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Abstract—HPC facilities typically use batch scheduling to
space-share jobs. In this paper we revisit time-sharing using a
trace of 2.4 million jobs obtained during 20 months of operation
of a modern petascale supercomputer. Our simulations show
that batch scheduling produces distributions that are skewed
towards smaller jobs and longer execution times, whereas time-
sharing produces much more uniform slowdowns. Consequently,
for applications that strong scale, the turnaround time does
not scale with batch scheduling, but it does with time-sharing,
resulting in turnarounds that are orders of magnitude better at
the largest scales. In addition, we show that time-sharing can
confer additional benefits with modern programming practices
and in noisy systems. FutureExascale HPC systems, are expected
to exhibit billion-way heterogeneous parallelism and poor per-
formance predictability. As many applications will run in strong
scaling, how resource allocation policies affect the experience of
supercomputer users has once again become a timely subject.

I. INTRODUCTION

Batch scheduling (space-sharing) is currently used in all ma-
jor supercomputers because it offers performance predictabil-
ity for Single Program Multiple Data (SPMD) applications.
However, future HPC systems are going to be much more
noisy, with greatly increased concurrency and heterogeneity,
which will require the use of new, asynchronous programming
models. The batch scheduled environment may not be the most
efficient nor the most user-friendly in this future world, so it
is timely to once again explore time-sharing for HPC systems.

Previous studies [1]–[5] have shown that combining space-
sharing and time-sharing for HPC workloads can be ben-
eficial for job turnaround time (time from submission of
the job to its completion). This research has focused on
gang-scheduling [6], because that is necessary to efficiently
run time-multiplexed SPMD codes that use fine-grain, busy-
wait synchronization [7], and most scientific applications are
SPMD. However, the complexity and overhead of implement-
ing gang scheduling means that it is not typically deployed in
production at large-scale HPC facilities; neither is any other
form of time-sharing. By contrast, in data center and cloud
computing environments, space-sharing is always combined
with time-sharing, because jobs are usually non-SPMD and
can be efficiently scheduled using best effort [8]–[10].

In this paper we revisit the impact of extending batch
scheduling with time-sharing, for a modern petascale super-
computer, using a trace of 2.5 million jobs obtained during
20 months of operation of Edison, a 5576-node, 133,824-core
Cray XC30 at the National Energy Research Supercomputing
Center (NERSC) [11]. We simulate both first-come-first-serve
(FCFS) batch scheduling with backfill (similar to Edison’s

scheduler) and time-sharing. For time-sharing, we assume
best-effort parallel scheduling for co-located jobs [4], [5], [12],
instead of gang scheduling. Our simulation takes into account
resource constraints such as memory.

We provide additional insight about time-sharing over pre-
vious work by considering the implications of the distributions
of job slowdowns (the normalized turnaround time [13])
under the different schedulers. We show that, on a heavily
loaded system, batch scheduling produces distributions that
are skewed towards larger slowdowns for bigger jobs and
shorter execution times, which is precisely what happens to
applications as they strong scale to more nodes. Consequently,
the turnaround time for those applications does not scale as
more nodes are used; rather, it gets worse at extreme scale.
By contrast, time-sharing produces more or less uniform slow-
downs, which means that turnaround scales as an application
scales, resulting in orders of magnitude faster turnaround than
batch scheduling at extreme scale.

We also investigate other important aspects of system and
application configuration. System noise is likely to be a large
problem as supercomputers increase in scale. Using a simple
straw-man model of noise, we demonstrate that small levels
of noise have a much larger impact on the slowdowns of
batch scheduled jobs than time-sharing jobs. In addition, we
explore the implications of modern programming practices by
modeling the performance of applications that are not SPMD.
We show that with time-sharing, they have about half the
average slowdown of SPMD applications, and are unaffected
by small levels of noise.

II. DATA

We collected data on 2,473,455 jobs submitted to Edison
over a 20 month period, from January 2014 up to the end
of August 2015. For the analysis we used 97% of the jobs
in the trace, dropping jobs with a walltime of less than 10s,
and those jobs used by system administrators for testing and
benchmarking. Although 90% of jobs were under 32 nodes,
half of all system utilization is taken up by jobs greater than
100 nodes, and 20% by jobs greater than 1000 nodes, i.e.
one fifth of the system (Figure 1). Edison is hence a blend
of capacity and capability computing, similar to many other
supercomputing centers, such as TACC [14] and NCSA [15].

