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Key Points

• Most (78%) patients
aged ≥ 60 years with
ND AML treated with
LIT are classified as
having 2022 ELN
adverse risk.

• The Beat-AML 2024
risk model incorporates
IDH2, KRAS, MLL2,
and TP53 to refine risk
stratification among
patients aged ≥ 60
years given LIT.
Although the 2022 European LeukemiaNet (ELN) acute myeloid leukemia (AML) risk

classification reliably predicts outcomes in younger patients treated with intensive

chemotherapy, it is unclear whether it applies to adults ≥60 years treated with lower-

intensity treatment (LIT). We aimed to test the prognostic impact of ELN risk in patients

with newly diagnosed (ND) AML aged ≥60 years given LIT and to further refine risk

stratification for these patients. A total of 595 patients were included: 11% had favorable-,

11% intermediate-, and 78% had adverse-risk AML. ELN risk was prognostic for overall

survival (OS) (P < .001) but did not stratify favorable- from intermediate-risk (P = .71).

Within adverse-risk AML, the impact of additional molecular abnormalities was further

evaluated. Multivariable analysis was performed on a training set (n = 316) and identified

IDH2 mutation as an independent favorable prognostic factor, and KRAS, MLL2, and

TP53 mutations as unfavorable (P < .05). A “mutation score” was calculated for each

combination of these mutations, assigning adverse-risk patients to 2 risk groups: −1 to

0 points (“Beat-AML intermediate”) vs 1+ points (“Beat-AML adverse”). In the final refined

risk classification, ELN favorable- and intermediate-risk were combined into a newly

defined “Beat-AML favorable-risk” group, in addition to mutation scoring within the ELN

adverse-risk group. This approach redefines risk for older patients with ND AML and

proposes refined Beat-AML risk groups with improved discrimination for OS (2-year OS,

48% vs 33% vs 11%, respectively; P < .001), providing patients and providers additional

information for treatment decision-making.
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Introduction

Acute myeloid leukemia (AML) is a heterogeneous and aggressive
malignant clonal disorder of the myeloid progenitor cells that pre-
dominantly occurs in older adults, with a median age at diagnosis of
69 years.1,2 Outcomes of AML and response to therapy are
associated with both patients’ individual clinical variables and
cytogenetic and molecular features of the AML subtype. In 2022,
the European LeukemiaNet (ELN) provided updated recommen-
dations to risk-stratify patients with AML.3 Compared with the
former 2017 ELN,4 certain mutations and cytogenetic abnormal-
ities are no longer considered clinically prognostic in the 2022 ELN
or now fall into a different risk category based on the presence of
co-occurring genetic abnormalities.

With the approval of venetoclax (VEN)-azacitidine for treatment of
patients with newly diagnosed (ND) AML who are ineligible for
intensive chemotherapy (IC) based on results from the VIALE-A
study, lower-intensity treatment (LIT) has become an important part
of AML treatment.5-7 However, although the 2022 ELN risk clas-
sification has generally been shown to predict outcome in inde-
pendent cohorts of patients homogeneously treated with IC and/or
aged <60 years, it is unclear whether the ELN risk assignment
schema applies to adults aged ≥60 years treated with LIT.8

Given the vital need to identify factors associated with poor out-
comes that could support therapeutic decision-making in this large
and difficult-to-treat patient cohort, we aimed to test the prognostic
impact of the 2022 ELN risk classification in patients aged ≥60
years with ND AML treated with LIT, and to refine this risk stratifi-
cation system using a large cohort of those treated in the Leukemia
& Lymphoma Society–sponsored Beat-AML clinical trial.

Methods

Study population and molecular analysis

Patients aged ≥60 years with ND AML who met the screening
criteria for enrollment in the Beat-AML trial (NCT03013998), pro-
vided consent before 10 May 2023, and received LIT were
included in the study.9 Cytogenetic analysis from diagnostic
assessment was centrally reviewed and reported in accordance
with the International System for Human Cytogenomic Nomen-
clature.10 Complex karyotype was defined according to the pres-
ence of ≥3 unrelated chromosome abnormalities. Normal
karyotype was defined according to the detection of 0 chromo-
some abnormalities. Next-generation sequencing was performed
using FoundationOne Heme (Foundation Medicine).11 The pres-
ence of multiple hot spot mutations within 1 gene in an individual
patient was counted as 1 gene mutation, and mutations were
considered present at any detectable variant allele frequency
(VAF). FLT3 internal tandem duplication (ITD) was detected using
the LeukoStrat CDx FLT3 Mutation Assay (Invivoscribe). Informed
consent was obtained according to the Declaration of Helsinki.

