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ABSTRACT OF THE DISSERTATION

Enabling Customized Computing in Datacenters:

from Accelerator Design to System Integration

by

Peng Wei

Doctor of Philosophy in Computer Science

University of California, Los Angeles, 2018

Professor Jason Cong, Chair

CPU-FPGA heterogeneous architectures are attracting ever-increasing attention in

an attempt to advance computational capabilities and energy efficiency in today’s

datacenters. Such architectures provide programmers with the ability to reprogram

the FPGAs for flexible acceleration of many workloads. However, this advantage

is often overshadowed by two critical issues: 1) the poor programmability of FP-

GAs and 2) the severe overhead of CPU-FPGA integration. For one thing, the

conventional RTL-based FPGA design practice significantly slows down the appli-

cation development cycle. Although recent advances in high-level synthesis (HLS)

have improved the FPGA programmability to some extent, it still leaves program-

mers facing the challenge of manually identifying the optimal design configuration

in a tremendous design space. This challenge thus demands intimate knowledge of

hardware intricacies to address and a great deal of effort even for hardware experts.

For another, even with a high-quality FPGA accelerator that achieves an orders-

of-magnitude performance/watt gain for a computation kernel, such an impressive
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gain can often be dramatically offset by the extra CPU-FPGA data communication

overhead, resulting in a much reduced system-wide speedup, or even slowdown.

This thesis aims to address these two issues so as to facilitate the adoption of FP-

GAs in datacenters. To improve the FPGA programmability, we propose a method-

ology that automates the heavy code reconstruction from software programs towards

behavioral descriptions of high-quality FPGA designs, through well-defined architec-

ture templates. Specifically, we propose the composable, parallel and pipeline (CPP)

microarchitecture as an accelerator design template. This well-defined architecture

template derives high-quality accelerator designs for a broad class of computation

kernels, and substantially reduce the overall design space. Also, it enables the intro-

duction of the CPP analytical model that quantifies the performance-resource trade-

offs among different configurations of the CPP template. This in turn leads to fast

design space exploration to identify the optimal CPP configuration in a reasonable

time. On top of the architecture template and its analytical model, we develop the

AutoAccel framework to automatically transform an input computation kernel pro-

gram into the optimal CPP-based design for it. For general application developers,

AutoAccel supplies a nearly push-button experience to produce an FPGA accelera-

tor with good performance; for FPGA design experts, it greatly reduces the effort

of manual design space exploration and code reconstruction; it thus substantially

improves the FPGA programmability in both cases.

To come up with an efficient CPU-FPGA integration methodology, we first con-

duct a quantitative analysis on the microarchitectures of state-of-the-art CPU-FPGA

platforms, with a key focus on the effective latency and bandwidth of the CPU-FPGA

data communication. The analysis results reveal three important factors that affect

the efficiency of CPU-FPGA integration: 1) payload size of every data transfer, 2)
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the complicated, multi-stage CPU-FPGA data transfer routine, and 3) sharing of

the FPGA resource among CPU threads. We then propose three techniques: batch

processing, fully-pipelined data communication stack and FPGA-as-a-Service (FaaS)

framework, for these three factors, respectively. Batch processing packs small inputs

into a large payload; the fully-pipelined stack overlaps various data transfer stages

and the compute stage; both improves the data processing throughput. The FaaS

framework treats the CPU threads as clients, and the FPGA as the server, and

shares the server among the clients via the canonical client-server paradigm. These

three techniques form our proposed methodology for efficient CPU-FPGA integra-

tion, which is demonstrated through the JVM-FPGA integration process for the

genome sequencing application.
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CHAPTER 1