On average, over the 20 months studied, about 4000 jobs are
submitted to Edison every day. Consequently, the utilization of
the system is very high, with an average of 89% over the last
500 days of the trace. We treat the first 100 days as a warm-up



Fig. 1. Cumulative distribution function (CDF) of node hours. Half
of system utilization is taken up by jobs greater than 100 nodes, and
20% by jobs greater than 1000 nodes.

period, to avoid the common warm-up pitfall of job scheduler
simulations [16]. Saturation [17] occurs around 90%, which
means that variations in utilization are largely driven by job
arrival times, rather than scheduling effects [18].

We could only obtain accurate memory usage data for
the 88% of jobs that use small pages. For the jobs using
large-pages, we assumed that the memory usage follows the
same distribution as the rest of the jobs, and used inverse
transformation sampling to fill in the missing memory. We
further assumed memory is independent of job size, which we
validated with a Kendall’s tau test [19] (coefficient of 0.0035).
In general, memory usage is low, with 90% of node-hours
using less than 60% of the memory per node.

To assess the impact of job scheduling on the user experi-
ence, we use bounded slowdown (BS) [13], which is defined as
the normalized turnaround time, i.e. BS = T/max(DWT, β),
where T is the turnaround time, DWT is the walltime of
the job when run on dedicated resources, and β is a lower
bound on the DWT. We chose β = 10s, a value commonly
used in the literature to prevent very short duration jobs
biasing slowdown averages. Hereafter, we use “slowdown” as
shorthand for “bounded slowdown.”

Using the actual submission, completion and walltimes for
each job, we can compute the slowdown per job. To study the
distribution, we divide the job size and the job length each into
26 logarithmic bins, and calculate the average slowdown for
all jobs in a bin (Figure 2). The slowdown for a job is affected
by its size and length: jobs with more nodes and shorter DWT
have higher average slowdown.

III. BATCH SCHEDULING SIMULATION

We developed a discrete time simulation of a job scheduler,
where each timestep is 10s. At each simulation step, we inject
new jobs according to the submission time of jobs in the
Edison data trace, rounded to the nearest 10s. The size and
memory requirements of the observed job are used, and the
length (DWT) is determined by the actual walltime of the job.

The simulated batch scheduler is first-come-first-served
(FCFS) with backfill, similar to that used by Edison in
production. Backfilling attempts to allocate unused nodes to

Fig. 2. Average job slowdown on Edison, binned by size and length of
job. Jobs with more nodes and shorter DWT have higher slowdown.

smaller jobs further back in the queue whenever larger jobs at
the queue’s head are blocked waiting for available nodes. If
the smaller job’s requested walltime is less than the time the
job at the head of the queue must wait, then the smaller job
can run on unused nodes.

We make several simplifying assumptions for the simula-
tion. First, we do not simulate the variety of Edison queues;
we assume a single queue with no priorities. Second, we
do not simulate the node reservations (e.g. on Edison, 512
nodes are reserved for the debug queue during the day, and
64 nodes during the night). Third, we assume no downtimes or
periods of degraded performance, unlike the real system (there
were eight scheduled outages in 2015). Finally, we assume no
dedicated runs, where the system is reserved for a single user
and no other jobs can run (there were six in 2015).

The simulation gives similar utilization over time to that
of the Edison scheduler (Figure 3). However, the overall
distribution of slowdowns is slightly better in the simulation
(Figure 4), with more jobs having a slowdown of under 10
and the tail is shorter by an order of magnitude. The simulated
results are not an exact match with the real data because of the
aforementioned simplifications. The only cases in which the
simulation does worse than the real system is for jobs in the
debug queue (roughly 2-4x worse), because those jobs have
access to a dedicated set of nodes.

All in all, we believe our batch scheduling simulation
is sufficiently representative of the Edison batch scheduler’s
behavior to serve as a baseline for comparison with other
scheduling policies, even with the simplifying assumptions.