Statistical analysis

Continuous and categorical variables were summarized by report-
ing medians and ranges or frequencies and percentages, respec-
tively. Group comparisons of dichotomous variables and
continuous variables were made using Fisher exact and Mann-
Whitney tests, respectively. Overall survival (OS) was estimated
5298 HOFF et al
using the Kaplan-Meier method from the date of trial inclusion until
death or last follow-up. Group differences for censored outcomes
were calculated using the log-rank test.

To evaluate the impact of additional molecular abnormalities among
patients with ELN-defined adverse-risk AML, these patients were
randomly divided into a training (70%) and test (30%) set while
maintaining a balanced distribution of mutations (TP53, RUNX1,
ASXL1, TET2, SRSF2, IDH1, IDH2, FLT3-ITD, KRAS, and NRAS)
in each set.12 These mutations were selected because of their high
mutation frequency among adverse-risk patients, the existence of
clinical targeted therapies against these gene mutations (ie, FLT3-
ITD, IDH1/2), and their known prognostic implications in AML from
the literature. Cox proportional hazard models were developed
using the training set (n = 316) to assess the relative risk of each
variable for mortality over time. First, univariable analysis was con-
ducted, then multivariable analysis used the backward elimination
approach starting with all variables that were significant on the
univariable analysis and removing the variables with the highest P
values from the model until all variables in the final model had a P
value below the threshold of <.05. The proportional hazard
assumption was tested using a score test of the multivariable
model. Hazard ratios (HR) and corresponding 95% confidence
intervals (CI) were summarized for each variable. A “mutation
score” was obtained by calculating the total sum of the gene
mutations present in each individual patient that was associated
with an HR >1 (ie, +1 point for each gene mutation with a >1 HR,
ie, detected within an individual patient) minus the number of gene
mutations associated with an HR <1 (−1 point) as identified by the
final multivariable Cox proportional hazard models. Then, the
mutation score was validated in the test set. The refined Beat-AML
favorable-risk group was defined by combining the 2022 ELN
favorable- and intermediate-risk categories. The Beat-AML inter-
mediate-risk group was defined by ELN adverse risk plus a muta-
tion score of −1 to 0, and the refined Beat-AML adverse-risk group
was defined by ELN adverse risk plus a mutation score of ≥1. The
Harrell C-index was used to assess the model’s discrimination
ability. The nonparametric C-estimator was used to compare 2
correlated C-indices.13 All statistical tests were 2-sided.
Figures were generated in Microsoft Excel, version 16.80 and
RStudio, version 4.3.2 (Posit).

Results

Patient characteristics

We identified a total of 595 patients with ND AML who were
aged ≥60 years at the time of diagnosis, received LIT, and had
sufficient data available to assign risk stratification based on the
2022 ELN criteria. The median age at diagnosis was 73 years
(range, 60-92 years), and 42% of patients were female. Mutation
analysis was available for all patients (N = 595), and cytogenetic
data were available for 588 of 595 (99%) patients; 198 (34%)
patients had a normal karyotype, 199 (34%) had a complex
karyotype, and 10 (2%) had core-binding factor AML
(Table 1). The treatment regimens are summarized in
supplemental Table 1.

ELN risk assignment

Risk stratification was performed according to the 2022 ELN,3,4

with 66 (11%) patients classified as favorable, 64 (11%) as
22 OCTOBER 2024 • VOLUME 8, NUMBER 20



Table 1. Baseline characteristics of the study patients (N = 595)

Characteristic All patients (N = 595)

Beat-AML 2024 ELN-refined model (n = 579)*

P valueBeat-AML favorable (n = 127) Beat-AML intermediate (n = 238) Beat-AML adverse (n = 214)

Age, median (range), y 73 (60-92) 74 (60-89) 74 (60-92) 73 (60-89) .159

Female sex, n (%) 247 (42) 67 (53) 85 (36) 88 (41) .007

Ethnicity, n (%)† .021

Hispanic 7 (1) 4 (3) 2 (1) 0 (0)

