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Abstract

An individual’s disease risk is affected by the populations that they belong to, due to shared 

genetics and environmental factors. The study of fine-scale populations in clinical care is 

important for identifying and reducing health disparities and for developing personalized 

interventions. To assess patterns of clinical diagnoses and healthcare utilization by fine-scale 

populations, we leveraged genetic data and electronic medical records from 35,968 patients as 

part of the UCLA ATLAS Community Health Initiative. We defined clusters of individuals using 

identity by descent, a form of genetic relatedness that utilizes shared genomic segments arising 

due to a common ancestor. In total, we identified 376 clusters, including clusters with patients 

of Afro-Caribbean, Puerto Rican, Lebanese Christian, Iranian Jewish and Gujarati ancestry. Our 

analysis uncovered 1,218 significant associations between disease diagnoses and clusters and 124 

significant associations with specialty visits. We also examined the distribution of pathogenic 

alleles and found 189 significant alleles at elevated frequency in particular clusters, including 

many that are not regularly included in population screening efforts. Overall, this work progresses 

the understanding of health in understudied communities and can provide the foundation for 

further study into health inequities.

Individuals belong to many populations (Fig. 1), each with unique health risks. This can 

be a consequence of a population’s shared cultural or physical environment, genetics 

or a combination of both. Structural factors, including racism and socioeconomic status, 

also shape the health of populations, particularly in the United States1–3. Therefore, 

understanding population-level differences in disease risk is important for reducing health 

disparities and developing personalized interventions4,5. New large-scale biobanks tied to 

electronic health records (EHRs) present an ideal opportunity to study population health6. 

Previous biobank studies have identified new genetic associations to complex traits7, 

examined how diseases track through families8 and produced polygenic risk scores for 

multiple ancestries9.

Our work, as well as other previous work10–14, uses identity-by-descent segments (Fig. 1) 

to find fine-scale populations who share genetic ancestry in biobanks. Identity-by-descent 

segments are identical stretches of DNA inherited from a shared ancestor. People whose 

ancestors lived in the same geographic location or who were part of the same ethnolinguistic 
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group tend to have a greater proportion of their genome identical by descent15. These 

clusters of people may also share an environment, including structural factors such as 

discrimination, which can be relevant for understanding why or how patients visit the 

hospital. We previously showed that individuals within identity-by-descent-based clusters 

often share clinical diagnoses10. Importantly, we note that identity-by-descent clusters offer 

one lens into the study of health outcomes alongside others, including socially determined 

concepts of race and ethnicity (Fig. 1).

In this study, we used identity-by-descent sharing to define fine-scale population clusters 

and to analyze their health system utilization within the ATLAS Community Health 

Initiative16 (ATLAS). ATLAS is part of the University of California, Los Angeles 

(UCLA) health system, located in Los Angeles, a city with a rich history of recent 

and past immigration17,18. We examined the relationship between identity-by-descent 

clusters and healthcare system utilization inferred from electronic medical records and we 

identified thousands of cluster-specific health associations and cluster-specific enrichments 

of clinically actionable genetic variants. To facilitate the use of the large set of associations, 

we developed a web framework allowing interactive access to the results presented.

Results

ATLAS Community Health Initiative

The ATLAS Community Health Initiative16 includes 35,968 patients with genotyping and 

de-identified EHR data (Methods) Patients are diverse both genetically (Extended Data Fig. 

1a,b) and in terms of EHR-reported demographic characteristics7. ATLAS demographics 

are consistent with the overall patient population of UCLA Health (Extended Data Fig. 

2a–d), but the demographics of UCLA differ from those of Los Angeles. Socioeconomic 

factors and racial discrimination strongly influence where people live in Los Angeles, 

especially as West Los Angeles contains some of the wealthiest zip codes in the nation 

according to Census and IRS income data19,20 (Extended Data Fig. 2e,f). Despite this, 40% 

of ATLAS patients identify as a race other than White, making it substantially more diverse 

than many other biobanks that have participants with predominantly European ancestry21. 

Some groups, including Middle Eastern and North African (MENA) populations, such as 

Iranians or Armenians, are not well represented in current biobanks. Thus, ATLAS offers 

opportunities to study health in diverse communities16.

Identifying fine-scale identity-by-descent clusters

To identify fine-scale clusters, we first inferred patient relationships using identity-by-

descent sharing (Fig. 2). Studying identity-by-descent clusters offers advantages over 

clustering patients through EHR-reported measures alone10. In ATLAS, a large proportion 

of patients have missing or ‘other race’ specified in their EHR (Extended Data Fig. 2a). 

Other demographic characteristics may be missing for complex and non-random reasons, 

and, when included, they are not guaranteed to be accurate10. Therefore, for this study, we 

focused on groups identified by genetic ancestry. Genetic ancestry is a distinct concept from 

race, which is a social construct (Fig. 1)22.
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To define the identity-by-descent clusters, we called pairwise identity by descent between 

all ATLAS participants and reference individuals from the 1000 Genomes Project23, 

the Simons Genome Diversity Project24 and the Human Genome Diversity Project25. 

Identity-by-descent segments were estimated using iLASH26, and clusters were identified 

with the Louvain community detection algorithm27. Sensitivity analyses were performed 

with additional phasing and identity-by-descent calling algorithms; pairwise identity-by-

descent segments were highly concordant between the methods (Pearson’s R2 = 0.91), and 

alternative clustering algorithms over the alternatively phased data produced similar clusters 

(Extended Data Fig. 3a–c).

We detected 367 identity-by-descent clusters, each of which was given an identifier 

determined by three iterations of Louvain clustering (for example, ‘cluster_1_0_2’). There 

was substantial variation in cluster size, ranging from two to 2,030 individuals. Differences 

in cluster size, historic population size and complex patterns of genetic relatedness resulted 

in differential cluster densities. In some clusters, such as cluster 3_8_2, nearly every pair of 

individuals shared identity-by-descent segments (Extended Data Fig. 3d), whereas, in other 

clusters, such as cluster 1_6_10 or cluster 5_7_0, individuals shared fewer connections 

(Extended Data Fig. 3e,f). Admixture analysis28 revealed substantial genetic diversity 

between the clusters, with continental ancestry sources from the Americas, West Asia, 

Europe, Africa, East Asia and South Asia (Fig. 3a).

To further refine the clusters, we used the approach of Dai et al.12 and merged subclusters 

with low genetic differentiation, measured as Hudson’s fixation index (FST) (Fst < 0.001). 

This produced clusters differentiated enough to represent the diversity of ATLAS while still 

powered for statistical analyses. Finer-scale clusters might be relevant for specific medical 

or population genetics questions. For example, the subclusters that were merged together 

to make the predominantly European ancestry cluster each had a different distribution of 

identity-by-descent sharing. Computing FST to UK BioBank29 participants born outside the 

UK suggested that these subclusters represent individuals with Northern, Southern and 

Eastern European ancestry (Fig. 3b).

After FST merging, 24 clusters with at least 30 ATLAS participants representing 97.8% 

of ATLAS remained for downstream analysis. These 24 clusters were assigned a name. 

The ATLAS biobank does not contain the country of origin of participants, which was 

used in our previous studies to annotate cluster identity10. Instead, we annotated clusters 

by using reference data in the clustering algorithm. For clusters without reference data, 

de-identified EHR demographic information, such as EHR-reported race and ethnicity, 

preferred language and religion, were used to refine and determine cluster annotations 

(Supplementary Data 1). Notably, the label given to a cluster serves as a broad interpretation 

of the cluster’s demographic and ancestral ties and does not necessarily reflect the self-

identity of members (Discussion). Furthermore, the clusters discussed here are specific to 

Los Angeles, especially those who visit UCLA Health, and may not be representative of the 

global population (Supplementary Table 1).

Using external reference data (Fig. 3d and Extended Data Fig. 4), global genetic 

ancestry, principal component analysis (PCA) (Extended Data Fig. 5) and EHR-reported 
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demographics, we identified identity-by-descent clusters reflecting the demography of Los 

Angeles. There was a large cluster of Mexican and Central American patients. Further 

Louvain clustering of this cluster with additional indigenous reference samples from 

Mexico30 revealed subclusters with ancestry from northern Mexico and Baja California, 

central Mexico and Oaxaca and Guatemala (Supplementary Table 2 and Extended Data Fig. 