IV. TIME-SHARING SIMULATION

Our simulated time-sharing system tries to immediately start
each new job on the nodes with the lowest CPU load (the
number of jobs running on the node). However, some jobs
may not be able to start immediately because of memory
constraints. In a system such as Edison, memory does not
get swapped to disk, and so it cannot be oversubscribed.
Consequently, jobs that require more memory than is available
will abort. To avoid this problem, we use admission control,
queueing jobs that do not have sufficient memory to run.



Fig. 3. System utilization over time for simulated and real batch
schedulers. Shown is the last 500 days (skipping the first 100 days),
and each point is a one week moving average. The simulated and
real utilizations are very close, with both averaging 89% overall.

Fig. 4. CDF of slowdown for the simulated and real Edison batch
schedulers. The simulated slowdown is slightly better, with more jobs
of slowdown under 10, and a shorter tail to the distribution.

For admission control, we assume that the user specifies
the memory requirements when submitting the job, and use
the post-hoc data on memory usage from the job trace. Sub-
mitting memory estimates is no more onerous than submitting
walltime estimates for batch scheduling (which are not needed
for time-sharing). And like walltime estimates, a user has
an incentive to submit accurate values: overestimating will
delay a job, whereas underestimating will result in failure.
An alternative is to estimate the memory required through
inspection of binaries or historical usage [20]. We discuss other
approaches to the memory pressure problem in Section VIII.

Our simulation assumes rate equivalent scheduling [13],
where each job on a node gets an equal fraction of every time
period, but there is no synchronization between the time slices
across nodes. Several studies have shown that rate equivalent
scheduling, such as implicit co-scheduling [12] or flexible
co-scheduling [21], can achieve similar performance to gang
scheduling without the concomitant problem of fragmentation.
Furthermore, gang scheduling is only beneficial to fine-grain
SPMD applications that synchronize using busy-wait [7], and
confers no benefits when using blocking [22].

SPMD is still the most common programming model used
by scientific applications, so we assume that all jobs are

SPMD. Consequently, in the simulation a job runs at the speed
of its slowest node, e.g., if a job is running on two nodes,
one with a CPU load of two and one with a CPU load of
four, then it will utilize only a 1/4 of each node’s time. The
idle cycles are used by other jobs when possible, so, in the
previous example, if the other job on the first node was running
only on that node, it would utilize 3/4 of the CPU cycles.
In Section VII, we explore the consequences of relaxing the
SPMD assumption.

When applications are time-multiplexed, sometimes they
may speedup, sometimes they slow down. Sharing can improve
throughput compared to running applications sequentially [23],
and can provide benefits by overlapping computation and
communication [13]. Slowdown comes from many sources,
including the cost of context switches, the impact of cache
pollution, the overhead of sharing network resources, etc.
Modeling the impact of sharing, if at all feasible, requires
very detailed runtime data which the traces do not contain.
Consequently, in our study we run the simulations using a
range of overhead values. One of the interesting results is that
overheads under 5% have little effect on job performance.

We repeat the simulation with increasing fixed overheads
(i.e. the performance of every job is uniformly reduced), up to
13% of CPU capacity (Figure 5). Increasing the overhead has
little impact on system utilization: even with 13% overhead,
utilization drops only 7%, from 0.89 to 0.83, and for overheads
of 5% or less, utilization is not significantly affected. By con-
trast, average slowdown is more strongly affected by overhead,
and at around 10%, the slowdown climbs steeply. This knee in
the curve is an indicator of sustained system saturation [24],
where the arrival rate of jobs exceeds the completion rate.
The saturation point is important because it indicates that
simulation results can be unreliable: the longer the simulation
runs, the larger the slowdowns; there is no steady-state [16].
When the average load over time is considered (Figure 6), it
can be seen that below 10% overhead, the load drops after
the major spike at 350 days, and at 13% overhead, the load
continues to climb, a clear indication of saturation.

Several studies [1], [5], [20], [21] of time-sharing restrict
the multiprogramming level (MPL), which is the maximum
allowable CPU load, to reduce both memory pressure and
overhead. However, we assume an unlimited MPL because
the CPU load is not that high in our simulation: it averages 9
over the full period, and does not exceed a weekly average of
20 during times of very high usage (for 0% overhead).

