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Abstract

INTRODUCTION: Characterizing pathological changes in the brain that underlie cog-

nitive impairment, including Alzheimer’s disease and related disorders, is central to

clinical concerns of prevention, diagnosis, and treatment.

METHODS: We describe the properties of a brain gray matter region (“Union Signa-

ture”) that is derived from four behavior-specific, data-driven signatures in a discovery

cohort.

RESULTS: In a separatevalidation set, theUnionSignaturedemonstrates clinically rele-

vant properties. Its associationswith episodicmemory, executive function, andClinical

Dementia Rating Sum of Boxes are stronger than those of several standardly accepted

brain measures (e.g., hippocampal volume, cortical gray matter) and other previously

developed brain signatures. The ability of the Union Signature to classify clinical syn-

dromes among normal, mild cognitive impairment, and dementia exceeds that of the

other measures.

DISCUSSION: The Union Signature is a powerful, multipurpose correlate of clinically

relevant outcomes and a strong classifier of clinical syndromes.

KEYWORDS

brain signatures of cognition, clinical measurements, cognitive aging, computationally derived
biomarkers

Highlights

∙ Data-driven brain signatures are potentially valuable in models of cognitive aging.

∙ In previous work, we outlined rigorous validation of signatures for memory.

∙ This work demonstrates a signature predictingmultiple clinical measures.

∙ This could be useful in models of interventions for brain support of cognition.
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1 BACKGROUND

Recent years have seen heightened interest in computational

approaches to capturing brain atrophy patterns or “brain signa-

tures” that most strongly and/or specifically characterize outcomes

such as cognitive function1 or diagnostic determination.2–4 The cur-

rent availability of very large data sets and high computational power

has led to active exploration of the properties and generalizability of

such data-driven methods.5,6 The motivating idea is that data-driven

computations have the potential to discover brain-behavior relations

that explain more variance in clinical outcomes than other approaches

guided by theoretical considerations. However, this approach raises

issues of reproducibility and validation. The discovered relations and

explanatory ability must generalize across separate data sets before

they can be used as robust variables.5,6

In previous publications, we developed statistically based computa-

tional methods for discovering and validating robust brain gray matter

(GM) substrates or signatures from T1-weighted magnetic resonance

imaging (MRI)7,8 of episodic memory measured both by neuropsy-

chological testing and informant-rated measures of everyday cogni-

tion. These works incorporated principles to support generalizability,9

including the use of multiple cohorts for independent discovery and

validation. We showed that the brain signatures robustly generalized

to other non-related cohorts.We also found that episodic memory and

third-person informant-ratedmemory in everyday lifewere associated

with very similar brain signatures,8 indicating that common brain GM

regions, particularly in the medial temporal lobes and caudate, were

shared by both of these differingmemorymeasures.

The convergence of underlying signature regions for two clinically

relevant outcomes suggested that similar GM substrates might under-

lie other behavioral outcomes. In addition, recently, a publication from

our group10 using related techniques aimed at predicting clinical status

rather than continuous outcome, identified a brain biomarker for par-

ticipants at increased risk ofAlzheimer’s disease and relateddementias

(ADRD). Combined, these findings suggested that it may be possible to

identify a generalized brain signature as a useful marker for multiple

clinical outcomes. This motivated the current study.

The purpose of the current study is, therefore, to explore the clin-

ically relevant properties of a generalized GM brain signature based

on these methods. First, we use these techniques to discover two

new domain-specific signatures for executive functions that are neu-

ropsychological and informant based.11 Next, we compare the spatial

GM extents of four signatures—neuropsychological and informant-

rated memory + neuropsychological and informant-rated executive

function—and evaluate the association of each with all four of those

outcomes. We then test whether a common brain signature (“Union

Signature”), based on the spatial union of the four signature GM

regions, performs as well as the individual signatures in modeling each

outcome. From there, we investigate whether the Union Signature

has useful clinical properties of strong associations with several rele-

vant measures, including clinical diagnosis and concurrent and change

measures of episodic memory, executive performance, and the Clinical

Dementia Rating (CDR) scale.12

RESEARCH INCONTEXT

1. Systematic review: A PubMed search of “brain signa-

ture” produced extensive literature on computational,

data-driven approaches to brain associations with out-

comes. Earlier algorithmic approaches used straightfor-

ward computation to discover brain features that best fit

outcomes. Recently, deep learning approaches have used

convolutional neural nets, often with very large data sets,

to produce powerfulmodels. However, work is ongoing to

improve their interpretability.