Non-Hispanic 560 (94) 122 (94) 226 (94) 205 (96)

Race, n (%)†

White 463 (78) 97 (76) 190 (80) 165 (77) .871

African American 32 (5) 7 (6) 11 (5) 14 (7)

Asian 15 (3) 5 (4) 6 (3) 4 (2)

Multiple or other 43 (7) 9 (7) 15 (6) 16 (7)

Cytogenetics, n (%)†,‡

Normal karyotype 198 (33) 88 (69) 86 (36) 19 (9) <.001

Complex karyotype 199 (33) 1 (0) 40 (17) 152 (71) <.001

Chromosome 5/5q abnormality 134 (23) 0 (0) 21 (9) 110 (52) <.001

Chromosome 7 abnormality 129 (22) 3 (2) 35 (15) 88 (41) <.001

Chromosome 17 abnormality 4 (1) 0 (0) 1 (0) 3 (1) .244

Core-binding factor 10 (3) 9 (7) 0 (0) 0 (0) <.001

KMT2A-rearrangement 18 (3) 6 (5) 6 (3) 6 (3) .496

Mutation, n (%)§

TP5 175 (29) 3 (2) 7 (3) 160 (75) <.001

IDH2 112 (19) 42 (33) 64 (27) 3 (1) <.001

MLL2 98 (16) 19 (15) 8 (3) 69 (32) <.001

KRAS 40 (7) 7 (6) 2 (1) 29 (14) <.001

RUNX1 146 (25) 2 (2) 103 (43) 37 (17) <.001

DNMT3A 143 (24) 53 (42) 60 (25) 26 (12) <.001

TET2 139 (23) 24 (19) 73 (31) 37 (17) .002

ASXL1 137 (23) 7 (6) 94 (39) 33 (15) <.001

SRSF2 136 (23) 17 (14) 92 (39) 26 (12) <.001

NRAS 91 (15) 21 (17) 41 (17) 26 (12) .249

NPM1 90 (15) 74 (58) 9 (4) 3 (1) <.001

FLT3-ITD 71 (12) 29 (23) 29 (12) 8 (4) <.001

STAG2 62 (10) 3 (2) 49 (21) 10 (5) <.001

IDH1 54 (9) 21 (17) 23 (10) 10 (5) .001

BCOR 52 (9) 0 (0) 29 (12) 20 (9) <.001

U2AF1 49 (8) 0 (0) 32 (13) 15 (7) <.001

SF3B1 47 (8) 1 (1) 25 (11) 19 (9) .003

EZH2 35 (6) 3 (2) 23 (10) 7 (3) .003

ZRSR2 25 (4) 1 (1) 12 (5) 12 (6) .082

Genes highlighted in bold were included in the final risk stratification model
*The final model is restricted to patients with reported outcome data (579/595).
†Unknown values were not considered in P value calculations and are excluded from the results.
‡Mutations were considered present at any detectable VAF.
§Cytogenetics available for 588/595.
intermediate, and 465 (78%) as adverse risk. Among these, 7
patients were classified as having adverse-risk AML on the basis of
the detection of TP53 mutation with a VAF ≥10% in the absence
of available cytogenetic data. Compared with the prior 2017 ELN
classification, 88% (n = 525) of the patients were reclassified into
22 OCTOBER 2024 • VOLUME 8, NUMBER 20
the same risk category, whereas 12% (n = 67) were reclassified
into the higher-risk and 0.5% (n = 3) into the lower-risk category
according to the presence of in-frame bZIP-mutated CEBPA
(Figure 1). The frequency of patients with adverse-risk AML
increased from 70% by ELN 2017 to 78% by 2022 ELN.
BEAT-AML 2024 AML RISK STRATIFICATION 5299



ELN 2022 vs 2017 (n = 595)

n = 90 n = 66 n = 86 n = 64 n = 419 n = 465

80%

60%

40%

20%

0%

ELN classification
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2017 ELN

Intermediate

2022 ELN

Adverse

A

Adv
(70%)

Int
(15%)

Fav
(15%)

2017 ELN 2022 ELN

Adv
(78%)

Int
(11%)

Fav
(11%)

