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INTRODUCTION

A major challenge facing air pollution regulators and researchers is

the need to better characterize the factors that influence exposure to traf-

fic emissions in cities. Early studies of exposure and health effects relied

on estimates of exposure concentrations at a person’s home location.

However, studies that recorded a person’s actual exposure using mobile

personal exposure monitors that were carried by the subject showed that

the personal exposure could be significantly higher than the exposure

implied by the measured or modeled concentration at the person’s home.

These studies concluded that an individual’s daily activities and the time

spent within microenvironments associated with elevated concentrations
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are important factors that determine actual exposure. The exposure varies

depending on the degree to which traffic sources influence the exposure

concentrations within the person’s home, work, school, and commute

microenvironments. The subject of this chapter is the impact that the

urban built environment has on exposure concentrations. Buildings tend

to reduce dispersion and thus create hot spots associated with elevated

concentrations of traffic emissions. In this chapter, we show practical

methods to model these hot spot concentrations.

The need to employ accurate models of exposure to traffic emissions

is driven by policies aimed at increasing high-density development

within cities. These policies, which are meant to reduce greenhouse gas

emissions from transportation, rely on reducing vehicle miles traveled to

achieve desired reductions in fossil fuel consumption. To accomplish

this, the policies incorporate plans for development that place high-

density housing in close proximity to businesses and transportation

infrastructure. These designs are often called sustainable communities or

transit-oriented development (TOD) and are desirable because they pro-

mote walking, cycling, and use of public transportation, all of which

reduce use of motor vehicles and the associated pollutant and green-

house gas emissions. However, there is concern that these community

designs create pollutant hot spots next to high-density built-up areas,

which can reduce dispersion and thus magnify the concentrations of

vehicle-emitted pollutants.

The impact of the presence of buildings near the road on dispersion

of traffic emissions is manifested at multiple spatial scales ranging from

the city scale to the scale of individual buildings. When viewed at the

city scale, the effect of the buildings is to increase the surface rough-

ness length and surface heat flux of the city relative to that produced

by vegetation and natural terrain, and the resulting impact on mean

winds and turbulence translates into modified dispersion relative to the

flat terrain models presented in Chapter 3. The urban canopy refers to

the region between the ground and the average height of urban build-

ings. The winds and turbulence within the urban canopy are domi-

nated by the drag force of the buildings. At spatial scales on the order

of the building height, individual buildings induce wake flows and

recirculating vortices. The combination of these effects modifies the

dispersion of traffic emissions with the result that concentrations are

significantly different from those that would be observed in rural

environments. This has significant implications for the design and
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application of regulatory and research dispersion models for estimating

the impact of roadways on exposure concentrations in cities.

Regulatory and research dispersion models account for the primary

effects of buildings on dispersion using varying approximations, and the

models can be classified according to the type of physical phenomena

they describe and the spatial resolution they treat. The US EPA regula-

tory model AERMOD (Cimmorelli et al., 2005) incorporates the effects

of buildings at the neighborhood and city scale. AERMOD uses the city

population to estimate the enhanced positive heat flux and the increased

boundary layer height due to convection that occurs in urban areas dur-

ing nighttime. These boundary layer parameters are translated into

increased turbulence and dispersion during nighttime in urban areas.

AERMOD includes the PRIME algorithm that estimates plume down-

wash in building wakes. However, PRIME is designed for isolated point

sources near single buildings and thus is not applicable to estimating the

impact of buildings on dispersion of roadway emissions at the street scale.

Thus, in the United States, application of models of building effects at

the street scale has been limited primarily to research use. Europe has

seen more widespread use of these models for both research and opera-

tional applications such as routine air quality forecasting. The most well-

known example of the operational models is the Operational Street

Pollution Model (OSPM, Berkowicz et al., 1997), developed by the

Danish National Environmental Research Institute. OSPM is a street can-

yon model; Street canyons are streets with tall buildings on either side,

the building walls thus forming a canyon. The driving flow above the top

of the buildings induces recirculating vortex flows within the canyon,

leading to trapping of pollutants within the street. Street canyon models

describe dispersion at the scale of individual streets and thus the spatial

resolution of these models is 10�100 m. We will discuss more about

street canyon models and OSPM in the next section.

In this chapter, we show how the primary effects of buildings on disper-

sion are incorporated into semiempirical models. The models discussed are

useful for estimating the near-road concentration of traffic emissions in urban

areas. We focus on the street scale, with an associated spatial resolution of

10�100 m, which is the scale at which roadways impact near-road environ-

ment. We begin by reviewing the relevant experimental and modeling stud-

ies and describing the physical effects of buildings on dispersion of traffic

emissions. Next, we present the formulation of dispersion models that

account for these effects. The model development focuses on two models:
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OSPM and the Vertical Dispersion Model (VDM). OSPM is included

because of its position as a well-known model that can be considered a pro-

totype for the class of street canyon models that describe dispersion within

the urban near-road environment. However, OSPM is primarily designed

for European cities, whose streets tend to closely match the idealized street

canyon model. Cities with nonuniform building heights and spatial inhomo-

geneity tend to have wind and turbulence patterns that are inconsistent with

the street canyon model formulation. Additionally, it is difficult to define the

model input parameters needed for street canyon models when the building

geometry does not match the street canyon prototype. We make the case

that VDM is useful for describing dispersion in spatially inhomogeneous cit-

ies with nonuniform building heights, such as those often found in urban

cores in the United States. Finally, we describe the evaluation of VDM with

observations.

PRIMARY EFFECTS OF BUILDINGS ON DISPERSION OF
TRAFFIC EMISSIONS

This section reviews the primary effects of buildings on dispersion.

The governing physical processes are active at different spatial or temporal

scales, and thus models for these processes are built to match these scales.

The effects of buildings occur at spatial scales including the street scale,

10�100 m, the neighborhood scale, 100 m�1 km, the urban background

scale, 1�10 km, and the regional scale, 10�100 km. Models for the

effects of buildings at each scale are combined in a hierarchy, with the

smaller scales providing the most local detail and with these small-scale

effects being parameterized using simplifications within the larger scale

models. This chapter describes models of the near-road concentrations of

traffic emissions, and thus this section focuses on effects that occur at the

street scale. Chapter 6 reviews effects that occur at larger spatial scales and

describes models of the impact of buildings on dispersion at these scales.

We first give an overview of the important physics ranging from street to

urban background scales to provide context for the present discussion.

Our discussion of the effects of buildings at different spatial scales is in

part modeled on that provided by Britter and Hanna (2003). Fig. 5.1 shows

a schematic of the effects of buildings after a transition from a rural area with

low surface roughness length into the urban area. When viewed at the city
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scale, the impact of individual buildings on the flow and dispersion is aver-

aged out and thus the buildings can be described using statistical parameters.