2. Interpretation: Our findings indicate that techniques

using algorithmic computation and relatively modest-

sized data sets can discover brain substrates that are

strongly associated with a range of clinically relevant

measures. These afford insight into shared substrates of

cognitive measures and provide brain phenotypes that

outperform theory-basedmeasures inmodels of relevant

outcomes.

3. Future directions: Future work should continue refining

signatures and exploring relations to deep-learningmeth-

ods. Meanwhile, signature phenotypes could be used

fruitfully to investigate factors that impact cognitive

aging via changes in the brain.

2 METHODS

2.1 Imaging cohorts

For discovery of the four domain-specific GM signatures, we used

815 participants from theAlzheimer’s DiseaseNeuroimaging Initiative

Phase 3 cohort (ADNI 3) obtained on the ADNI website. These dis-

covery cohorts were used previously for generating memory-specific

signatures.8 ADNI was launched as a public–private partnership by

the National Institute on Aging, the National Institute of Biomedical

Imaging and Bioengineering, the U.S. Food and Drug Administration

(FDA), private pharmaceutical companies, and non-profit organiza-

tions in 2003. Its primary goal has been to test whether serial magnetic

resonance imaging (MRI), positron emission tomography (PET), other

biological markers, and clinical and neuropsychological assessment

can be combined to measure the progression of MCI and early AD.

The principal investigator is Michael Weiner, MD. Current informa-

tion on ADNI may be obtained at their website, https://adni.loni.usc.

edu/. Participants in our ADNI 3 cohort had neuropsychological and

informant-rated daily function (everyday cognition or ECog) data along

with one structural T1 MRI scan taken close to the time of evaluation

(mean time difference, 0.43 years).

For validation and exploration of the signature properties, we

used a sample that combined several cohorts including the Univer-

sity of California Davis Alzheimer’s Disease Research Center (ADRC)

https://adni.loni.usc.edu/
https://adni.loni.usc.edu/
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Longitudinal Cohort, the Kaiser Healthy Aging and Diverse Life Expe-

riences Study (KHANDLE), the Study of Healthy Aging in African

Americans (STAR), and Life After 90 (LA90) cohorts, consisting of 1874

participants each having repeated behavioral measurements and a

single concurrentMRI scan, selected tobe closest to theearliest behav-

ioral evaluation (mean time difference, 0.92 years). We refer to this as

the UC Davis (UCD) sample. Our UCD sample was racially/ethnically

diverse, consisting of 185 of Asian origin, 618 African Americans, 404

Latinx/Hispanics, and 660Whites, with 7 unclassified. For clinical diag-

noses, the UCD sample consisted of 946 cognitively normal (CN), 418

mild cognitive impairment (MCI), and 140 with dementia. We omitted

370without a diagnosis.

2.2 Cognitive and everyday function assessments

Assessments of neuropsychological episodic memory and executive

function used the Spanish and English Neuropsychological Assess-

ment Scales (SENAS)13,14 in the UCD cohort and ADNI-Mem, the

ADNI measure of episodic memory15 and ADNI-EF, the measure of

executive function16 in ADNI 3. The SENAS has undergone exten-

sive development as a battery of cognitive tests relevant to cognitive

aging that allow for valid comparisons across racial, ethnic, and lan-

guagegroups.13,14,17,18 Development andvalidationof theSENASused

modern psychometric methods to ensure highly reliable measurement

across a diverse range of abilities and ages.

The ECog third-person informant-rated scales for memory and

executive function were used in both ADNI 3 and UCD data sets.11

The ECog measures cognitively relevant everyday abilities covering

multiple domains. For this study, we used the domains of Everyday

Memory and Everyday Executive Functioning. For each item of the

ECog, informants compare the participant’s current level of everyday

functioning with how they functioned at their own baseline. The ECog

has been shown to have excellent psychometric properties including

good test–retest reliability, as well as evidence of various aspects of

validity including content and construction.11,19

The CDR12 was used as a measure of global disease severity. It

is a clinician rating based on a structured interview with the partici-

pant andknowledgeable informant acrossmultiple areasof functioning

including memory, orientation, judgment, problem-solving, community

affairs, home and hobbies, and personal care. The sum of domains or

“Sum of Boxes” (CDR-SB) was used as a continuous measure of clinical

status.