6a–h). We also identified three distinct Black and African American identity-by-descent 

clusters, containing patients with African American, Afro-Caribbean and West African 

ancestries, respectively (Fig. 3c and Extended Data Fig. 4f). Several clusters had MENA 

global genetic ancestry (Fig. 3a), consistent with Los Angeles County having the largest 

population of people from the Greater Middle East in the United States31. Two distinct 

clusters contained patients of Iranian descent—one with patients with EHR-reported Jewish 

religion, and the other contained patients who reported other religions. One cluster was 

enriched for patients of Armenian descent, consistent with Los Angeles having the largest 

population of diaspora Armenians in the United States32. Lastly, we identified several Asian 

identity-by-descent clusters. These included clusters with patients who have predominantly 

East Asian global genetic ancestry (Fig. 3a) and also clusters with South Asian ancestry.

In our previous work10, we found that clustering using identity by descent offered enhanced 

resolution relative to PCA. Similarly, we found that many of the clusters overlapped in 

principal component (PC) space. This was especially true for the Middle Eastern and South 

Asian identity-by-descent clusters, which were tightly clustered with the European cluster 

(Extended Data Fig. 5b).

Health system utilization of identity-by-descent clusters

We next sought to understand how individuals in the identity-by-descent clusters accessed 

the hospital system using EHR data. Patients in clusters varied substantially by age, sex and 

body mass index (BMI) as well as the fraction carrying private health insurance (Extended 

Data Fig. 7). However, the proportion of patients with private insurance coverage was high 

for all clusters, likely driven by the fact that not having quality insurance coverage is a 

primary obstacle to obtaining healthcare in the United States33.

We used logistic regression to test for associations between EHR phecode-based34 

diagnoses and cluster membership. To account for differences in diagnosis frequencies 

between medical contexts, we separately assessed the code assignments both for outpatient 

encounters and emergency room (ER) visits and controlled for age, sex and BMI. More 

complex combinations of International Classification of Diseases, 10th revision (ICD-10) 

codes are often used in place of phecodes for improving phenotypic specificity. To 

explore this, we used additional phenotype definitions for Alzheimer’s disease and related 

dementias35 (Extended Data Fig. 8a,b).

We began by comparing outpatient phecode assignments in the Ashkenazi Jewish identity-

by-descent cluster (n = 5,309) to all other participants. We tested n = 1,131 phecodes 

assigned to at least 30 patients in outpatient encounters. In total, 236 phecodes were 

significantly associated with cluster membership at Benjamini–Hochberg false discovery 

rate (FDR) of 5% (Fig. 4a). Consistent with previous studies of Ashkenazi Jewish 

individuals10,36,37, patients in the cluster were more likely diagnosed with ulcerative colitis 
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(odds ratio (OR) = 2.24, 95% confidence interval (CI): (1.83, 2.75), q value = 5.34 × 10−13) 

and regional enteritis (OR = 2.93, 95% CI: (2.41, 3.56), q value = 2.39 × 10−24). We 

further identified less well-characterized associations, particularly for several mental health 

disorders, including eating disorders (OR = 3.37, 95% CI: (2.45, 4.64), q value = 6.79 × 

10−12), anxiety disorder (OR = 1.7, 95% CI: (1.59, 1.82), q value = 9.90 × 10−52) and major 

depressive disorder (OR = 1.62, 95% CI: (1.47, 1.78), q value = 2.55 × 10−20). All these 

associations remained significant at FDR 5% when restricting the analysis to only compare 

the Ashkenazi Jewish cluster with the European cluster.

In ER visits, membership in the Ashkenazi Jewish identity-by-descent cluster was 

significantly associated with major depression as the primary diagnosis (OR = 2.29, 95% 

CI: (1.32, 3.98), q value = 4.86 × 10−2) (Extended Data Fig. 8c). Although these results 

were consistent with previous reports of mental health conditions in European Jewish 

communities38–40, we emphasize that this association does not indicate a causal relationship 

between identity-by-descent cluster membership and these disorders.

We next examined associations in the African American and Mexican and Central American 

identity-by-descent clusters. This analysis revealed several associations in both outpatient 

(Fig. 4) and ER contexts (Extended Data Fig. 8d,e). Consistent with previous literature41, 

patients in the African American cluster were more likely diagnosed with sickle cell 

anemia (OR = 50.29, 95% CI: (29.08, 86.97), q value = 1.33 × 10−42) (Fig. 4b). We also 

identified a significant increase in uterine leiomyomas in the African American identity-by-

descent cluster (OR = 2.92, 95% CI: (2.4, 3.55), q value = 2.16 × 10−24), consistent with 

the increased burden of uterine fibroids in African American women and representing a 

substantial health disparity42. In the Mexican and Central American cluster, there was a 

strong enrichment of type 2 diabetes (OR = 2.37, 95% CI: (2.2, 2.56), q value = 3.27 × 

10−104) and chronic liver disease (OR = 5.52, 95% CI: (4.65, 6.56), q value = 3.47 × 10−81) 

(Fig. 4c).

To further characterize the disease risk of Latino patients, we examined how phecode 

associations differ among the three Mexican and Central American subclusters, the Afro-

Caribbean cluster and the Puerto Rican identity-by-descent cluster. In total, 106 phecodes 

showed effect size heterogeneity43 across these five clusters (Extended Data Fig. 6). For 

example, although phecodes relating to lung disease (that is, pulmonary fibrosis and lung 

transplants) were associated with identifying as Latino in the EHR, the association was 

most primarily driven by patients in the the Afro-Caribbean cluster. Even within the three 

Mexican and Central American subclusters, there was heterogeneity. The Guatemalan and 

Central American subcluster was the only subcluster associated with several pregnancy 

phecodes, including anemia during pregnancy (OR = 2.57, 95% CI: (0.94, 1.48), q value 

= 4.84 × 10−5) and short gestation period (OR = 5.04, 95% CI: (2.73, 5.95), q value = 

4.86 × 10−5). The Central Mexican subcluster was the only subcluster associated with the 

coccidioidomycosis fungal infection (OR = 3.98, 95% CI: (1.92, 3.71), q value = 3.86 

× 10−5). Overall, these differences offer further evidence that grouping patients only by 

Hispanic and Latino ethnicity is too coarse.
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We further examined disease associations in MENA and Asian clusters (Fig. 4d). We 

began with the Iranian (n = 315) and Iranian Jewish (n = 264) identity-by-descent clusters. 

These two clusters shared several associations in outpatient diagnoses. Individuals from 

both clusters were less likely to be diagnosed with skin cancer (Iranian Jewish: OR = 

0.1, 95% CI: (0.03, 0.28), q value = 3.09 × 10−3; Iranian: OR = 0.26, 95% CI: (0.13, 

0.51), q value = 4.07 × 10−2). However, the phecodes with the smallest P value for each 

cluster—non-toxic multi-nodular goiter in the Iranian cluster (OR = 2.58, 95% CI: (1.63, 

4.08), q value = 4.07 × 10−2) and adjustment disorder in the Iranian Jewish cluster (OR = 

2.89, 95% CI: (2.04, 4.09), q value = 2.31 × 10−6)—were not the same. Other associations 

included an enrichment of phecodes relating to bacterial enteritis in the Egyptian Christian 

identity-by-descent cluster (n = 92) (OR = 7.42, 95% CI: (3.56, 15.47), q value = 1.04 × 

10−4) and phecodes relating to bronchus cancer in the Korean identity-by-descent cluster (n 
= 546) (OR = 2.82, 95% CI: (1.84, 4.32), q value = 2.56 × 10−4).

We also observed an increased number of diagnoses relating to viral hepatitis B in identity-

by-descent clusters with Asian ancestry patients. Asian ancestry as a risk factor for viral 

hepatitis B is widely documented44. However, we noted that there were differences between 

the fine-scale Asian ancestry clusters. For example, individuals in the Chinese identity-by-

descent cluster (n = 1,547) (OR = 19.12, 95% CI: (14.92, 24.5), q value = 1.88 × 10−117) 

were more likely to receive a diagnosis of hepatitis B, whereas diagnoses of hepatitis B were 

not elevated in the Japanese cluster (n = 596) (OR = 1.15, 95% CI: (0.47, 2.8), q value = 

1.00 × 10−1). We performed a mixed-effects meta-regression using the ORs estimated for 

each Asian ancestry cluster43. The effect sizes significantly differed between the clusters for 

this phecode and others (Extended Data Fig. 9) (meta-regression P = 2.23 × 10−15), showing 

the value of fine-scale information.