Introduction

Due to power and energy constraints, conventional general-purpose processors are

no longer able to sustain the performance and energy improvement in commercial

datacenters. To overcome the inefficiency of homogeneous multicore systems, het-

erogeneous architectures that feature specialized hardware accelerators have been

widely considered to be a promising paradigm [CSR11]. In particular, field pro-

grammable gate arrays (FPGAs), which offer the potential of orders-of-magnitude

performance/watt gains for a broad class of applications while retaining reconfig-

urability, attract increasing attention as a mainstream acceleration technology. For

example, both Microsoft and Baidu have incorporated FPGA-based accelerators in

their datacenters to accelerate large-scale production workloads such as search en-

gines [PCC14, CCP16] and neural networks [OLQ14, ORK15]. Amazon also intro-

duced the F1 instance [amab], a compute instance equipped with one or more FPGA

boards, in its Elastic Compute Cloud (EC2) [amaa]. Moreover, with the $16.7 billion

acquisition of Altera, Intel recently announced the Xeon+FPGA Accelerator Plat-

form [harb], which provides an FPGA and a Xeon processor in a single semiconductor

package. Predictions have been made that as much as 30% of datacenter servers will

have FPGAs by 2020 [hara]. This suggests that FPGAs could become a common

component in future servers and play an important role as primary computing re-
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sources [NSS16].

However, a major issue against the adoption of FPGAs in datacenters is the no-

toriously poor FPGA programmability. FPGA programming is generally recognized

as an RTL (register-transfer level) design practice, which requires notable hardware

expertise in designing accelerator microarchitectures such as controls, data paths,

and finite state machines [Bri12]. This makes the effort of FPGA programming

prohibitive to most datacenter application developers. It is even more challenging

when the mainstream algorithm in an application domain is constantly evolving; i.e.,

an algorithm may have already been obsolete during the development process of its

hardware accelerator.

Decades of research have focused on improving FPGA programmability. High-

level synthesis (HLS) [CLN11] that allows hardware designs to be described in high-

level programming languages like C/C++ is recognized as an encouraging approach.

Such C/C++ code for hardware designs is generally called the hardware behavioral

description. Apparently, this high-level description, compared to its RTL counter-

part, is much like the general software program. In fact, many C/C++ programs,

without any modification on themselves at all, are already valid hardware behavioral

descriptions, and can be compiled by state-of-the-art HLS tools like Xilinx SDAc-

cel [sda] into working FPGA circuits. However, a high-quality software program is

generally far away from a high-quality hardware behavioral description due to the

lack of proper consideration regarding the underlying FPGA architecture. Our ex-

periments show that a software program, if naively treated as a hardware behavioral

description, almost always leads to an FPGA accelerator that performs orders-of-

magnitude worse than running the program on a modern CPU (see Section 3). This

is because HLS still leaves programmers facing the challenge of manually identifying
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the optimal design configuration among a tremendous number of choices, and heav-

ily reconstructing the software code to realize the identified optimal configuration.

Addressing this challenge demands intimate knowledge of hardware intricacies, and

a great deal of effort even for hardware experts. Consequently, HLS still presents a

significant gap between a software program and a high-quality hardware behavioral

description, which emerges as a serious impediment against the acceptance of FPGAs

by datacenter application developers.

Another critical issue against the adoption of FPGAs in datacenters is the se-

vere overhead incurred by integrating FPGA accelerators into the conventional CPU

system. Although standalone FPGA accelerators promise orders-of-magnitude per-

formance/watt gains for a variety of computation kernels, the benefit is often con-

siderably offset by the extra CPU-FPGA data communication overhead. This in

turn results in greatly reduced system-wide speedup, or even slowdown [CCF16a,

HWY16, PHA17]. For example, our study on the acceleration for the genome se-

quencing application reveals that although the FPGA accelerator achieves over 100×

speedup for the Smith-Waterman computation kernel, a straightforward integration

of the accelerator into the software program is going to cause an 1000× slowdown of

the entire system [CCF16a]. As a consequence, an efficient CPU-FPGA integration

methodology, which is able to truly fulfill the significant gains of FPGA accelerators

on computation kernels, is eagerly needed.