At this scale, the primary impact of the built environment is through modifi-

cations of the drag force and the surface energy balance. As air flows from

the upwind rural, low surface roughness area into the city, a region develops

where the wind is modified due to the increased drag applied by the build-

ings. The zone where the wind speed is modified is the internal boundary

layer (IBL). The height of the IBL grows with distance from the rural�urban

(A)

(B) (C)

PBL Urban boundary layer

Urban outer layer

Near-surface layer

Rural RuralSuburban SuburbanUrban

(b)

(c)

Inertial sublayer

UBL

SVF

Roughness sublayer

UCL

UCL

Rural BL

Figure 5.1 Schematic showing the effects of buildings at different spatial scales.
Schematic is taken from Fisher et al. (2006). (A) Mesoscale; (B) local scale; and
(C) microscale. PBL refers to the planetary boundary layer height.
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boundary. The wind that has adjusted to the urban surface roughness condi-

tions is the urban boundary layer (UBL). The UBL can be divided into

regions where different physical processes dominate. The near-surface UBL

flow is described by the roughness sublayer and the inertial sublayer, similar

to the way we describe flow over a rural surface. The roughness sublayer is

the region, up to a few building heights from the ground, where the domi-

nant length scale is the building height, and the flow is dominated by the

effects of the building “roughness elements.” Thus, the flow within the

roughness sublayer is horizontally inhomogeneous. Above the roughness sub-

layer is the inertial sublayer, where the dominant length scale is the height

from the ground, and similarity profiles can be used to model the wind, dis-

placed upward by an amount proportional to the building height and with

the surface roughness determined by building morphology. Models for these

effects are described in more detail in Chapter 6. In this section, we focus on

the region below the top of the buildings, called the urban canopy layer

(UCL). This is the region where the physics of dispersion that governs the

near-road concentration within an individual street is active. The UCL is the

region described by street canyon dispersion models.

The effect of the buildings at scales larger than the street scale is usu-

ally parameterized using statistical measures of the building morphology.

These measures typically include the average building height and mea-

sures of the building density, including the frontal and plan area fractions

(Oke, 1988). The frontal area fraction, λf 5Af =Ad, is the ratio of the

frontal area of the obstacles perpendicular to the mean wind direction,

Af , to the ground surface area occupied by the city, Ad. Thus, this param-

eter describes the building area upon which the drag force acts per unit

area of the city. The plan area fraction is the fraction of ground surface

area occupied by the buildings, λp5Ap=Ad, where Ap is the area of the

buildings when viewed from the top. The area fractions are often used to

describe the wind and turbulence within the UCL.

The Impact of Buildings on Mean Winds and Turbulence
Within the Urban Canopy
The mean winds and turbulence within the UCL have several key charac-

teristics that significantly influence the dispersion of traffic emissions.

First, the mean wind speeds are small compared with winds in rural areas

because of the drag force that the buildings exert on the air flow. Second,

turbulence levels tend to be increased relative to those in the rural area.

The result of the increased turbulence and low winds is that pollutant

110 Urban Transportation and Air Pollution



plumes in urban areas exhibit significant horizontal meandering due to

large, relative to the mean wind, lateral turbulent fluctuations. Finally,

building wakes generate strong upward and downward flows as well as

vortex flows. These flows form the basis of street canyon dispersion mod-

els. We begin by discussing the impact of the buildings on mean winds

and turbulence within the urban canopy.

Mean winds and turbulence within the roughness sublayer and the

urban canopy are usually described using statistical methods. Thus, while

the flow around individual buildings is strongly influenced by the local

building geometry, we can develop models to describe the horizontally

averaged winds and turbulence within the roughness sublayer and the

urban canopy. This horizontal averaging requires that the statistical para-

meters describing the buildings are horizontally homogeneous over the

spatial averaging area. Thus, the city may be divided into regions where

average values of the parameters such as the surface roughness length,

building height, and area fractions can be assigned. The change in surface

roughness of these regions is associated with the formation of an IBL and

the adjustment of the wind and shear stress within and above the canopy

to the new equilibrium values. For the assumption that the wind adjusts

to the new surface conditions to be valid, the horizontal size of the spatial

averaging region should be on the order of several building heights.

Buildings exert a drag force on the flow. The resulting shear stress has a

maximum near the top of the buildings (Cheng and Castro, 2002;

MacDonald, 2000) and then decreases to zero below the height of the

buildings. The shear stress near the building tops is associated with a sharp

gradient in the mean wind speed and the low shear stress within the urban

canopy is associated with a nearly constant wind speed (with height) near

the ground. Based on these observations, a simple approach to determine

the wind speed within the canopy is to assume a constant (with height)

wind speed. By matching the shear stress of the inertial sublayer with the

drag force of the buildings, we can relate this wind speed with the para-

meters of the inertial sublayer and building geometry. Bentham and Britter

(2003) developed a relationship between the constant spatially averaged

canopy velocity, Uc, the surface friction velocity of the inertial sublayer

above the urban area, u�, and the frontal area fraction of the buildings:

Uc

u�
5

2

λf

� �1=2
(5.1)
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The wind within the UCL is often modeled using concepts similar to

those of forest canopies. The work on modeling vegetation canopies has

been translated for applications to the UCL by MacDonald (2000). By

allowing the wind speed to vary with height, these models predict an

exponential variation of the wind speed with height (MacDonald, 2000):

UðzÞ5UHe
ðz2HÞ=l (5.2)

where UH is the velocity at the building height and l is a length scale pro-

portional to the building height that determines how deep the rooftop

wind penetrates into the urban canopy. MacDonald derives relationships

between these parameters and the building frontal and plan area fractions.

Another approach is to use empirical relationships between street and

roof wind speed and turbulence. Several field experiments have provided

data for this approach (Allwine et al., 2002; Hanna et al., 2007; Rotach

et al., 2005).

Vortex Flow and Street Canyons
Some of the earliest studies of dispersion in cities were performed in

1970 and 1971 in San Jose, California, and St Louis, Missouri (Johnson

et al., 1973). The studies resulted in a semiempirical dispersion model

based on the Gaussian plume model along with a “submodel” that

accounts for the microscale features of the dispersion within the urban

street. The plume spreads for the Gaussian plume model were determined

from tracer release field measurements in a study conducted in St Louis

between 1963 and 1965.