To explore whether the associations reported here were specific to UCLA or could be 

generalizable to other settings, we used BioMe summary statistic data published in Belbin et 

al.10. For six BioMe identity-by-descent clusters found in ATLAS (Supplementary Table 3), 

the correlation of effect sizes was high: R2 = 0.69 (interquartile range (IQR) = (0.63, 0.84)) 

(Extended Data Fig. 10). Many associations in BioMe were found in ATLAS, including 

elevated rates of gout in the Filipino cluster (OR = 4.91, 95% CI: (3.77, 6.4), q value = 

2.24 × 10−29), chronic lymphocytic thyroiditis in the Ashkenazi Jewish cluster (OR = 1.51, 

95% CI: (1.3, 1.76), q value = 3.07 × 10−6) and peripheral vascular disease in the African 

American cluster (OR = 2.0, 95% CI: (1.58, 2.53), q value = 3.21 × 10–7) (Supplementary 

Table 4). Unlike BioMe, the ATLAS European cluster did not have an elevated rate of 

multiple sclerosis (OR = 1.2, 95% CI: (0.93, 1.54), q value = 3.55 × 10−1). Associations 

were calculated relative to a background population, and differences between ATLAS and 

BioMe might be driven by differences in comparator clusters, environment or the underlying 

fine-scale populations.

Although phecodes assigned to an identity-by-descent cluster can be relative to the entire 

biobank, we also explored enrichments between closely related clusters. Phecode association 

tests for the Armenian cluster were performed against four comparator clusters: against the 

entire biobank, against the European cluster, against the two Iranian clusters and against all 

MENA ancestry identity-by-descent clusters. We restricted to phecodes with more than 30 
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patients in all four groups and examined phecodes significant in all four comparisons (Fig. 

5a). Phecodes relating to heart disease were more likely to be associated with the Armenian 

cluster relative to all comparison groups. This result is consistent with previous reports 

of Armenian ancestry as a risk factor for cardiovascular disease45. Next, we examined 

whether there were phecodes associated with the Armenian identity-by-descent cluster 

that had significantly different effect sizes across the comparison groups (Fig. 5b). Seven 

phecodes had a nominally significant meta-regression P value (P < 0.05)—for example, 

non-toxic uninodular goiters. The Armenian cluster was more likely than the biobank and 

the European cluster to be associated with this phecode but less likely to be diagnosed 

with this phecode relative to the Iranian and MENA clusters. This example illustrates 

the importance of holistically evaluating cluster–disease associations, as they are likely 

determined by context and environment.

We next sought to evaluate how individuals in identity by descent interface with the health 

system. We found that many clusters were significantly less likely to visit a routine care 

provider than the European cluster. For example, individuals who belonged to the European 

cluster were significantly more likely to visit a primary care physician (OR = 1.33, 95% 

CI: (1.27, 1.4), q value = 7.19 × 10−29) than other biobank participants (Extended Data 

Fig. 9b). We observed differential utilization of the ER by clusters. Patients in the African 

American and the Mexican and Central American identity-by-descent clusters were more 

likely to visit the ER, which is a well-documented health inequity that is associated with 

worse outcomes46–48. However, we also identified other clusters that were more likely to 

visit the ER, including the Iranian Jewish (OR = 1.78, 95% CI: (1.41, 2.25), q value = 7.64 

× 10−6) and Armenian (OR = 2.34, 95% CI: (1.53, 3.57), q value = 3.98 × 10−2), which are 

identity-by-descent clusters both of primarily MENA ancestry. ER use for these populations 

is not widely documented.

We next examined how individuals from different identity-by-descent clusters interact with 

the health system over time, which can give insights into the dynamic nature of disease. We 

plotted two typical phecodes (Methods)—kidney transplants and major depressive disorder 

(Extended Data Fig. 9c,d)—for the six largest clusters. The proportion of patients assigned 

a phecode relating to kidney transplants significantly increased between 2016 and 2019 for 

the Filipino (P = 4.42 × 10−5), Mexican and Central American (P = 1.77 × 10−31) and 

African American (P = 5.30 × 10−7) identity-by-descent clusters but not in the Ashkenazi 

Jewish, European or Chinese clusters. Diagnoses generally increased but dropped sharply in 

2020, which might be attributed to the decrease in procedures performed during Coronavirus 

Disease 2019 (COVID-19) shelter-in-place orders.

Phecodes relating to mental health conditions (Extended Data Fig. 9d) were heterogeneous 

between clusters. The Ashkenazi Jewish identity-by-descent cluster had the highest 

proportion of patients diagnosed with major depressive disorder. By 2020, this cluster had 

five times as many diagnoses as the Chinese identity-by-descent cluster. This cluster had a 

consistently low proportion receiving the phecode, and, whereas most other clusters had an 

increasing number of diagnoses with time, the Chinese cluster had a slow or even decreasing 

proportion. For any of these diagnoses, it is not necessarily true that the rates of diagnosis 

indicate the actual prevalence of the health conditions in the cluster. Instead, these results 
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indicate the complex dynamics between how clusters interact with the health system, which 

could be a function of doctor choice, insurance coverage, practitioner perceptions or other 

forces.

Identity-by-descent clusters can facilitate the study of pathogenic alleles in diverse groups, 

which are often underrepresented in genetic screening efforts49. To do this, we examined the 

minor allele frequency (MAF) of pathogenic mutations that have been previously reported to 

be enriched within particular groups. One example is familial Mediterranean fever (FMF), 

which is caused by mutations in the MEFV gene50. We restricted to pathogenic MEFV 

single-nucleotide polymorphisms (SNPs) and performed a Fisher’s exact test comparing 

cluster allele frequencies to the rest of ATLAS. One pathogenic SNP genotyped in MEFV 

(rs28940579) was significant at FDR 5% in several MENA ancestry clusters. These included 

the Ashkenazi Jewish (MAF: 2.9 × 10−2, P = 2.6 × 10−159), Armenian (MAF: 4.2 × 10−2, P 
= 1.7 × 10−21) and Lebanese Christian (MAF: 3.7 × 10−2, P = 1 × 10−8) identity-by-descent 

clusters, which all had elevated frequencies compared to the remaining biobank excluding 

these clusters (biobank MAF: 9.55 × 10−4). Of all ATLAS clusters, diagnosis with FMF was 

strongly associated with membership in the Armenian cluster (OR = 17.36, 95% CI: (6.99, 

46.95), P = 1.0 × 10−8), consistent with literature finding of high FMF burden in individuals 

of Armenian descent51. However, the high carrier rate in other clusters motivates disease 

screening in other populations.

We also analyzed pathogenic variants in the HBB gene, which is implicated in thalassemia 

and sickle cell disease52. Sickle cell disease is known to be associated with African 

ancestry41, and, in the phecode analysis, it was significantly associated with membership in 

the African American identity-by-descent cluster. Consistent with that observation, we found 

a pathogenic HBB allele, rs34598529, that was significantly more common in this cluster 

(biobank MAF: 3.02 × 10−5 cluster MAF: 2.20 × 10−3, P = 1.52 × 10−9). Furthermore, we 

found two pathogenic alleles in HBB associated with membership in the Chinese identity-

by-descent cluster. Both alleles, rs34451549 (biobank MAF: 0.00, cluster MAF: 3.54 × 10−3, 

P = 1.12 × 10−13) and rs33931746 (biobank MAF: 1.15 × 10−5, cluster MAF: 1.18 × 10−3, 

P = 1.89 × 10−4), are documented to be associated with beta-thalassemia in East Asian 

populations53,54 and are at elevated frequencies in these populations in gnomAD, a large 

database of allele frequency data55. Furthermore, patients in this cluster were also more 

likely to receive diagnoses of hemoglobinopathies (OR = 2.81, 95% CI: (1.87, 4.21), P = 

3.93 × 10−5) than the remaining biobank participants. This result illustrates that patients 

of many different ancestry backgrounds could experience elevated genetic risk in the HBB 

gene.

Lastly, we broadly studied genetic risk variants associated with each identity-by-descent 

cluster and found over 100 loci that were at elevated frequencies in a specific cluster 

(Supplementary Data 1). Examples included elevated MAF of a pathogenic allele associated 

with transthyretin cardiac amyloidosis in the African American cluster (biobank MAF: 2.14 

× 10−4, cluster MAF: 1.78 × 10−2, P = 4.76 × 10−66) and an allele associated with Lynch 

syndrome in the Mexican and Central American cluster (biobank MAF: 0.0, cluster MAF: 

6.95 × 10−4, P = 5.59 × 10−7)56,57. We further identified several lesser-known associations. 

