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Abstract

We have recently developed a low-cost spark-induced breakdown spectroscopy (SIBS) instrument 

for in-situ analysis of toxic metal aerosol particles that we call TARTA (toxic-metal aerosol 

real time analyzer). In this work, we applied machine learning methods to improve the 

quantitative analysis of elemental mass concentrations measured by this instrument. Specifically, 

we applied least absolute shrinkage and selection operator (LASSO), partial least squares (PLS) 

regression, principal component regression (PCR), and support vector regression (SVR) to develop 

multivariate calibration models for 13 metals (e.g., Cr, Cu, Mn, Fe, Zn, Co, Al, K, Be, Hg, Cd, 

Pb, and Ni), some of which are included on the US EPA hazardous air pollutants (HAPS) list. 

The calibration performance, adjusted coefficient of determination (R2) and normalized root mean 

square error (RMSE), and limit of detection (LOD) of the proposed models were compared to 

those of univariate calibration models for each analyte. Our results suggest that machine learning 

models tend to have better prediction accuracy and lower LODs than conventional univariate 

calibration, of which the LASSO approach performs the best with R2 > 0.8 and LODs of 40–170 

ng m−3 at a sampling time of 30 min and a flow rate of 15 l min −1. We then assessed the 

applicability of the LASSO model for quantifying elemental concentrations in mixtures of these 

metals, serving as independent validation datasets. Ultimately, the LASSO model developed in this 

work is a very promising machine learning approach for quantifying mass concentration of metals 

in aerosol particles using TARTA.
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1. Introduction

Spark-induced breakdown spectroscopy (SIBS), originally proposed in 1993, is a type of 

optical emission spectroscopy that uses a high-voltage pulse (i.e., spark) as the excitation 

source to form a plasma between two rod electrodes (Hunter, Davis, Piper, Holtzclaw, & 

Fraser, 2000; Hunter, Wainner, Piper, & Davis, 2003). The sample materials in the plasma 

emit radiation in a broad range of wavelengths, which can be captured by a spectrometer for 

elemental identification and quantification (Hahn & Omenetto, 2010; Miziolek, Palleschi, 

& Schechter, 2006). In the past two decades, there has been a growing interest in the use 

of SIBS for particulate matter monitoring (Diwakar & Kulkarni, 2012; Hunter, Morency, 

Senior, Davis, & Fraser, 2000; Jung, Yang, & Yoh, 2020; Yang, Jung, Ryu, & Yoh, 2020; 

Zheng & Kulkarni, 2017; Zheng et al., 2017). Recently, we developed a cost-effective 

SIBS instrument for near real-time analysis of toxic metal aerosols, which we call the 

toxic-metal aerosol real time analyzer (TARTA) (Davari & Wexler, 2020; Li, Mazzei, Wallis, 

Davari, & Wexler, 2021). The collect and analyze scheme of our instrument is identical to 

that used in Diwakar and Kulkarni (2012), but differs in that TARTA utilizes a nozzle to 

impact particles onto the electrode rather than a focused electrostatic deposition and less 

expensive components. We successfully used the instrument to detect multiple toxic metals 

and calculated the limit of detection (LOD) in the range of 50 ng m−3 to 810 ng m−3 using 

univariate calibration methods on tests with particles containing Cr, Cu, Mn, Co, Zn, Fe, 

and Ni. However, what remains uncertain is whether we can constrain matrix effects and 

improve detection accuracy during field deployment of the TARTA. Furthermore, improved 

spectral analysis techniques may lower LODs for the tested metals, which will be beneficial 

for detecting pollutants at low concentrations and/or improving temporal resolution.

Matrix effects are a concern for laser-induced breakdown spectroscopy (LIBS) and SIBS 

(Lepore et al., 2017; Takahashi & Thornton, 2017). Spectral interference, a common matrix 

effect, occurs when the radiation of other components interferes with those of interest 

(Hahn & Omenetto, 2012). By using a SIBS instrument to analyze unburned carbon in 

fly ash, Yao, Zhang, Xu, Yu, and Lu (2017) reported that the strong emission line due to 

the material of electrodes (W at 247.78 nm) hid the relatively weak emission line of C at 

247.86 nm. However, it is possible to reduce spectral interference by careful peak selection 

and better calibration models. Physical matrix effects have also been studied, which can be 

due to laser (or spark) formation dynamics, instability of plasma position, and variation of 

measurement conditions (Evans, Pisonero, Smith, & Taylor, 2020; Tognoni & Cristoforetti, 

2016). Chemical matrix effects occur if the emission behavior of one element is altered by 

the presence of other elements in the sample (IUPAC, 2019). Both physical and chemical 

matrix effects may result in variations in spectral intensities even if the concentration of 

the analyte is the same in different samples. Therefore, these effects need to be carefully 

evaluated and compensated during calibration to ensure robustness.
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Multivariate calibration tools can account for matrix effects and provide quantification of 

elemental concentration in spectroscopic analysis (Næs & Martens, 1984; Takahashi & 

Thornton, 2017). Different from univariate calibration, which relates chemical quantity 

to one independent variable (e.g., intensity of a strong emission line of the analyte), 

multivariate calibration quantifies using spectral emissions at multiple wavelengths (Braga et 

al., 2010; Zaytsev, Krylov, Popov, Zorov, & Labutin, 2018). Multivariate calibration avoids 

subjective selection of representative wavelengths for the analytes. Instead, the coefficients 

of the independent variables (in this case, emission lines of analyte) derived by a calibration 

model determine the relative importance of each peak when calculating the analyte quantity.

