of 300 nl min−1. Data-independent analysis (DIA) was performed 

on abundance and phosphoproteomics samples using an 80 minute gradient. An MS scan 

at 60,000 resolving power over a scan range of 350–1100 m/z, a normalized AGC target of 

300%, and an RF lens setting of 40%. This was followed by DIA scans at 15000 resolving 

power, using 20 m/z isolation windows over 350–1100 m/z at a normalized HCD collision 

energy of 30%. Loop control was set to All. To build a spectral library, one sample from 

each set of biological replicates was acquired in a data-dependent manner. Data-dependent 

analysis (DDA) was performed by acquiring a full scan over a m/z range of 350–1100 in 

the Orbitrap at 60,000 resolving power with a normalized AGC target of 300% and an RF 

lens setting of 40%. Dynamic exclusion was set to 45s, with a 10-ppm exclusion width 

setting. Peptides with charge states 2–6 were selected for MS/MS interrogation using higher-

energy collisional dissociation (HCD), with 20 MS/MS scans per cycle. For phosphopeptide-

enriched samples, MS/MS scans were analyzed in the Orbitrap using isolation width of 1.6 

m/z, normalized HCD collision energy of 30%, and normalized AGC of 200% at a resolving 

power of 15,000 with a 22ms (40ms for phosphoproteomics) maximum ion injection time.

Kinase activity screen—We conducted an ADP-GLO based assay to identify human 

kinases able to phosphorylate full-length SARS-CoV-2 nucleocapsid (N) protein. Assay is 

done in 96-well plates with a total reaction volume of 25uL. There are 3 types of sample 

setups according to the assay components: (1) Kinase only (Kinase + buffer + ATP = 

5+15+5 = 25uL), (2) N-protein substrate only (substrate protein + buffer + ATP = 5+15+5 

= 25uL), and (3) N-protein and Kinase (Kinase + substrate protein + buffer + ATP = 

5+5+10+5=25uL). Each condition was performed in biological duplicate. Briefly, after each 

component of the assay is added, we shake for 1 minute, incubate the plate at 24C for 40 

minutes. We then add 25ul of ADP-GLO reagent to each well, shake for 1 minute, incubate 

the plate at 24C for an additional 40 minutes. We then add 50ul of KDR (kinase detection 

reagent) to each well, shake for 1 minute, incubate the plate at 24C for 30 minutes, and used 

GLOMAX to quantify each well. Novel hits were defined as kinases with greater activity 

against N than our positive control (when comparing kinase + N to kinase alone) and at least 

half the magnitude of the positive control substrate for that kinase (kinase + kinase-specific 

positive control substrate).
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Construct generation for affinity purification mass spectrometry (APMS) 
studies—Mutations were defined based on covariants.org, accessed on Jan 5,2022, and 

correspond to Alpha 20I V1, Beta 20H V2, Delta 21J, Gamma 20J V3, and Omicron 21K. 

Mutagenesis and subsequent plasmid preparation were performed by Genscript Biotech. 

Each sequence was codon optimized for expression in mammalian cells by Genscript 

Biotech. All plasmids were cloned in the lentiviral constitutive expression vector pLVX-

EF1alpha-IRES-Puro (Takara Bio). Constructs are available from the authors upon request. 

Nsp3 plasmids were acquired from Lars Plate 75 and mutagenesis was performed by 

GenScript Biotech.

Transfections for APMS studies—For each viral protein construct (e.g., “bait”), n 

= 3 independent biological replicates were prepared for affinity purification and seven 

million HEK293T cells were plated per 15-cm dish. The WT and mutant baits for each 

SARS-CoV-2 protein were transfected as one experiment on the same day, and one GFP 

control and one empty vector (pLVX-EF1α-IRES-Puro) control were included in each 

experiment. The amount of bait plasmid transfected was determined based on previous 

affinity purification experiments of wave 1 only SARS-CoV-2 baits (2020 Nature paper). 

Total plasmid was topped up to 15 μg with empty vector and the following amounts of 

each bait or control plasmid were transfected: 2 μg GFP; 2.5 μg N, Orf3a, Orf9b; 5.0 

μg Orf7b, Nsp2, Nsp6; 6.125 μg Nsp3; 7.5 μg E, Orf8, Nsp7, Nsp9, Nsp10, Nsp16; 10 

μg Orf6, Nsp4, Nsp5, Nsp8, Nsp11, Nsp15; 12.5 μg S, M, Nsp12, Nsp14; 15 μg Orf3b, 

Orf7a, Orf9c, Orf10, Nsp1, Nsp13, empty vector. Each 15 μg plasmid per 15-cm dish was 

complexed with PolyJet Transfection Reagent (SignaGen Laboratories) at a 1:3 μg:μl ratio 

of plasmid:transfection reagent based on the manufacturer’s recommendations. After more 

than 38h, cells were dissociated on ice using 10 ml Dulbecco’s phosphate-buffered saline 

without calcium and magnesium (DPBS) supplemented with 10 mM EDTA for at least 5 

minutes and subsequently washed three times with 10 ml DPBS. Each step was followed by 

centrifugation at 200g, 4 °C for 5 min. Cell pellets were frozen immediately on dry ice and 

stored at −80°C.

Sample preparation for APMS studies—Frozen cell pellets were thawed on ice for 

15–20 min and resuspended in 1 ml IP lysis buffer. IP lysis buffer (50 mM Tris-HCl, pH 7.4 

at 4 °C, 150 mM NaCl, 1 mM EDTA) was supplemented immediately before use with 0.5% 

Non-idet P40 substitute (NP40; Fluka Analytical) and cOmplete mini EDTA-free protease 

and PhosSTOP phosphatase inhibitor cocktails (Roche). Samples were then frozen on dry 

ice for 10–20 min and partially thawed at 37 °C before incubation on a tube rotator for 30 

min at 4 °C and centrifugation at 13,000g, 4 °C for 15 min to pellet debris. Up to 96 samples 

were arrayed into a 96-well Deepwell plate for affinity purification on the KingFisher Flex 

(KFF) Purification System (Thermo Scientific) as follows: MagStrep ‘type3’ beads (30 μl; 

IBA Lifesciences) were equilibrated twice with 1 ml wash buffer (IP buffer supplemented 

with 0.05% NP40) and incubated with 0.95 ml lysate for 2h. Beads were washed three times 

with 1 ml wash buffer and then once with 1 ml IP buffer. To directly digest bead-bound 

proteins as well as elute proteins with biotin, beads were manually suspended in IP buffer 

and divided in half before transferring to 50 μl denaturation–reduction buffer (2 M urea, 50 

mM Tris-HCl pH 8.0, 1 mM DTT) and 50 μl 1× buffer BXT (IBA Lifesciences) dispensed 
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into a single 96-well KFF microtitre plate. Purified proteins were first eluted at room 

temperature for 30 min with constant shaking at 1,100 rpm on a ThermoMixer C incubator. 

After removing eluates, on-bead digestion proceeded. Streptagged protein expression in 

lysates and enrichment in eluates was assessed by western blot and silver stain, respectively. 