The microscale model of (Johnson et al., 1973) and most semiempiri-

cal urban dispersion models are based on the picture of the “street can-

yon,” a street with uniform height buildings on either side, a prototypical

building block of the urban environment. Fig. 5.2 shows a schematic of a

street canyon model. The ideal street canyon has buildings all the same

height and no gaps between the buildings. Depending on the aspect ratio,

the ratio of the height of buildings to the street width, and the rooftop

wind speed and direction, a recirculating vortex flow can develop within

the street (Oke, 1988). The physical picture of the dispersion within street

canyons typically includes a model of the vortex flow. This model primar-

ily determines the relationship between the near-road concentration and

the governing meteorological variables.
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The existence of a vortex within the street canyon depends on the

aspect ratio, the ratio of building height to street width. When the aspect

ratio is small, no consistent vortex forms within the canyon, and when

the aspect ratio is large, multiple vortices may form. Oke (1988) groups

the flow regime within building arrays into the following classes based on

Roof level wind
Background pollution

Recirculating air

Direct plumeLeeward
side

Windward
side

Figure 5.2 Berkowicz, R., 2000. OSPM � a parameterised street pollution model.
Environ. Monit. Assess. 65, 323–331 (Figure 1. Schematic illustration of flow and
dispersion conditions in street canyons.)

Figure 5.3 Building array flow regimes. (A) Isolated roughness flow; (B) wake interfer-
ence flow; and (C) skimming flow. Taken from (Oke, 1988).
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the canyon aspect ratio (Fig. 5.3): isolated roughness flow—the wakes

downwind of individual obstacles do not interfere with each other; wake

interference flow—the wakes behind obstacles are the same size as the

distance between obstacles and begin to interfere with each other; skim-

ming flow—a stable circulation forms within the canyon and the bulk of

the flow does not enter the canyon.

For a long street canyon, the change from isolated roughness to wake

interference flow occurs around an aspect ratio of 0.3, and the change

from wake interference to skimming flow occurs around an aspect ratio

of 0.75. The street canyon vortex may disappear under low ambient wind

speeds. DePaul and Sheih (1986) verified the existence of a vortex flow

using neutrally buoyant balloons as tracers. They found that the vortex

disappears when the ambient wind speed is less than 1.5�2 m/s.

One early field study was conducted in a street canyon in San Jose, CA

in 1973 (Johnson et al., 1973). Carbon monoxide concentrations and wind

speed were measured at several locations and at five different heights within

the canyon. The researchers found that the concentrations at the leeward

side of the canyon were 3�4 ppm (33%�66%) larger than those at the

windward side when the wind blows perpendicular to the canyon, while

under parallel flow, the concentrations are similar at both sides. The vertical

concentration gradient is smaller at the windward side. The authors show

that the ground-level concentration at the leeward side is related to the

rooftop wind speed, traffic count, and street geometry as follows:

CL 5Cb1
0:07N

ðU 1 0:5Þð21 xÞ (5.3)

where Cb is the background concentration, N is the traffic count, x is the

distance from the traffic lane to the receptor, and U is the wind speed. A

similar form holds for the windward side, with 21 x replaced by the

street width. The factor of 0.5 in the denominator accounts for the effect

of vehicle induced turbulence. This model indicates that changes in

building height do not directly alter the concentration, and only the street

width and rooftop wind speed determine dispersion.

Wind tunnel models of street canyons have shown the same relation-

ship between wind speed and pollutant dilution as was found in the pre-

viously mentioned field studies. Meroney et al. (1996) found that the

concentration was inversely related to the approach wind speed. Barlow

and Belcher (2002) found that the entrainment velocity that mixes pollu-

tants vertically is proportional to the wind speed above the canyon. Both

114 Urban Transportation and Air Pollution



studies tested the effect of increasing the surface roughness upstream of

the canyon to simulate real urban conditions. Meroney et al. (1996) found

that the presence of upstream buildings creates a displacement of the

incoming velocity profile, which causes the formation of a shear layer at

the top of the canyon and results in a permanent recirculating eddy

within the canyon (with aspect ratio 1), while the small upstream rough-

ness case shows an intermittent eddy for the same canyon. The presence

of upstream buildings thus results in trapping of pollutants within the per-

manent recirculating eddy, resulting in larger concentrations relative to

those in the absence of buildings. For smaller aspect ratios, the presence

of upstream buildings is less important.

These studies show the importance of the rooftop wind speed in

determining dispersion in street canyons. Other studies indicate that the

vertical pollutant transport occurs due to an unstable shear layer that

develops at the top of the canyon (Louka et al., 2000). The unsteady fluc-

tuations of the shear layer cause intermittent recirculation in the canyon,

thus intermittently flushing pollutants out of the canyon. The street can-

yon studied by Louka et al. (2000) was mostly isolated, with only three

buildings upwind of the canyon. The reason for the very intermittent

vortex flow in this experiment may be similar to that for the Meroney

et al. (1996) wind tunnel study, where the isolated street canyon had a

more unsteady vortex than the canyon surrounded by urban roughness.

Some of the existing work on modeling street canyons is summarized

by Vardoulakis et al. (2003). Existing models can be classified as: empirical

regression models, semiempirical box models, semiempirical Gaussian

plume models, Lagrangian particle models, unsteady Gaussian puff mod-

els, and computational fluid dynamics (CFD) models. We are most inter-

ested in the semiempirical box and Gaussian plume models because they

require only easily measured input variables and capture only the essential

mechanisms of dispersion in cities. CFD models are capable of simulating

dispersion in cities, but they do not provide clear insight into the impor-

tant mechanisms.

Challenges for Practical Application of Models of Building
Effects on Dispersion
There are several difficulties in applying semiempirical street canyon dis-

persion models to model dispersion in real-world cities. One problem

with dispersion models based on the street canyon model is that it is not

clear that they are applicable to real-world urban streets with significant

115The Impact of Buildings on Urban Air Quality



building height variability and spatial inhomogeneity. Well-known street

canyon dispersion models have been evaluated mostly with data collected

in European cities, where medium density urban streets tend to closely

approximate the ideal street canyon. Dense urban cores within the United

States have significant spatial and building height variability, putting into

question the applicability of the street canyon dispersion models to these

urban environments.

A further challenge facing application of urban dispersion models is

that there is little consensus on the meteorological variables that are

most relevant for application to near-road dispersion model parameter-

izations. The STREET model of Johnson et al. (1973), which is simi-

lar to the model of Dabberdt et al. (1973), parameterizes the

concentration in terms of the near surface wind speed within the

street, which is linearly related to the rooftop wind speed in the model

formulation. Nicholson (1975) developed a model that parameterizes

concentrations in terms of the average vertical velocity near the top of

the street canyon when the wind is perpendicular to the street. For

parallel winds, the average horizontal wind speed within the canyon is

used. For conditions of low within-canyon wind speeds, the canyon

plume box model (CPBM) of Yamartino and Wiegand (1986) parame-

terizes pollutant transport using a Gaussian plume model with plume

spreads determined by the average vertical and horizontal turbulent

velocities within the street canyon. The OSPM (Berkowicz et al.,

1997) relates the surface concentration with both the vertical turbulent

velocity near the surface and the roof of the canyon.