Alongside the advances in machine learning methodology and increases in computational 

capability, analytical chemists have applied different multivariate models to calibrate 

elemental concentration. For example, partial least squares (PLS) regression is probably 

the most widely used technique due to its ease of implementation and its ability to 

handle the situation where the number of samples is less than the number of variables 

(H. Fu, Jia, Wang, Ni, & Dong, 2018; Wold, Sjöström, & Eriksson, 2001). By assuming a 

linear relationship between spectrum and elemental quantity, PLS transforms the original 

spectrum to a group of orthogonal components and builds a calibration model. Other 

linear approaches, such as least absolute shrinkage and selection operator (LASSO) and 

principal component regression (PCR), are also good candidates to handle spectral data 

that may contain collinearities (Bricklemyer, Brown, Turk, & Clegg, 2013; Wang et al., 

2018; Yaroshchyk, Death, & Spencer, 2012). To address the potential issue of non-linearity, 

support vector regression (SVR) and artificial neural network (ANN) have been recently 

investigated in near-infrared (NIR) spectroscopic analysis (Shao, Bian, Liu, Zhang, & Cai, 

2010).

In this work, we investigate the use of SIBS combined with various machine learning 

approaches to determine the concentration of metal aerosols nebulized from aqueous 

solutions. Specifically, we tested 13 metals that are of public health significance, including 

Al, Be, Cd, Co, Cr, Cu, Fe, Pb, K, Mn, Ni, Hg, and Zn. Both linear approaches (LASSO, 

PCR, and PLS) and a non-linear approach (SVR) have been studied and compared to the 

behavior of univariate calibration models for each analyte. We also propose a metric of 

“adjusted LOD” to inter-compare LODs calculated by the models with different numbers of 

independent variables. The objective of this work is to propose a more robust approach to 

improve the quantitative analysis of metal particles using TARTA.

2. Methods

2.1. Instrument and particle sampling

The major components of TARTA include a boost converter to provide high voltage, two 

tungsten (W) electrodes (anode: a needle with a 50 μm tip diameter; cathode: a rod with 

a diameter of 1 mm) to form an arc gap of 1.5 mm, a capacitor to periodically charge 

and discharge, a spectrometer to record the emissions, and electronics (e.g., relay, Arduino 

microcontroller, and optical coupler) to control the system operation. Details of the SIBS 

system can be found in Davari and Wexler (2020) and Li et al. (2021). Briefly, the 

capacitor was first charged to 6000 V in 5 s. Then, the capacitor created a high-voltage 
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arc between the electrodes, which was detected by a photodiode, followed by spectral 

analysis by a spectrometer (USB 2000, Ocean Optics Inc.). In order to suppress the 

initial continuum radiation and obtain spectra with clean elemental emission lines, a delay 

generator introduces a delay of 1.88 μs before spectrum acquisition.

Our study began with development of calibration models for individual metals. Specifically, 

we investigated metals not only proposed in US EPA Hazardous Air Pollutants (HAPs) list 

(including Be, Cd, Co, Cr, Pb, Mn, Ni, and Hg, EPA (2017)), but also those of public health 

concern or used for source apportionment of particulate matter (including Cu, Fe, Zn, Al, 

and K). Table S1 summarizes the chemical composition and density of different metals. For 

each element, standard aqueous solutions of metal nitrate salts at different concentrations 

(1–10 μg ml−1) were prepared. As shown in Fig. 1, aerosols were generated using a 

nebulizer (MiniHEART, Westmed, Inc.) at a pressure of 125 kPa and a flow rate of 8 l 

min−1. The particles were then dried by a diffusion dryer and passed to the spark generation 

enclosure (0.55 m (L) × 0.5 m (W) × 0.42 m (H)) by a vacuum pump (15 l min−1 air flow). 

The enclosure was connected to building exhaust and operated at a small negative pressure 

to confine toxic particles. In the enclosure, a 1-mm diameter nozzle directed the particles 

to deposit on the tip of a 1 mm diameter W cathode. After sampling for a predetermined 

duration, deposition was terminated and sparks were created to obtain spectral data. To 

obtain sufficient training data and ensure training accuracy, we varied sampling duration 

from 1 to 20 min for each element and repeated each experimental condition at least three 

times. Furthermore, multiple sparks (N > 5) were performed after each sampling period to 

clean off the mass loading on the cathode and avoid carryover of particles to subsequent 

experiments. In addition to SIBS analysis, we used an Aerodynamic Particle Sizer (APS 

model 3321, TSI Inc.) to determine particle size distribution and mass concentration. The 

APS measurements show that both individual metals and metal mixtures have a single mode 

with a geometric mean diameter of 0.55–0.65 μm (Figure S1). When calculating aerosol 

mass concentration, we extrapolated the raw APS results by taking into consideration the 

particle mass beyond the lower detection boundary (0.5 μm). In our previous work (Li et 

al., 2021), we found that the mass concentration calculated from the elemental solutions 

tended to be greater than the raw APS results for the experiments using <2 μg ml−1 solution 

concentration, because the nebulized small particles were not detected by the APS. Thus, 

the ratio of the two mass concentrations was used in the present work to correct the APS 

measurements for different aqueous solutions.

After model development, we performed an independent validation by using the models 

to determine elemental concentrations of metal mixtures. Three types of mixtures were 

designed: (1) A mixture consists of 10 of the 13 tested metals (excluding Al, K, and Be, 

which are randomly selected as control group), with a concentration of 1 μg ml−1 for each 

element; (2) the same mixture of metals, but a concentration of 5 μg ml−1 each; and (3) a 

mixture contains 5 μg ml−1 Fe, Zn, K, and Al (abundant in the atmosphere), 1 μg ml−1 Mn, 

Ni, Cu, Pb, Cr, and Hg (less abundant), and 0.5 μg ml−1 Co, Cd, and Be (least abundant). 