The KFF Purification System was placed in the cold room and allowed to equilibrate to 4 

°C overnight before use. All automated protocol steps were performed using the slow mix 

speed and the following mix times: 30 s for equilibration and wash steps, 2h for binding 

and 1 min for final bead release. Three 10s bead collection times were used between all 

steps. Bead-bound proteins were denatured and reduced at 37°C for 30 min and, after being 

brought to room temperature, alkylated in the dark with 3 mM iodoacetamide for 45 min and 

quenched with 3 mM DTT for 10 min. Proteins were then incubated at 37 °C, initially for 

4 h with 1.5 μl trypsin (0.5 μg/μl; Promega) and then another 1–2 h with 0.5 μl additional 

trypsin. To offset evaporation, 15 μl 50 mM Tris-HCl, pH 8.0 was added to each sample 

before trypsin digestion. All steps were performed with constant shaking at 1,100 rpm on a 

ThermoMixer C incubator. Resulting peptides were combined with 50 μl 50 mM Tris-HCl, 

pH 8.0 to rinse beads and then acidified with trifluoroacetic acid (0.5% final, pH < 2.0). 

Acidified peptides were desalted for MS analysis using a BioPureSPE Mini 96-Well Plate 

(20 mg PROTO 300 C18; The Nest Group) according to standard protocols.

Mass spectrometry proteomics data acquisition for APMS studies—Samples 

were resuspended in 0.1% formic acid and analyzed on a Q-Exactive Plus mass 

spectrometry system (Thermo Fisher Scientific) equipped with an Easy nLC 1200 ultra-

high pressure liquid chromatography system (Thermo Fisher Scientific) interfaced via a 

Nanospray Flex nanoelectrospray source. For all analyses, samples were injected on a C18 

reverse phase column (25 cm × 75 μm packed with ReprosilPur 1.9-μm particles). Analytical 

columns were equilibrated with 5 μl of mobile phase A with a max pressure of 650 bar. 

Mobile phase A consisted of 0.1% FA, and mobile phase B consisted of 0.1% FA / 80% 

ACN. Peptides were separated by an organic gradient from 2% to 7% mobile phase B over 1 

minute, followed by an increase to 36% B over 53 min, then held at 95% B for 13 min, then 

reduced back down to 2% B for 11 minutes at a flow rate of 300 nl min−1. Data-dependent 

analysis (DDA) was performed by acquiring a full scan over a m/z range of 300–1500 in 

the Orbitrap at 70,000 resolving power with an AGC target of 1e6. Top 20 peptides were 

selected for MS/MS interrogation using in-source collision-induced dissociation (CID), with 

20 MS/MS scans per cycle and 17,500 resolving power.

Affinity-purification western blot studies—For affinity purification (AP) western blot 

analysis, HEK293T cells were transfected with the indicated plasmid constructs using 

lipofectamine 2000 (Invitrogen). Twenty four (24) hours post-transfection, cells were 

harvested in NP-40 lysis buffer (50mM Tris-Cl pH 7.5, 150mM NaCl, 0.5% NP-40, 

1mM EDTA) supplemented with cOmplete mini protease inhibitor cocktail and PhosSTOP 

phosphatase inhibitor cocktail (Roche). Clarified cell lysates were incubated with MagStrep 

‘type3’ beads (IBA Lifesciences) for 2–4 h at 4°C, followed by washing the magnetic beads 

with NP-40 lysis buffer for five times. Protein complexes were eluted by direct incubation in 

1X SDS loading buffer and heating at 95 °C. Eluates and whole-cell lysates were analyzed 

by western blotting using the indicated antibodies. The ORF clone for Flag-MARK2 was 
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obtained from Genscript (#OHu23943D). The antibodies used in the study include: rabbit 

polyclonal anti-beta-actin (Cell Signaling Technology #4967, RRID:AB_330288, used at 

1:2000); mouse monoclonal anti-Strep tag (QIAGEN #34850, RRID:AB_2810987, used at 

1:1000); rabbit polyclonal anti-flag antibody (Sigma Aldrich #F7425, RRID:AB_439687, 

used at 1:2000); rabbit polyclonal anti-LEO1 antibody (Atlas antibodies #HPA040741, 

RRID:AB_10794859, used at 1:1000); rabbit polyclonal anti-WDR61 antibody (Atlas 

antibodies # HPA040065, RRID: AB_10793926, used at 1:1000); rabbit polyclonal anti-

PAF1 antibody (Proteintech # 15441–1-AP, RRID: AB_2174457, used at 1:1000); rabbit 

polyclonal anti-CTR9 antibody (Proteintech # 21264–1-AP, RRID: AB_10734585, used at 

1:1000).

Plitidepsin treatment of virus-infected mice—Animal studies using the K18-hACE2 

(Strain #034860 from the Jackson Laboratories) were performed in animal biosafety level 3 

(BSL3) facility at the Icahn school of Medicine in Mount Sinai Hospital, New York City. 

All work was conducted under protocols approved by the Institutional Animal Care and Use 

Committee (IACUC). We utilized five female mice 4-week-old specific pathogen–free per 

group. Mice were anesthetized with a mixture of ketamine/xylazine before each intranasal 

infection (e.g. nares) with different SARS-CoV-2 strains (Alpha, Beta, Gamma, Delta. 

Omicron and Washington strain, WA). Mice were infected with an inoculum of 2.5×104 pfu 

in 50ul of PBS. Four (4) days post-infection (dpi) animals were humanely euthanized. Lungs 

were harvested for viral titration. Silica glass beads tubes were used for the homogenization. 

For viral titers, whole lung was homogenized in PBS then frozen at −80°C for viral titration 

via TCID50. Briefly, infectious supernatants were collected at 48 h post-infection and frozen 

at −80 °C until later use. Infectious titers were quantified by limiting dilution titration using 

Vero TMPRSS2 cells. Briefly, Vero-TMPRSS2 cells were seeded in 96-well plates at 20,000 

cells/well. The next day, SARS-CoV-2-containing supernatant was applied at serial 10-fold 

dilutions ranging from 10−1 to 10−8 and, after 4 days, viral cytopathic effect (CPE) was 

detected by staining cell monolayers with crystal violet. TCID50/ml were calculated using 

the method of Reed and Muench. The R statistical software (package rstatix) was used 

to determine differences in lung titers using a twotailed, unpaired t-test assuming equal 

variances at a confidence interval of 95%. Not all infections were successful in the mice; 

we speculate this to be attributable to the nasal-oral interface being thin in this mouse 

strain, resulting in much of the inoculum going into the stomach instead of the lung in 

some animals. However, the exact cause remains unclear. To remove outlier mice from 

our analyses, we used a Hampel filter which excludes animals that deviated more than 3 

standard deviations from the median.

Virus-like particle (VLP) assays—Virus-like particle assays were performed as 

previously described 12,14. Plasmids CoV2-N (0.67), CoV2-M-IRES-E (0.33), CoV-2-S 

(0.0016) and Luc-T20 (1.0) at indicated mass ratios for a total of 375 ng of DNA were 

diluted in 37.5 μL Opti-MEM containing 1.125 μg PEI (polyethyleneimine, Polysciences). 

For experiments with N*, mass ratios were 0.33 (N), 0.33 (N*), 0.33 (M-IRES-E), 0.0016 

(S), Luc-T20 (1.0). Transfection mixture was incubated for 20 minutes at room temperature 

and then added to HEK293T cells in each well of a 96-well plate containing 150 μL of 

DMEM (with fetal bovine serum and penicillin/streptomycin). Media was changed after 
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24 hours of transfection. At 48 hours post-transfection, VLP containing supernatant was 

collected and filtered using a 0.45 μm pore size filter plate. VLP containing supernatant (50 

μL) was added to 50 μL of cell suspension containing 50,000 receiver cells (HEK293T 

ACE2/TMPRSS2) in each well of tissue culture treated opaque white 96-well plate 

(Corning). Cells were allowed to attach and take up VLPs overnight. The next day, 

supernatant was removed, and cells were lysed in 20 μL passive lysis buffer (Promega) 

for 15 minutes at room temperature with gentle rocking. Using a TECAN Spark plate reader, 

50 μL of reconstituted luciferase assay buffer (Promega) was added to each well and mixed 

for 15 seconds followed immediately by luminescence measurement. Expression of VOC N 

protein constructs was evaluated previously 12 and found to be equivalent across constructs 
14.