This dissertation is devoted to addressing the aforementioned two issues and

facilitating the adoption of FPGAs in datacenters. The first objective is to im-

prove the FPGA programmability by paving the path from a software program to

a high-quality hardware behavioral description that 1) is functionally equivalent to

the software program, and 2) leads to a high-performance FPGA accelerator. To

3



meet this objective, we first conduct an analysis study to demystify the gap between

software programs and hardware behavioral descriptions. Specifically, we start from

a collection of benchmarks from MachSuite [RAS14] that consists of the software

implementations of a broad class of computation kernels, feed these implementa-

tions without any code reconstruction into the Xilinx SDAccel tool to generate their

corresponding hardware designs, and analyze the sources of microarchitectural ineffi-

ciency in these automatically generated designs. This study reveals three important

insights: 1) software programs, which are designed to run on the CPU systems,

poorly fit into the FPGA architectures; 2) the accelerators synthesized directly from

software programs are trapped into a series of common sources of inefficiency; 3)

these sources of inefficiency are able to be substantially resolved by following a best-

effort code reconstruction practice of five refinement iterations. These five refinement

iterations continuously improve the architecture of the generated accelerators, and

finally achieve an 42∼29,030× speedup.

Inspired by these insights, we propose our automated accelerator generation

methodology to automatically transform software programs into high-quality hard-

ware behavioral descriptions. Specifically, we derive from the best-effort code recon-

struction practice an accelerator design template, called the composable, parallel,

pipeline (CPP) microarchitecture, which provides a clear direction for the transfor-

mation. Such a clear direction significantly reduces the design space from “anything

possible” to only the scope of CPP. Moreover, the well-defined CPP microarchitecture

makes it possible to analytically quantify the performance-resource trade-offs among

different design choices. We derive the CPP analytical model to achieve the analytical

quantification, which in turn enables fast, analytical-based design space exploration

to find the optimal CPP configuration in a reasonable time. Finally, we develop
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the AutoAccel framework to automate the entire code transformation process. Our

experiments show that AutoAccel-generated accelerators drastically outperform the

naive implementations by 27,000×, indicating that our proposed methodology has

strongly addressed the gap from software programs towards hardware behavioral

descriptions. Meanwhile, the AutoAccel-generated accelerators also outperform the

software implementations by 72×, indicating that our approach does lead to high-

quality accelerator designs. For general datacenter application developers who may

not want to be involved much in FPGA accelerator design, AutoAccel provides a

nearly push-button experience to come up with a good design; for hardware experts

who is willing to exert customized code reconstruction for better performance, Au-

toAccel also allows them to feed in the reconstructed code as input, and saves the

manual effort in subsequent design space exploration and code transformation. In

both cases, the FPGA programmability is substantially improved.

The dissertation then presents our research studies for addressing the second is-

sue: the severe overhead incurred by the CPU-FPGA integration. In particular, we

focus on the JVM-FPGA integration process since many state-of-the-art datacen-

ter programming frameworks, e.g., Apache Hadoop [Whi12] and Spark [ZCD12], are

based on the Java Virtual Machine (JVM) [LYB14]. We start from a case study

in which we attempt to integrate an FPGA accelerator for the Smith-Waterman

computation kernel [CCL15a] into CS-BWAMEM [CCL15b], a distributed genome

sequencing software program that is based on the Apache Spark framework. The

integration study reveals a rather surprising phenomenon that the system-wide per-

formance is degraded by 1000× if we straightforwardly integrate the accelerator

with the Spark program (see Section 5.1). Our quantitative analysis reveals that

even though the accelerator outperforms its software counterpart by over 100×, it
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demands an extra JVM-FPGA data transfer routine to send (receive) data to (from)

the FPGA, which consumes 1000× more time than that of executing the kernel code

on CPU. Therefore, the JVM-FPGA data communication overhead is the key factor

to be blamed.

To acquire a better understanding of the CPU-FPGA data communication, we

conduct a quantitative analysis on the microarchitectures of five state-of-the-art

CPU-FPGA platforms, including the Alpha Data board [Xil17], Amazon EC2 F1

instance [amab], IBM CAPI [SBJ15], Intel Xeon+FPGA v1 and v2 [harb], with a

key focus on their CPU-FPGA communication processes. The analysis results lead

to a series of valuable insights for both datacenter application developers to choose

the right platform and platform designers to evolve their platforms, and, moreover,

suggest three key factors that affect the efficiency of the integration: 1) the pay-

load size of each data communication transaction; 2) the complicated, multi-stage

communication routine; 3) the sharing of the FPGA resource among multiple CPU

threads. Inspired by these findings, we propose our integration methodology that

contains three techniques for these three factors, respectively. First, we propose