One finding was rs28937594, which was significantly higher in the Iranian Jewish identity-

Caggiano et al. Page 9

Nat Med. Author manuscript; available in PMC 2024 July 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



by-descent cluster (biobank MAF: 5.80 × 10−5 cluster MAF: 0.024, P = 5.58 × 10−28). 

rs28937594 is in the GNE gene and is implicated in hereditary inclusion body myopathy, 

an ultra-rare recessive disease58. Although no ATLAS participants were homogenous for the 

SNP or diagnosed with the disease, this SNP has been reported to be a founder mutation 

in Iranian Jewish populations59. Interestingly, in the Iranian identity-by-descent cluster, the 

MAF for this SNP was also high but not significant (cluster MAF: 0.0017, P = 0.1512). 

Overall, this supports the idea that identity-by-descent clusters can confirm and refine 

variants included in genetic screening programs60.

Genetics of identity-by-descent clusters

Identity-by-descent clusters also present opportunities for learning about historical or 

demographic factors, which can have implications for personalizing care or developing 

precision treatments61,62. First, we analyzed the distribution of total identity by descent 

shared between pairs of individuals in a cluster (Fig. 6a and Supplementary Table 5). 

The Iranian Jewish cluster had the highest level of total identity-by-descent sharing (mean 

= 57.43 cM, 95% CI: (56.80–58.06)). This is higher than other clusters that contained 

populations expected to have founder effects. The Iranian cluster also had relatively high 

identity-by-descent sharing (total pairwise identity-by-descent mean = 15.70 cM, 95% CI: 

(14.54–16.86)) but not as high as the Iranian Jewish cluster, highlighting the role of cultural 

factors.

Additionally, we examined cluster runs of homozygosity (ROH) (Fig. 6b), which occur 

when an individual inherits identical copies of a haplotype from each parent63. ROH can 

reflect the demographic processes, such as consanguinity, and are implicated in risk for 

complex diseases64,65 We found elevated amounts of ROH in several MENA clusters and 

South Asian ancestry clusters. The amount of within-cluster identity-by-descent sharing did 

not always correlate with the rate of ROH. This observation may be attributed to differences 

in the historical and modern demographic processes, such as the practice of endogamy or 

historical population bottlenecks.

We used the IBDNe program66 to estimate cluster-specific historical effective population 

size (Fig. 6c). Consistent with previous reports67, we observed a large bottleneck in the 

Puerto Rican cluster, with a minimum population size occurring around 15 generations ago. 

We also observed historic population size reduction in several other clusters, especially in 

MENA ancestry clusters. The bottleneck timing in these clusters is similar, approximately 

13–15 generations ago. Despite the similarity in the timing of the bottleneck, the estimates 

of the maximum population size differed. For example, the population size of the Iranian 

Jewish cluster was estimated to be less than 10,000 for the last 30 generations, which is very 

small, and could be relevant for understanding the genetic disease burden in this group.

Patterns of identity-by-descent sharing between clusters can further reveal modern and 

historical relationships. We first computed pairwise Hudson’s FST in the largest identity-

by-descent clusters (Fig. 6d), which revealed complex within-continent sharing patterns. 

Although there was low differentiation between the Iranian and Iranian Jewish clusters 

(FST = 0.0055), the Iranian cluster exhibited a smaller FST with the Armenian, Egyptian 
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Christian and Lebanese Christian clusters. It is important to note, however, that the FST

estimates used here do not capture the effect of rare variants68.

Lastly, we created a network representation of identity-by-descent sharing, where the 

nodes of the network were a cluster and the edges were the median identity by descent 

shared between clusters (Fig. 6e). From this representation, we observed that geography 

affected cluster relationships. For example, clusters with MENA ancestry were close in 

network space, with the Pakistani cluster acting as a bridge between them and the South 

Asian identity-by-descent clusters. We also observed some unexpected relationships. The 

Mexican and Central American cluster shared more identity by descent on average with the 

Ashkenazi Jewish cluster (mean = 0.243 cM, 95% CI: (0.243, 0.244)) than the European 

cluster (mean = 0.0372 cM, 95% CI: (0.0371, 0.0373)). A similar trend was observed for 

the Puerto Rican identity-by-descent cluster. Other reports found a contribution of Jewish 

ancestry to Latin American populations69.

Discussion

To ensure that precision medicine initiatives are applicable to all people, it is important 

to understand the diverse determinants of health. In this study, we analyzed clusters of 

people who share genetic ancestry. Identifying these fine-scale ancestry clusters is useful 

in the study of health disparities, especially with respect to the coarse race and ethnicity 

information usually recorded in biobanks. Although people who share ancestry may share 

genetic risk for disease, they may also share an environment, which is particularly important 

for understanding disease risk. Race, ethnicity and religion are social constructs and are 

not determined by genetics, although they may be correlated70–74. It is simultaneously true, 

however, that identity by race, ethnicity and religion can affect access to and quality of 

healthcare in the United States75. Thus, this approach provides a complementary lens for 

identifying potential health differences among people living in Los Angeles.

These findings can inform provision of care at UCLA Health and similar health systems. 

We identified pathogenic loci that segregated at higher frequencies in the Chinese, Iranian 

Jewish, Armenian and African American clusters. Historically, in the United States, carrier 

screening guidelines are based on self-reported race and ethnicity76,77. Many of the 

associations that we identified would be missed by these guidelines. Furthermore, allele 

frequency data are often available only for limited ancestry groups55, and pathogenicity 

or penetrance may differ across ancestries78. This work supports calls to expand genetic 

screening efforts to more people49,60 regardless of race or ethnicity. We make allele 

frequencies available for all clusters to facilitate studies on genetic disease in diverse groups.

These results occur within, and support the existence of, an unequal healthcare system. 

For example, the African American and Mexican and Central American clusters were both 

associated with severe diseases, such as chronic renal failure and liver transplants. This 

could be a consequence of the burden of systematic racism, which adversely affects the 

health of minority groups in America79, and reduced access to quality insurance, which 

affects care and varies by race and ethnicity. These results may be further compounded by 

the fact that the main UCLA Health facilities are in West Los Angeles, which includes some 
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of the wealthiest neighborhoods in Los Angeles County. Thus, clusters from economically 

disadvantaged households might be traveling further to access specialty care at UCLA and, 

thus, have greater health needs motivating the longer trip.

There are several limitations to this work. Although we used genetics to identify clusters, 

genetics is likely not the only causal factor for these results. The reported associations are 

strictly correlative and may be specific to UCLA Health. Additionally, defining a population 

or cluster is not straightforward22,80–85, and the definition of ancestry itself is subject to 

disagreement86. We followed previous studies and chose a genetic similarity criterion, but 

any number of criteria or algorithms could have been used. Additionally, the clusters are not 

necessarily equivalent. Some were tightly related in network space, whereas others had more 

diffuse patterns of connection. Although every participant in ATLAS is placed into a cluster, 

this approach may have limitations for individuals with multiple ancestries.

The individuals whose data comprise ATLAS are not representative of a random sample 

of the general Los Angeles population. The ATLAS biobank is opt-in, which means that 

an individual’s participation can be influenced by their level of comfort and trust with 

health research. Because medical research has a long history of unethical experimentation 

on people of color, these groups may be less willing to participate87. Another source of 

participation bias is that individuals who come to a hospital are usually unwell. The severity 

of ill health may vary with geographic distance from UCLA. Other socioeconomic factors, 

such as age, education and household income, are also associated with when and if patients 

receive diagnoses88–90. These differences may also be exacerbated by biases from health 

practitioners, which systematically affect care91.

Lastly, we focused on population-level analyses in this work. When translating results to 

individuals, the limitations of genetic ancestry must be considered. Genetic ancestry is 

continuous, and many individuals have multiple ancestries. Identity-by-descent clusters as 

a biomarker must be inclusive and tailored to individuals for clinical use92. Furthermore, 

access to genetic information will inevitably have intrinsic biases. Health systems will have 

to evaluate the impact of genomic medicine initiatives on the populations they serve60 as 

well as provide education to their patients and practitioners93. In particular, evidence-based 

recommendations on when to use ancestry, race and ethnicity tailored to specific diseases 

and treatment options are needed70.

Overall, we identified and characterized the health profiles of diverse Los Angeles identity-

by-descent clusters. This represents an advance toward equitable health research and, along 

with our website, can empower future studies on health outcomes in Los Angeles.