QUANTIFICATION AND STATISTICAL ANALYSIS

mRNA sequencing quantitative analysis—All reads were mapped to the human host 

genome (ensembl 101) using HISAT2 aligner 76. Host transcript abundances were estimated 

using human annotations (ensembl 101) using StringTie 77. Differential gene expression 

was calculated on the basis of read counts extracted for each protein-coding gene using 

featureCount and significance was determined by the DESeq2 R package 78. On average, we 

quantified ~16,000–17,000 mRNA transcripts above 1 count per million reads.

SARS-CoV-2 genome reconstruction—Forward and reverse reads from mRNA 

sequence data were merged into one file and were not treated as paired-end for denovo 

assembly. Reads were normalized such that the maximum genome coverage would be no 

more than 200x using bbnorm from the bbmap package (https://jgi.doe.gov/data-and-tools/

software-tools/bbtools/bb-tools-user-guide/bbmap-guide/). This aided assembly of genomes 

with high variability in coverage. Normalized reads were then assembled with SPAdes 79 

(v3.15.3) with various k-mer sets ranging from 27 to 97. Assemblies were compared to the 

reference SARS-CoV-2 genome and complete assemblies of the entire genome were selected 

for further analysis.

Mass spectrometry proteomics data search for infected cells—Mass spectra from 

each DDA dataset were used to build experiment-specific libraries for DIA searches using 

the Pulsar search engine integrated into Spectronaut v. 16.0.220606.53000 (Hawking) by 

searching against a database of Uniprot Homo sapiens sequences (downloaded 22 March 

2022) and a SARS-CoV-2 proteome of 149 protein sequences spanning five variants of 

concern (Alpha 20I V1, Beta 20H V2, Gamma 20J V3, Delta 21J, and Omicron 21K) 

and 32 viral proteins, including N-star (N*). For Experiment 3, directDIA search settings 

were used. For protein abundance samples, data were searched using the default Biognosys 

(BGS) settings, variable modification of methionine oxidation, static modification of 

carbamidomethyl cysteine, and filtering to a final 1% false discovery rate (FDR) at the 

peptide, peptide spectrum match (PSM) and protein level. For phosphopeptide-enriched 

samples, BGS settings were modified to include phosphorylation of S, T and Y as a variable 

modification. The generated search libraries were used to search the DIA data. For protein 

abundance samples, default BGS settings were used, with no data normalization performed. 
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For phosphopeptide-enriched samples, the PTM site localization score in Spectronaut was 

applied. Imputation was removed for all analyses.

Mass spectrometry proteomics quantitative analysis for infected cells—
Quantitative analysis was performed in the R statistical programming language (v.4.1.3). 

Initial quality control analyses, including inter-run clusterings, correlations, principal 

component analysis (PCA), peptide and protein counts and intensities were completed with 

the R package artMS (v. 1.12.1). On the basis of obvious outliers in intensities, correlations 

and clusterings in PCA analysis, one run was discarded from the phosphoproteomics 

dataset: Experiment 1, IC10_10h.1. Statistical analysis of phosphorylation and protein 

abundance changes between mock and infected runs, as well as between infected runs from 

different variants were computed using peptide ion fragment data output from Spectronaut 

and processed using artMS. Quantification of phosphorylation differences was performed 

using artMS as a wrapper around MSstats, via functions artMS::doSiteConversion and 

artMS::artmsQuantification with default settings. All peptides containing the same set of 

phosphorylated sites were grouped and quantified together into phosphorylation site groups. 

For both phosphopeptide and protein abundance MSstats pipelines, MSstats performs 

normalization by median equalization, no imputation of missing values, and median 

smoothing to combine intensities for multiple peptide ions or fragments into a single 

intensity for their protein or phosphorylation site group. Lastly, statistical tests of differences 

in intensity between infected and control time points were performed. When not explicitly 

indicated, we used defaults for MSstats for adjusted P values, even in cases of n = 2. 

By default, MSstats uses the Student’s t-test for P value calculation and the Benjamini–

Hochberg method of FDR estimation to adjust P values.

Quantifying viral RNAs in infected cells—Coronavirus RNA transcripts were 

characterized by the junction of the leader with the downstream subgenomic sequence. 

Reads containing possible junctions were extracted by filtering for exact matches to the 

3’ end of the leader sequence “CTTTCGATCTCTTGTAGATCTGTTCTC” or the mutated 

form “CTTTTGATCTCTTGTAGATCTGTTCTC” (mutation underlined) as appropriate for 

BA.2, BA.4 and BA.5 using the tool bbduk from the BBTools package (version 38.96; 

Bushnell B. - sourceforge.net/projects/bbmap/). This subset of leader-containing reads were 

then left-trimmed to remove the leader, also using bbduk. The filtered and trimmed reads 

were then matched against a full length genomic sequence with the bbmap tool from 

BBtools using settings (maxindel=100, strictmaxindel=t, local=t). The left-most mapped 

position in the reference was used as the junction site. Full length genome sequences were 

assembled de novo from all reads from a late time point sample of the same virus in 

the same batch using SPAdes 79, as described above. The position numbers between viral 

genomes were standardized to a reference SARS-CoV-2 sequence (accession NC_045512.2) 

using global pairwise alignments of full length sequences. Junction sites were labeled 

according to canonical locations of TRS sequences, or other known site with a +/− 5 base 

pair window as follows (genomic = 67, S = 21553, orf3 = 25382, E = 26237, M = 26470, 

orf6 = 27041, orf7 = 27385, orf8 = 27885, N = 28257, orf9b = 28280, N* = 28878).
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Quantifying viral proteins in infected cells—Peptide ions or “features” (each charge 

state treated separately) that were likely false identifications based on an unexpected 

observation within the mock-infected samples were excluded. This exclusion was based 

on a categorical linear regression of log2 intensity values at 24 hours post infection using the 

R function lm per peptide ion, encoding category names to treat all mock-infected samples 

as the intercept, and requiring a significant coefficient on each and all of the virus samples 

(log2FC > 1, p-value < 0.05, two sided t-test). This exclusion was done separately per 

experiment. For the rSARS-CoV-2 N D3L and −3 deletion mutant virus experiment (exp. 

6), we removed falsely identified peptide ions by required peptide ion intensities to be at 

least 10x greater in the average of infection conditions relative to the mock conditions. Once 

final features were selected, viral protein intensities were calculated as the sum of feature 

intensities that mapped to each viral protein (as determined by the Spectronaut search, 

above).

Quantifying viral protein phosphorylation in infected cells—We started by 

systematically determining the amino acid mutations present within each VOC (Table 

S1) relative to the Wuhan reference, annotated by its position within each viral protein. 