V. TURNAROUND SCALING

Both time-sharing and batch scheduling make efficient use
of the system, so utilization is similar and is largely determined
by the rate of arrival of new jobs. However, the distribution
of slowdowns is much more uniform for time-sharing and is
not correlated with either job size or length. Consequently,
there are regimes in which slowdowns are less under batch
scheduling, and vice versa (Figure 7). As job length increases,
batch slowdown improves and at around two hours, batch
slowdown is lower than time-sharing slowdown, by up to 8×



Fig. 5. Impact of overhead on time-sharing. The average utilization is
the mean across all simulation timesteps and the average slowdown
is the mean across all jobs. For comparison, the dashed line shows
the average utilization for batch scheduling, which was not subject
to any overhead. Slowdown is not significantly affected until around
5% overhead, and shows an abrupt increase at 10%.

Fig. 6. Average CPU load over time for simulated time-sharing at
various levels of overhead, as indicated in the legend. Each point is
the CPU load averaged over all nodes and over the previous week
(moving average). The system saturates around 10% overhead.

for very long jobs. However, for short jobs. slowdowns are
orders of magnitude less under time-sharing. Time-sharing
also tends to do better as job size increases, with the cross-over
point shifting from around two hours to around four.

These differences have interesting implications for the user
experience on systems such as Edison. Typically, the most
important performance metric for a user is turnaround time:
the sooner users can obtain the results of their simulations
or analyses, the faster they can make scientific progress. For
this reason, users invest great effort to ensure that applications
strong scale far beyond what is needed to satisfy minimum
memory requirements. But, is the effort actually worth it?
Another way to look at this question is to ask: for a strong
scaling application, what is the best concurrency to run at on
a highly loaded system in order to minimize turnaround?

To investigate this question, we considered five applications
from the APEX benchmark suite [25], and one simulated
application (“perfect”) that strong scales linearly. For the
APEX applications, scaling data was collected from runs on
Edison at various concurrencies. All of these applications

Fig. 7. Average slowdown ratio between batch scheduling and time-
sharing, binned by size and length of job. Each point is colored
according to the average slowdown of jobs with the batch scheduler,
divided by the average slowdown of jobs with the time-sharing
scheduler. Hence, red means time-sharing has better slowdowns,
while blue means batch has better slowdowns. Batch tends to perform
better than time-sharing for longer running jobs (over two hours).

strong scale to at least 960 nodes, with at least 49% efficiency.
Due to time and cost constraints, the set of (DWT, nodes)

data points collected for each application was limited, and the
applications were not run at the lowest possible concurrency.
Since our goal is to determine how the turnaround for these ap-
plications is affected by a wide range of job sizes and lengths,
we linearly interpolate between the measured data points, from
the smallest size (determined by memory requirements) up to
the maximum concurrency run.

We injected the test jobs into the simulation in multiple
runs, at random points within the trace, and measured the
average turnaround times. We also computed the turnaround
times using the histograms of slowdowns (e.g. Figure 4),
by taking the average slowdown of the bin for each (DWT,
nodes) data point, and multiplying that by the DWT. These
two approaches give very similar results; however we could
not run a statistically significant sample of the test jobs on
the real system, and so we report only the turnaround values
computed from the histograms.

For the test applications, turnaround scales well with time-
sharing, but not with batch scheduling (Figure 8). Under
time-sharing, slowdown does not increase with a decrease
in job length, and so increasing the job size results in a
decreased job length, which decreases turnaround time. By
contrast, with batch scheduling the bias we have observed
against jobs with shorter DWT and more nodes results in an
increasing turnaround precisely as jobs strong scale (increasing
nodes and decreasing DWT). Consequently, at maximum size,
the turnaround is usually orders of magnitude worse for
batch scheduling than time-sharing. In some cases, when the
minimum node count is high (GTC, HIPMER-WET), there is
no concurrency at which the application can be run where the
turnaround under batch scheduling will be even comparable
to that under time-sharing.

Batch scheduling systems often attempt to address the
problem of poor turnaround for large jobs by boosting their



Fig. 8. Turnaround scaling for six strong scaling applications. Turnaround scales under time-sharing, but not under batch scheduling. Simulated
batch scheduling gives very similar results to the Edison scheduler.

priority (the Edison scheduler boosts jobs with more than
682 nodes). However, the impacts are marginal, and do not
significantly change the turnaround scaling, as can be seen
from the fact that the simulated batch scheduling and real
batch scheduling produce very similar results. Furthermore,
even the larger boosts given to premium jobs are not adequate
to change the pattern: premium jobs may have an average
turnaround of double that of the normal jobs, but that is not
sufficient to overcome the orders of magnitude skew for large,
short jobs induced by batch scheduling.