More detailed description of the validation datasets can be found in Section 3.4.
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2.2. Data preprocessing

2.2.1. Baseline correction and normalization—In order to eliminate the influence 

of baseline drift on the accuracy of the proposed models, we applied an automatic baseline 

correction algorithm following Schulze, Foist, Okuda, Ivanov, and Turner (2012). This 

algorithm iteratively performs zero-order Savitzky–Golay filter and removal of peaks, until 

the area of peaks stripped from the spectrum reaches a local minimum. During iteration, 

the size of the filter window is gradually increased to facilitate convergence. The derived 

baseline is then subtracted from the original spectra to generate the corrected spectrum.

Similar to previous works (Diwakar & Kulkarni, 2012; Li et al., 2021), we summed the 

spectral response of 5 consecutive sparks after each particle loading to capture the entire 

signal of the analyte. As seen in Figure S2, the spectral intensity of the fifth spark from each 

experiment has reduced to the original values before particle loading (i.e., blank, tungsten 

only), confirming that no residuals are left on the electrode. Therefore, the corrected spectra 

for each experiment can be expressed as

Corrected spectrum = ∑
i = 1

5
Spectrumi − Baselinei

(1)

However, signal fluctuations remain in the corrected spectra because the same experimental 

conditions still resulted in different spectral intensities (Figure S3). As this happens to the 

whole optical range, we suspect that the observed differences are due to physical matrix 

effects, such as the variation of spark discharge energy and plasma–particle interaction 

processes. To mitigate signal fluctuations, previous studies have normalize the raw spectrum 

by the intensity of internal standards (e.g., (Koelmel et al., 2019; Nicolini, 2020; Takahashi 

& Thornton, 2017),). During SIBS analysis, the emission lines of W electrodes can be 

treated as internal standards, because any variation that affects the analyte signal will also 

affect the W signals to the same degree. We therefore normalized the corrected spectra in 

Eq. (1) by the strongest emission line of W observed over the whole optical range (401.02 

nm), namely

Normalized spectrum = Corrected spectrum
Corrected spectral peak@401.02nm

(2)

2.2.2. Identification of spectral peaks—Although multivariate calibration techniques 

can utilize the full spectral range (200–900 nm, n = 2047) to develop models, it is 

computationally-intensive and time consuming. Furthermore, by comparing calibration 

models using full spectra and models using signature wavelengths, previous studies found 

that the latter model has better predictability and accuracy (X. Fu et al., 2017; Khan, 

Munir, Yu, & Young, 2020; Zheng, Kulkarni, & Dionysiou, 2018). This is because some 

spectral regions contain noise and useless information, which propagate uncertainties 

to the estimated quantity. Therefore, we discarded the spectral range with low signal-to-
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noise ratios (i.e., beyond 300–800 nm) and used spectral signals at only representative 

wavelengths. We defined the representative wavelengths to be those where the spectra 

exhibit sharp peaks. These sharp peaks are due to elements excited in the plasma (e.g., the 

materials of the electrodes (W and impurities), the tested aerosol metals, and impurities in 

the aqueous nebulizing solution).

Specifically, we used a peak detection algorithm to automatically identify peaks in the 

normalized spectra (Yoder, 2021). The algorithm computes the first derivative of the spectra 

and locates the peaks when the sign of the derivative changes from positive to negative. 

The algorithm also uses a threshold of minimal peak intensity to exclude the peaks due 

to spectral noise and low detection efficiency of the spectrometer. An advantage of this 

algorithm is that it does not require the knowledge of sample composition and corresponding 

elemental emission lines, so it can effectively detect all spectral peaks without subjectivity.

We next classify the detected peaks of each metal into three categories: (1) Peaks with 

intensities that remain roughly constant over different experiments. These peaks are due to 

the elements independent of the composition and concentration of tested samples, such as 

W, N, and O excited in the plasma. (2) Peaks with intensities proportional to the solution 

concentration, but belonged to the impurities in the solution. These peaks include Na at 

589.4 nm and Ca at 393.1, 396.5, and 422.3 nm (3) The other peaks that do not belong 

to the former two categories. Only peaks in the last category are expected to vary with 

analyte concentration so should play a role in multivariate calibration models. We therefore 

excluded the peaks in the first category by calculating the standard deviation (std) of peak 

intensities and teasing out the peaks with std <10%. We next excluded the peaks due to the 

emissions of Na and Ca present in the second category.

We did not manually locate peaks of the tested metals based on the National Institute 

of Standards and Technology (NIST) atomic spectral database (Ralchenko et al., 2006), 

because not all emission lines can be easily detected by our spectrometer. To reduce 

subjectivity and ambiguity when using a subset of emission lines to represent the tested 

metals, the method presented in this section provides a novel perspective for selecting 

emission lines for use in multivariate calibration models.

In the last step of data preprocessing, we included the six wavelengths surrounding each 

peak, three before and three after, and the corresponding intensities to create input datasets 

for each metal (similar to Zheng et al. (2018)), spanning a ~2 nm wavelength range. Due 

to the high resolution of the spectrometer (0.35 ± 0.05 nm), a strong element peak typically 

spans a few data points. Wavelength shifting caused by different experimental settings is 

expected to be captured by this preprocessing step (Wang et al., 2018).

2.3. Model development

After preprocessing, the final spectra used as input to machine learning models can be 

written as Xij, where X represents the normalized spectra in Eq. (2), i represents the ith 

experiment of the investigated metal, and j represents the jth wavelength identified by 

the method presented in Section 2.2.2. Accordingly, the dependent variable Ctot (i) is the 

integration of mass concentration over the sampling period for the ith experiment:
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Ctot(i) = CAPS(i) × sampling duration(i)

(3)

where CAPS is the mass concentration derived by the APS (μg m−3), and sampling duration 

is in minute.