2.3 MRI image processing

Single T1-weighted MRI scans for each participant in the UCD test

set were processed by in-house pipelines developed at the IDeA

Laboratory, Department of Neurology, University of California Davis,

and described previously.20,21 Steps relevant to the current project

included affine transformation followed by nonlinear, deformable B-

spline registration to a common structural MRI template space.22 This

registration enabled native space automatic segmentation into GM,

white matter (WM), and cerebrospinal fluid (CSF) tissue classes. Thus

the segmented tissues of the template were transformed to native

space by inverting the registration and then used to initialize an iter-

ative Bayesian algorithm for optimizing estimates of native tissue

classes.23 Our template was constructed as an age-appropriate (i.e.,

cognitively normal, mean age 65 years) minimal deformation synthetic

template (MDT).24

We quantified brain GM using thickness measures computed at

voxel-level in native space by the DiReCT diffeomorphic algorithm25

applied to segmented images. DiReCT is a three-dimensional (3D),

voxel-based algorithm that is amenable to the voxel aggregation at the

base of our method, and thus preferable to other common approaches,

such as the surface-based (i.e., calculating distances between inner and

outer GM polygonal mesh surfaces) approach used in Freesurfer.26

Native GM thickness maps were deformed to MDT space via the non-

linear deformations in our standard pipeline. All subsequent analyses

for signature region discovery and validation were performed over the

deformedGM regions of participants in commonMDT space.

2.4 Signature variables

The discovery and validation technique for GM signature regions has

been explained in detail previously.8 To summarize here, the discovery

phase uses 40 randomly selected subsets, each of 400 samples from

the full discovery cohort, to compute regions of interest (ROIs) that are

significantly associated with behavioral outcome, separately in each

subset. Discovery is followed by a consolidation phase. Clusters from

the 40 discovery sets are tested for voxelwise overlaps. Voxels con-

tained in at least 70% of the 40 discovery subset clusters are retained

as “consensus” regions. We performed the steps leading to consen-

sus regions in parallel for three significance thresholds, corresponding

to three levels of A-association (t = 3, 5, 7). Thus consensus regions

were formed independently for each level of association. This is use-

ful for delineating significant associations at different strength levels.

However, for simplicity in our further analyses, we used signatures

consisting of all consensus regions derived from t≥ 3.

Our recent article8 validated consensus regions derived inde-

pendently in two disjoint discovery cohorts, consistent with recent

recommendations for brain–behavior associations.9

In the current study, we followed the same discovery techniques

to generate two new signature ROIs from the ADNI 3 cohort related

to neuropsychological and ECog measures of executive function. With

the signatures previously computed for neuropsychological and ECog

memory,8 this brought our total to four domain-specific signatures:

memory and executive function in both neuropsychological and every-

day ECog measures. We did not do a complete validation for the new

signature ROIs, relying on the previous validation results to support

their use as robust variables. However, we still performed a partial

validation by comparing the performance of all four cognitive-specific

signature variables generated by the discovery in ADNI 3 in both our

current UCD and the ADNI 3 samples.

Finally, we formed the union of all four regions (i.e., the set of vox-

els belonging to at least one region). We created separate unions for
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F IGURE 1 Top row: Four domain-specific signatures computed from discovery sets in ADNI 3. Left to right: episodic memory, executive, ECog
memory, ECog executive. Bottom row: The Union Signature (three coordinate views). Color codings (red, orange, and yellow) indicate differential
strengths of associations (i.e., minimum t-value threshold of regression β coefficient for contiguous clusters of voxels) with each outcome, but each
color-coded region is statistically significant (p< 0.001). The color-coded regions of the Union Signature are the respective spatial unions across
the four corresponding regions in the cognitive-specific signatures. These colored regions are useful in delineating relative strengths of
associations of brain locations to outcome. Levels are regions of voxel association strength represented by regression coefficient t-values (red= 3;
orange= 5; yellow= 7).

each t-level of association (i.e., the union of four domain-specific t = 3

regions, and so on). The “Union Signature” consists of these three t-

levels. It was motivated by two observations. First, the spatial extents

of the four individual signature regions appeared congruent (Figure 1,

top row), suggesting strongly overlapping brain substrates for separate

behavioral domains (thus replicating the substrate similarity we ear-

lier found for two domains8). Second, we tested the performance of

each signature for predicting all four behavioral domains, finding that

each domain was explained well by not only its “own” signature region

but also by all the other signatures. This suggested that a Union Signa-

ture might be a powerful single-purpose brain substrate. Furthermore,

because of random training set variability in outcome and imaging data

and the risk of overlearning, individual signatures might be less gener-

alizable than desired, but a union of all four signatures, by combining

the random variabilities of each and thus dampening them, might be

less sensitive to training set noise than any individual signature.

We then compared the Union Signature performance in UCD and

ADNI 3 with those of the domain-specific signatures. From the fore-

going considerations, we hypothesized that the Union signature would

perform as well or better than the domain-specific signatures in

explaining all four behavioral outcomes.