batch processing, which combines the input data of multiple transactions into one

batch to send to the communication channel, to improve the payload size. Also,

we propose a fully-pipelined JVM-FPGA data communication stack, which overlaps

multiple data transfer stages and the compute stage, to improve the data processing

throughput. Finally, we propose the FPGA-as-a-Service (FaaS) framework, which

treats the CPU threads as clients and the FPGA accelerator as the server, and share

the FPGA among the CPU threads via the canonical client-server framework, to

achieve efficient resource sharing. By applying the proposed methodology back to

the genome sequencing application, we not only eliminate the 1000× slowdown, but
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achieve a 3.5× system-wide performance improvement. This demonstrates the ef-

fect of our proposed CPU-FPGA integration methodology in alleviating the data

communication overhead.

The remainder of this dissertation is organized as follows. Chapter 2 presents the

background and related work, including recent advances of the HLS technology, state-

of-the-art CPU-FPGA platforms, the MachSuite benchmark suite and the genome

sequencing workload that are used for experimentation, and summaries of previous

studies on the improvement for FPGA programmability and CPU-FPGA integration.

Chapter 3 presents our best-effort code reconstruction practice to address the gap be-

tween software programs and hardware behavioral descriptions. Chapter 4 presents

our CPP microarchitecture that is derived from the best-effort practice, its analyti-

cal model, and the AutoAccel framework. Chapter 5 presents our methodology for

efficient CPU-FPGA integration, including our case study for the genome sequencing

acceleration, the quantitative microarchitectural analysis regarding state-of-the-art

CPU-FPGA platforms, and the three techniques that we propose to alleviate the

data communication overhead. Chapter 6 concludes the dissertation and presents

future research directions.
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CHAPTER 2

Background and Related Work

This chapter presents the background information and related work for this disserta-

tion. We first introduce recent advances of the high-level synthesis (HLS) technology,

with a key focus on to what extent HLS improves the FPGA programmability and

what problems HLS still leaves that prevent the programmability from being further

enhanced (Section 2.1). Next, we categorize state-of-the-art CPU-FPGA platforms

and summarize the microarchitectural features of each category (Section 2.2). We

then describe our experimental workloads: the MachSuite benchmark suite and the

genome sequencing workload (Section 2.3). Finally, we summarize the related work

to this dissertation, including the previous studies on HLS enhancement, genome

sequencing acceleration via distributed computing and hardware accelerators, and

data communication optimization (Section 2.4).

2.1 The High-Level Synthesis Technology

A field-programmable gate array (FPGA) [BFR12] is an integrated circuit that con-

tains an array of reprogrammable logic and memory blocks: lookup tables (LUTs),

flip-flops (FFs), digital signal processing slices (DSPs) and block RAMs (BRAMs).

Connected through a hierarchy of reconfigurable interconnects, these blocks can be
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customized into different circuits to solve various computation problems. Such hard-

ware customizability allows FPGA circuits to avoid the significant overhead of the

general-purpose microprocessors, resulting in orders-of-magnitude performance/watt

gains for a broad class of computation kernels.

The notoriously poor programmability of FPGAs, however, emerges as a serious

impediment against their acceptance by datacenter application developers. Con-

ventionally, FPGA designers use register-transfer level (RTL) description languages,

e.g., Verilog HDL (hardware description language) [TM08], to perform accelerator

development for target computation kernels. Such a RTL programming practice has

already made FPGA design unwelcome to most datacenter application developers

who were mainly trained as software engineers. Besides, compared to simply writing

a software program to implement a computation kernel, the RTL design demands a

much longer development time even for hardware experts, and thus inevitably ex-

tends the time to market. Since many datacenter applications are constantly evolv-

ing, an old computation kernel may have already been obsolete before its accelerator

is ready to use.