In this work, we applied different machine learning approaches (including LASSO, PLS, 

PCR, and SVM) to find the optimal calibration model (using the programming language R 

version 3.6.1). The theory and structure of these approaches have been extensively discussed 

in the literature (e.g., (Brereton, 2000; Bro, 2003; Li & May 2020; Olivieri, 2018),), so 

in this section we will restrict our focus to their application to these datasets. Besides 

machine learning methods which use multiple emission lines for calibration, univariate 

calibration was also performed for each element for comparison. A list of wavelengths used 

for univariate analysis can be found in Table 1.

LASSO, a shrinkage method of linear regression, does variable selection based on a penalty 

term added to the sum of squared residual errors (SSE). As the value of penalty term 

increases, the model shrinks the coefficients of less relevant independent variables towards 

zero (Tibshirani, 1996). During model development, the penalty term is tuned until the 

model achieves an acceptable fit. In this work, we used 3-fold cross-validation and the 

criterion of “1SE” to determine the best model, where “1SE” is defined as the smallest set 

of wavelengths that results in mean squared error (MSE) within one standard error of the 

minimum MSE (Melkumova & Shatskikh, 2017).

To some extent, both PCR and PLS are related to principal component analysis (PCA). 

PCA finds a small number of principal components (PCs) to capture the greatest amount 

of variance in the input matrix (I. T. Jolliffe, 1986). PCR then uses these components as 

input instead of the original spectra to develop a linear regression (Ian T. Jolliffe, 1982). 

In contrast, PLS utilizes both input and output data to construct a lower dimensional space 

defined by a number of latent variables (similar to PCs used in PCA), and performs a 

regression in the new space (Geladi & Kowalski, 1986; Haaland & Thomas, 1988). When 

developing the models, the optimal numbers of PC and latent variable were determined by 

leave-one-out cross validation seeking the smallest MSE.

In addition to the linear approaches described above, we have also explored a non-linear 

approach Support Vector Regression (SVR). SVR was developed based on the principle of 

support vector machine (SVM), an algorithm used for pattern recognition and classification 

problems (Cortes & Vapnik, 1995). In SVR, kernel functions (e.g., linear, polynomial, 

radial) are used to map the original spectra to a high-dimensional space, where regression 

can be performed (Drucker, Burges, Kaufman, Smola, & Vapnik, 1997). Here we used a 

radial kernel function with 10-fold cross validation to grid-search hyper-parameters for each 

element.
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2.4. Limit of detection

According to International Union of Pure and Applied Chemistry (IUPAC) 

recommendations, the following expression defines LOD for univariate calibration:

LOD = 3.33σ/S

(4)

where S is the slope of the calibration curve and σ is an estimate of noise in the data, derived 

using a number of spectra in the absence of metal particles (Allegrini & Olivieri, 2014; 

Ismail, Imam, Elhassan, Youniss, & Harith, 2004). LOD has the same unit as the dependent 

variable (Ctot, μg m−3 × min). To derive LOD in terms of the delivered mass of the tested 

metals (LODdel, ng), we can simply multiply the LOD in Eq. (4) by carrier gas flow rate (l 

min−1).

When dealing with LOD of multivariate calibration models, the “S” term in Eq. (4) can 

be estimated as the inverse vector of the regression coefficients (1/||b||), where || || is the 

Euclidean norm of a vector (Braga et al., 2010; Zheng et al., 2018). Since SVR is nonlinear, 

its analysis does not yield an “S”, so we exclude it from the inter-comparison of LODs in 

Section 3.3.

When comparing LODs, a critical question that needs to be addressed is how to effectively 

compare models with different numbers of independent variables. We found that the ||b|| 

term tends to increase with the number of independent variables used in the calibration 

model. As a result, PCR and PLS models, which use all input wavelengths, tend to have a 

greater LOD than LASSO and univariate calibration. Similarly, Davari and Wexler (2020) 

found that the multivariate calibration models based on LASSO have greater LOD than 

univariate calibration. To fairly compare LODs across different calibration models, we 

propose a metric “adjusted LOD”:

adjusted LOD = n − k − 10.5
n − 1 × LOD

(5)

where n is total number of observation and k is the number of independent variables used in 

the model. This metric is analogous to adjusted coefficient of determination (adjusted R2), a 

special form of R2, which penalizes the addition of independent variables to the model (Yin 

& Fan, 2001).

3. Results and discussion

3.1. Wavelength selection

We use the normalized spectra derived from the Co experiments as an example to illustrate 

the peak identification as described in section 2.2 (Fig. 2). The peak detection algorithm 

successfully detects all sharp peaks, but not shoulders located on sides of the main peaks 

(e.g., 352.7, 398, and 411.5 nm). We did not include shoulder peaks in the following 
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analysis, as they appear not to be related to most of the tested elements — with one 

exception (Cd) explained below. The sharp peaks were then grouped into three categories as 

described in Section 2.2.2 (marked by different colors), based on the similarity of intensities 

across different experiments and prior knowledge of the emission lines of impurities (Na and 

Ca). After excluding the peaks attributed to categories 1 and 2, three peaks remain at 340.9, 

345.1, and 350.4 nm. Lastly, seven independent variables of each peak (one central peak, 

and three additional wavelengths on each side) are used as input data to develop machine 

learning models of Co.

In the first three columns of Table 1, we summarized the number of peaks generated by 

the peak detection algorithm and the final number of central peaks used for each element 

in model development. One may notice that Cd has 15 final peaks, which is two times 

more than the other metals. This is because Cd exhibits a peak at 508.7 nm, which is on 

the shoulder of the sharp peak at 506.9 nm (Figure S4). To account for this shoulder peak, 

we have to lower the noise threshold used in the peak detection algorithm. As a result, the 

algorithm yields more peaks, hence yielding more explanatory variables in the Cd model.