Methods

Ethics

Patient Recruitment and Sample Collection for Precision Health Activities at UCLA is an 

approved study by the UCLA Institutional Review Board (IRB17-001013). All necessary 

patient/participant consent was obtained, and the appropriate institutional forms have been 

archived.
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Patients and recruitment

The UCLA ATLAS Community Health Initiative aims to create a genomic resource to 

enable translational and precision medicine7. In ATLAS, genotyping data are tied to de-

identified EHRs as part of the UCLA Health IT Discovery Data Repository & Dashboard 

(DDR)94. UCLA primarily serves patients on the west side of Los Angeles but also has more 

than 200 clinics throughout the area, making it one of the largest health systems in Los 

Angeles.

Enrollment in ATLAS is elective, and patients enroll in ATLAS when they visit a UCLA 

site for a blood draw. ATLAS has a 65% opt-in rate (see Lajonchere et al.95 for more 

details on participation). As of 2021, there were approximately 35,968 participants with 

full genotyping and DDR data available7. No statistical method was used to pre-determine 

sample size. The experiments were not randomized, and the investigators were not blinded 

to allocation during experiments and outcome assessment. A complete description of the 

ATLAS project and data is available in Johnson et al.7.

EHR data

Each patient’s genotype data were tied to EHRs collected during patient visits on EPIC 

systems using a de-identified ID. Patient EHRs were pulled for 2016–2020 and included 

visit information, diagnosis information and demographics. For the normal outpatient data, 

we restricted to visits that were labeled as scheduled appointments and that did not have a 

code associated with an inpatient, intensive care unit or trauma stay. ER data were any visit 

that happened within an ER department. Diagnoses assigned in ERs were restricted to the 

primary reason for the visit. Each visit contained information on patient weight, height and 

BMI measured at the visit. We calculated the median BMI for a patient across all encounters 

and used this as the BMI for that patient in our association testing. The EHR was queried 

using Microsoft SQL Server 2014.

Demographic information

Demographic information was restricted to race/ethnicity, preferred religion, preferred 

language, sex and birth date. Sex was indicated as binary. To calculate patient age, we 

calculated the patient age at the time of each visit and took the maximum age overall 

for each patient. For EHR-reported race/ethnicity, patients were designated (by themselves 

or a healthcare staff member) as ‘White,’ ‘Black’, ‘Asian’, ‘Native American’ or ‘Pacific 

Islander’. Asian patients could be further designated as Chinese, Japanese, Korean, Thai, 

Filipino, Vietnamese, Taiwanese, Pakistani, Indian or Indonesian, although not all Asian 

patients had one of these identifiers. Hispanic/Latino patients were designated as ‘Hispanic’, 

which was further subdivided into several other sub-identifiers, such as ‘Spanish origin’, 

‘Chicano/a’ or ‘Cuban’. For visualization, we considered the main race/ethnic categories 

and not the sub-designations. There were numerous preferred languages and religions. For 

simplicity, we examined the languages that had more than five individuals who indicated 

that they preferred that language. Furthermore, the preferred religion was restricted to 

consider major religions: Christianity, Islam, Judaism, Hinduism, Sikhism and Buddhism. 

Christianity was further subdivided into Protestant and Catholic. Other religions were 

condensed into an ‘Other Religion’ category.

Caggiano et al. Page 13

Nat Med. Author manuscript; available in PMC 2024 July 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Diagnoses and phecodes

We used phecodes to study disease associations. Diagnoses are coded in the DDR as 

ICD-10 codes. For all encounters that occurred at UCLA between January 2016 (the start 

of the DDR) and January 2021, we found all unique diagnoses assigned to a patient in an 

outpatient setting, which included in-person doctor visits and video calls. In outpatient visits, 

we included all diagnoses given in a visit. For ER visits, we restricted to diagnoses given as 

the primary reason for the visit, which was coded by the diagnosing clinician (that is, if a 

person showed up to the ER for a heart attack who also had diabetes, the primary reason for 

the visit was the heart attack).

ICD-10 codes were then merged into phecodes using the mappings provided at Phecode 

Map 1.2 with the first five characters of an ICD-10 code (that is, if the ICD-10 code was 

V80.720S, only V80.720 would be used for mapping).

Alternative phenotype definitions were defined with ICD-10 codes or with using the 

procedure orders.

Specialties

Specialty utilization was determined by the specialty of the primary provider for a patient 

encounter. Providers with multiple specialties were counted only for their primary specialty. 

We grouped subspecialities into one specialty. For example, ‘Neurology, sleep medicine’ and 

‘Neurology, movement disorders’ were both counted as a visit to a neurologist.

Changes in phecodes over time

We calculated the proportion of a cluster assigned a phecode in a given year. We then 

calculated the inter-year difference in the proportion of people diagnosed in 2020 and 2016. 

Because we were interested in phecodes that might have different trajectories between 

clusters, we identified the phecodes that had the greatest variance in the inter-year difference 

between the six largest clusters.

Other phenotype definitions

We focused on definitions of phenotypes defined by phecodes because they have been 

shown to work well in the context of EHRs34. However, phecodes tend to be broad and 

are optimized for generalizability across health systems and for genetic association studies. 

Depending on the application, other phenotype definitions might be more relevant.

To explore this, we utilized two different phenotype definitions. One phenotype definition 

was a curated list of ICD codes relevant to Alzheimer’s and related dementias (see below) 

and that is used by physicians for defining clinical cohorts. The other phenotype was brain 

magnetic resonance imaging (MRI) orders. We performed a logistic regression to assess the 

relationship between cluster membership and ever having the phenotype, controlling for age, 

sex and BMI.
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Condition ICD-10 code

Alzheimer’s disease G30.9, G30, G30.1, G30.0, G30.8

Frontotemporal dementia G31, G31.0, G31.09, G31.01

Corticobasal degeneration G31.85

Lewy body dementia G31.83

Progressive supranuclear palsy G23.1

Mild cognitive impairment G31.84

Genomics pre-processing and quality control

Data.—Genotyping for ATLAS was performed on a custom genotyping chip, with sites 

from the global screening array. Data were mapped to hg38, and all SNPs were mapped 

to the 147 build of dbSNP96. All pre-processing and quality control steps were performed 

using PLINK 1.9 (ref. 97) and bcftools version 1.9 (ref. 98).

For ATLAS samples, we removed any individuals whose genotyped sex mismatched their 

EHR-reported sex. We did this by using the PLINK -update-sex command to update the 

PLINK fam files to contain the EHR sex and the PLINK -check-sex to identify samples with 

discrepancies between the estimated genotype sex and EHR sex.

ATLAS data were merged with genotyping data from the 1000 Genomes Project23, the 

Simons Genome Diversity Project 24 and the Human Genome Diversity Project25. All 

reference data were converted to hg38 for merging using CrossMap99. Samples that 

overlapped between the different projects were removed using PLINK -keep. Rsids were 

harmonized across projects using bcftools annotate. Data were then standardized using 

bcftools norm and a hg38 genome reference. After merging, sites or individuals with more 

than 1% missing were removed using PLINK -mind and -geno. For identity-by-descent 

analysis, only SNPs with MAF > 5% were kept.

Phasing.—Before identity-by-descent calling, data were statistically phased using 

SHAPEIT4 (ref. 100) using default parameters and the hg38 map files distributed with 

the software. To speed up computation, one chromosome was phased at a time.

PCA.—To prevent the large sample size of ATLAS from distorting the relationship 

populations in PC space, PCA was performed first on only the reference samples. ATLAS 

samples were then projected onto the reference PCs. To enable visualization, the reference 

data and the ATLAS sample PCA results were plotted separately on adjoining axes.

Identity-by-descent calling and processing

iLASH.—For identity-by-descent calling, the genotype data were converted from PLINK 

bed files into PLINK ped/map files using a custom Python script that preserves phasing. 

Centimorgan information for the map files was pulled from the same genetic maps used in 

SHAPEIT4.
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Identity-by-descent segments were called using iLASH26 with the following parameters: 

slice_size 350, step_size 350, perm_count 20, shingle_size 15, shingle_overlap 0, 

bucket_count 5, max_thread 20, match_threshold 0.99, interest_threshold 0.70, min_length 

2.9, auto_slice 1, slice_length 2.9, cm_overlap 1 and minhash_threshold 55. Identity by 

descent was called for one chromosome at a time.

Identity-by-descent quality control.—After identity-by-descent segments were called, 

we removed outliers as in Belbin et al.10. First, any identity-by-descent segments 

overlapping centromeres or telomeres were removed. Identity-by-descent tracts intersecting 

the human leukocyte antigen (HLA) region were also removed. To find other regions of the 

genome that may have erroneously high identity by descent, we calculated the total amount 

of identity by descent contained at each SNP in our input file by summing all segments that 

overlapped that SNP. SNPs that had total identity by descent greater or less than 3 standard 

deviations from the genome-wide mean were removed. In total, 6,696 SNPs were removed.