Deletions or insertions were annotated in relation to the Wuhan reference. Phosphorylated 

peptide intensities were defined as the sum of phosphorylated peptide ion (i.e., same peptide 

could have different charge states or other modifications such as oxidation) intensities 

from the phosphoproteomics data (per biological replicate), requiring that summed peptides 

had identical phosphorylation site modification(s). For example, a peptide with two 

forms, phosphorylated on one site or two, were quantified separately. Importantly, only 

phosphorylated peptides that possessed a conserved sequence across each pair of viruses 

being compared were used for quantification of phosphorylated peptide intensities to 

control for physicochemical peptide properties that may affect their quantitation using 

mass spectrometry. Viral protein intensities were defined as the sum of peptide feature 

intensities from the abundance proteomics data that mapped to each viral protein (as 

determined by the Spectronaut search, above). We then calculated the ratio between each 

corresponding phosphorylated peptide intensity and viral protein intensity per biological 

replicate (phosphorylated peptide intensity / viral protein intensity). Next, we performed 

a two-tailed t-test, assuming unequal variance, generating a t-statistic and p-value per 

phosphorylated peptide. We required at least two biological replicates per condition to 

perform the t-test (see Table S2 for full set of results).

Mutation and structure analysis—For the conservation analysis, SARS-CoV-2 protein 

sequences were downloaded from Uniprot 80 and the orf1ab polyprotein split into sub-

sequences based on the Uniprot annotation. A custom reference database was generated 

based on the NCBI virus coronavirus genomes dataset (NCBI Resource Coordinators, 2018), 

which includes sequences from a large range of coronaviruses. SARS-CoV-2, SARS and 

MERS sequences were filtered to only contain sequences from the Wuhan-Hu-1 strain, 

the Urbani strain and the HCoV-EMC/2012 strain respectively. Without this the dataset 

contains very large numbers of almost identical sequences from patient samples, which are 

not informative since SIFT4G looks to compare across species. The remaining sequences 

were clustered using MMseqs2 81 with an overlap threshold of 0.8 and a sequence identity 
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threshold of 0.95, which grouped other duplicate sequences into representative clusters. 

SIFT4G Scores were generated for all possible variants to the SARS-CoV-2 sequences based 

on this database. A modified copy of SIFT4G was used, which reports scores to 5 decimal 

places instead of the usual 2.

For the structural destabilization analysis, structures were sourced from the SWISS-Model 
64,82 SARS-CoV-2 repository (https://swissmodel.expasy.org/repository/species/2697049), 

which contains experimental structures and homology models. Models were required to have 

greater than 30% sequence identity and a QMean score 83 greater than −4, as recommended 

by SWISS-Model. Suitable models were available for 19 of the 28 viral proteins. Models 

were ordered by priority; firstly experimental models over homology models and then by 

QMean Score. Models were examined in turn and any position not covered by a higher 

priority model was added to the FoldX analysis pipeline. FoldX’s RepairPDB command 

was used to pre-process selected SWISS-Model PDB files. All mutations at each position 

assigned to each model were modeled using the BuildModel command, using the average 

ΔΔG prediction from three runs.

For the structural accessibility analysis, we used Naccess (Hubbard and Thornton, 1993), 

which was run on each structure using the default settings. Structures were filtered to only 

include the chain corresponding to the appropriate SARS-CoV-2 protein. This means some 

surface accessible positions are usually found in interfaces rather than facing the solvent. 

Since structures are not always complete, surface accessibility is an approximation and will 

not be accurate in all cases. The code managing the pipeline and analyses are available 

at https://github.com/allydunham/mutfunc_sars_cov_2. The web service source code is 

available at https://github.com/allydunham/mutfunc_sars_cov_2_frontend. The pipeline is 

managed through Snakemake 84. For more information about the mutation and structure 

analysis, see prior work 85.

Mass spectrometry proteomics data search for APMS studies—Resulting mass 

spectra were searched using MaxQuant (v.1.6.12.0) 86,87 using default settings and searching 

against a database of Uniprot Homo sapiens sequences (downloaded 22 March 2022), a 

SARS-CoV-2 proteome of 149 protein sequences spanning five variants of concern (Alpha 

20I V1, Beta 20H V2, Gamma 20J V3, Delta 21J, and Omicron 21K) and 32 viral proteins, 

including N-star (N*), and the enhanced green fluorescence protein (eGFP) sequence. 

Detected peptides and proteins were filtered to 1% false-discovery rate in MaxQuant.

Scoring protein-protein interactions for APMS studies—Identified proteins were 

subjected to protein–protein interaction scoring with both SAINTexpress (v.3.6.3)88 and 

MiST (https://github.com/kroganlab/mist) 89,90 scoring algorithms. For SAINT scoring, each 

APMS experimental batch was scored separately relative to independent negative controls: 

empty vector (EV) and enhanced green fluorescence protein overexpression (eGFP). For 

MiST scoring, all samples across all batches were scored together. Three scoring thresholds 

were generated, all included the requirement of average spectral counts (AvgSpec) to be 

greater than two: (i) SAINT only requiring SAINT BFDR<0.05, (ii) SAINT and MiST 

requiring BFDR<0.05 & MiST>0.5, and our final selected threshold (iii) SAINT, MiST, 

and Gordon et al. (2020) requiring [BFDR<0.05 & MiST>0.5] | [BFDR<0.05 & present in 
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Gordon et al. (2020)]. These thresholds had to be satisfied in either the mutant or wave 1, but 

not both, for every mutant and wave 1 pair. Although (iii) is our final, most high-confidence, 

scoring scheme, interactions in (i) and (ii) are worth consideration for follow-up studies (see 

Table S3 for full list of unthresholded and highconfidence interactions).

Differential protein-protein interaction analysis for APMS studies—We 

used the R package MSstats 91 to quantify changes in “prey” protein abundance 

between the corresponding mutant (VOC) and wave 1 “bait” forms. We first 

converted MaxQuant evidence files to MSstats format using MaxQtoMSstatsFormat 

with proteinID=”Leading.razor.protein”, useUniquePeptides=FALSE, 

summaryforMultipleRows=sum, removeFewMeasurements=FALSE, 

removeOxidationMpeptides=FALSE, and removeProtein_with1Peptide=FALSE. We then 

ran the dataProcess function with featureSubset=”all”, normalization=”equalizeMedians”, 

MBimpute=FALSE, and summaryMethod=”TMP”. In essence, we performed normalization 

by median equalization, did not impute missing values, and combined (i.e., “summarized”) 

intensities for multiple peptide ions or fragments into a single intensity for their protein 

group. Lastly, statistical tests of differences in intensity between mutant and wave 1 were 

performed. We used defaults for MSstats for adjusted P values, even in cases of n = 2. 

By default, MSstats uses the Student’s t-test for P value calculation and the Benjamini–

Hochberg method of FDR estimation to adjust P values. This analysis resulted in log2 fold 

changes (log2FC) and p-values per interaction between corresponding mutant and wave 1 

baits. We defined differential interactions based on two criteria: (1) The prey must be a high-

confidence interaction in either the mutant or wave 1 bait (see scoring thresholds above) and 

(2) the prey must be changing in abundance between the mutant and wave 1 forms with 

an absolute value log2FC>0.05 and p<0.05. For all proteins that fulfilled these criteria, we 

extracted information about the stable protein complexes that they participated in from the 

CORUM database of known protein complexes 63. We visualized differential interactions 

and CORUM complexes using Cytoscape (v.3.8.0) 92. We exported the cytoscape network 

as PDF and imported the PDF into Adobe Illustrator to refine the aesthetics and add 

annotations for protein complexes and biological processes. Biological process terms were 

manually refined from a set of GO Biological Process enrichments acquired using the 

clusterProfiler package 93 in R.