VI. SIMULATING NOISE

Future HPC systems (up to exascale) are expected to be
much more noisy than today’s petascale systems [26]. This
will require new approaches to avoid the serious performance
loss that SPMD applications suffer in the presence of noise.
One possibility is to use time-sharing instead of batch schedul-
ing. In a heavily used system such as Edison, applications
scheduled with time-sharing are not as susceptible to noise as
batch scheduled applications.

We demonstrate this point with a simple noise model: every
simulation timestep, each node has a probability p = 0.0001
of running at reduced speed for the duration of the timestep.
The reduced speed is chosen uniformly at random from the
interval [0.5, 1.0]. This can be seen as a simple model of noise
generated by system services. In our simulation of 5576 nodes
there will be on average five or six nodes delayed at every

timestep. This gives a net processor noise of 0.025%, much
less than the 2.5% commonly used in prior studies [27].

With noise, the slowdown under time-sharing is less than
under batch scheduling almost everywhere (Figure 9). By
contrast, without noise batch scheduling is better for jobs of
DWT greater than two to four hours, depending on job size
(Figure 7). Such differences in the impact of noise are to
be expected. Under batch scheduling, if an application slows
down on a single node there are no other applications to utilize
the excess cycles on the application’s other nodes. By contrast,
with time-sharing, there is a strong possibility that another
application not affected by noise can utilize the spare cycles.

Under batch scheduling noise causes an increase in average
slowdown across all jobs from 137 to 1009. However, the
average reflects a large increase in the tail of the distribution,
and for most jobs the impact is not as extreme, e.g., the 75th
percentile increases from 13 to 22. The tail increase is skewed
towards larger jobs, because, given that a SPMD application
runs at the speed of its slowest node, the larger the job, the
greater the chance that one of its nodes will be degraded.

We see the same effect in time-sharing, where larger jobs
experience higher slowdowns, up to an order of magnitude
worse than the smaller jobs. However, this skew is still not as
strong as batch scheduling, where the difference in slowdowns
between small and large jobs is several orders of magnitude.
With time-sharing, there is far less impact on the tail of
the distribution, and consequently the average slowdown only



Fig. 9. Average slowdown ratio between time-sharing and batch
scheduling in the presence of noise, binned by size and length of
job. Each point is colored according to the average slowdown of
jobs with the batch scheduler, divided by the average slowdown of
jobs with time-sharing. Red indicates that slowdown is lower under
time-sharing, and blue indicates that it is lower under batch.

increases from 8 to 13.

VII. PROGRAMMING MODEL IMPACT

We have assumed that all applications use the SPMD model,
i.e. they make progress at the speed of the slowest node. Under
time-sharing, an application will not be able use excess cycles
on one node if it is proceeding more slowly on another due to
higher CPU load (or noise). Relaxing the SPMD assumption
enables us to explore the consequences of alternative, asyn-
chronous programming models. Although asynchronous pro-
gramming models are not currently commonly used in HPC,
they will likely become essential for exascale because of their
potential to perform better in unpredictable, heterogeneous
environments at massive concurrencies [28].

Relaxing the SPMD assumption shifts the results signifi-
cantly in favor of time-sharing, with slowdowns under time-
sharing being lower than under batch for all but the longest
running jobs (those with DWT ≥ 16 hours). By contrast, with
the SPMD assumption, time-sharing is only better than batch
for jobs with DWT under two to four hours (Figure 7). This
relative improvement is a consequence of the fact that non-
SPMD applications can utilize excess cycles in time-sharing,
which cannot happen in batch scheduling.

Figure 10 summarizes the impact of both noise and pro-
gramming models. Non-SPMD jobs are not significantly af-
fected by the low level of noise we simulated, when scheduled
with either batch or time-sharing. The average slowdowns for
batch scheduling are too large to be shown on the plot, indi-
cating heavy-tailed distributions. By contrast, the averages for
time-sharing are close to the medians, indicating distributions
with much lower variance.