B

Figure 1. ELN risk classification. (A) Proportion of patients (n = 595) with ELN favorable risk (blue), intermediate risk (yellow), and adverse risk (purple). The dashed fill shows

the 2017 ELN classifications, and solid fill shows the 2022 ELN classification. (B) Alluvial plot comparing 2017 ELN (left) with 2022 ELN (right).
2022 ELN risk and gene mutations

There were marked differences in the mutation spectrum between
the ELN risk groups. Genetic mutations that were strongly asso-
ciated with ELN adverse risk were TP53, RUNX1, and ASXL1,
each accounting for 37%, 31%, and 28% of the group. As
expected, NPM1 was most strongly associated with favorable risk
(82% vs 15% overall; P < .001), followed by DNMT3A and IDH2,
which were both also frequently found among intermediate-risk
patients. FLT3-ITD was detected in 48% of the intermediate-risk
patients, as opposed to 12% of the overall patient population.
Gene mutations that were most strongly associated with ELN risk
are shown in Figure 2. When considering all genes tested in the
next-generation sequencing panel, the total number of mutations
was not different between the 2022 ELN risk groups, with a median
of 11 mutations in each group (P = .485).

Survival analysis

OS data were available for 579 of 595 (97%) patients. The 2022
ELN risk stratification reliably assigned those with poor OS to
adverse risk (P < .001; C-index, 0.55) but did not differentiate
favorable from intermediate risk (P = .71; 2-year OS, 47% vs 50%
vs 23% for ELN favorable, intermediate, and adverse risk,
respectively; Figure 3A). We reconsidered the impact of molecular
abnormalities to refine our ability to risk-stratify patients with ND
AML aged ≥60 years receiving LIT, focusing first on those cate-
gorized as having adverse risk by 2022 ELN (n = 452).

Univariable (supplemental Table 2) and multivariable analyses were
conducted on the training set (n = 316). In the final multivariable
model, IDH2 mutation (HR, 0.65; 95% CI, 0.46-0.94) was identi-
fied as an independent favorable prognostic variable, although
treatment with an IDH inhibitor was not associated with a
5300 HOFF et al
significant difference in outcome for those with an IDH2 mutation
(HR, 0.62; 95% CI, 0.31-1.23), KRAS (HR, 1.75; 95% CI, 1.09-
2.76), MLL2 (HR, 1.43; 95% CI, 1.03-1.99), and TP53 (HR, 1.90;
95% CI, 1.47-2.47) mutations were identified as independent
unfavorable prognostic variables (P < .05; Table 2). The outcomes
of FLT3-ITD mutated patients treated with an FLT3 inhibitor
(n = 27) did not significantly differ from those of patients not
treated with an FLT3 inhibitor (P = .62). No violations of propor-
tional hazard assumptions were observed.

Next, a negative point (−1) was assigned to IDH2, and a positive
point (+1) to each of KRAS, MLL2, and TP53. A “mutation score”
was calculated for each combination of mutations, assigning
patients into 2 risk groups: ≤0 points (“Beat-AML intermediate”) vs
≥1 points (“Beat-AML adverse”) (supplemental Table 3). As an
example, the co-occurrence of IDH2, KRAS, and MLL2 in 1 indi-
vidual patient resulted in a score of +1. The robustness of the 2 risk
groups based on the mutation score was validated in the test set
(P = .03; supplemental Figure 1). Considering the entire cohort of
patients who received LIT, we further reclassified those who were
assigned 2022 ELN favorable risk (n = 65) and intermediate risk
(n = 62) into a combined “Beat-AML favorable-risk” category
(n = 127), resulting in a refined risk model (2-year OS, Beat-AML
favorable risk 48% [n = 127] vs Beat-AML intermediate risk 33%
[n = 238] vs Beat-AML adverse risk 11% [n = 214]; P < .001; C-
index, 0.60; Figure 3B). Comparing the C-index obtained from the
2022 ELN risk group with the one obtained from our refined risk
model, the refined model showed stronger discrimination power in
predicting OS (P < .001).