In the figures, color-coded spatial extents depict the union of corre-

sponding levels from domain-specific signatures. However, in the rest

of this article, the Union Signature variable is the mean GM thickness

across the combined color-coded regions without differentiating by

sub-regions of level of association.

2.5 Statistical analyses testing the performance
of the Union Signature

We tested the ADNI 3–derived Union Signature in models explaining

episodic memory, executive function, CDR-SB27 (continuous mea-

sures), and clinical diagnosis in our UCD validation sample. It is

important to note that all model performance evaluations occurred in

the UCD cohort, which was separate from the ADNI discovery cohort.

We performed mixed-effect modeling of sequential measures for

episodic memory, executive function, and CDR-SB in each participant.

The time variable was the time difference of each evaluation from

the single MRI scan of a participant (“TimeSinceScan”). Models exam-

ined the effects of brain predictor variables (i.e., Union Signature and

other comparison brain variables) on the intercept and slope of each
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outcome. Effects on longitudinal outcome change (slope) were mod-

eled by the interaction TimeSinceScan × brain measure. All brain

measures consisted of mean GM voxel-based thickness measures over

specific regions. Each brain measure is identified by the names of its

region (e.g., Union Signature, Hippocampus, and so on).

Control variables in all models included age at first evaluation (cen-

tered at 75), education (centered at 12 years), categorical variables for

gender and race/ethnicity (with four categories of Asian, AfricanAmer-

ican, Latinx/Hispanic, andWhite), andwhether cognitive examswere in

Spanish or English.

To account for practice effects contributing to scores for episodic

memory and executive function, we performed preliminary analyses

without brain variables, using indicator variables P1 coding for one test

and P2 for two or more tests. Thus, at the earliest exam, P1 = P2 = 0;

at the second exam, P1 = 1 but P2 = 0. At subsequent exams, both

variables are positive. We found that P1 contributed to estimates of

memory slope, and P1 and P2 both contributed to estimates of exec-

utive slope (analyses not shown). We, therefore, incorporated P1 in

the full models of episodic memory and P1 and P2 in models of execu-

tive outcome. Practice effect variables were included as independent

predictors and in interactions with brain measures and time × brain

measures. Models of CDR-SB did not require controlling for practice

effects. Because some participants in LA90, the oldest-old cohort in

our UCD sample, were administered shortened forms of the cognitive

exams, we also included a control indicator variable for exam formats.

Models were evaluated by the function lmer in the R lme4

package.28 Model fit performance for continuous outcomes was mea-

sured by marginal R2 (i.e., R2 fit of the fixed effects; computed by the

performance package in R29) and effect sizes for brain variables on

intercept and slope. To enable direct comparison of effect sizes for dif-

ferent brain measure predictions of an outcome, all brain measures

were scaled to Z-scores (mean= 0, SD= 1).

For clinical diagnosis outcome, we performed binary logistic mod-

eling using the glm function (R stats package)30 for baseline diagnosis

(CN, MCI, or dementia). Binary categories were CN versus demen-

tia, CN versus the rest, and dementia versus the rest. Predictor

variables included age, gender, education, and race/ethnicity, as in

the mixed-effects models above, but no variables pertaining to test

scores or administration and no time variable.Model performancewas

measured by the area under the curve (AUC) of receiver-operating

characteristic (ROC) separating binary classifications.

2.6 Comparing Union Signature with other model
performances

Using the UCD cohort as a test set, we compared model fit perfor-

mances of the Union Signature with brain GM variables known to

be associated with our cognitive outcomes. For each variable except

hippocampal volume, we sampled GM thickness as described ear-

lier for our signature ROIs. These variables were total cortical GM

thickness, temporal lobe GM thickness, hippocampal volume, and

entorhinal cortex GM thickness. In addition, in recent years, other

TABLE 1 Participant characteristics for discovery data set (ADNI
3) and test data set (UCD) comprising UCD longitudinal cohort,
KHANDLE, STAR, and LA90.

ADNI 3 discovery

set UCD test set

N 815 1874

Age (mean, SD) 71.4 (7.3) 75.8 (9.1)

Male (%) 48 40

Education, years 16.5 (2.5) 13.9 (4.1)

Race/ethnicity (%) Hispanic/Latino 4

Non-Hispanic 95

NA 1

Asian 9.9

African American 33.1

Latinx/Hispanic 21.6

White 35.4

Clinical diagnosis

(percent)

CN 50

MCI 27

AD 10

NA 13

CN 50.4

MCI 22.3

Dementia 7.5

NA 19

Scanner field

strength (% 3T)

99.9 47.6

Note: The two cohorts differed by age, education, ethnoracial diversity, and
mix of scanner strengths.