VIII. DISCUSSION

The simulation results we presented are based on the actual
job traces of Edison usage. This has the benefit of giving a re-
alistic pattern of usage, one that varies over time, incorporating
burstiness and other irregularities. However, it limits the results

Fig. 10. Slowdown distributions for simulated schedulers. Each box
gives the inter-quartile range (IQR), the horizontal line in the box
is the median, the whiskers show 1.5×IQR, and the blocks are
the average. The averages for batch scheduling fall outside the
maximum y-value (137 without noise, 1009 with noise). Because
the distributions are heavy-tailed, the outliers are omitted.

to one particular supercomputer, with one specific usage
pattern, and the system load or other parameters cannot be
adjusted. An alternative is to model the distribution of jobs (in
terms of arrival rates, job size, length and memory usage), and
use jobs generated at random from the distribution. Although
validation becomes a challenge, the modeling approach gives
the flexibility to explore different parameters, such as system
load, and the ability to simulate larger systems [29]. This is a
topic for future work; in particular, we would like to see how
the results change as the system scales up to exascale.

The issue of memory pressure in time-sharing is an impor-
tant one. We simulated admission control, which requires a pri-
ori values for peak memory usage for every job. An alternative
is to allow jobs to oversubscribe memory. However, current
supercomputers typically have no node-attached storage, and
no ability to swap out pages to disk. One proposed solution
to this problem is using virtual machines to suspend a job to
disk [4], [5]. This approach is expensive because it relies on
access to remote storage, and even if the suspension events
are relatively infrequent (in our simulation, the vast majority
of jobs are admitted immediately), the system-wide cost could
be prohibitive. Fortunately, this problem is likely to disappear
with the increasing use of NVRAM for local storage; for
example, the latest NERSC supercomputer, Cori, incorporates
burst buffers, which utilize NVRAM linked to every compute
node [30]. We believe this will enable the operating system to
multiplex applications efficiently, and deal with oversubscribed
memory by efficiently paging out (in traditional operating
system style) to the burst buffers.

We have demonstrated how noise can impact job perfor-
mance, but our simulation is limited to one particular noise
profile. Ferreira et al. [27] explore different noise profiles,
including high frequency noise representative of timer inter-
rupts and low frequency, high duration noise, representative of
kernel daemon interference. We are not able to simulate noise
at this level because our timestep is 10s, and even the low
frequency noise investigated by Ferreira et al. is 10Hz. A topic



for future work is incorporating more realistic models of noise
and system performance variation, especially as projected for
future exascale systems.

The simulations with the non-SPMD jobs have interest-
ing implications for the impact of programming models on
future systems. We have shown that relaxing the SPMD
assumption with time-sharing not only improves the overall
system utilization, but also improves the experience for users
by reducing the slowdown. This is particularly beneficial in
noisy environments, but even in predictable environments the
improvement is significant, with average slowdown dropping
from 7.9 to 3.3. This improvement is enough that even if non-
SPMD applications are somewhat less efficient, that is unlikely
to compromise the overall usage or user experience, even with
a highly predictable, noise-free system. In other words, the
optimum approach for a capacity system may not be the best
approach for a capability system.

IX. RELATED WORK

In their seminal paper [7], Feitelson and Rudolph showed
that gang scheduling only has performance benefits for fine-
grain BSP applications that use busy-wait for synchroniza-
tion. However, gang scheduling suffers from a fragmenta-
tion problem because of the requirement for coordinating
time slicing across nodes. Consequently, other research has
investigated how to achieve the performance benefits of
gang scheduling without incurring fragmentation or having
to deal with implementation complexity and overhead. Im-
plicit co-scheduling [12] relies on two-phase “spin-blocks”
to enable local schedulers to operate independently and the
synchronization between different threads emerges naturally
when threads block on IO. Flexible co-scheduling [21], [31]
monitors the communication activity of jobs and uses gang
scheduling only for those jobs that are likely to need it. Using
blocking synchronization on a Linux cluster combined with
local scheduling outperforms gang scheduling on a variety of
parallel benchmarks [22]. These results are supported by a
detailed analysis [32] of the various dynamic co-scheduling
approaches. We do not simulate gang scheduling, but instead
assume that BSP applications can achieve efficient perfor-
mance through one of these alternative scheduling approaches.