To address this issue, FPGA researchers and vendors start to resort to the HLS

technology [CLN11] which uses software programming languages like C/C++ to de-

scribe hardware designs and relies on the HLS tools to transform the software-like

design descriptions into the RTL descriptions. In fact, commercial HLS tools such as

Xilinx SDAccel [sda] and Intel FPGA SDK for OpenCL [int] have been widely used to

fast prototype user-defined functionalities expressed in high-level languages on FP-

GAs without involving RTL descriptions. The example design flow used by common

commercial HLS tools is shown in Fig. 2.1. First, a user input program is compiled

to the LLVM Intermediate Representation (IR) [llv07], along with the construction
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of its control data flow graph (CDFG). Then, the IR-to-HDL code transformation

is performed to map the IR to an RTL design with scheduling optimization. This

completes the HLS process that maps the behavioral description of a design to its

RTL description. Subsequently, the conventional FPGA design automation flow is

launched to generate the design’s bitstream file that contains the configuration data

for FPGA’s logic and RAM blocks.

Host Code (C/C++ & OpenCL)
Kernel Code (C/C++/OpenCL)

Host Compiler
Frontend Compiler High-Level Synthesis(Scheduling Optimization)

Placement & RoutingLLVM IR RTL FPGA bitstream

Host binary

Figure 2.1: Commercial HLS Tool Design Flow

Commercial HLS tools usually have for users a set of language extensions, such

as C pragmas, that provide the guidances of memory organization and task schedul-

ing to complement the missing information of static analysis while optimizing the

design. The language extensions are specified by the user at the source code level,

but the core HLS code transformation and optimization happens at the intermediate

representation (IR) level, indicating that the effectiveness of user guidances highly

depends on its IR structure and front-end compiler. It implies that two programs

with the same functionality but different coding styles (leading to different IR struc-

tures) might result in a significant performance difference. In fact, this difference

can be up to several orders of magnitude based on our experiences (see Chapter 3).

As a consequence, programmers have to pay attention to every detail that may af-

fect the generated IR structure, which often demands a profound understanding of

the FPGA architecture and circuit design. This easily leads to an impression that

software programs and hardware behavioral descriptions, though looking quite alike,
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are completely different, and the gap between them is still prohibitively large.

There has been existing effort that attempts to shorten this gap. The Merlin

compiler [mer, CHP16a, CHP16b] is one representative example. The Merlin com-

piler is a source-to-source code transformation tool that brings FPGA programming

to an even higher level than HLS. Specifically, it provides a transformation library

that contains a series of code transformation primitives, each of which is associated

with a predefined C pragma that abstracts a commonly used code reconstruction

strategy, as listed in Table 2.1. As long as the developer inserts a pragma to the

right place, the Merlin compiler will apply the corresponding transformation to re-

construct the computation kernel code automatically. As a result, HLS designers who

harness the power of Merlin pragmas can save a great deal of labor effort in manually

reconstructing their code to implement these primitives everywhere needed.

Table 2.1: Merlin Compiler Code Transformations

Transformation Target Parameters Description

Data tiling
Loop tilesize=S

Tile the loop and create on-chip

buffers to cache the data with size S.

Example: #pragma Accel data tiling tilesize=16

Memory

Coalescing

Buffer bitwidth=b Pack DRAM buffer to b bits.

Example: #pragma Accel bitwidth variable=buf factor=512

Pipeline
Loop N/A

Create a coarse- or fine-grained

pipeline (dataflow).

Example: #pragma Accel pipeline

Parallelism
Loop factor=N

Tile the loop and create N

processing elements (PEs).

Example: #pragma Accel parallel factor=4
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Based on the transformation library, Fig. 2.2 presents the Merlin compiler exe-

cution flow. It leverages the ROSE compiler infrastructure [ros00] and polyhedral

framework [ZLC13] for abstract syntax tree (AST) analysis and transformation. The

front-end stage analyzes the user program and separates host and computation ker-

nel. The kernel code transformation stage then applies multiple code transformations

according to user-specified pragmas. Note that the Merlin compiler will perform all

necessary code reconstructions to make a transformation effective. For example,

when performing loop unrolling, the Merlin compiler not only unrolls a loop but

also conducts memory partitioning for the sake of avoiding bank conflict [CJL11].

Finally, the back-end stage takes the transformed kernel and uses the HLS tool to

generate the FPGA bitstream.