Table 1 also shows a list of elemental emission lines obtained from the NIST database. To 

develop univariate models, we used the strongest emission line of each element within the 

wavelength range 300–800 nm and free from W interference. We also compared the peak 

wavelengths obtained at the preprocessing stage (e.g., the three peaks at the wavelengths 

around 345 nm in Fig. 2) to these theoretical analytical lines and found that the two results 

correspond well to each other, confirming the reasonability of data preprocessing (Table S1).

The main advantage of using the LASSO approach is that it can both select important 

variables and estimate regression coefficients. After obtaining the models, variable 

importance of projection (VIP) was used for qualitative evaluation of the selected 

independent variables as described in Chong and Jun (2005). As seen in Table 1, the 

LASSO approach selected one to four wavelengths for the tested metals. Compared to the 

NIST reference emission lines, the selected wavelengths typically include a strong elemental 

emission line and a few wavelengths around it. Our results demonstrate that although 

multiple distinct peaks have been input to the model, one elemental peak seems to be 

sufficient for the LASSO approach to estimate the analyte concentration. However, when 

applying LASSO to the Cr data, the model selects only one independent variable (426.1 

nm) which does not belong to any analyte peaks. Interestingly, we noticed that Cr has two 

adjacent strong emission lines at 425.4 and 427.2 nm, which forms a local valley at 426.1 

nm (Figure S5). As a result, spectral intensities at both peak and valley wavelengths change 

with Cr concentrations. Because the goal of LASSO is to build a model with a smaller 

number of independent variables, it appears to select the valley wavelength to better capture 

spectral variances from ~424 to 428 nm.

In contrast to LASSO which does feature selection, the other three approaches (PCR, PLS, 

and SVM) use all preprocessed wavelengths to construct calibration models. Based on VIP 

scores obtained from the models, we ranked all regression coefficients by their contributions 

to the prediction and listed the top three important wavelengths in Table 1. Except for 

Cd and Hg, the important wavelengths for the other metals correspond to one, or several, 
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strong emission line(s). For example, PCR detects Cr peaks at ~520, 442, and 357 nm as 

the top influential wavelengths. Similarly, PLS and SVR select wavelengths around two 

peaks of Cr as the most important contributors. These results are very different from those 

obtained by LASSO, which is mainly due to their different model fitting concepts. During 

our preliminary examination of Cd and Hg spectra, we could not easily detect their peaks for 

the experiments with relatively low solution concentrations and short sampling durations. As 

a result, it is not surprising that PCR, PLS, and SVR fail to capture the true analyte peaks 

during model development.

Consequently, the framework of our machine learning models appears to be very competitive 

with univariate calibration models to provide elemental quantification. In particular, our 

framework does not rely on prior knowledge of spectral signals from the NIST database, 

but instead, the model results provide insight into spectral lines related to the sample and 

differentiated from background due to solution impurities and the tungsten electrodes.

3.2. Performance evaluation using statistical metrics

In this section, the performance of the developed models is evaluated using adjusted R2 and 

normalized root mean squared error (normalized RMSE = MSE/Y , where Y  is the mean of 

dependent variable). In general, high R2 and low RMSE values indicate a good fit of the 

model for the training dataset. For most of the elements shown in Fig. 3, the calibration 

models yield similar adjusted R2 and normalized RMSE. Despite that, the performance 

of SVR is noticeably worse than the other machine learning models. This implies that 

complicated non-linear approaches are not necessarily needed for calibration if we have well 

constrained matrix effects during preprocessing. Compared to univariate calibration models, 

LASSO, PCR, and PLS have obtained a slight improvement in accuracy for Al, Be, Co, Cr, 

Cu, Fe, Ni, and Pb. When comparing across the various elements, the model performance is 

quite similar, with the best fit for Cu (adjusted R2 ≈ 0.97, normalized RMSE ≈ 0.02) and the 

worst fit for Cd (adjusted R2 ≈ 0.80, normalized RMSE ≈ 0.13).

3.3. LOD estimation and comparison with other analytical methods

Detection limit of the TARTA can be expressed in terms of either the LOD of the mass 

delivered in the air sampling system, LODdel (ng), or the LOD of that atmospheric aerosol 

mass concentration (LODconc, μg m−3). The relationship between the two LODs is given in 

Eq. (6).

LODconc = LODdel
sampling time×flow rate

(6)

where sampling time is in minute and flow rate is in l min−1. The product of sampling time 

and flow rate is also known as sampling volume. Ideally, very low LODconc can be achieved 

if adequate sampling volume is available, however this requires either a big pump or a loss 

of temporal resolution. Thus, to satisfy common monitoring needs, we assume a flow rate 

of 15 l min−1 and a sampling duration of 30 min to derive the “adjusted LODconc” of our 
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instrument. Hereafter, we simply refer to “adjusted LODconc” as “LOD” unless otherwise 

stated.

Consistent with the results obtained from wavelength selection (Section 3.1) and despite 

their impressive adjusted R2 and normalized RMSE, Cd and Hg have the highest (i.e., 

worst) LOD among the 13 elements (Fig. 4). For the other elements, the LOD based on 

univariate calibration is in the range of 0.06–0.19 μg m−3, with the lowest LOD for Be and 

the highest one for Zn. Among the three multivariate calibration models, LASSO has the 

best LODs ranging from 0.03 to 0.11 μg m−3. By comparing the univariate and LASSO 

models, relatively large differences are found for Co and Ni, where the LODs based on 

LASSO are about 4 times better (lower) than those using the univariate method. Overall, 

LASSO outperforms the other approaches in terms of LODs, indicating better suitability for 

determining elements with low concentration.