Baseline characteristics are summarized in Table 1. Age, race, and
ethnicity were similar across the 3 refined risk groups. Female sex
was proportionally overrepresented among Beat-AML favorable-
22 OCTOBER 2024 • VOLUME 8, NUMBER 20
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Figure 2. Distribution of the 10 gene mutations most

significantly associated with 2022 ELN risk. Colors

indicate the 2022 ELN risk groups: favorable risk (blue),

intermediate risk (yellow), and adverse risk (purple).
risk patients (P = .007). The incidence of normal karyotype was
higher in the Beat-AML favorable-risk group (69% vs 33% overall),
and the incidences of complex karyotype (71% vs 33% overall) and
chromosome 5/5q (52% vs 23% overall) and chromosome 7 (41%
vs 22% overall) abnormalities were higher in the Beat-AML
adverse-risk than in the Beat-AML favorable- and Beat-AML inter-
mediate-risk groups. On the basis of the VAF cutoff of ≥10% for
TP53 as an ELN adverse-risk criterion, 2 TP53-mutated patients
with a VAF <10% were included in the Beat-AML favorable-risk
group. A third patient with a TP53 mutation was classified as
having Beat-AML favorable risk based on the presence of a co-
occurring in-frame bZIP-mutated CEBPA. Furthermore, because
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Figure 3. Survival analysis by ELN risk. Survival analysis in patients with ND AML aged ≥
risk.
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the ELN specifically indicates that myelodysplastic syndrome
(MDS)–related gene mutations should not be used as an adverse
prognostic marker if they co-occur with the favorable-risk AML
subtypes, several patients classified as having Beat-AML favorable
risk had 1 or more MDS-related gene mutations.

Given the large variety in LIT regimens (supplemental Table 1), we
subsequently applied the model to evaluable patients exclusively
treated with a combination regimen of hypomethylating agents
(HMA) plus VEN (n = 202) to test the applicability of the model on
a uniformly treated patient cohort. The refined Beat-AML 2024
model continued to demonstrate statistical significance
.00
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Table 2. Multivariable analysis in the training set (n = 316) of the 2022 ELN adverse-risk patients

Gene mutation n Beta SE of beta HR 95% CI for HR P value

IDH2 52 −0.42 0.18 0.65 0.46-0.94 .022

KRAS 24 0.55 0.24 1.74 1.09-2.76 .019

MLL2 51 0.36 0.17 1.43 1.03-1.99 .035

TP53 113 0.64 0.13 1.90 1.47-2.47 <.001

SE, Standard error
(P = .0001) in patients treated with HMA plus VEN and out-
performed the 2022 ELN model with a C-index of 0.597 compared
with 0.551 (P = .004) (supplemental Figure 2).

Prognostic value of myelodysplasia-related gene

mutations in patients given LIT

An important change in the 2022 ELN compared with the 2017
ELN is the removal of clinical history (de novo, secondary after an
antecedent MDS or MDS/myeloproliferative neoplasm, or therapy-
related) and the incorporation of 9 myelodysplasia-related gene
mutations. Although these mutations are highly associated with
AML following MDS or MDS/myeloproliferative neoplasm, they
confer adverse-risk prognosis even when they occur in de novo
AML.3,14-16 Given that the prognostic significance of the ELN risk
model is based on patients who were treated with IC and aged
<60 years, univariable analysis was conducted on patients aged
≥60 years given LIT (n = 579). Except for STAG2 (HR, 0.67;
95% CI, 0.48-0.93), none of the myelodysplasia-related genes
were independently prognostic of OS (supplemental Table 4)
among older patients treated with LIT.

Discussion

In this study, we tested the utility of the 2022 ELN risk classification
in patients aged ≥60 years with ND AML given LIT using a large
cohort of patients enrolled in the Beat-AML clinical trial. The vast
majority of patients (78%) receiving LIT were classified as having
ELN adverse risk. Further, the other 22% were equally distributed
between the favorable-risk (11%) and intermediate-risk (11%)
groups, with no survival difference between the 2 groups. We
redefined risk for older patients with ND AML and propose refined
Beat-AML favorable- (22% of patients), Beat-AML intermediate-
(41%), and Beat-AML adverse-risk (37%) groups with improved
discrimination for OS (2-year OS, 48% vs 33% vs 11%, respec-
tively; P < .001).