Defining functional modules for integrative computational analysis—To define 

the genes and functional modules involved in host response, infection-regulated host genes 

were defined by requiring significant changes at any time point versus time-matched mocks 

using thresholds of absolute log2FC > 1 and p-value < 0.001 for phosphoproteomics and 

transcriptomics. Using a single unadjusted p-value, as opposed to a FDR threshold, across 

all viruses allowed for the application of consistent thresholds per virus without favoring any 

while still keeping the FDR to a reasonable level (0.00x to 0.00x for all contrasts) based on 

the high number of regulated genes. For phosphoproteomics, we further limited the set to 

only the likely functionally-important phosphorylation sites by requiring a functional score 

greater than 0.4 according to Ochoa et al. 94. For the proteomics data with lower number 

of regulated proteins, there was more need to control the FDR, so we used thresholds 

of absolute log2FC > log2(1.5) and FDR-adjusted (Benjamini-Hochberg) p-value < 0.05. 
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Additionally, within each of the three different omics, a gene or phosphosite had to pass 

these thresholds twice at either different time points, viruses, or batches. All genes that 

passed thresholds of regulation in any omics in batches Experiment 1 and 2 were pooled to 

define the total set of infection-regulated genes. A subnetwork of STRING (version 11.5) 

was then extracted that contained all matching STRING proteins using STRING’s gene 

alias table, and all edges between any pair of these STRING proteins with composite score 

greater than 0.6. A matrix of network distances between all genes was calculated using 

Diffusion State Distance (DSD) 95. DSD evaluates inter-gene network distance based on 

differences of diffusion by random walks from the two genes, and was a major portion 

of the best overall method for network module detection in Choobdar et al. 96. The DSD 

distance matrix was used as input to the R function hclust with agglomeration method 

set to “average”. The resultant hierarchical clustering was divided into modules by the 

function cutreeHybrid in R package dynamicTreeCut (version 1.63–1) with deepSplit set 

to 3. Modularization was visualized by coloring genes by module on a t-SNE plot of the 

regulated genes built using the R package Rtsne (version 0.16) with the DSD distance matrix 

as input. Modules were named by performing over representation analysis on sets of genes 

annotated by all gene ontology terms using the R package clusterProfiler (version 4.4.1) and 

the R annotations package org.Hs.eg.db (version 3.15.0). From among the eight GO terms 

with the lowest p-value per module, the term with the greatest number of genes was chosen 

for the module’s name, with ties broken by lowest p-value.

Calculating module correlations for integrative computational analysis—For 

each unique combination of batch, virus, timepoint, and omics, the response of a module 

to infection was calculated as the mean of all observed genes’ absolute log2FC vs 

mock. The mean of all modules’ values from transcriptomics was used as the Average 

Host Response (AHR). Correlation values between modules, using each of proteomics, 

phosphoproteomics and transcriptomics separately, and the AHR or virus protein levels were 

calculated as Pearson’s R using the values from the 11 samples from 7 different viruses in 

experiments 1 and 2. Each module gets a separate correlation to the AHR for its proteomics, 

phosphoproteomics and transcriptomics. These three different correlations were summarized 

to a composite R value using geometric mean to rank them for their correlation to AHR. 

The geometric mean was used to favor consistently high correlation across the three omics. 

To rank those least correlated, we defined the composite R value by first transforming by 

subtracting from 1, taking the geometric mean, and then subtracting from 1 again to convert 

back to a similar scale as the original R values. This transformation allowed for the handling 

of negative R values and still enabled the property of geometric means to favor consistently 

high numbers to find those that are consistently low. For correlating modules with virus 

protein intensity, the log2 virus protein intensities were used.

Network propagation version of integrative computational analysis—We 

downloaded the human physical protein-protein interaction network from String, version 

11.5 97. We focused on genes with full RNA data across the 11 conditions whose encoded 

proteins are present in the network. For each gene and each condition, we set its log2 

fold-change (24hpi relative to mock) in absolute value as a prior value for that condition. 

We subjected these values to a network propagation process with symmetric normalization 
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and a parameter of 0.5, which smooths the values across the network while accounting for 

their prior values 98. The resulting values were averaged for every module and condition and 

compared to these averages across all modules (AHR, average host response). We further 

computed nominal p-values per module by comparing a module’s AHR correlation value to 

those obtained by randomizing module assignment while preserving module sizes. Similar 

analyses were conducted for abundance and phosphoproteomics data by completing missing 

(prior) data with zeros.

Variant-specific integrative computational analysis—The variant-specific analysis 

was performed by calculating the residual for each variant from the x=y line in a plot of 

AHR versus each module abs(log2FC). Modules with between 1 and 3 variants (but not 

more) with abs(residuals) > 0.5 were retained and visualized in a heatmap.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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HIGHLIGHTS

• Systems analyses reveal the host selective forces that drive SARS-CoV-2 

evolution.

• Variants remodel viral protein levels, phosphorylation, and virus-host 

complexes.

• Variants converge on innate immune suppression by modulating viral 

proteins.

• Understanding innate/adaptive immune balance will aid future pandemic 

preparedness.
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Figure 1. VOCs impact RNA and protein landscape during infection.
(A) Global COVID-19 case numbers (log2 transformed) over time, annotated for each 

SARS-CoV-2 variant of concern (VOC) based on sequences from GSAID. Thin lines reflect 

raw counts, and thick lines represent a LOESS fit. Inset: y-axis is displayed in linear scale.

(B) Number of protein coding and non-coding mutations for each VOC. Data were from 

covariants.org on Jan 5, 2022, and correspond to Alpha 20I V1, Beta 20H V2, Delta 21J, 

Gamma 20J V3, and Omicron 21K.

(C) Number of protein coding mutations per protein in the VOCs.

(D) Experimental workflow. Infected Calu-3 cells were harvested at 10 and 24 

hours post-infection (hpi) and processed for bulk mRNA sequencing and global mass 

spectrometry abundance proteomics and phosphoproteomics. We additionally performed 

affinity purification mass spectrometry (AP-MS) on individually overexpressed VOC and 

W1 viral proteins in HEK293T cells to quantify changes in virus-host protein interactions.

(E) Quantitative reverse-transcription PCR (qRT-PCR) for viral E gene copies to quantify 

viral replication over time for each experiment. Calu-3 lung epithelial cells were infected 

with 2000 E copies/cell of each SARS-CoV-2 VOCs, VIC, IC19 or mock. Stars indicate 

significant difference relative to time-matched VIC (adjusted p-value < 0.05).

(F) Viral replication over time in experiments 1 and 2 based on Orf1a leader sequence-

containing counts from bulk mRNA sequencing.

(G) Quantification of the sum of non-structural protein intensities from abundance 

proteomics for each virus in experiment 1 or 2 at 10 and 24 hpi in Calu-3 cells.
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(H) Flow cytometry assessing the percentage of cells positive for nucleocapsid (N) staining 

for each virus at 10 and 24 hpi in Calu-3 cells. Error bars represent standard error (SE).

(I) Fraction of mRNA, protein, or phosphorylation sites that change (black; abs[log2FC]>1 

& q<0.05) in response to infection with at least one virus, for at least one time, in at least 

one experiment, relative to mock. Fraction of protein-protein interactions from AP-MS data 

that change between VOC and W1 viral proteins (abs[log2FC]>0.5 & p<0.05; right bar).

(I) Number of mRNA transcripts, proteins, or phosphorylated peptides that increase or 

decrease for each condition and time, compared to mock. Numbers in parentheses indicate 

experiment number.
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Figure 2. Convergent molecular strategies of VOCs.
(A) Comparative systems omics revealed VOCs converge on key molecular strategies 

to remodel the host environment by altering viral gene expression, viral protein 

phosphorylation, and virus-host protein complexes relative to W1 viruses.