Vortex flow within a street canyon may result in higher concentrations

on one side of the street than the other. Most street canyon models

describe the spatial variation of concentrations within the street by

accounting for the vortex flow that advects emissions from the street

toward the leeward side (Berkowicz et al., 1997; Johnson et al., 1973;

Yamartino and Wiegand, 1986). These models typically include a param-

eterization of the “recirculating” contribution, which affects the concen-

tration on both the windward and leeward sides of the street, and is due

to the vortex flow trapping pollutants within the canyon, and the “direct”

contribution, which impacts on the leeward side of the street, due to

direct emissions advected across the street. Other models such as that of

Nicholson (1975) only parameterize the average concentration within the

canyon. As mentioned previously, the vortex flow model may not be

appropriate for cities with significant spatial inhomogeneity. We examine
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the value of this aspect of the vortex flow concept as part of the disper-

sion model evaluation.

A significant challenge to the application of dispersion models to

urban environments is the lack of routine measurements of the required

meteorological data inputs. Because of this, models rely on assumptions

about the relationships between available data and the required model

inputs. The street canyon model of Dabberdt et al. (1973) parameterizes

the concentration in terms of the rooftop wind speed. The rooftop wind

speed used in the model is estimated from the wind speed measured at a

nearby airport. This simple parameterization results from the need to use

routinely measured wind speed as model inputs. Normally, only measure-

ments of mean wind speed and direction are made at rural locations such

as airports. Turbulence levels are not routinely measured, and even mean

wind speed and direction data is usually not available within dense urban

centers. For these reasons, all of the urban dispersion models require such

parameterizations to be applicable to real world situations. The semiem-

pirical models that we describe in this chapter are developed with the

requirement that they only depend on meteorological data that are readily

available or can be determined through semiempirical models that relate

the wind speed measured at the “rural” airport site to that at the urban

site of interest.

Primary Variables Governing Dispersion in Cities
We now examine the primary variables that govern near-road pollutant

concentrations in cities. We present the discussion in the context of an

analysis of near-road concentration data using several dispersion models.

The relationship between vehicle-related concentrations in a street and

associated micrometeorology was formulated through an analysis of data

collected by the Lower Saxony Ministry for Environment, Energy, and

Climate, in Göttinger Straße, Hanover, Germany, during 2003�2007.

Göttinger Str. is 25 m wide with 20 m-tall buildings on either side.

Measurements of NO and NO2 concentrations were made at two loca-

tions: one on the southwest side of the road 1.5 m above ground level

(AGL) and the other on the southwest building rooftop above the sur-

face monitor. Wind speed and turbulence measurements were made

using a sonic anemometer near the surface concentration monitor at

10 m AGL, and mean winds were measured near the rooftop monitor at

42 m AGL. Traffic flow measurements were made with automatic
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counters, and were converted into emission rates using emission factors

of 0.465 and 6.18 g/km of NOx for passenger cars and trucks, respec-

tively, determined using EMFAC 2007 (California Air Resources Board,

2017). We used the average emission factors for light and heavy duty

trucks for the truck portion of the traffic and that for light-duty vehicles

for the passenger car portion.

We used the Göttinger Strasse data to evaluate several alternative dis-

persion models with different dependence on the surface and rooftop σw

and wind speed. We treat the rooftop concentration as the urban back-

ground, so that the difference between street and roof concentrations is

the local contribution estimated by the models. We used the NOx con-

centration measurements for model comparison because NOx emission

factors are relatively well known.

Our discussion of the variables governing dispersion in cities is framed

in terms of an analysis of several alternative models. The first model is a

modified form of the OSPM direct contribution model and is described

by Eq. (5.4), where h0 is the initial vertical plume spread, q is the emis-

sion rate per unit length of road, σws is the near surface standard deviation

of vertical velocity fluctuations, Us is the near surface wind speed, W is

the road width, and w is the distance of the receptor from the side of the

road.

C5

ffiffiffi
2

π

r
q

Wσws

ln 11
σwsW

h0Us 1σwsw

� �
(5.4)

If the initial vertical plume spread is negligible compared with the

plume spread due to atmospheric turbulence at the position of the recep-

tor, σwsw=Ush0. . 1, then the direct concentration is described by

Eq. (5.5), where a term with logarithmic dependence on the street width

has been neglected.

C5

ffiffiffi
2

π

r
q

Wσws

(5.5)

The models of Eqs. (5.4) and (5.5) are insensitive to the initial vertical

plume spread. To examine the influence of the initial vertical plume

spread, we assumed that the concentration is well mixed below the height

h0, and follows a Gaussian shape above h0. Then the concentration near

the surface is described by Eq. (5.6), where L is the length of the street

upwind of the receptor.
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ffiffiffi
2

π

r
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Lσws

 !21

(5.6)

A comparison of model estimates from these three models with mea-

surements from Gottinger Strasse showed that the simplest model, Eq.

(5.5), provided the best description of the data. This equation is consistent

with the scaling suggested by Kastner-Klein et al. (2003), who found that

σw is a better scaling velocity than Us for the concentration.

MODELS FOR THE EFFECTS OF BUILDINGS

The previous section described the important physical effects that

buildings have on the transport of pollutants within cities. We now show

how models of the dispersion of traffic emissions can be constructed. The

discussion is focused on two models, the OSPM and the VDM. OSPM is

widely used and is recognized as the state-of-the-art operational near-

road dispersion model by the European air pollution research community

within which it was developed. It has been evaluated extensively with

observed concentrations of traffic emissions in several cities, primarily in

Europe. The model design is based on the idealized street canyon formu-

lation, commonly found in the cities of Europe from which the model

originated. However, this may limit the models usefulness for streets that

do not fit the assumptions of the street canyon model. The second model,

VDM, is designed to estimate dispersion in streets characterized by non-

uniform building heights and spatial inhomogeneity, features characteristic

of cities in North America.

Operational Street Pollution Model
OSPM combines a street canyon box model with a model of the disper-

sion of the direct emissions from the road. The recirculating vortex flow

advects emissions from the road toward the leeward side of the street.