Survival analysis demonstrated that ELN risk was prognostic for
OS but did not differentiate favorable from intermediate risk. This
observation is consistent with a recent study that evaluated a
cohort of 148 patients aged ≥60 years treated with HMA or HMA
plus VEN and reported no significant difference in OS according to
the 2022 ELN risk (P = .926 and P = .498, respectively).17 Others
conducted an exploratory analysis evaluating 2017 ELN in 392
patients who were enrolled in a nonrandomized phase 1b trial
(NCT02203773) and the confirmatory phase 3 VIALE-A random-
ized trial (NCT02993523).8 The median OS was similar for ELN
favorable and intermediate risk, with a significantly shorter median
OS in adverse-risk patients (P value not reported). A third study,
however, did show a distinction in OS based on 2022 ELN risk
5302 HOFF et al
among 179 patients with ND AML treated with HMA and VEN (P <
.001). Yet, most (71%) were classified as having adverse risk,
consistent with our study.18

Treatment decision-making is heavily influenced by prognostic risk
stratification and genomics, particularly in this older patient popula-
tion given that most will not proceed to hematopoietic stem cell
transplantation. Because 78% of the older patients given LIT are
classified as adverse risk by the 2022 ELN, we investigated the
impact of molecular abnormalities to improve the ability to risk-stratify
patients with ND AML aged ≥60 years with adverse-risk AML
receiving LIT. We developed a “mutation score” that incorporated
independently significant gene mutations (IDH2, MLL2, KRAS, and
TP53) among ELN adverse-risk patients based on multivariable Cox
regression analysis, resulting in our refined Beat-AML ELN risk
model. Döhner et al also recently proposed a 4-gene approach
incorporating FLT3-ITD, KRAS, NRAS, and TP53, which performed
better in predicting OS and event-free survival than the 2022 ELN
system, and was validated in a larger cohort of 159 patients with
AML treated with HMA plus VEN.8,18 Patients with a mutation in
TP53 were allocated to the low-benefit group; patients with a
mutation in FLT3-ITD, NRAS, or KRAS were allocated to the
intermediate-benefit group; and the remaining patients were allo-
cated to the higher-benefit group. Although their model incorporated
KRAS and TP53, the significance of FLT3-ITD is uncertain given
that only a minority of patients (3.9%) in the validation cohort had
this mutation.

We defined IDH2 as a favorable prognostic gene mutation among
ELN adverse-risk patients. The incidence of IDH mutations
increases with age19 and the prognostic utility of IDH mutations
remains controversial, although a somewhat favorable prognosis
may be seen with IDH2 mutations.20 Notably, in our cohort, out-
comes did not differ between patients with ELN adverse risk and
IDH2 gene mutation who received azacitidine with an IDH inhibitor
and those who did not. TP53 mutation was most strongly associ-
ated with inferior OS, and 88% had a complex karyotype (n = 147/
167). With high reported resistance rates in the literature against
both IC and LIT and uniformly poor outcomes, our observation
again emphasizes the need for improved treatment strategies for
this difficult-to-treat population.21,22

Finally, we assessed the prognostic impact of myelodysplasia-
related gene mutations, which are considered to indicate
adverse-risk prognosis, among patients given LIT. Except for
STAG2, none of the myelodysplasia-related gene mutations were
prognostic of OS in our cohort of patients aged ≥60 years who
received LIT, suggesting that they may not be helpful in further
delineating adverse risk in this patient population that already does
have poor outcomes due to other high-risk disease and patient
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characteristics. This warrants further investigation to determine
whether this new category should remain separate for patients
aged ≥60 years receiving LIT.

The major limitations of the study include its retrospective design,
the exclusion of patients with AML requiring urgent therapy (which
precluded their enrollment in the Beat-AML clinical trial), and the
heterogeneity among the LIT regimens, including treatment with
various molecularly directed therapies. However, we demonstrated
that the model also performed significantly better in predicting
OS compared with the ELN when applied to a uniformly treated
subpopulation of patients receiving a combination of HMA and
VEN. Further validation using external data, or a prospective study
cohort is needed to validate the Beat-AML 2024 ELN-refined risk
model.

In conclusion, this large multi-institutional study highlights the
limited applicability of the ELN model in patients aged ≥60 years
with ND AML given LIT. We propose a refined Beat-AML classifi-
cation using a genomically derived “mutation score” incorporating
IDH2, KRAS, MLL2, and TP53 mutations for patients previously
classified as having 2022 ELN adverse risk while also redefining
Beat-AML favorable risk to improve risk prediction for most older
patients with AML treated with LIT.
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