Abbreviations: AD, Alzheimer’s disease; CN, normal control; dementia, all

cause dementia; MCI, mild cognitive impairment; NA, not available.

research efforts have generated data-driven ROIs associated with the

outcomes, including clinical classification and associations with con-

tinuous cognitive measures. We selected three for comparison, based

on the availability of explicitly described ROIs from which the signa-

tures could be constructed, and on relevance to continuous cognitive

outcome or clinical diagnosis. First was Dickerson, a signature of cor-

tical GM thinning that distinguished CN from AD4 and stable MCI

from converters to AD.2 This set of GM regions was also subsequently

shown to be a marker for episodic memory.31 Second was Epelbaum, a

data-driven selection of brain GM regions from the Desikan-Killiany-

Tourville (DKT) atlas32 which together explained episodic memory.1

And thirdwas Schwarz, anAD signature regionmade from a composite

of entorhinal, fusiform, parahippocampal, middle-temporal, inferior-

temporal, and angular gyri.33 All brain models besides our Union

Signature were formed from appropriate GM ROIs of the Mindbog-

gle atlas (https://mindboggle.info/), a second-generation version of the

DKT atlas of GMparcellation.32,34

Metrics of model performance are reported as means over 10,000

iterations for each model, using the boot package in R.35 Significance

was computed by 95% confidence intervals (CIs) derived from these

iterations.

3 RESULTS

3.1 Participant characteristics

Participant characteristics for the discovery and test data sets are

shown in Table 1. The ADNI 3 cohort was younger and showed higher

education than UCD, whereas UCD had greater race/ethnic diversity.

https://mindboggle.info/
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Distributions of clinical diagnosis were similar, but it is notable that the

dementia category in the UCD includes all-cause dementia, whereas

in ADNI 3, the dementia diagnosis is based on AD. The UCD cohort

was highly diverse racially/ethnically, in contrast to the homogeneous

nature of the ADNI 3.

3.2 The Union Signature

Figure 1 displays four individual domain signatures and the Union Sig-

nature. Figure 1 (top row) shows strong spatial resemblances across all

individual signatures. We then formed a Union Signature consisting of

the spatial union of all four regions, shown in Figure 1 (bottom row).

3.3 Verification of Union Signature versus
cognitive-specific signature model fits

Next, we compared the Union Signature model fit for each outcome

with the four domain-specific signature fits in each of our ADNI 3 and

UCD cohorts. Thus, we applied the signature regions computed from

the ADNI 3 discovery cohort in that set itself and in our UCD data set.

Table 2 shows the mean bootstrapped adjusted R2 model fits for each

model.

The table indicates that the Union Signature R2 fit value to each

outcome was higher than any of the individual signature domain fits

with two exceptions (neuropsychological memory outcome, which was

best predicted by the EverydayMemory signature in the UCD cohorts,

and executive in ADNI, which was best predicted by the executive

signature). In many cases, the Union fit was significantly higher than

the domain-specific signature fits; it was significantly less in only one

instance, for the executive domain signature and executive domain in

ADNI.

The results displayed in Figure 1 and Table 2 suggest, first, that

there is remarkable consistency in spatial extent and configuration for

all domain-specific signatures, although the executive shows a lesser

extent than the others. Second, the performances of four domain-

specific signatures in predicting each outcome are quite consistent

across outcomes in each cohort. Compared to these, the Union Sig-

nature is the best or near-best predictor of each behavioral outcome

(bottom rows) regardless of cohort.

3.4 Brain region characteristics of the Union
Signature

To ascertain the spatial distribution of the Union Signature relative to

standard cortical parcellations, we tabulated the percent overlaps of

the Union Signature region with GM regions in the Mindboggle atlas.

Table 3 shows overlaps exceeding 10% of each region in descending

order. The table indicates heavy overlap of the Union Signature with

TABLE 2 Comparison of outcomemodel fits (adjusted R2

coefficient of determination) by domain-specific signature predictors
and the Union Signature.