The emissions are then mixed vertically, and are trapped within the can-

yon by the vortex flow. Exchange of the trapped pollutants with the air

above the canyon occurs by vertical turbulent transport, the magnitude of

which is controlled by the standard deviation of vertical velocity
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fluctuations at the roof level. To model these features of the dispersion,

OSPM separates the concentration into two components: the recirculat-

ing component and the direct component (see Fig. 5.2).

For the direct component, the vertical plume spread, σz, is given by:

σz5 h01σwsx=Us (5.7)

where σws is the vertical turbulent velocity at the bottom of the can-

yon, Us is the wind speed at the bottom of the canyon, and h0 is the

initial vertical plume spread. By modeling the road as an area source

and integrating the ground-level concentration across the source, the

concentration next to the edge of the road is given by Berkowicz et al.

(1997):

Cdirect 5

ffiffiffi
2

π

r
q

Wσws

ln 11
Wσws

h0Us

� �
(5.8)

where q is the emission rate per unit length of road and W is the road

width. The initial vertical plume spread, h0, is due to the mixing pro-

duced by motion of the vehicles, and has magnitude proportional to the

vehicle height.

The recirculating contribution is determined by considering the can-

yon as a box model. Emissions enter the box at the bottom and are trans-

ported out of the box at the top by the vertical turbulent velocity at the

top of the box. When the building height, H, is larger than the street

width, H $W , the concentration in the box is:

Crecirc 5
q

Wσwr

(5.9)

where σwr is the standard deviation of vertical velocity fluctuations at the

top of the canyon.

OSPM determines the wind speed at the bottom of the canyon from

that at the rooftop by assuming a logarithmic velocity profile within the

canyon:

Us 5Ut

lnðh0=z0Þ
lnðH=z0Þ

ð12 0:2psinðΦÞÞ (5.10)

where Ut is the wind speed at the top of the canyon, z0 is the surface

roughness length, Φ is the angle of the rooftop wind from the direction

parallel to the street, and p5Hupwind=H , where Hupwind is the building

height on the upwind side of the road. The surface roughness length is
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0.1 m. At the ground, the vertical turbulent velocity is the combination

of the mechanically generated turbulence and the traffic produced

turbulence:

σws 5 ðð0:1UsÞ21σ2
w0Þ1=2 (5.11)

where σw0 is the vertical turbulent velocity due to traffic. The vertical

turbulent velocity at the roof is calculated as:

σwr 5 ðð0:1UtÞ210:4σ2
w0Þ1=2 (5.12)

The traffic produced turbulence is:

σw05 b
NvehVS

2

W

� �1=2
(5.13)

where Nveh is the traffic flow rate, V is the average vehicle speed, S2 is

the surface area of one vehicle, and b5 0:3 is a constant.

OSPM includes many special cases and formulations to ensure that the

concentrations produced by the model are reasonable. The description of

OSPM that we have given here only includes the components of the

model essential to describe the street canyon formulation for winds blow-

ing perpendicular to the street.

Vertical Dispersion Model
OSPM is designed to estimate concentrations within street canyons

and thus invokes the concept of a street lined with unbroken walls

of buildings with uniform heights. Within real-world cities, the

building heights and shapes are often extremely variable, buildings

are placed at varying distance from the road, and gaps often exist

between buildings. It is not clear that street canyon models are useful

for estimating dispersion of traffic emissions within these types of

streets, which are typical of those found in US cities. Thus, there is

a need for a model that accounts for the effects of varying building

heights on dispersion. But, in doing so, as we will see later, the

model relinquishes the spatial resolution of the concentration field

that OSPM is designed for.

The model that we describe next is designed to estimate near surface

concentrations of pollutants emitted from vehicles traveling on urban streets
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surrounded by buildings. We refer to it as the vertical dispersion model

(VDM) to emphasize the dominant influence of vertical turbulent transport

in its formulation. The model assumes that the near surface concentrations

over the length and breadth of a typical city block is governed by the balance

between emissions at the surface and vertical transport out of the urban can-

opy, as shown in Fig. 5.4.

Then, we can write

qBKzW
Cs2Crð Þ

H
(5.14)

where Kz is the vertical eddy diffusivity, H and W are the building height

and street width, Cs is the horizontally averaged concentration in the

street canyon at the ground, Cr is the rooftop (at H) concentration, and q

is the emission rate per unit length of the street.

The eddy diffusivity is taken as the product of a mixing length, l, and

the standard deviation of vertical velocity fluctuations averaged over the

height of the buildings, σw:

Kz5 lσw (5.15)

If we assume that the size of the large turbulent eddies dominating verti-

cal mixing is limited by the smaller of the street width and building height,

then the mixing length is proportional to the smaller of H and W :

lB h01
HW

H 1W

� �
(5.16)

Figure 5.4 Schematic illustrating the balance between emissions and vertical
transport.
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where h0 is the mixing length associated with the initial vertical mixing

caused by the motion of the vehicles. Eqs. (5.14) through (5.16) can be

combined to yield an expression for the surface concentration:

Cs 2Cr 5
q

βσwW

11 ar

11 11 arð Þ h0=H
� �

 !
(5.17)

where ar 5 H=W
� �

is the aspect ratio and β is an empirical constant,

which is obtained by fitting model estimates to observations.

If measurements of the rooftop concentration are not available, Cr can

be estimated by assuming that local emissions are matched by vertical

transport at roof level:

q5 γCrWσwr (5.18)

where σwr is the standard deviation of vertical velocity fluctuations at roof

level, and γ is an empirical constant used to calibrate the model.

Substituting Eq. (5.18) into (5.17) yields:

Cs 5
q

γσwrw
11

γσwr

βσw

11 ar

11 ð11 arÞ h0
H

� �
 !

(5.19)

Eqs. (5.17) and (5.19) are referred to as the VDM. Eq. (5.17) can be

used if σw and Cr can be estimated from measurements. In practice, this

information is usually not available. Thus, it is often necessary to estimate

the average σw from the rooftop σwr, which can be estimated using the

models described in Chapter 6.

We can relate σw to σwr by assuming that turbulent kinetic energy

produced at roof level, per unit length of street, u2�rUrW , is dissipated

over the volume of the street at the rate (σ3
w=l)WH:

u2�rUrWBσ3
wrWB

σ3
w

l
WH (5.20)

where l is the length scale of the large turbulent eddies within the can-

yon, and u2�r and Ur are the shear stress and the mean wind speed at roof

level, and both u�r and Ur are correlated with σwr . If l is similar to the

form given by Eq. (5.16), we can write the semiempirical expression:

σwr 5σwð11ηarÞ1=3 (5.21)
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where η5 0:4 provides the best fit with the data as shown in a later sec-

tion. The ratio of rooftop and average σw is nearly constant because the

1=3 power in Eq. (5.21) results in low sensitivity to the aspect ratio.