(B-C) Normalized read counts from bulk mRNA sequencing containing the leader sequence 

and mapping to a portion of the SARS-CoV-2 genome (B) or normalized protein intensities 

from abundance proteomics (C) at 24 hpi in Calu-3 cells. RNA quantities are normalized 

to Orf1a genomic (log2(counts/genomic/W1)) per virus and viral protein intensities to the 

summed intensity of Nsps (log2(intensity/sum of nsps/W1)) to control for differences in 

viral replication and defined relative to W1 virus VIC. Experiments 1 and 2 were integrated 

after normalization. Stars indicate abs(log2FC)>1 & adjusted p-value < 0.05.
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(D) Absolute value log2 VOC- and VIC-normalized viral protein quantities from (C) for 

each VOC. Colored dots indicate proteins regulated more than twofold in expression, 

compared to VIC. Dashed line denotes twofold expression change. All VOCs encode at 

least one viral protein expression change relative to VIC and IC19.

(E) SARS-CoV-2 Orf9b viral RNA and protein for Alpha and Delta isolated from (B) and 

(C).

(F) Genomic sequence of the region surrounding the start of the N gene. “−3” indicates 

three nucleic acid positions upstream of the N translation start (“N start”). Orf9b translation 

start (“Orf9b start”) is indicated within the N coding region. Mutations in Alpha (−3 

deletion and N protein D3L) and Delta (−3 deletion only) are indicated in red. The Orf9b 

transcriptional regulator sequence (TRS) is also indicated and is thought to be enhanced by 

the GAU→CUA.

(G) Depiction of how mutations colored red in (F) may affect transcription and translation of 

Orf9b.

(H) Expression of viral sgRNA (from bulk mRNAseq) and protein (bulk proteomics) from 

mutant viruses (derived via reverse genetics approaches) at 48 hpi in Calu-3 (MOI=0.01): 

one with a N D3L mutation (GAU→CUA), one with a −3 deletion upstream of N start, 

and one with both. Quantifications are normalized to genomic (RNA, log2(counts/genomic/

W1)) or summed intensity of all Nsps (protein, log2(intensity/sum of nsps/W1)) per virus 

to control for differences in viral replication and defined relative to wave 1 virus from 

Washington, USA (USA-WA1/2020)

(I) Absolute value t-statistic from t-tests comparing phosphorylated peptide intensities 

between all possible pairs of viruses (see Table S2 and Methods). Each dot represents one 

phosphopeptide compared between two viruses. Intensities are normalized by corresponding 

total protein abundance. Comparisons were restricted to viral peptides with identical 

sequences between virus pairs, given that peptide intensities of peptides with different 

sequences are not directly comparable using mass spectrometry. If p≤0.001, dots are colored 

black, otherwise they are grey.

(J) The t-statistic from t-tests in (I) restricted to phosphorylation sites on N and relative to 

VIC. If p≤0.001, dots are colored black, otherwise they are grey. All VOCs, except Gamma, 

show evidence of remodeling N protein phosphorylation relative to VIC.

(K) Significantly changed phosphorylation sites (p≤0.001) on N protein between pairs of 

viruses. Length of each lollipop depicts the abs(t-statistic) between the pairs of viruses.

(L) In vitro ADP-GLO kinase activity assay of 122 recombinant kinases (predicted 

to phosphorylate N protein sequence based on GPS 5.0) incubated with full-length 

recombinant W1 SARS-CoV-2 N protein.Y-axis depicts the log2 fold-change between the 

kinase incubated with N or alone. Red indicates our positive control, SPRK1 and GSK3β 
co-incubated with full-length N 17. Labeled kinases indicate those with greater activity 

against N than our positive control and at least half the magnitude of the canonical positive 

control substrate for that kinase.

(M) Quantified changes in protein-protein interactions for 127 protein-coding mutations in 

16 mutated viral proteins across all 5 VOCs. Left, number of high confidence virus-human 

interactions for all mutant VOC and wave 1 (W1) viral proteins using APMS. Of 1746 

interactions, 1473 were unchanged (gray), 150 increased in binding affinity with at least 

one mutant (red), and 123 decreased in binding affinity with at least one mutant (blue). 
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Significant increase in mutant binding affinity (red) is defined as log2 fold-change>0.5 

& p<0.05. Significant decrease in mutant binding affinity (blue) is defined as log2 fold-

change<−0.5 & p<0.05. Right, same but broken down by VOC.

(N) Virus (“bait”, diamonds) host (“prey”, circles) protein-protein interaction (PPI) map 

for N*, Orf9b, and Orf6 depicting significantly changing interactions (absolute value log2 

fold-change>0.5 & p<0.05) comparing VOC to W1 forms (see Fig 3 and Table S3).
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Figure 3. VOC evolution rewires virus-host protein-protein interactions.
Virus (“bait”, diamonds) host (“prey”, circles) protein-protein interaction (PPI) map 

for significantly changing interactions (absolute value log2 fold change>0.5 & p<0.05) 

comparing VOC to W1 forms (see Table S3). Color of edge represents log2 fold change 

in the abundance of each human prey protein in the affinity purification as determined by 

mass spectrometry, comparing VOC and W1 forms. Multiple edges are displayed when the 

same affinity purification was performed multiple times and both results were significantly 

differentially interacting. Black edges indicate human-human protein complexes annotated 

by CORUM 63, also highlighted and annotated using yellow shading. Biological processes 

are indicated using cyan shading.
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Figure 4. Integrative computational analysis reveals conservation and divergence of host 
response to variants.
(A) Number of RNA transcripts, proteins, or phosphorylation sites that significantly 

changed during VOC infection, compared to mock at 24 hpi. For transcriptomics and 

phosphoproteomics, we required absolute value log2 fold-change log2FC >1 and p<0.001. 

For abundance proteomics, we required abs(log2FC)>log2(1.5) & q<0.05. For each dataset, 

a molecule had to pass the threshold twice at either times, viruses, or experiments.
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(B) Flowchart of computational pipeline. Host genes regulated during infections from (A) 

were extracted from the STRING network and clustered into 85 pathway modules based on 

a diffusion measure of network node proximity (see Methods).

(C) Average absolute value log2 fold-change versus mock for each module (gray lines) using 

RNA or phosphorylation data. Virus conditions are ordered by their timeline of emergence 

around the world. The purple line defines the average across the module intensities to define 

the AHR.

(D) Pearson’s R correlation between viral genomic (leader + Orf1a) RNA counts (R=0.59) 

or sum of non-structural protein (Nsps) intensities (R=0.77) versus VIC plotted against the 

AHR defined in (C). Each dot represents one virus condition at 24 hpi.

(E) Pearson’s R correlation between the average log2 fold-change of each module, per 

dataset, and the RNA-derived AHR. Red dots indicate 10 modules most correlated 

with the AHR, based on a geometric mean across RNA, abundance proteomics, and 

phosphoproteomics datasets (“composite R”). Blue dots indicate 10 modules least correlated 

with AHR.

(F) 10 most (red; highest correlation coefficients) and 10 least (blue; lowest correlation 

coefficients) correlated modules with AHR, annotated by the most prevalent GO Biological 

Process term, module number, and number of genes within the module that connect to the 

top GO term. The x-axis depicts the composite R value (defined in E). Colored numbers 

indicate ranking of modules based on composite R. Terms in bold highlight prevalent 

biological categories: translation related terms in top 10 and innate immune/inflammation 

related terms in the bottom 10. Red modules represent pathways similarly regulated by 

all variants (“less variant specific”). Blue modules represent pathways differently regulated 

across the variants (“more variant specific”).