Merlin compiler componentsInput/Output files

User C/C++ program

Program Modeling Kernel Code Transformation Commercial Design Flow

FPGA bitstreamHost binary

Host Code in C/C++/OpenCL

Program Analysis Interface Generation

Existing components

Kernel Code in C/C++/OpenCL

Transformation library

Frontend Backend

Figure 2.2: The Merlin Compiler Execution Flow

Compared to the standard HLS solution, the Merlin compiler further improves the

FPGA programmability by making design optimization “semiautomatic”: instead

of manually reconstructing the code to make one optimization operation effective,

programmers now can simply place a pragma and let the Merlin compiler do the

necessary changes. However, it still relies on programmers to determine the optimal

combination and parameters of the transformation operations, and thus does not
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substantially relieve the burden. In this dissertation, we leverage its transformation

library to agilely implement our proposed AutoAccel framework (see Chapter 4).

2.2 CPU-FPGA Platforms for Datacenters

A high-performance interconnect between host processor and FPGA is crucial to the

overall performance of CPU-FPGA platforms. In this section, we first summarize

existing CPU-FPGA architectures with typical PCIe and QPI interconnect. Then

we present the private and shared memory models of different platforms.

Typical PCIe-based CPU-FPGA platforms feature Direct Memory Access (DMA)

and private device DRAM (Fig. 2.3(a)). To interface with the device DRAM as well

as the host-side CPU-attached memory, a memory controller IP and a PCIe end-

point with a DMA IP are required to be implemented on the FPGA, in addition

to user-defined accelerator function units (AFUs). Fortunately, vendors have pro-

vided hard IP solutions to enable efficient data copy and faster development cycles.

For example, Xilinx releases device support for the Alpha Data card [Xil17] in the

SDAccel development environment [sda]. As a consequence, users can focus on de-

signing application-related AFUs and easily swap them into the device support to

build customized CPU-FPGA acceleration platforms.

IBM integrates Coherent Accelerator Processor Interface (CAPI) [SBJ15] into

its Power8 and future systems, which provides virtual addressing, cache coherence

and virtualization for PCIe-based accelerators (Fig. 2.3(b)). A coherent accelerator

processor proxy (CAPP) unit is introduced to the processor to maintain coherence

for the off-chip accelerator. Specifically, it maintains the directory of all cache blocks

of the accelerator, and is responsible for snooping the CPU bus for cache block
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(a) Conventional PCIe-based platforms (e.g.,

Alpha Data board and F1 instance)

Host DRAM Device DRAM

PSL

Cores

CAPP

FPGA

Memory 
Controller

PCIe
AFU

Power 8

LLC

(b) PCIe-based CAPI platform

Host DRAM

SPLCores LLC

Xeon FPGA

QPI
AFU

(c) QPI-based Xeon+FPGA v1

Host DRAM

FIUCores LLC

Xeon FPGA

QPI

AFUPCIe

PCIe

(d) Xeon+FPGA v2 with 1 QPI and 2 PCIe

channels

Figure 2.3: A tale of five CPU-FPGA platforms

status and data on behalf of the accelerator. On the FPGA side, IBM also supplies

a power service layer (PSL) unit alongside the user AFU. The PSL handles address

translation and coherency functions while sending and receiving traffic as native

PCIe-DMA packets. With the ability of accessing coherent shared memory of the

host core, device DRAM and memory controller become optional for users.

Intel Xeon+FPGA v1 [harb] brings the FPGA one step closer to the processor

via QPI where an accelerator hardware module (AHM) occupies the other processor

socket in a 2-socket motherboard. By using QPI interconnect, data coherency is
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maintained between the last-level cache (LLC) in the processor and the FPGA cache.

As shown in Fig. 2.3(c), an Intel QPI IP that contains a 64KB cache is required to

handle coherent communication with the processor, and a system protocol layer

(SPL) is introduced to provide address translation and request reordering to the

user AFU. Specifically, a page table of 1024 entries, each associated with a 2MB

page (2GB in total), is implemented in SPL, which will be loaded by the device

driver during runtime. Though current addressable memory is limited to 2GB and

private high-density memory for FPGA is not supported, this low-latency coherent

interconnect has distinct implications for programming models and overall processing

models of CPU-FPGA platforms.