The application of VDM requires a value of the aspect ratio, ar , that

best describes the morphology of the nonuniform buildings lining a

street. This was determined empirically by evaluating VDM with data

collected in a field experiment conducted in Los Angeles, the details of

which are discussed in the next section. We found that the following defi-

nition of the effective height, H , of the buildings provided the best

results:

H 5
1

L

X
i

HiBi (5.22)

where L is the street length, Hi and Bi are the height and width (along

the street) of building i, and the sum is taken over all the buildings on

one side of the street. Eq. (5.22) can be interpreted as the area-weighted

building height: the sum of the frontal area of the buildings divided by

the street length. Then, the equivalent building height used in Eq. (5.19)

is the average over both sides of the street.

We assume that the modeled concentration represents an average over

the street canyon within one city block. For the effective building height

to be consistent with the model, it is calculated from the geometry of all

the buildings bordering the street canyon within one city block. The use

of the block length for defining the scale for horizontal inhomogeneity is

somewhat arbitrary, but the assumption of horizontal homogeneity within

one city block has been used in models such as SIRANE (Soulhac et al.,

2011), and comparisons with observations indicate that this is a useful

assumption.

COMPARISON OF MODEL WITH OBSERVATIONS

This section describes the performance of the VDM in estimating

concentrations of traffic emissions. Model performance is evaluated using

near-road measurements of concentrations of ultrafine particle number

(UFP) and carbon monoxide (CO) made in field studies conducted in

Riverside and Los Angeles, CA.
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Throughout this section, we use the geometric mean, mg, and stan-

dard deviation, sg, of the residuals between log-transformed model predic-

tions and observations as well as the correlation coefficient, r2, and the

fraction of data within a factor of two of model estimates, fact2, to

evaluate model performance. The geometric mean and standard deviation

are computed as ln�ðmgÞ5 1
n

P
i ri, and ln�ðsgÞ5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
i
ri2ln mgð Þ½ �2
n2 1

r
, where

ri 5 ln Coið Þ2 ln Cmið Þ, subscripts oi and mi refer to observed and model

estimated concentrations, and n is the number of data points. An mg equal

to one indicates zero model bias. The interval that contains 95% of the

ratios of observed to predicted concentrations is approximately given by

½mgs
22
g ;mgs

2
g �.

Description of the Los Angeles Field Measurements
We use observed near-road concentrations of UFP to evaluate the disper-

sion models. This is done for three reasons. First, UFP is a product of

combustion that provides a strong signal of local traffic emissions. Second,

it is linked with negative health effects (Knibbs et al., 2011). Finally, the

condensation particle counters that measure UFP have a response time on

the order of 10 s, fast enough to capture the impact of individual vehicles

or groups of vehicles on the concentration. The time signature of these

concentration events can be processed to yield the contribution of local

vehicle traffic on the total concentration observed by the monitor. Thus,

the UFP signal allows us to separate local traffic sources from background

sources, which is extremely useful for evaluation of street-scale dispersion

models since these models use horizontal averaging scales on the order of

the size of the street and thus treat emissions on adjacent streets as part of

the background.

The primary condition for locating the concentration monitors is

based on the need to resolve the effect of the built environment on near

road concentrations. Field measurements pose significant challenges to

isolating the effect of one variable on the concentration because variabil-

ity in uncontrolled factors such as traffic emission rate can overwhelm the

signal due to the presence of buildings. The local vehicle emission rate

must be known to evaluate the dispersion models, but emissions can be

difficult to determine in practice. Individual vehicle emission rates can

vary significantly, and during congested driving conditions, characteristic

of urban environments, the local traffic within a street is often
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accelerating or idling, increasing uncertainty of the emission rates (Smit

et al., 2008). Emission models of gaseous pollutants and particle mass are

usually accurate to about a factor of two or three (Smit et al., 2010). UFP

number, which we use as the primary measured pollutant in the field

study, has emission factors that vary by about an order of magnitude

Kumar et al. (2011). Because of the uncertainty in the emission estimates,

when possible the experiments were designed so that UFP concentration

measurements were made at two sections on the same street: one section

with tall buildings adjacent to the street and another where there are no

buildings or very short buildings adjacent. This design ensures that local

vehicle emissions are similar at the two locations, allowing us to directly

compare concentrations at the open and building sections to isolate the

building effect.

The data used in this evaluation was collected during two measure-

ment campaigns. The first campaign was conducted in several cities in

Los Angeles County, CA, USA, between September 2013 and July 2014.

The second campaign was conducted in Riverside, CA, USA, in

September and August, 2015. Table 5.1 gives an overview of the building

morphology of the various field locations in this campaign.

Here, we use the data from the Los Angeles study to evaluate the per-

formance of the VDM and OSPM. We use data from the Riverside field

study to further evaluate the VDM, including observed concentrations of

traffic-emitted carbon monoxide. The evaluation using the data from the

Riverside study is described in the next section.

Table 5.1 Locations at Which Field Measurements of UFP Were Made. The
Observations Are Used to Evaluate the VDM and OSPM
Location Dates Building Morphology

Downtown

Los

Angeles

9/20/13, 5/7/

14, 5/9/14

Urban core with significant building height

variability. Many buildings approximately

50 m tall

Wilshire Blvd 5/30/14 Variable building heights up to 50 m tall.

Average building height is less than that in

downtown Los Angeles

Temple City 1/15/14, 1/16/

14, 1/17/14

Suburban area with many single-story

buildings. Nearly uniform building height of

6 m

Riverside 7/1/15�7/30/

15

Urban area with buildings about 20 m tall
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TSI 3022 condensation particle counters were used to record UFP

number concentrations at a sampling rate of 1 Hz. Samples are drawn

through a copper and Tygon tube with the tube sampling inlet set at 1 m

above ground level. The instruments measure the concentration of parti-

cles with diameters greater than 10 nm (50% detection efficiency is

10 nm). The inlet flow rate is 1.5 L min21.

One of the measurement locations in downtown Los Angeles was

near the 8th St and Hill St intersection. The site was chosen because 8th

St had a section where there were no buildings next to the road, the

“open” site, and a section where there were tall buildings directly next to

the road, the “built” site. We obtained building height and outline infor-

mation for Los Angeles County in a GIS database format which we then

used to calculate the built environment parameters shown in Table 5.2.

The data for this study was obtained from the Los Angeles County GIS

data portal (Los Angeles County, 2008). Information about the building

geometry is an essential component for modeling dispersion of traffic

emissions that is often not readily available. It is rare to have access to

such information on the built environment as LA county freely provides.