For downstream analysis, identity-by-descent segment lengths were summed between 

individuals, meaning that, for a given pair of individuals, all the identity-by-descent 

segments that they shared across all chromosomes were added together to create one 

summary number.

We removed pairs of individuals who were immediate family members using two methods. 

First, we used the PLINK 2.0 implementation of KING101 to identify relatives of third 

degree or closer, using the parameter of –king-cutoff with a value of 0.0884. KING was run 

on all SNPs with MAF > 0.05 and after linkage pruning, using PLINK and –indep-pairwise 

50 10 0.1. As KING may underestimate the relatedness of individuals, especially in the case 

of individuals with high levels of autozygosity26, we also filtered pairs based on the total 

amount of identity by descent shared. Using empirical data reported to DNA Painter102, we 

determined that a conservative threshold of second-degree relatedness was a threshold of 

1,000 cM. We removed any pairs with identity by descent higher than this threshold.

Sensitivity analyses.—To characterize the robustness of our results to the choice of 

phasing and identity-by-descent calling algorithms, we performed additional sensitivity 

analyses with different algorithm choices. Statistical phasing was performed with Eagle 

version 2.4.1 (ref. 103), and identity-by-descent calling was performed using hap-ibd104. 

As with iLASH, identity by descent was called for segments more than 3.0 cM long and 

on individuals who were unrelated (more than third-degree relatives). After calling all 

identity-by-descent segments across ATLAS and the reference data, we summed the total 

amount of identity by descent shared between a pair of individuals. We then calculated the 

Pearson’s correlation between the total identity by descent shared between a pair detected 

with SHAPEIT4 + iLASH and the total amount detected with Eagle + hap-ibd.

We further characterized the robustness of the clusters initially identified with iLASH. We 

re-performed Louvain clustering as we did previously, using three iterations of clustering 

and merging any clusters with FST < 0.001. To assess the consistency of the clustering, 

we randomly sampled 10,000 ATLAS pairs and asked if they were in the same cluster 

originally, if the pair was still in the same cluster with the new algorithm or vice versa.
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Cluster identification

Louvain clustering algorithm.—To infer clusters, we followed the approach of Dai 

et al.12 and used the Louvain method for cluster detection27. This method finds structure 

in large networks and has been shown to work well on genetic data12. We applied this 

algorithm to an undirected network constructed from identity-by-descent sharing, where 

each node represented an individual, and edge weights were defined as the genome-wide 

sum of identity-by-descent sharing between the nodes. An advantage of the Louvain 

algorithm is that it can be run iteratively, meaning that an initial run over the entirety of 

the graph can be used to define broad substructure, which can be further resolved into more 

fine-scale clusters upon subsequent iterations.

For cluster detection, we used the Python package NetworkX105. We created an undirected 

graph representation of the identity-by-descent matches, where each node was an individual, 

and an edge between individuals was weighted by the total amount of identity-by-descent 

matches shared between the two people.

Louvain clustering implemented in NetworkX was used iteratively to detect fine-scale 

populations. It was first run to detect a primary set of clusters. Each cluster was then subject 

to Louvain clustering again, and these subclusters were clustered once more, for a total of 

three runs of Louvain clustering.

After generating clusters with the Louvain algorithms, the clusters were merged using FST, 

as in Dai et al.12. We used the implementation of Hudson’s FST from PLINK 2.0. It was run 

on all pairs of clusters from the third level of the Louvain clustering, and clusters that had 

FST < 0.001 were merged. Because FST may perform poorly in small populations, clusters with 

fewer than 10 people were removed68. This threshold was selected because it gave good 

separation of clusters on a subcontinental level.

Cluster identity and demographics.—We primarily used external reference data to 

characterize what populations may be contributing to a cluster. Some clusters did not 

contain any reference data, or the reference data did not capture important aspects of the 

cluster. For example, there was no Ashkenazi Jewish reference data, only reference data 

labeled by European countries. To address this problem, we used the de-identified EHR 

demographic table as an additional source of information. This included EHR-reported race 

and ethnicity, preferred language and religion (Fig. 3d). We emphasize that race, ethnicity 

and religion are not determined by identity-by-descent segments but represent sociocultural 

characteristics that may be related to characterizing the cluster. We chose to use religion 

when it was relevant to identifying a historically persecuted group (that is, ‘Lebanese 

Christian’ instead of just ‘Lebanese’). These groups often have distinct histories and cultural 

practices, which can affect demography, environment and disease risk. For example, it is 

well known that Ashkenazi Jews have distinct genetic risks relative to other Europeans106. 

Thus, including religion in this study may offer opportunities to improve the health of 

understudied ethnoreligious groups.

Most ATLAS patients are not Latino, have no religious preference and indicated that they 

prefer to speak English. We, therefore, explored cluster identity using individuals who 
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preferred a different language or religion or were identified as Hispanic/Latino in the EHR 

(note that the actual number of English speakers may be lower, as some patients may not, for 

societal or practical reasons, have this information included in their medical records).

For downstream analysis, we focused on identity-by-descent clusters that had more than 40 

members to ensure a large enough sample size for our EHR and genetic analyses.

Additional summary statistic reference data were used to compute Hudson’s FST between 

ATLAS identity-by-descent clusters and external populations, including identity-by-descent 

clusters identified in the BioMe biobank. This enabled additional refinement, along with the 

use of EHR demographic information and cluster-level admixture analyses.

Latino subclusters.—We obtained an additional reference dataset that focused on fine-

scale indigenous populations of Mexico30. Notably, some of these indigenous groups also 

live in neighboring Guatemala, Belize, Honduras and El Salvador, which were all part of 

the historic Mesoamerica region that was broken up by Spanish colonization107. We created 

one combined dataset containing the indigenous population genomes and those of patients 

from the Mexican and Central American identity-by-descent cluster and performed an 

additional level of Louvain clustering. As above, we merged clusters with low differentiation 

(FST < 0.001). One set of four subclusters was merged for subsequent analyses and was 

referred to the Central American identity-by-descent cluster.

EHR demographic characteristics were explored for each subcluster. Phecode associations 

for each subcluster were also compared using the logistic regression model and 

heterogeneity in effect size was analyzed for the three largest subclusters along with the 

Puerto Rican and Afro-Caribbean clusters.

Genetic analyses

Identity-by-descent distribution.—To find the distribution of identity-by-descent in a 

cluster, we considered segments of individuals assigned to the same cluster. We summed the 

identity-by-descent segments to get the total identity by descent shared between the pair and 

calculated the distribution of total identity by descent between members of the cluster.

ROH distribution.—For ROH, we first performed linkage pruning and MAF filtering 

using PLINK and the parameters –maf 0.01–indep-pairwise 50 10 0.1. ROH calling was also 

performed using PLINK and the parameters -homozyg–homozyg-density 200–homozyg-

gap 500–homozyg-kb 3000–homozyg-snp 65–homozyg-window-het 0–homozyg-window-

missing 3–homozyg-window-snp 65. Detected ROH were summed within an individual. We 

then calculated the distribution of detected ROH of all individuals within a cluster.

IBDNe.—IBDNe was run using the identity-by-descent haplotypes estimated using iLASH. 

We filtered the iLASH output for each chromosome to individuals from a single cluster. 

The haplotypes were combined into one file for IBDNe input. IBDNe was run with default 

parameters and the hg38 genetic map provided on the IBDNe website.
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FST.—For the heat map of FST, we calculated the pairwise Hudson’s FST, as described in the 

‘Louvain clustering algorithm’ subsection.

We calculated FST between the largest final clusters (after Louvain clustering and merging). 

Data were visualized using Python Seaborn cluster map with default parameters.

Genetic relatedness network.—The network visualization between clusters was 

developed using NetworkX. The input was a matrix where each row and columns 

represented one of the largest clusters, and each entry was the mean identity by descent 

shared between the two clusters. To find this mean, we found all possible pairs of individuals 

between the two clusters. If the pair did not have any identity by descent detected, we 

set their sharing to 0 and then calculated the mean over all possible pairs. This was to 

prevent biasing the mean identity by descent by limiting it to only pairs that had identity by 

descent detected. This square matrix was then used to create a weighted undirected graph, 

where the nodes were the clusters and the edges were the mean identity by descent between 

the clusters. We visualized the graph using 1,000 iterations of the Fruchterman–Reingold 

force-directed algorithm108.