Xeon+FPGA v2 co-packages the CPU and FPGA to deliver even higher band-

width and lower latency than discrete forms. As shown in Fig. 2.3(d), the commu-

nication between CPU and FPGA is supported by two PCIe Gen3 x8 and one QPI

(UPI in Skylake and later) physical links, which are presented as virtual channels

on the user interface. The FPGA logic is divided into two parts: the Intel-provided

FPGA interface unit (FIU) and the user AFU. The FIU provides platform capabili-

ties such as unified address space, coherent FPGA cache and partial reconfiguration

of user AFU, in addition to implementing interface protocols for the three physical

links. Moreover, a memory properties factory for higher level memory services and

semantics is supplied to provide a push-button development experience for end-users.

Accelerators with physical addressing effectively adopt a separate address space

paradigm (Fig. 2.4). Data shared between the host and device must be allocated in

both the host-side CPU-attached memory and the private device DRAM, and explic-

itly copied between them by the host program. Although copying array-based data

structures is straightforward, moving pointer-based data structures such as linked-
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lists and trees presents complications. Also, separate address spaces cause data

replication, resulting in extra latency and overhead. To mitigate this performance

penalty, users usually consolidate data movement into one upfront bulk transfer from

the host memory to the device memory. The Alpha Data board and Amazon EC2

F1 instance fall into this category.

Processor FPGA

Host
Memory

Device 
Memory Shared Memory

FPGAProcessor

Figure 2.4: Developer view of separate and shared memory spaces

With tighter logical CPU-FPGA integration, the ideal case would be to have a

unified shared address space between the CPU and FPGA. In this case (Fig. 2.4),

instead of allocating two copies in both host and device memories, only a single

allocation is necessary. This has a variety of benefits, including the elimination of

explicit data copies, pointer semantics and increased performance of fine-grained

memory accesses. CAPI enables unified address space through additional hardware

module and operating system support. Cacheline-aligned memory spaces allocated

using posix memalign are allowed in the host program. Xeon+FPGA v1 provides

the convenience of a unified shared address space using pinned host memory, which al-

lows the device to directly access data on that memory location. However, users must

rely on special APIs, rather than normal C or C++ allocation (e.g., malloc/new),

to allocate pinned memory space.

Xeon+FPGA v2 supports both memory models by configuring the supplied mem-
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ory properties factory, so that users can decide whether the benefit of having unified

address space outweighs the address translation overhead based on their use case.

2.3 Workloads

2.3.1 The MachSuite Benchmark Suite

MachSuite [RAS14] is a benchmark suite that contains a broad class of computation

kernels programmed as C functions for accelerator study. For each kernel, MachSuite

provides at least one implementation that is based on a commonly used algorithm

in software programming, e.g., the queue-based algorithm for the BFS (breadth-first

search) kernel. This feature makes MachSuite a natural fit for demonstrating our pro-

posed design automation methodology that aims to facilitate datacenter application

developers in transforming software programs into high-quality FPGA accelerator

designs in a swift stroke. Table 2.2 lists its computation kernels, each with a brief

description about its functionality and input settings.

In this dissertation, the MachSuite benchmark suite is mainly used in Chapter 3

and 4 for the presentation of our automated accelerator generation methodology.

Specifically, we demonstrate our best-effort code reconstruction practice via five it-

erations of refinement for the MachSuite computation kernel accelerators. We then

use the benchmarks to evaluate the effectiveness of our proposed CPP microarchi-

tecture and its analytical model, and the AutoAccel framework. MachSuite is also

used for the evaluation of our proposed CPU-FPGA data communication pipeline in

Section 5.4.
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Table 2.2: Benchmark Description

Kernel Functionality and Input Settings

AES Advanced encryption standard. Input: 256-bit key; 64MB data.

BFS Breadth-first search. Input: 4K nodes, 64K edges.

GEMM General matrix multiplication (O(N3)). Input: two 1024×1024 64-bit FP matrices

KMP Knuth-Morris-Pratt string matching. Input: 128MB string; 16B substring.

MD Molecular dynamics. Input: 128×128×128 space, each with 16 molecules on average.

NW Needleman-Wunsch sequence alignment. Input: 64K pairs of 128-nucleotide seq.

SORT Merge sort. Input: 64MB integer array.