(G) t-Distributed Stochastic Neighbor Embedding (t-SNE) plot representing the STRING 

network proximity between genes, colored according to the module annotation. Top (red) 

and bottom (blue) 10 modules are bolded, and their locations are annotated using contours.

(H) Innate immune- and inflammation-related modules within the 10 least correlated with 

the AHR.

(I) RNA and protein expression of interferon stimulated genes (ISGs) and RNA expression 

of proinflammatory genes at 24 hpi in Calu-3 cells. Expression is defined as the average 

log2FC of ISGs or proinflammatory genes (see Table S4 for list of genes) for each virus 

compared to VIC and averaged across batches. Error bars depict SE. Proinflammatory genes 

were sparsely detected at the protein level and excluded.

(J) Western blot of MX1, IFIT1, IFITM3, and SARS-CoV-2 nucleocapsid (N) protein 

expression in Calu-3 cells infected with 2000 E copies/cell at 24 hpi. Protein quantification 

over β-actin is shown normalized to IC19 levels.

(K) Correlation of viral genomic (leader + Orf1a) counts and ISG expression (versus VIC) 

over time. Viral counts are represented as transcripts per million. Times 10 and 24 hpi are 

represented by circles and triangles, respectively.

(L) Viral replication of Alpha, Delta, or Omicron BA.1 in Calu-3 cells at 48 hpi with and 

without ruxolitinib, a JAK/STAT inhibitor. Fold-change between conditions is noted.

(M) Relationship between ISG and proinflammatory gene expression for each virus at 24 

hpi in Calu-3 cells relative to VIC for RNA.
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(N) Pearson’s R correlation between average log2FC for each module and levels of each 

viral protein across the viruses. Innate immune and inflammatory modules in the 10 

least correlated category, including one additional innate immune term ranked 11th (m43, 

regulation of immune response), are colored. Viral proteins are ranked from left-to-right 

according to the average R values across the five inflammation-related terms.
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Figure 5. Omicron subvariants evolved innate immune antagonism by modulating Orf6.
(A) Experimental workflow. Calu-3 cells were infected with the indicated variants, and W1 

control IC19. Cells were harvested at 10, 24, and 48 hpi for bulk mRNA sequencing. Cells 

were harvested at 24 and 48 hpi for abundance mass spectrometry proteomics analysis.

(B) Counts of viral genomic (leader + Orf1a) RNA over time for each virus.

(C) ISG (RNA and protein) and proinflammatory gene (RNA) expression at 48 hpi relative 

to BA.1. Proinflammatory genes were sparsely detected at the protein level and excluded. 

Error bars represent SE.

(D) Heatmap of ISG protein expression for Omicron subvariants at 24hpi. Color indicates 

the log2 fold-change in expression, relative to Omicron BA.1.

(E) Same as D, but at 48hpi.

(F) Relationship between ISG and proinflammatory gene expression for each virus at 48 hpi 

in Calu-3 cells, relative to BA.1 for RNA as in (C).

(G) Expression of viral RNA for Omicron subvariants, normalized to viral genomic (leader 

+ orf1a) counts for each virus and set relative to BA.1. Error bars represent SE.
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(H) Expression of viral protein for Omicron subvariants, normalized to the sum non-

structural protein (Nsps) intensities for each virus and set relative to BA.1. Error bars 

represent SE.

(I) ISG RNA (left) and protein (right) expression versus VIC for Alpha, Omicron BA.1, an 

Orf6 knock-out version of Alpha created using reverse genetics, and poly I:C.

(J) AP-MS of Orf6 D61L (occurring in BA.2 and BA.4 but not BA.1 or BA.5) compared to 

wave 1 (W1) Orf6 in HEK293T cells. All detected proteins are plotted with high-confidence 

interactions that are also significantly differentially interacting (abs(log2FC)>0.5 & p<0.05) 

highlighted in blue.

(K) X-ray crystallography structure (PDB 7VPG) of RAE1, NUP98, and Orf6. Orf6 D61 

residue is pink and forms a hydrogen bond (gray sticks) with RAE1. Other Orf6 residues 

(E59, E56, D53, and E55) that participate in interactions with RAE1 are shown. M58 inserts 

into a RAE1 hydrophobic pocket.

(L) Model of the effects of Orf6 levels and Orf6 D61L mutant status on the innate immune 

response. The nuclear pore (RAE1 and NUP98) physically interacts with Orf6, which 

suppresses the nuclear translocation of ISG-inducing transcription factors and export of ISG 

mRNAs during infection. This interaction is weakened, but not abolished, when the D61L 

mutation is present, resulting in diminished innate immune antagonism by Orf6. BA.1 and 

BA.2 downregulate Orf6 relative to early-lineage SARS-CoV-2 (IC19), which results in 

an increased innate immune response during infection, exacerbated by the presence of the 

D61L mutation in BA.2. Conversely, BA.4 and BA.5 upregulate Orf6 protein to similar 

levels. However, BA.5 more strongly antagonizes the innate immune response, which we 

speculate is due to the absence of the D61L mutation.
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Figure 6. VOCs balance adaptive and innate immune escape during the course of their evolution.
(A) Data on Spike sequence similarity relative to W1 virus (green) and ISG expression 

(this paper, red) are shown for each variant. Impact of viral protein expression and point 

mutations are indicated (red and green text). Importantly, the line does not imply sequential 

evolution.

(B) Model for SARS-CoV-2 VOC convergent strategies to modulate the immune responses. 

Spike mutations increase evasion from the adaptive immune system (top). In this work, 

we discovered VOC mutations that enhance viral protein expression and rewire virus-

host protein interactions that modulate the innate immune response. A coordinated 

balance between adaptive and innate immune evasion is required by successful variants. 

Combination therapeutic strategies that enhance adaptive and innate immunity may improve 

disease outcomes for patients.
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Key resources table

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Anti-human IFIT1 rabbit monoclonal antibody, clone: D2X9Z Cell Signaling Technology Cat# 14769, RRID:AB_2783869

Anti-human MX1 rabbit monoclonal antibody, clone: D3W7I Cat# 37849, RRID:AB_2799122

Anti-SARS Coronavirus Spike rabbit polyclonal antibody Thermo Fisher 
Scientific

Cat# PA1-41165, 
RRID:AB_1087210

Anti-SARS-CoV-2 ORF6 rabbit polyclonal antibody Abnova Cat#: PAB31757

Anti-SARS-CoV-2 ORF9b rabbit polyclonal antibody ProSci Cat#: 9191

Anti-SARS-CoV N human monoclonal antibody, clone: Cr3009 A gift from Laura McCoy, UCL described in Thorne et al, 2021

Alexa Fluor 488-conjugated AffiniPure F(ab’)2 Fragment Donkey 
Anti-Human IgG

Jackson ImmunoResearch Cat# 709-546-149; RRID: 
AB_2340569

Alexa Fluor® 594 AffiniPure F(Ab’)2 Fragment Goat Anti-Mouse 
IgG

Jackson ImmunoResearch Cat#: 115-585-006; AB_2338872

Anti-human beta-Actin rabbit monoclonal antibody, clone: 6L12 Sigma-Aldrich Cat# A2066, RRID:AB_476693