Statistical analysis and reproducibility

Association testing.—Statistical testing was done using the Python StatsModel109 

package. For each phecode, we determined whether an individual had ever been assigned 

that phecode in an outpatient context, making the outcome binary. Cluster status was 

binary and could be either a particular cluster versus all other biobank participants or a 

particular cluster compared against another cluster. We tested whether binary cluster status 

was associated with phecode assignment using the StatsModel GLM command with the 

family set to binomial. We corrected for sex, age and BMI in these analyses. Specifically, the 

command we used was:

GLM . from_formula(″phecode_status cluster_status+sex+age+bmi″,
family = sm . families . Binomial(), data = model_input) .

The same statistical framework was used to test for ER diagnoses and specialty visits, 

where, instead of phecode assignment, the outcome was whether an individual had visited a 

doctor with a given specialty reported in the EHR. In all cases, we restricted to specialties, 

diagnoses or zip codes with at least 30 visits.

An association was considered significant after controlling for FDR at 5% using the 

Benjamini–Hochberg procedure. Multiple test correction was performed across phecodes 

each time a regression analysis was performed—that is, for each cluster–background 

comparison.

Heterogeneity test.—To calculate whether there was a significant difference in the effect 

sizes between clusters for a given phecode, we performed a mixed-effects meta-regression 

test for heterogeneity, implemented in the R package metafor43. Specifically, we used the 
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function rma.uni. If we have an effect size estimate, βi, and its associated standard error, σi, 
for cluster i, the function would be:

rma . uni(yi = (β1, β2, …, βi), sei = (σ1, σ2, …σi))

Reproducibility.—To assess the reproducibility of the results presented in this work, we 

obtained published association statistics taken from the BioMe biobank at Mount Sinai10. 

For six related identity-by-descent clusters comprising similar populations in ATLAS and 

biobank (Supplementary Table 3), we computed ORs for phecodes tested in both biobanks. 

We compared the effect size of the estimates using a Pearson’s correlation.

Website.—The website hosting the data visualization is implemented as a single-page 

application110. The application was developed in the JavaScript framework React, where 

each graph page is implemented as a separate component. The map plot is powered by the 

deck.gl library developed by Mapbox, which provides maps for data overlays. The other 

graphs are powered by the react-plotly.js library developed by Plotly, which provides a React 

interface to create interactive plots. The application has no backend, as the data are relatively 

small, require no modification or manipulation per request and are not subject to any privacy 

concerns due to their approval for release. All the data are stored in static JSON files that 

the application directly references to generate data visualizations. The website code and 

underlying data are publicly available on GitHub with an MIT license, which will allow 

others to contribute to the application as well as use the code to build visualizations for their 

own organizations.

Data visualization.—Data analysis was done in Python 3.7 using Jupyter Notebooks. 

Visualization was done using Seaborn and Matplotlib.

Reporting summary

Further information on research design is available in the Nature Portfolio Reporting 

Summary linked to this article.
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Extended Data

Extended Data Fig. 1 |. Principal component analysis of ATLAS and reference data.
(a) PC1-PC4 of reference data and (b) ATLAS projected onto the reference data PC’s.
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Extended Data Fig. 2 |. ATLAS and Los Angeles demographics.
For patients who had recorded EHR demographic information, the proportion of ATLAS 

or the overall UCLA DDR patient population (a) recorded as each race, (b) recorded as 

Hispanic or Latino ethnicity, (c) and recorded as Male/Female or Other. (d) The distribution 

of patient age in ATLAS and the general UCLA patient population (where patients over 90 

years old are censored to 90 for privacy reasons).

Extended Data Fig. 3 |. Sensitivity and degree centrality of clusters.
(a) The relationship between identity-by-descent called with Shapeit4 + iLASH (x-axis) 

and Eagle + hap-ibd (y-axis). Each dot represents the total identity-by-descent sharing 

Caggiano et al. Page 22

Nat Med. Author manuscript; available in PMC 2024 July 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



between one pair of individuals. (b) The consistency between the Louvain clusters that were 

identified with the Shapeit4 + iLASH approach (‘original’) and Eagle + hap-ibd (‘new’) 

approaches. For 10,000 random pairs of individuals, we assessed whether the pair remained 

in the same cluster in the new approach, or vice-versa. (c) The proportion of participants 

in the ‘new’ clusters in each of the original clusters. (d) The degree centrality distribution 

(node degree divided by the max possible degree in the cluster) of selected clusters from the 

final round of Louvain clustering for a cluster where nearly every individual in the cluster 

is connected to every other member of the cluster. (e) is an example of a cluster where 

individuals share some connections, but on average are less connected to each other, and (f ) 
is an example where individuals are moderately connected to each other.

Extended Data Fig. 4 |. FST between clusters and external reference data.
(a) FST between one set of subclusters (subclusters UCLA_3_7_*) that made up the 

European cluster and samples from the UKBioBank who were born outside the United 

Kingdom, combined with a random sample of 100 individuals born in the United Kingdom. 

The second set of European subclusters (subclusters UCLA_3_8_*) are shown in (b). (c) 
FST between the Greater Middle East Variome111 populations and UCLA clusters with 

Middle Eastern or Central Asian ancestry and (d) FST between modern day Middle Eastern 

populations112 and UCLA clusters with Middle Eastern/Central Asian ancestry. (e) FST

between UKBB participants born in the Americas and subclusters that made up the Central/

South American cluster. (f ) FST between UKBioBank participants born in Africa or the 
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Americas and the three Black/African American clusters. For all plots, the country with 

the smallest FST to the ATLAS cluster is labeled. The ATLAS cluster name the subcluster 

belongs to is indicated in parentheses. The brighter the color, the smaller the FST value, 

suggesting less differentiation between the two groups.

Extended Data Fig. 5 |. Cluster admixture and principal component analysis.
(a) For the 24 largest clusters, the admixture proportions inferred with SCOPE with K = 

6 for 100 randomly selected individuals. If the cluster has less than 100 individuals, all 

individuals are shown. (b) The twenty-four largest clusters were colored on a PCA analysis 

where ATLAS biobank participants were projected onto principal components calculated 

over the reference individuals.
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Extended Data Fig. 6 |. Mexican/Central American Subclusters.
(a) The seven subclusters were visualized using a force-directed graph, where each dot 

represents one individual and the color of the dot indicates which cluster that individual 

belongs. (b) The number of Mexican indigenous reference samples in each subcluster, 

colored by primary geographic region. (c) Hudson’s FST between the clusters. (d) The 

proportion of each subcluster preferring to speak English or Spanish. (e) The proportion 

of each subcluster preferring a religion in the EHR, if any. (f ) The proportion of each 

subcluster identifying as each race in the EHR. (g) The proportion of each subcluster 

identifying as each ethnicity subcategory in the EHR. (h) The odds ratio of phecodes 

associated with membership in the Central American (n = 1998), Puerto Rican (n = 288), 

Afro-Caribbean (n = 39), Central Mexican (n = 2094) and Northern Mexican (n = 1115) 

identity-by-descent clusters. The dot represents the odds ratio and the error bar represents 

the standard error.
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Extended Data Fig. 7 |. Demographics of clusters.
For each of the largest identity-by-descent clusters, the (a) distribution of median patient 

BMI of participants in the cluster, (b) the distribution of max patient age of participants 

in the cluster, (c) the proportion of the cluster that is female based on EHR demographic 

records, and (d) the proportion of the cluster reported to be on private or public insurance. 