A. Comparisons in ADNI 3

Signature Mem Exec ECogMem ECogExec

Mem 0.247 0.213 0.205† 0.206†

Exec 0.223† 0.235*,† 0.196† 0.201†

ECogMem 0.210† 0.192† 0.211† 0.210†

ECogExec 0.201† 0.188† 0.199† 0.208†

Union 0.251* 0.215 0.235* 0.235*

B. Comparisons in UCD

Signature Mem Exec ECogMem ECogExec

Mem 0.306 0.240 0.168† 0.166†

Exec 0.255† 0.220† 0.102† 0.121†

ECogMem 0.315* 0.246 0.175* 0.173

ECogExec 0.313 0.248 0.171† 0.171†

Union 0.311 0.249* 0.175* 0.175*

Note:Modelswere simple regressions of the formoutcome∼ signature vari-

able. We employed bootstrapping to evaluate mean model fit and mean

pairwise difference between Signature Union and other model fit, for each

cognitive outcome. Confidence intervals derived from each bootstrap gave

estimates of significance. Bootstraps consisted of 10,000 iterations for each

individual signature model fit and for pairwise differences of the union ver-

sus each of the other signature model fits. Highest value in each column

indicated by asterisk. Dagger notation indicates significant difference (95%

confidence interval [CI]) with the Union Signature fit value in a column.

For ECogMem outcome in UCD, the Union and ECogMem models were

tied to three decimal places. In both test sets, the Union Signature has the

strongest model fit to outcome in three of four domains: Episodic memory,

ECogMemory, andECogExecutive inADNI3, andExecutive, ECogMemory,

and ECog Executive in UCD.

Abbreviations: ECogExec, everyday functional executive; ECogMem, every

day functional memory; Exec, neuropsychological executive function;Mem,

neuropsychological episodic memory.

TABLE 3 Fractions of atlas ROI parcellations with greater than
10% overlap by the Union Signature region.

Region overlapped

Fraction of region in overlap

with Union Signature

Amygdala 0.963

Entorhinal 0.772

Hippocampus 0.657

Caudate 0.544

Parahippocampal gyrus 0.384

Isthmus cingulate 0.281

Superior temporal gyrus 0.215

Fusiform gyrus 0.163

Medial orbitofrontal 0.144

Inferior temporal gyrus 0.112

All regions are bilateral.
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medial temporal structures of the amygdala, entorhinal cortex, andhip-

pocampus, followed by the caudate nucleus, all with overlaps of over

50% of these structures.

3.5 Performance comparisons for Union
Signature associations to relevant clinical outcomes

Next we evaluated the Union Signature performance, which predicted

a variety of clinically relevant outcomes in the UCD data sample.

The cognitive models were repeated measures of continuous out-

comes for episodic memory, executive function, and CDR-SB. We

report the effects of a brain measure on outcome intercept and of

time × brain measure on outcome slope. Models were evaluated by

these two effect sizes and by marginal R2. For clinical outcome sta-

tus, we used single-time models of binary categories. Thus, logistic

regression of clinical status outcomes included binary variables for

CN versus Dementia, CN versus the rest (i.e., MCI and Dementia),

and Dementia versus the rest (i.e., CN and MCI). In logistic mod-

els, we measured performance by ROC with their areas under the

curve (AUC).

3.5.1 Models of continuous outcomes

Longitudinal models compared the Union Signature model perfor-

mance against those of other brain measures that are commonly

accepted as strongly associatedwith our outcomesof interest. All brain

variables were converted to Z-scores (mean = 0, SD = 1) to enable

comparison of effect sizes across models.

We evaluatedmodel fit metrics and their significance in eachmodel

using bootstrapping with 10,000 iterations. Results for brain mea-

sure models of each outcome are shown in Table S1 and Figure 2. All

marginal R2 model fits to outcome were significant (p < 0.05) based on

bootstrapped CIs. Model fits are further depicted in Figure 2, includ-

ing error bars for 95% CIs derived from the bootstrapped iterations.

All brain variable effects for outcome intercept are significant (p<0.05

based on CIs).

Across all models, marginal R2 and effect sizes on intercept were

larger in magnitude for the Union Signature than any other brain vari-

able (top row, Table S1) (effects on CDR are negative because higher

CDR indicates a worse score). From Figure 2, Union Signature CIs for

marginal R2 model fit and intercept effect size were non-overlapping

with any othermodel, indicating that these fit values were significantly

higher than those in all other models at the level of p < 0.05 (top and

middle panels). The same holds true for slope effect size in CDR-SB

outcome models (Figure 2, bottom) but not in other outcomes. The

Union Signature is thus significantly better than all other models for

model fit and estimate size of outcome intercept, and better than other

slope estimates forCDR-SB. Slope estimates for executive andepisodic

memory aremuch smaller, probably because of controlling for practice

effects.

3.5.2 Categorical models of clinical status

We compared the binary classification power of the Union Signature

with those of other models based on comparison brain measures:

CN versus Dementia, CN versus non-CN (CN vs Rest), and Dementia

versus Rest.