The LODs derived by the LASSO approach using the TARTA are then compared to 

the LODs based on other analytical instruments, such as the aerosol spark emission 

spectroscopy (ASES) instrument tested in Zheng et al. (2018), inductively coupled plasma 

mass spectrometry (ICP-MS), and the XRF instrument (Xact 625, Cooper Environmental 

Inc.). The spark discharge process of ASES is similar to TARTA when detecting particulate 

matter, but its sampling system tends to be more complicated because ASES requires a 

corona aerosol micro-concentrator to charge and direct particles onto the ground electrode 

(Diwakar & Kulkarni, 2012; Zheng, Kulkarni, Birch, Deye, & Dionysiou, 2016). Though 

widely used for elemental determination, both ICP-MS and XRF are expensive approaches 

that require skilled operations. Furthermore, these are laboratory, off-line techniques making 

them unsuitable for quick and real-time measurements (Evans et al., 2020). Although 

Xact 625 has achieved relatively high temporal resolution (15–240 min) by an automated 

moveable filter tape system, its high cost and complexity may prevent its use at multiple 

observation sites (Fujita & Campbell, 2013; Furger et al., 2017; Ryder et al., 2020). Besides 

the mentioned instruments, many other techniques can be used to measure atmospheric 

metal concentrations, such as X-ray fluorescence analyzer from Horiba Inc and ICP-OES 

from SPECTRO Analytical Instruments Inc. However, a detailed inter-comparison of these 

techniques is beyond the scope of this work.

For most of the metals presented in Table 2, TARTA has LODs similar to ASES and 

ICP-MS, but more than 10 times greater LODs than Xact 625. It is worth noting that the 

two SIBS instruments (TARTA and ASES, both sampling at a 30-min interval) yield very 

consistent LODs for Cr, Cu, Fe, Mn, and Ni, although their particle loading systems are 

different. For Fe and K, the LODs derived by ICP-MS and Xact 625 are much greater 

than that for the other elements; however this discrepancy is not observed for the two 

SIBS instruments. Although TARTA is not as sensitive as Xact 625, the two instruments 

represent a trade-off between cost and performance – the TARTA can be built for only 

about $5000 (using the Ocean Optics spectrometer employed in this work) or $3000 (using 

lower-cost spectrometers, such as LR1 spectrometer from ASEQ instruments Inc.), whereas 

the Xact costs about $150,000. Consequently, the combination of LASSO and the instrument 

developed in our study is promising for cost-effectively quantifying mass concentration of 

metal particles.
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3.4. Prediction of unknown samples

The ultimate goal of this study is to build a more accurate and robust calibration model for 

SIBS quantitative analysis of multielemental emissions, so we further validate the LASSO 

models (the best approach as presented above) by exploring its predictions for samples not 

used during the training phase. Different from the single-component solutions used before, 

the validation datasets are mixtures of different elemental solutions.

The first type of validation datasets consists of 10 elements (i.e., Cr, Mn, Cu, Ni, Fe, Zn, 

Co, Hg, Cd, and Pb) at two concentration levels (1 and 5 μg ml−1). K, Be, and Al which 

are not added to the solution serve as the control group. The estimated Ctot of each element 

is plotted versus sampling duration in Fig. 5 and versus “true” Ctot in Figure S6. According 

to the definition in Eq. (3), the slope of the line fitting the data in Fig. 5 represents the 

predicted elemental air concentration. Except for Hg, Cd, Pb, and the metals in the control 

group, the change of sampling duration and elemental solution concentration can be well 

estimated by the LASSO models (R2 > 0.9). Comparing the slopes of the fitting lines, the 

predicted air concentrations of these metals are 6.01 ± 1.08 μg m−3 (5 μg ml−1 solution) and 

1.67 ± 0.10 μg m−3 (1 μg ml−1 solution). For Hg and Cd, the predicted mass concentrations 

are lower than that for the other metals, and the R2 values are reduced for the experiments 

using 1 μg ml−1 solutions. Interestingly, although Pb shows strong correlations with R2 > 

0.95, the predicted mass concentration is close to or lower than the calculated LODs (e.g., 

2.8 μg m−3 (2-min sampling) and 0.28 μg m−3 (15-min sampling)). For K, Be, and Al 

(control group), no significant difference of mass concentration is observed when varying 

sampling duration and solution concentration, which indicates that the LASSO models are 

suitable to identify the presence of elements in the sample.

Another type of validation dataset mimics the elemental composition of particulate matter 

commonly found in North America, where the percentage of each compound in the mixture 

is taken from literature. Comparing the elements tested in our study to those reported in 

Mamun, Cheng, Zhang, Dabek-Zlotorzynska, and Charland (2019), Zn, Cu, K, Al belong to 

the predominant elements in both PM2.5 and PM10 (greater than 10 ng m−3), whereas Co, 

Cd, Be are the least abundant (less than 1 ng m−3). We therefore designed a test solution 

with concentrations of 5 μg ml−1 for Fe, Zn, K, and Al, 1 μg ml−1 for Mn, Ni, Cu, Pb, Cr, 

and Hg, and 0.5 μg ml−1 for Co, Cd, and Be. Similar to Fig. 5, the relationship between Ctot 

and sampling duration for this validation dataset can be found in Figure S7. The regression 

results (slope and R2) of the fitting lines are summarized in Table 3. The slope results 

(i.e., elemental concentration) suggest that the LASSO approach is able to quantify most 

of the elements from solutions with different concentrations (6.25 ± 0.61 μg m−3 (5 μg 

ml−1 solution), 1.97 ± 0.71 μg m−3 (1 μg ml−1 solution), and 0.87 ± 0.31 μg m−3 (0.5 μg 

ml−1 solution)). Furthermore, the estimates are reasonably robust because the R2 results are 

fairly strong. For the elements that have the same solution concentrations in the two types 

of dataset, we also conducted t-tests to examine if the predicted mass concentrations are 

statistically different (Table 3). All t-values for 95% confidence interval are not significant 

(P value < 0.05), indicating no significant differences.
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3.5. Measurement uncertainty

Clearly, the analytical method presented in this work can enhance the quantification of 

elemental mass concentrations using TARTA in terms of improved LOD and reduced matrix 

effect, but understanding and accounting for measurement uncertainty is also important. 