Goat anti-Mouse IgG H&L (IRDye® 680RD) Abcam Cat# ab216776

Goat anti-Rabbit IgG H&L (IRDye® 800CW) Abcam Cat# ab216773

Goat anti-Mouse IgG H&L (IRDye® 800CW) Abcam Cat# ab216772

Goat Anti-Rabbit IgG H&L (IRDye® 680RD) Abcam Cat# ab216777

IRDye 800CW Goat anti-Human IgG Secondary Antibody Li-Cor Cat#: 926-32232

Anti-dsRNA mouse monoclonal antibody, clone: rJ2 Millipore Cat# MABE1134, 
RRID:AB_2819101

Anti-human IRF-3 mouse monoclonal antibody, clone: SL-12 Santa Cruz Biotechnology Cat# sc-33641, 
RRID:AB_627826

Bacterial and virus strains

SARS-CoV-2 Alpha (B.1.1.7) A gift from Wendy Barclay, 
Imperial College London

hCoV-19/England/
204690005/2020 
EPI_ISL_693401

SARS-CoV-2 Beta (B.1.351) A gift from Alex Sigal, AHRI hCoV-19/South Africa/KRISP-
K005325/2020 EPI_ISL_678615

SARS-CoV-2 Gamma (P.1) A gift from Wendy Barclay, 
Imperial College London

hCoV-19/England/
520336_B1_P0/2021 
EPI_ISL_2080492

SARS-CoV-2 Delta (PANGO lineage B.1.617.2) A gift from Wendy Barclay, 
Imperial College London

hCoV-19/England/
SHEF-10E8F3B/2021 
EPI_ISL_1731019

SARS-CoV-2 BA.1 (PANGO lineage B.1.1.529.1) A gift from Wendy Barclay, 
Imperial College London

Peacock et al, 2022

SARS-CoV-2 BA.1 (PANGO lineage B.1.1.529.1) (isolate B) A gift from Wendy Barclay, 
Imperial College London

N/A

SARS-CoV-2 BA.1 (PANGO lineage B.1.1.529.1) (isolate C) A gift from Wendy Barclay, 
Imperial College London

N/A

SARS-CoV-2 BA.2 (PANGO lineage B.1.1.529.2) A gift from Wendy Barclay, 
Imperial College London

Peacock et al, 2022

SARS-CoV-2 BA.4 (PANGO lineage B.1.1.529.4) A gift from Alex Sigal, AHRI EPI_ISL_12268495.
2

SARS-CoV-2 BA.5 (PANGO lineage B.1.1.529.5) A gift from Alex Sigal, AHRI EPI_ISL_12268493.2
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REAGENT or RESOURCE SOURCE IDENTIFIER

SARS-CoV-2 VIC (PANGO lineage B) NISBC BetaCoV/Australia/V IC01/2020

SARS-CoV-2 IC19 (PANGO lineage B.1.13) A gift from Wendy Barclay, 
Imperial College London

hCoV-19/England/IC19/2020 
EPI_ISL_475572

SARS-CoV-2 Alpha WT virus This paper N/A

SARS-CoV-2 Alpha Orf6 deletion virus (Alpha Orf6 KO) This paper N/A

SARS-CoV-2 Alpha Orf9b deletion virus (Alpha Orf9b KO) This paper N/A

SARS-CoV-2 Wuhan-Hu-1-D614G WT This paper N/A

SARS-CoV-2 Wuhan-Hu-1-D614G R203K/G204R (mutant 1) This paper N/A

SARS-CoV-2 Wuhan-Hu-1-D614G R203K/G204R (mutant 2) This paper N/A

Biological samples

Bronchial human airway epithelial cells Epithelix Cat #: EP51AB

Chemicals, peptides, and recombinant proteins

Intracellular Staining Permeabilization Wash Buffer Biolegend Cat# 421002

RLT Buffer (RNeasy Lysis Buffer) Qiagen Cat# 79216

β-mercaptoethanol (Sigma-Aldrich) Sigma-Aldrich Cat# M3148

TaqMan™ Master-Mix ThermoFisher Cat# 4369016

SuperScript™ IV Reverse Transcriptase ThermoFisher Cat# 18090050

Fast SYBR™ Green Master Mix Applied Biosystems Cat# 4385612

Hoechst33342 ThermoFisher Cat# H3570

Sep-Pak C18 cartridge Waters Cat#WAT054955

Sequencing-grade modified trypsin Promega Cat#V5111

Guanidine Hydrochloride Fisher Cat# G3272-500G

PureCube Fe-NTA MagBeads Cube Biotech Cat# 31505-Fe

Critical commercial assays

Human IFN-beta Quantikine ELISA Kit Bio-Techne/R&D systems Cat#: DIFNB0

Human CXCL10/IP-10 DuoSet ELISA Bio-Techne/R&D systems Cat#: DY266

Deposited data

Infection proteomics data This paper PRIDE Project ID: PXD036968

AP-MS proteomics data This paper PRIDE Project ID: PXD036798

Infection RNAseq data This paper GEO: GSE213759

Experimental models: Cell lines

Vero E6 ATCC Cat# CRL-1586

Vero TMPRSS2 BPS Bioscience Cat# 78081

A549-ACE2 Miorin et al. 2022

Calu-3 ATCC or AddexBio Cat#: HTB-55 or C0016001

Caco-2 a gift from D. Bailey N/A

Experimental models: Organisms/strains

Oligonucleotides

GAPDH fw: 5’-ACATCGCTCAGACACCATG-3’ Thorne et al, 2022 N/A
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REAGENT or RESOURCE SOURCE IDENTIFIER

GAPDH rv: 5’-TGTAGTTGAGGTCAATGAAGGG-3’ Thorne et al, 2022 N/A

IFNB fw: 5’-GCTTGGATTCCTACAAAGAAGCA-3’ Thorne et al, 2022 N/A

IFNB rv: 5’-ATAGATGGTCAATGCGGCGTC-3’ Thorne et al, 2022 N/A

CXCL10 fw: 5’-TGGCATTCAAGGAGTACCTC-3’ Thorne et al, 2022 N/A

CXCL10 rv: 5’-TTGTAGCAATGATCTCAACACG-3’ Thorne et al, 2022 N/A

IFIT1 fw: 5’-CCTCCTTGGGTTCGTCTACA-3’ Thorne et al, 2022 N/A

IFIT1 rv: 5’-GGCTGATATCTGGGTGCCTA-3’ Thorne et al, 2022 N/A

IFIT2 fw: 5′-CAGCTGAGAATTGCACTGCAA-3′ Thorne et al, 2022 N/A

IFIT2 rv: 5′-CGTAGGCTGCTCTCCAAGGA-3′. Thorne et al, 2022 N/A

SARS-CoV-2 E_Sarbeco_Fwd: 5’-
ACAGGTACGTTAATAGTTAATAGCGT-3

Thorne et al, 2022 N/A

SARS-CoV-2 E_Sarbeco_Rev: 5′-
ATATTGCAGCAGTACGCACACA-3’

Thorne et al, 2022 N/A

SARS-CoV-2 E_Sarbeco_Probe1: 5’-FAM-
ACACTAGCCATCCTTACTGCGCTTCG-TAMRA-3’

Thorne et al, 2022 N/A

Recombinant DNA

SARS-CoV-2 VOC viral protein plasmids (Table S11) This paper N/A

Software and algorithms

Image Studio Lite Ver 5.2 Li-Cor N/A

GraphPad Prism 9 GraphPad https://www.graphpad.com/

FlowJo v.10.6.2 FlowJo LCC (BD) https://www.flowjo.com

FIJI ImageJ software package Schindelin et al. 2012

Other
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