Figure 3 shows higher AUCs for Union Signature in all classifica-

tions compared to the other brain measures. We further tested the

significance of differences for theUnion Signature versus the top three

other performing measures–Dickerson Signature, hippocampus, and

entorhinal GM—in 10,000 pairwise bootstrap iterations. From boot-

strapped CIs, the AUC for Union Signature was higher than all other

measures in each of the three binary classifications at the 99% level

(p < 0.01) except for entorhinal GM in Dementia versus Rest, where

the difference was significant at the 95% level (p< 0.05).

To summarize our results, for multilevel model fits of three continu-

ous outcomes and binary classification of clinical status categories, the

Union Signature outperformed all other GM brain markers, including

commonly used measures that are strongly associated with memory

and cognitive status (hippocampus, entorhinal cortex) and three other

signature ROIs computed by data-driven approaches tailored to these

outcomes.

4 DISCUSSION

The Union Signature was constructed as the spatial union of the GM

substrates for four domain-specific signatures. Surprisingly, these four

spatial extents were highly congruent (Figure 1, top row) and, fur-

thermore, each was highly associated not only with its own outcome,

but all domains of neuropsychological and informant-rated memory

and executive function (Table 2). These findings supported the idea of

combining them via the spatial union of all their substrates. We then

tested the performance of the Union Signature. Although generated

in an ethnoracially homogeneous ADNI 3 cohort, it performed bet-

ter than other brain measures when tested in the highly diverse UCD

cohort, indicating robustness beyond thediscovery cohort, and corrob-

orating the validity of a generalized signature substrate for multiple

outcomes. These results suggest that among many comparison brain

GM measures, the Union Signature is a powerful, multi-purpose cor-

relate of clinically relevant cross-sectional and longitudinal outcomes

and a strong classifier of clinical syndromes.

4.1 Implications

This has theoretical and practical implications. First, it reinforces the

notion that computationally derived brain ROIs can perform better

than theory-based brain structures inmodels of relevant outcomes.7,36

The Union Signature outperformed several other brain measures that

are known to have strong associations with cognition and cognitive

change, includingmedial temporal structures and threeother signature
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F IGURE 2 Graphical depiction of model fit metrics, including 95% confidence interval (CI) error bars for metrics in models of all outcomes. Top
panel: marginal R2 model fits. Middle: effect estimates for outcome intercept. Bottom: effect estimates for outcome slopes. All values aremeans
over 10,000 bootstrap iterations for eachmodel, fromwhich each 95%CI was also computed. Values (height of bars) are those in Table S1. Error
bars not crossing y= 0 indicate significance at p< 0.05. Non-overlapping error bars of different models indicate significant differences between
them. Union Signature error bars are non-overlapping with all others except for executive andmemory slope estimates.
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F IGURE 3 Top panel: Plots of normal vs
dementia (N= 1091) classification by eight brain
measures in the UCD test set. AUCs are shown in
the legend.Middle panel: Plots of classification for
CN vs the rest (top). Bottom panel: Dementia vs the
rest (bottom) (N= 1511 for both).
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variables developed previously to distinguish clinical stages of cogni-

tive impairment or find GM associations with episodic memory. This

lends support to wider use of brain markers computationally adapted

to outcomes of interest. Second, it supports the idea that separate

domains of cognitive performance relevant to successful aging and

cognitive impairment share an overlapped set of GM substrates. The

Union Signature could, therefore, be a useful multi-purpose biomarker

for modeling an array of cognitive trajectories and diagnostic out-

comes, potentially simplifying the models by standing in for multiple

brain measures that are frequently used.

4.2 Potential applications of the Union Signature

The notion of a shared brain substrate for relevant outcomes sug-

gests studies of ways in which life exposures specifically impact

this substrate, how these impacts may differ by race/ethnicity,

and how life exposures may contribute, therefore, to differences

in outcome trajectories via their impacts on the Union Signature.

These could lead to tailored recommendations of interventions

for supporting brain health and consequently improved cognitive

aging.