First of all, reproducibility of plasma is evaluated by calculating the coefficient of variation 

(CV) of W signals (429.77 nm, from electrode) and O signals (777.76 nm, from ambient 

environment) for repeated spark generations. Based on the results of 100 consecutive sparks, 

the CV was found to be 10% (W) and 19% (O) when using the data of the original 

spectra, but reduced to 6% (W) and 12% (O) after normalization. These variations are 

of the same magnitude as those reported in a previous study using SIBS to measure 

aerosol concentration (Diwakar & Kulkarni, 2012). Second, another source of measurement 

uncertainty is associated with the variation of collection efficiency. According to Zheng et 

al. (2017), the collection efficiency of SIBS is governed by particle size, air flow rate, and 

characteristics of electrical components (such as interelectrode distance, electrode diameter, 

and corona current). Their study found that the collection efficiency remains relatively stable 

for particle sizes below 1 μm, but greater flow rate can increase uncertainty of analyte 

signals because there may be increased bounce of particles at high flow rate. Since our 

experimental setup has been optimized as described in Li et al. (2021) and we simply tested 

particles with a mean size of 0.55 μm, it is probable that the variation of collection efficiency 

has been sufficiently reduced. However, further studies are necessary to determine the 

measurement efficiency of TARTA for large particles. Lastly, uncertainty can propagate from 

the calibration procedure. Based on an uncertainty of 18% in APS-derived particle mass 

concentration (Buonanno, Dell’Isola, Stabile, & Viola, 2009) and an uncertainty of 6.8% in 

the training process of the LASSO models (normalized RMSE in Fig. 3), we estimate a 19% 

uncertainty of our calibration (quadrature method).

4. Conclusions

Different multivariate calibration models (LASSO, PCR, PLS, and SVR) were constructed 

to determine mass concentration of metal particles nebulized from aqueous solutions. To 

this end, the raw spectra derived by an inexpensive SIBS system were preprocessed by 

baseline correction and normalization using an internal standard (a strong emission line from 

the electrode) to minimize matrix effects. By using an automatic peak detection algorithm, 

representative peaks of each metal were identified and used as input to the machine learning 

models. After model development, we found that the most influential wavelengths identified 

by the models agree well with one or multiple strong elemental lines from the NIST atomic 

spectral database. Our results suggest that the regression coefficients of the machine learning 

models can be used to determine meaningful emission lines related to the sample.

Comparing to univariate calibration models, machine learning models have better 

performance in terms of adjusted R2 and normalized RMSE. Among the models, LASSO 

has superior performance, with adjusted R2 of 0.80–0.97 and normalized RMSE of 0.02–

0.13. The relatively poor performance of SVR implies that non-linear approaches may not be 

suitable for analyzing the samples studied in this work. However, it remains uncertain how 

these models perform for samples with more complicated chemical matrix effects.
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Based on the LASSO models, we calculated the LODs for different elements and compared 

the result to that of other analytical techniques. The TARTA has LODs ranged from 0.04 

μg m−3 (Mn) to 0.17 μg m−3 (Hg) at a sampling duration of 30 min and a flow rate of 15 

l min−1, which are very similar to the LODs reported for ASES and ICP-MS. Although the 

LODs of our instrument are greater than those of the Xact 625 by an order of magnitude, the 

cost of the Xact is more than an order of magnitude great than our instrument. For the metals 

that are difficult to quantify because of relatively poor LODs and calibration results (i.e., Cd, 

Hg, and Pb), the TARTA can still be used to detect their presence in near-real time at the 

observational site. After detection, the other analytical techniques with lower LODs may be 

used off-line for elemental analysis.

Lastly, when applied to independent validation datasets (mixtures of 10 or 13 types of 

metals with different solution concentrations), the mass concentration predicted by the 

LASSO models show good agreement with known concentrations of each analyte. Overall, 

a combination of the TARTA and the proposed LASSO approach is very promising for 

identifying and quantifying air contaminants in various environments.
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Fig. 1. 
Schematic of the experimental setup.
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Fig. 2. 
SIBS results for the analysis of Co. For better illustration, we only present the results from 

330 to 605 nm. Each curve represents the normalized spectra obtained from an experiment. 

The different categories of spectral peaks are represented by diamond symbols with different 

colors. Note that the x-axis is broken from 420 to 570 nm.
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Fig. 3. 
Adjusted R2 and RMSE results derived by different calibration models for the training 

dataset of each metal.
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Fig. 4. 
Comparison of adjusted LODconc estimated by different approaches used in this work. We 

exclude SVR results, because SVR behaves relatively poorly during model development and 

is not able to derive LODs using Eqs. (4) and (5). Note that the y-axis is broken from 0.25 to 

0.5 μg m−3.
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Fig. 5. 
Estimated Ctot (the integration of mass concentration over the sampling period) when 

applying LASSO models to independent validation datasets.
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Table 1

Summary of preprocessed peaks and elemental emission lines selected by different calibration models.