Evaluation of the VDM with Data Collected in Los Angeles
and Riverside
Fig. 5.5 shows the evaluation of the surface concentration predicted by

Eq. (5.19) with the 30-min averaged local contribution of UFP in the

Los Angeles field study, normalized by the traffic emission rate based on

the local vehicle traffic counts. The local contribution is a measure of

local traffic impacts, and we use the average of the values measured on

Table 5.2 Summary of Area-Weighted Building Height, Street Width, and Aspect
Ratio of All Sites
Site Area-Weighted

Building Height [m]
Street
Width [m]

Aspect Ratio

8th St Building 43.25 20.0 2.16

8th St Mid 34.5 20.0 1.73

Broadway 35.90 26.0 1.38

7th St 45.80 25.0 1.83

Temple City 6.00 30.0 0.20

Wilshire Blvd Building 36.0 30.0 1.20

Wilshire Blvd Open 8.25 30.0 0.28
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both sides of the street for the model evaluation. We describe the method

to compute the local contribution next.

To remove the impact of background sources, we determine the con-

tribution of local emissions to the total concentration observed at the sur-

face monitors, and use only this “local contribution.” The UFP

concentration time series contains information about the local vehicle

emissions in the form of large amplitude short-lived spikes superimposed

on the slowly varying baseline. This occurs because the UFP emission

factor varies by several orders of magnitude, and so local emission events

from high-emitting vehicles produce large concentration spikes that can

be separated from the total concentration. We filter the signal to separate

the slowly varying component from the spikes, which contain informa-

tion about local emissions. A moving average filter with a window size

larger than the time scale of the spikes does not adequately separate the

two components because the concentration distribution is highly skewed,

making the average an inadequate measure of the baseline concentration.

Instead of the moving average, we use a windowed percentile to separate

the components. We define the baseline as the concentration that is

below a chosen percentile of the concentration distribution. Then, within

each time window of a chosen length, each data point is classified as

either baseline or spike if the concentration is below or above the

Figure 5.5 Comparison of VDM with 30 min averaged local contribution of UFP. Left:
scatter plot of the data. The local contribution is the average of both sides of the
street and is normalized by the daily average emission rate, assuming an emission
factor of 1014veh21km21. Right: quantile�quantile plot. The building height of the
8th St open section has been set equal to that of the 8th St building section.
VDMsurface is Cs from Eq. (5.19).
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percentile cutoff of the window. The baseline is then constructed by line-

arly interpolating between the points that are classified as baseline, and

the spikes are separated by subtracting the baseline from the total. This

type of analysis is common for analyzing UFP time series, especially in

analysis of mobile monitoring data (Bukowiecki et al., 2002). Details of

the method that we have developed are described in Schulte et al. (2015).

The model was applied to the data using the best fit parameters

h05 2m and β5 1. The values of the parameters that characterize the

buildings, the area-weighted building height, and street width are listed in

Table 5.2. We have assumed the emission factor of UFP equals

1014veh21km21, which is the magnitude of UFP emission factors reported

in literature (Kumar et al., 2011). The value of the final parameter, γ, was
determined by matching the observed and modeled concentrations from

the Los Angeles data. The resulting value is γ5 1:0.
The left panel of Fig. 5.5 shows the scatter plot of the data and the

right panel shows a quantile�quantile plot. The figure indicates that the

model provides a good description of the measured local contributions of

UFP. There is little model bias and most of the observations are within a

factor of two of the model estimates. The quantile�quantile plot indicates

that the model overestimates the lowest concentrations and the scatter

plot of the concentrations normalized by emissions shows that this is due

to underestimation of the dispersion. However, most of the data is

described well by the model. This implies that local contributions are pri-

marily governed by the ratio of area-weighted building height to street

width and the vertical average of the standard deviation of the vertical

velocity fluctuations. The low model bias indicates that traffic emissions

are consistent with an emission factor of 1:03 1014veh21km21. This value

is within the range reported by Ketzel et al. (2003).

Evaluation of the OSPM recirculating contribution model, which uses

the mean rooftop wind speed as the primary meteorological variable govern-

ing near road concentrations, showed little correlation between model esti-

mates and observations at the field sites in the Los Angeles study. This

supports the conclusion that vertical turbulent transport rather than advection

by the mean wind dominates dispersion in cities with significant building

height variability. This conclusion is supported by observations analyzed in

Hanna et al. (2014), which show that data from field studies conducted in

Manhattan, NY, indicate rapid vertical mixing in the presence of buildings.

We show that modeling the air quality impact of vehicular emissions

reduces to estimating the effective aspect ratio of the street, and the roof
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level σw. The effective aspect ratio plays the major role in magnifying

concentrations relative to those that would have been measured in the

absence of buildings.

The building morphology where measurements were conducted in

Los Angeles was mainly of two types: urban core areas with many tall

(B50 m) buildings, and suburban with primarily single story buildings.

So VDM was evaluated with measurements conducted in a street with an

intermediate aspect ratio of 0.4 in Riverside, CA, over a period of about

a month. We used observed near-road concentrations of carbon monox-

ide to improve the calibration of the empirical constants in the VDM and

to estimate confidence limits for their values.

As in the previous study conducted in Los Angeles, concentration

measurements were made next to a busy road at two locations, one with

tall buildings next to the road and one several blocks away with only short

buildings next to the road. A site next to Market St in Riverside, CA,

was chosen to meet the requirements of the study. Fig. 5.6 shows an

overview of the site. The “building” section has an area-weighted build-

ing height of 14.37 m and a street width of 33 m, resulting in an aspect

ratio of 0.44. The “open” section has area-weighted building height of

2.14 m and street width of 30 m. The traffic on Market St was about

26,000 vehicles per day.

Fig. 5.6 shows the locations of the instruments that were used in the

study. Campbell scientific CSAT3 sonic anemometers were used to mea-

sure the three components of wind speed and temperature at 10 Hz at

both the building and open sites and on the roof of city hall, approxi-

mately 100 m from the building site. The resulting turbulence data was

processed to yield time average wind speeds, wind direction, turbulent

velocities, and heat and momentum fluxes. The micrometeorological

measurements were made continuously between July 30 and September

9, 2015.

Concentrations of UFP were measured using TSI 3022 condensation

particle counters between about 7 am and 7 pm on 15 days in August

and September, 2015, resulting in a total of about 150 h of particle con-

centration data. A total of five particle counters were used: one on each

side of Market St at both the building and open sites and one on the city

hall roof. The instruments provided 1-second average concentrations.