TheUnion Signaturemay also be relevant to studies of brain reserve

(BR), cognitive reserve (CR), and brain maintenance (BM). BR is com-

monly characterized as “brain capital” or the amount of physical brain

resources,37 meaning that with a larger amount of relevant substrate,

the brain can absorb more loss due to aging and pathology before CI

is manifest. CR is characterized as the ability to recruit resources to

compensate for losses already incurred, thereby maintaining cognitive

performance in the face of pathology.38 And BM is the concept that

rates of cognitive decline may be minimized by “maintaining the brain”

in a youthful-like state.39,40 Each of these definitions entails ambiguity

in the formofwhich brainmeasures should be taken to characterize BR

or to maintain the brain in a relatively youthful state (BM). CR is often

measured as the residual of cognitive performance after accounting for

cognitive variance explained by brain measures,41,42 but depending on

the brain measures used, this residual might contain variance due to

unaccounted-for brain effects.43 It could, therefore, be made tighter

and more precise by using a brain variable that accounts for more of

the brain contribution to the outcome than accepted measures like

hippocampal volume, WM hyperintensities, or total GM volume. Simi-

larly, BM could be brought into sharper focus by using a region that has

been computed to maximize its association with changes in cognitive

measures.

4.3 Relations to deep learning signature
approaches

Recently there have been notable data-driven approaches exploring

brain associations with cognition,1 aging,44,45 and clinical diagnosis.46

A PubMed search shows that the vast majority of recent efforts have

been aimed at developing models for diagnostic classification or pre-

diction of conversion.46,47 Deep learning (DL) techniques are used in

most of these efforts, and these can achieve excellent classification

results.48–50

DL techniques implicitly use more imaging features in more com-

plex models than explicit algorithmic approaches such as those used

in our project. DL thus has potentially greater classification power. For

example, in a recent study using a convolutional neural net designed to

account for contextual information, the classification of CN versus AD

attained an ROC AUC of 0.926 based on training with 416 ADNI par-

ticipants. Results of nine other DL approaches, for comparison, were in

themid tohigh0.8–0.9 range.51 Our results forCNversusAD (Figure3,

top panel) would therefore rank competitively, but not as the highest,

among those approaches. Another example48 compares aDL approach

with an ROI-based feature approach using ventricles and GMparcella-

tions. The DL model produced ROC AUC classifications for CN versus

other categories of ≈0.87, depending on the validation method. These

are higher than any of our GM measure clinical syndrome classifica-

tions for CN versus the rest, including the Union Signature (Figure 3,

middle panel). These examples demonstrate the potential power of DL

models.

On the other hand, substantial issues remain for machine learn-

ing approaches. First, DL models entail difficulties of interpretation.

There is currently no standard approach for relating model features

to human-comprehensible brain characteristics,47 although this issue

is being addressed (see, e.g., Ref.49). Models are most useful when they

generate not only predictions, but insight based on interpretability.

Second, current machine learning approaches to brain signatures of

continuousmetrics for cognition, as opposed to diagnosis, are rare. The

approach that we describe here could, therefore, fill a current need,

combining straightforward application and strong predictive power

with interpretability, thereby leading to insights into commonbrainGM

substrates for a range of cognitive performance and clinical diagnoses.

4.4 Strengths, limitations, and future work

In this study, we demonstrated a data-driven, generalizable brain

signature based on structural MRI GM, and showed that it outper-

formsother acceptedbrainmeasures, including several other signature

approaches. Further gains might accrue from incorporating additional

imaging modalities, including measures of WM integrity using diffu-

sion tensor imaging (DTI) and positron emission tomography (PET)

images of amyloid and tau accumulation. Preliminary work in our labo-

ratory suggests a≈5% improvement inmodel fit by addingDTI-derived

fractional anisotropy imaging (data not shown). However, two caveats

apply. With current technology, both these modalities lack the reso-

lution of structural MRI, making them less robust for computationally

derived signature methods. PET data are currently less available than

structural MRI in the number of images needed to compute robust and

generalizable signatures.

DL combined with multiple imaging modalities may be a promis-

ing approach to generating signatures of increased power. Yet there is

necessarily a limit for any signature performance. A common assump-

tion is that no model solely based on brain measures can completely

explain behavioral outcomes (this is the basis for the concept of
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CR38). Increasingly powerful models must, therefore, approach an

explanatory upper limit of less than 100%, producing incremental and

diminishing improvements the closer they get to this limit. Probing this

limit remains important in future work. In the meantime, our method

offers a brain measure that is easy to understand and compute, and

the superior power of which makes it useful for modeling a variety of

clinical outcomes. Our brain GM signature masks, in standard image

template spaces, will be available by request.

In conclusion, results suggest that the Union Signature ROI has sev-

eral important properties. First, it is informative, indicating shared GM

regional substrates for a range of cognitive and diagnostic outcomes

that also accordwith current theory; second, it is performative, achiev-

ing better fits to cognitive and diagnostic outcomes than theory-based

brain regions or other signature masks recently developed; third, it

is robust across ethnoracially diverse data cohorts; and fourth, it is

practical, being easily applied in new cohorts to set up modeling in a

straightforward way.
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