Element Number 
of peaksa

Number of 
peaks after 
exclusionb

Strong 
emission lines 
(nm) from 
NIST 
databasec

Wavelengths 
(nm) selected by 
LASSOd

Important 
wavelengths 
(nm) derived by 
PCRe

Important 
wavelengths 
(nm) derived by 
PLSe

Important 
wavelengths 
(nm) derived by 
SVRe

Al 53 1 307.8, 309.1 309.9, 308.8, 
309.1, 308.4

308.8, 309.1, 
308.4

309.1, 308.8, 
308.4

310.3, 308.4, 
309.5

Be 46 1 313.0 311.8, 312.6 313.0, 312.6, 
313.4

313.0, 312.6, 
313.4

312.2, 313.4, 
314.1

Cd 75 15 508.3 508.3 419.7, 452.4, 
559.7

537.9, 412.3, 
559.7

537.9, 518.5, 
340.9

Co 69 3 340.9, 345.1, 
350.4, 356.9

345.1, 345.5, 
344.3, 344.7

345.1, 344.7, 
356.9

345.1, 344.7, 
345.5

341.7, 358.0, 
344.0

Cr 38 4 357.8, 425.4, 
427.2, 442.4, 
520.3

426.1 519.9, 442.0, 
356.5

356.5, 442.4, 
442.8

358.4, 443.5, 
443.1

Cu 71 3 324.5, 327.2 327.2, 327.5 324.5, 324.8, 
327.2

324.9, 327.2, 
324.5

325.6, 328.3, 
325.2

Fe 58 2 344.0, 373.6, 
385.9, 438.3

373.6, 343.2, 
373.9

373.9, 373.6, 
374.3

373.6, 373.9, 
374.7

374.3, 373.2, 
344.7

Hg 60 9 546.1 546.1 337.9, 489.8, 
518.5

518.5, 546.1, 
337.9

474.4, 329.8, 
412.3

K 71 2 766.8, 770.0 766.8 770.3, 766.8, 
770.0

767.1, 766.4, 
769.0

769.0, 770.3, 
765.8

Mn 41 1 403.3 403.3, 403.7, 
404.4

403.3, 402.9, 
403.7

402.9, 403.7, 
403.3

404.4, 402.2, 404

Ni 65 3 341.4, 352.3, 
356.9

352.3, 351.6, 
352.0

352.0, 351.6, 
352.3

352.3, 352.0, 
351.6

353.1, 340.5, 
340.1

Pb 55 3 405.9 404.8, 407.0, 
405.5, 406.7

405.5, 404.8, 
405.9

407.0, 405.9, 
405.5

407.0, 406.6, 
405.1

Zn 58 2 334.0, 472.2, 
481.0

481.0, 481.4 479.9, 333.7, 
481.4

479.9, 334.8, 
480.3

335.2, 479.9, 
333.7

a
The peaks were automatically determined using a peak detection algorithm (Yoder, 2021).

b
After removing the redundant wavelengths, the surrounding 6 wavelengths (3 before and 3 after) of each peak were added to develop machine 

learning models (See section 2.2.2 and Table S1 for more details).

c
The wavelengths in bold were used to construct univariate calibration models.

d
The selected wavelengths are ranked from most to least important according to variable importance of projection (VIP) scores.

e
PCR, PLS, and SVM used all input wavelengths to develop calibration models, but we only present the top three important wavelengths (based on 

VIP scores) in the table.
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Table 2

Comparison of LODs (μg m−3) generated by the TARTA and other analytical methods. All results are 

estimated at a 30 min sampling duration.

Element TARTAa ASESb (Zheng et al., 2018) ICP-MS (Aldabe et al., 2013 ; Durhan et al., 1993) Xact 625 (Ryder et al., 2020)

Al 0.11 - 0.03 0.012

Be 0.06 - 0.05 -

Cd 0.13 0.02 0.05 0.001

Co 0.08 - 0.02 -

Cr 0.05 0.05 0.04 0.003

Cu 0.06 0.04 0.02 0.001

Fe 0.08 0.08 2.00 0.031

Hg 0.17 - - <0.001

K 0.05 - 2.50 0.048

Mn 0.04 0.04 0.05 0.001

Ni 0.09 0.07 0.10 0.003

Pb 0.14 0.08 0.04 0.006

Zn 0.10 0.06 0.10 0.014

a
The results are calculated using the LASSO approach.

b
The ASES sampled aerosols in a corona aerosol micro-concentrator at a flow rate of 2 l min−1.
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Table 3

LASSO results of the second type of validation dataset.

Solution 
concentration (μg 
ml−1)

Element Slope (i.e., elemental concentration, 
μg m−3)a

R2 Reference elemental 
concentration (μg m−3)b

T test statisticc

5 Zn 6.20 0.98 5.25 −0.09

Fe 6.23 0.99 6.83 −0.15

K 5.55 0.97 - -

Al 7.05 0.97 - -

1 Cr 2.58 0.95 1.76 −0.63

Cu 2.51 0.98 1.67 −1.16

Mn 2.31 0.99 1.46 −1.04

Ni 2.29 0.99 1.70 −0.62

Pb 1.06 0.99 0.52 −0.93

Hg 1.08 0.99 0.71 −1.81

0.5 Co 0.66 0.99 - -

Cd 1.22 0.99 - -

Be 0.72 0.69 - -

a
The slope is based on the regression results in Figure S7.

b
Reference elemental concentrations are the slopes of the fitting lines in Fig. 5. Note that the results of K, Al, and Be (control group), and 0.5 μg 

ml−1 Co and Cd are not available in the first validation dataset.

c
T-test compares the mean of the two columns of elemental concentration in relation to the variation in the data. The closer T-value is to 0, the 

better the agreement is.
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