The earliest study [1] comparing space-sharing with time-
sharing showed that gang scheduling could outperform batch
scheduling and result in increased system utilization for
production workloads. Further research [2] comparing gang
scheduling with batch scheduling has shown that augmenting
gang scheduling with backfill provides additional performance
benefits under time-sharing. Another simulation study [3]
comparing gang scheduling to batch scheduling also shows
performance benefits for time-sharing in certain cases.

Our work bears many similarities to these comparative
studies; however, there are a number of important differences.
First, we do not assume gang scheduling. Second, we use a
large modern jobs trace, collected over a 20 month period
on a modern (circa 2015) petascale supercomputer. Third, we

explore the impact of both job size and length on the slow-
down distributions in detail, and consequently discover explicit
regions of the parameter space where time-sharing does better
than batch scheduling, and vice versa. This detailed analysis
enables us to investigate turnaround scaling, an aspect that
was not considered in previous studies. Finally, we consider
the impacts of both noise and programming models, aspects
which are largely omitted from previous studies.

The closest related work to the results presented here is
Fractional Resource Scheduling [4], [5] (FCS), which assumes
that virtual machine technology can be leveraged to provide
uncoordinated time-sharing without the limitations of gang
scheduling. Like our work, the FCS simulations also assume
BSP applications and use admission control for memory
constraints. Their goal is to minimize the maximum slowdown
(worst case), and for this purpose they find that time-sharing
is much better than batch scheduling, which agrees with our
results. However, considering only the maximum slowdown
gives a limited picture of the trade-offs between schedulers,
because slowdowns are heavy-tailed under batch scheduling,
making for much higher maximums, even though there are
cases when batch is better on average (e.g. long jobs). They
also do not investigate turnaround scaling, noise or alternative
programming models, and use a much smaller dataset (200,000
jobs) from a much smaller system (128 nodes).

An alternative approach to scheduling, also inspired by the
advent of virtualization, is job folding [33]. The idea is to
multiplex virtual processors onto real processors to improve
the flexibility of scheduling by avoiding the geometrical con-
straints of pure space-sharing. They show improvements over
FCFS with backfill in limited simulations (1024 processors
and 10,000 jobs). Although the approach is interesting, their
job model is a simple Poisson, which is likely unrealistic [16],
and they do not consider memory constraints.

X. CONCLUSIONS

This paper presents a simulation study that explores the
impact of time-sharing on Edison, a modern petascale su-
percomputer. We showed that although batch scheduling and
time-share scheduling result in similar overall system utiliza-
tion, the distribution of job slowdowns is quite different. Batch
scheduling results in a heavy-tailed distribution, where shorter-
running, smaller jobs have much larger slowdowns, whereas
time-sharing produces a relatively uniform distribution of
slowdowns, regardless of job size or length. Consequently,
time-sharing is better than batch scheduling (in terms of
slowdown) for short jobs (under two to four hours), with an
improvement of over 500× for the shortest jobs; by contrast,
under batch scheduling, long jobs can see an improvement of
up to 8× over time-sharing.

A consequence of the skewed distribution of slowdowns
under batch scheduling is that turnaround does not scale. We
showed this by determining the expected turnaround for six
applications that strong scale, with both batch scheduling and
time-sharing. As the applications strong scale, the job size
increases and the length decreases, which is exactly the region



in which batch scheduled jobs experience higher slowdowns.
By contrast, with time-sharing, the uniform distribution of
slowdowns results in strong scaling of the job turnaround, and
by the time maximum scale is reached, the turnaround for the
applications under time-sharing is orders of magnitude better
than under batch scheduling (e.g. 4 minutes vs 8 hours).

Our study also showed that BSP applications are susceptible
to very low levels of noise (0.025% net processor noise),
whether the system was using batch scheduling or time-
sharing. However, the effect on time-shared jobs is lower,
because excess CPU cycles from a job slowed down by noise
can be used by other, unaffected jobs. Consequently, in the
presence of noise time-sharing is better than batch schedul-
ing in terms of slowdown, almost regardless of job size or
length. In addition, we showed that when the BSP assumption
is relaxed, the slowdown under time-sharing improves (the
average is halved), whereas with batch scheduling it makes no
difference. In both cases, non-BSP applications are unaffected
by noise.
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