The UFP concentration data was processed to yield the contribution of

local vehicle traffic using the method described for the evaluation of the

Los Angeles data.
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Measurements of carbon monoxide ðCOÞ, nitrogen

oxides ðNO and NO2Þ, ozone ðO3Þ, and sulfur dioxide ðSO2Þ were made

using AQMesh five gas pollutant monitor “pods” between August 18 and

September 9, 2015. The pods are ideally suited for long term measurements

of concentrations of vehicle emissions. They use much less power than the

condensation particle counters, the integrated battery holds enough charge

to function for the entire study, enabling continuous concentration measure-

ments. Three pods were used: one on each side of Market St at the “build-

ing” section, and one on the rooftop. Averaging time for the AQMesh

monitors was 1 min, and data was later aggregated into 2 h averages for anal-

ysis. Only the carbon monoxide data was analyzed for the evaluations in this

chapter.

Sonic anemometers and AQMesh pods were mounted at a height of

4 m above ground level (AGL). Condensation particle counters mounted

to light poles have inlets at a height of 1 m AGL. The rooftop sonic ane-

mometer and AQMesh pod were attached to a tripod 3 and 2 m above

the 25 m-tall roof of city hall, respectively. The rooftop condensation par-

ticle counter inlet is 0.5 m above the rooftop.

Figure 5.6 Location of instruments in May 2015 Riverside, CA, field study.
—Condensation Particle Counter (CPC). —AQMesh. —Sonic Anemometer.
—Camera. Map Data: Google.
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Fig. 5.7 shows the comparison of the observed vertical difference of

carbon monoxide concentrations with VDM predictions. Model estimates

are determined using emission factors of 3:75g km21 for nontrucks and

2:5g km21 for trucks.

There is significant scatter between the observations and model esti-

mates, indicated by the low correlation coefficient. However, 78% of

the data are within a factor of two of model estimates. Most of the dis-

crepancy between observations and model estimates is due to cases

where the observed vertical difference is small compared with model

estimates. This usually occurs during night and early morning between

about 1:00 am and 7:00 am, when the traffic flow rate and hence the

emission rate is very small. We do not have a good estimate of the

actual traffic flow rate during this time period. In particular, the com-

parison is somewhat sensitive to the assumption of when the morning

rush hour traffic begins, since this determines the time of the morning

spike in concentration. The right panel of Fig. 5.7 shows that the

VDM tends to overestimate the lowest concentrations but otherwise

the distribution of concentrations predicted by VDM describes the data

remarkably well.

There is little model bias since we derived the emission factor from the

comparison of model with observations. The values of mg and sg indicate

that 95% of the observations are within a factor of 0.24�2.7 of the model

estimates. These results show that the VDM adequately predicts near road

Figure 5.7 Comparison of VDM with vertical difference of 2-h average carbon mon-
oxide concentrations in Riverside, CA. Left: Scatter plot of the data. Observations are
normalized by the emission rate assuming an emission factor of 3:75g km21 for non-
trucks and 2:5g km21 for trucks. Right: Quantile�quantile plot.
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concentrations within an urban area. To apply the model, we need to deter-

mine the value of the meteorological input variables: σw at the urban rooftop

and surface. Since measurements of σw are not routinely made in urban

areas, these variables must be determined from routine meteorological mea-

surements, which are usually only made in rural areas such as airports.

Chapter 6 describes the evaluation of a model that relates measured micro-

meteorology at a rural area to that at the urban rooftop and surface.

SUMMARY

The evaluation of the VDM supports the applicability of the model

for estimating near-road concentrations within urban areas. The results

show that the standard deviation of vertical velocity fluctuations, σw, in

the urban canopy governs near-surface concentrations, especially during

low wind speed conditions typical of urban areas. The mean wind speed

likely plays a small role in dispersion in urban areas because the turbulent

intensities are large, resulting in significant horizontal meandering of the

pollutant plume. Measurements of mean winds and turbulence in

Manhattan and Oklahoma city (Hanna, 2009; Hanna et al., 2007) support

the conclusion that strong vertical turbulent mixing governs dispersion in

urban areas. Near surface winds in these studies were only about 1/3 of

the rooftop value, and wind directions varied significantly (Hanna et al.,

2007). This results in more horizontal meandering of pollutant plumes,

creating conditions where vertical transport governs the near-road

concentrations.

For the VDM to be consistent with the data collected in the Los

Angeles study as well as the Riverside measurements, it was necessary

to assume that the emission factors of NOx;CO, and UFP could vary

by about a factor of two of the EMFAC2011 estimates. This assump-

tion is supported by studies showing errors in emission models of up to

a factor of three and two for CO and NOx, respectively (Smit et al.,

2010). Emission factors depend on the composition of the vehicle fleet

and the type of driving conditions. Hence, traffic flow conditions

observed in the Riverside study may result in emission factors that are

different from those predicted by average speed models such as

EMFAC, and it may be necessary to estimate emissions by explicitly
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including the level of traffic congestion at the field site in the emission

model (Smit et al., 2008). However, it may be difficult to obtain more

accurate emission estimates even with more comprehensive models

that include measures of congestion because it will be more difficult to

obtain accurate estimates of the input data for these models.

Considering the uncertainty in the emission rates, the value of the

model calibration constant β is likely within about a factor of two of

the value β5 1 chosen in this study.

We have shown that estimating the impact of buildings on dispersion

of traffic emissions in the near-road environment reduces to estimating

the ratio of the area-weighted building height to street width and the ver-

tical average of the standard deviation of vertical velocity fluctuations.

Throughout this chapter, we have used measurements to determine the

values of the micrometeorological model inputs. However, only the mean

wind is routinely measured, and these measurements are primarily made

in rural areas. For practical applications where the turbulence data in the

urban area is unknown, we must determine the values of the micromete-

orological input variables required for the VDM from these routine mea-

surements. Chapter 6 describes methods to estimate the urban

micrometeorology based on the routine measurements at an upwind rural

location.

The evaluation and application of VDM has focused on a single street

in a city block. How do we apply the model to estimate near surface con-

centrations in an urban area with a large number of roads? One approach

is to use a model such as AERMOD to estimate concentrations at the

effective top of the urban canopy assuming that the roads are the same

level as the canopy top. The meteorological inputs would account for the

roughness of the urban area averaged over the scale of the urban built-up

area. The IBL model, described in Chapter 6, can be used to estimate

these inputs. The resulting concentrations correspond to the rooftop

values in Eq. (5.17), which can be then used to estimate the concentra-

tion at street level using

Cs 5CAERMOD 1
q

βσwW

11 ar

11 11 arð Þ h0=H
� �

 !
; (5.23)

where the parameters in the second term on the right-hand side of

the equation correspond to the road of interest. More details are

described in Chapter 6.
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