In the box plots, the center line of the box indicates the mean, the outer edges of the box 

indicate the upper and lower quartiles, and the whiskers indicate the maxima and minima of 

the distribution.
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Extended Data Fig. 8 |. Healthcare utilization in alternative contexts.
(a) The association between identity-by-descent cluster membership and a manually curated 

list of Alzheimer’s and dementia ICD codes and (b) the association between identity-by-

descent cluster membership and brain MRI imaging orders. The odds ratio of whether a 

given phecode assignment is associated with membership in the (c) Ashkenazi Jewish (n = 

5309) (d) African American (n = 1877) and (e) Mexican and Central American (n = 6075) 

identity-by-descent clusters versus the remaining biobank participants, in emergency room 

settings. Phecodes significant at FDR 5% are shown and if there are more than 30 significant 

associations, we plot only the top 40 with the largest absolute log odds ratio. (f ) The odds 

ratio of patients in a given identity-by-descent cluster visiting the emergency room relative 

to the remaining biobank participants, after controlling for age, sex, and BMI. In each plot, 

the dot represents the odds ratio and the bar represents the standard error.
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Extended Data Fig. 9 |. Fine-scale health utilization in ATLAS.
(a) For the Chinese (n = 1547), Japanese (n = 596), Filipino (n = 796), and Korean (n = 546) 

identity-by-descent clusters, phecodes that have significantly different odds ratios between 

the clusters. Error bars indicate the standard errors. (b) The odds ratio of the European 

identity-by-descent cluster visiting a particular specialty, assessed against all other biobank 

participants. Error bars represent the standard error. For 6 clusters, the proportion of that 

identity-by-descent cluster that visited the UCLA Health system each year in an outpatient 

setting receiving (c) kidney replaced by transplant, and (d) major depressive disorder.
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Extended Data Fig. 10 |. Replication of effect sizes.
For phecodes significant in ATLAS, the log odds ratio of ATLAS (x-axis) versus the log 

odds ratio of BioMe (y-axis) for six ATLAS clusters (European: n = 17017, Mexican & 

Central American: n = 6075, Ashkenazi Jewish: n = 5039, African American: n = 1877, 

Filipino: n = 796, and Puerto Rican: n = 288) that were enriched for similar populations in 

the two biobanks (indicated by title).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Data availability

Patient-level EHR and genotyping data are protected due to patient privacy and can 

be accessed by collaboration with a UCLA researcher. All summary statistic data 

discussed in this paper are freely available on https://www.ibd.la/. 1000 Genomes 

Project data can be accessed at https://www.internationalgenome.org/data. Human Genome 

Diversity Project data can be accessed at the following FTP server: ftp://ngs.sanger.ac.uk/

production/hgdp. Simons Genome Diversity Project data can be accessed at https://

sharehost.hms.harvard.edu/genetics/reich_lab/sgdp/vcf_variants/. The human reference 

genome version hg38 was downloaded from the UCSC Genome Browser: https://

hgdownload.soe.ucsc.edu/downloads.html. DbSNP version 147 was used in this study and 

was obtained from https://ftp.ncbi.nlm.nih.gov/snp/.
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Fig. 1 |. Definitions of key phrases.
For several frequently used words relating to ancestry and identity, we contextualize each 

word and provide a working definition.

Caggiano et al. Page 36

Nat Med. Author manuscript; available in PMC 2024 July 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 2 |. An overview of the fine-scale cluster detection approach.
A schematic of identity-by-descent calling and cluster annotation. a, We first inferred 

identity-by-descent segments for all biobank participants and reference samples. We then 

identified fine-scale clusters using Louvain clustering (b), and we explored patterns of 

enrichment for cluster-specific health utilization (c). d, Finally, we measured patterns of 

genetic relatedness both within and between clusters.
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Fig. 3 |. Genetic and demographic properties of clusters.
a, The mean admixture fractions for each of the identity-by-descent clusters. Each line 

corresponds to one ATLAS cluster. The components refer to genetic ancestry from the 

Middle East, East Asia, Europe, South or Central Asia, Africa and the Americas. The left 

column indicates the identity-by-decent cluster number, and the right column gives examples 

of names given to the largest clusters. b, The distribution of identity by descent within 

subclusters that were merged to make one European cluster (n = 17,017). The names on 

the left indicates the identity-by-descent cluster number, and the name on the right indicates 

relatedness from comparison with the UK BioBank. The center line of the box indicates the 

mean; the outer edges of the box indicate the upper and lower quartiles; and the whiskers 

indicate the maxima and minima of the distribution. c, The Hudson’s fixation index (FST) 

value between identity-by-descent clusters identified in BioMe at Mount Sinai and ATLAS 

identity-by-descent clusters demonstrates the relationship between ATLAS and populations 
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outside of UCLA Health. The darker the color, the smaller the FST value. The smallest 

FST value for each of the ATLAS clusters is indicated by a white dot. d, For each of the 

largest clusters (from top to bottom), the proportion of reference data by continent in each 

cluster, the proportion that indicated they prefer a specific religion, the proportion of EHR 

race/ethnicity category and the proportion of language preferred.
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Fig. 4 |. Phecode associations for selected clusters.
Phecodes associations for n = 1,131 identity-by-descent clusters relative to the remaining 

biobank participants. Results are shown for the Ashkenazi Jewish (n = 5,309) (a), African 

American (n = 1,877) (b) and Mexican and Central American (n = 6,075) (c) identity-by-

descent clusters. Phecodes are grouped by phenotypic category. Top significant (Benjamini–

Hochberg FDR at 5%) associations for each cluster are labeled. Bonferroni significance is 

indicated by a gray dotted line. d, ORs of association between identity-by-descent clusters 

and phecodes for the Telugu (n = 276), Korean (n = 546), Iranian (n = 350), Iranian Jewish 

(n = 264), Egyptian Christian (n = 92), European (n = 17,017) and Filipino (n = 796) 

clusters. Vertical bars indicate the standard error. Dots represent the OR, and a solid line 

indicates significance at FDR 5%. Open dots indicate a non-significant association.
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Fig. 5 |. Phecodes associated with the Armenian identity-by-descent cluster.
For each phecode, the OR that membership in the Armenian cluster (n = 491) was associated 

with that phecode compared to the rest of the biobank, the European cluster (n = 17,017), 

the Iranian and Iranian Jewish clusters (n = 614) and MENA ancestry clusters (n = 960). 

In a, phecodes that are FDR significant at 5% (where logistic regression q < 0.05) in all 

comparison groups and had the same direction of effect (‘homogenous effect’) are shown. In 

b, phecodes that have a ‘heterogeneous effect’ (mixed-effects meta-regression test where P 
< 0.05) are shown. Phecodes of the same color are from the same phecode category. In each 

plot, the dot represents the OR, and the lines represent the standard error. NOS, nitric oxide 

synthases.
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Fig. 6 |. The genetic properties of the largest identity-by-descent clusters.
The distribution of total pairwise identity by descent (cM) (a) and total amount of ROH 

detected shared among individuals of a given cluster (b). The center line of the box indicates 

the mean; the outer edges of the box indicate the upper and lower quartiles; and the 

whiskers indicate the maxima and minima of the distribution. c, IBDNe estimates of historic 

population size (Ne) for nine selected clusters, where the line is the mean estimate of the 

population size for each generation from present, and the shaded region indicates the 95% 

CI of the estimate. Dips in the population size can suggest founder effects. d, Pairwise 

Hudson’s FST estimates between UCLA ATLAS identity-by-descent clusters, where the 

darker color indicates lower FST, suggesting less differentiation between the pair of clusters. 

e, A network diagram of identity-by-descent sharing between clusters, where each node is 

a cluster and each edge is weighted by the amount of identity by descent shared between 

the clusters. The graph was visualized using 1,000 iterations of the Fruchterman–Reingold 
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algorithm. For clarity, the three edges with the largest amount of identity by descent shared 

per cluster are displayed.

Caggiano et al. Page 43

Nat Med. Author manuscript; available in PMC 2024 July 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	Results
	ATLAS Community Health Initiative
	Identifying fine-scale identity-by-descent clusters
	Health system utilization of identity-by-descent clusters
	Genetics of identity-by-descent clusters

	Discussion
	Methods
	Ethics
	Patients and recruitment
	EHR data
	Demographic information
	Diagnoses and phecodes
	Specialties
	Changes in phecodes over time
	Other phenotype definitions

	Table T1
	Genomics pre-processing and quality control
	Data.
	Phasing.
	PCA.

	Identity-by-descent calling and processing
	iLASH.
	Identity-by-descent quality control.
	Sensitivity analyses.

	Cluster identification
	Louvain clustering algorithm.
	Cluster identity and demographics.
	Latino subclusters.

	Genetic analyses
	Identity-by-descent distribution.
	ROH distribution.
	IBDNe.
	FST.
	Genetic relatedness network.

	Statistical analysis and reproducibility
	Association testing.
	Heterogeneity test.
	Reproducibility.
	Website.
	Data visualization.

	Reporting summary

	Extended Data
	Extended Data Fig. 1 |
	Extended Data Fig. 2 |
	Extended Data Fig. 3 |
	Extended Data Fig. 4 |
	Extended Data Fig. 5 |
	Extended Data Fig. 6 |
	Extended Data Fig. 7 |
	Extended Data Fig. 8 |
	Extended Data Fig. 9 |
	Extended Data Fig. 10 |
	References
	Fig. 1 |
	Fig. 2 |
	Fig. 3 |
	Fig. 4 |
	Fig. 5 |
	Fig. 6 |