SPMV Sparse matrix-vector multiplication. Input: 4096×512 ELLPACK data and index.

VITERBI Viterbi algorithm. Input: 1M 128-element chains.

FFT Fast Fourier transform. Input: 65536 strides each with 1KB size.

STENCIL Stencil computation. Input: a 4096×4096 image

2.3.2 Next-Generation Genome Sequencing

Next-generation sequencing (NGS) [SJ08] results from a combination of chemical

engineering and computer science innovations. To sequence a human’s entire genome,

a number of copies of the individual’s genome are fragmented into small pieces,

called reads. These reads are fed into the chemical sequencer to determine the order

of nucleotides for each of them. The sequenced reads are stored as ASCII strings,

and aligned to specific locations of a golden reference genome to be assembled into

an entire genome sequence. Generally, a sequencing instance processes hundreds of

millions of reads, and each read is independently sequenced and aligned.

A typical genome sequencing pipeline contains the following two stages [LH10].

First, a read uses its substrings of various lengths to find candidate alignment posi-

tions on the reference genome. This stage is called seeding, and the substrings are

called seeds. Second, each seed is extended leftward and/or rightward to both ends

of the read. This stage is called extending, and a two-dimension dynamic program-
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ming algorithm, the Smith-Waterman algorithm [SW81], is applied to extend the

seeds. Each read generates up to hundreds of extending tasks, i.e., up to hundreds

of Smith-Waterman kernel invocations.

Various software tools have been proposed for one or more pipeline stages. The

Burrows-Wheeler Aligner (BWA) [LD09, LD10, Li13] and Bowtie [LS12] are the most

widely used software packages for the seeding and extending stages. The former is

mainly used for DNA sequencing applications, like variant discovery, while the latter

is mainly used for RNA sequencing applications, such as differential gene expression.

The Genome Analysis Toolkit (GATK) [MHB10] contains a set of tools to handle the

analysis after alignment. BWA, Bowtie and GATK leverage commodity multicore

CPUs to explore the inherent task parallelism of next-generation genome sequencing.

However, all of them are single-machine applications, which restricts the degree of

parallelism to the number of CPU threads.

Scale-out computing has attracted more and more attention from both academia

and industry. Big-data computing frameworks, like MapReduce [DG08, Whi12] and

its successor Apache Spark with in-memory computing enhancement [ZCD12], have

achieved great success in enabling easy development and deployment of big-data

applications in datacenters. Next-generation sequencing has massive inherent par-

allelism, which makes it a good candidate for cluster scale acceleration. Recently,

several cluster scale sequencing tools are being proposed to serve as alternatives of

traditional tools like BWA, Bowtie and GATK. In [CCL15b], Chen et al. proposed

CS-BWAMEM, a Spark-based MapReduce implementation for the seeding and ex-

tending stages. CS-BWAMEM implemented the same algorithm used in the latest
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BWA package, and improved the overall performance by 7x with a 25-node cluster.1

In [MNH13], Massie et al. proposed ADAM, another Spark-based implementation,

which provides a set of formats, APIs and tools for genome sequencing and analysis.

By redefining the format of genome data to be more cluster-friendly, ADAM reports

a 50x speedup on a 100-node cluster over GATK. In this dissertation we focus on

the extending stage implemented in CS-BWAMEM, and use it as an application

showcase to demonstrate how our proposed JVM-FPGA integration methodology

reverses a 1000× system-wide slowdown back to a 3.5× speedup.

The two-dimension dynamic programming algorithm Smith-Waterman [SW81]

used in the extending stage of the genome sequencing pipeline is a fundamental

operation in computational biology. FPGA acceleration for the Smith-Waterman

algorithm has attracted great attention from both academia and industry. Zhang et

al. [ZTG07] implemented a systolic array based FPGA accelerator with up to 250x

speedup over a 2.2GHz AMD Opteron processor. Kim et al. [Kim11] implemented

a dynamic programming string matcher accelerator with 15x speedup over a 16-core

CPU server. Olson et al. [OKC12] proposed a scalable FPGA-based solution that

is faster than the Bowtie read aligner by 31x. Arram et al. [ATL13] implemented

an approximate string matcher on a Maxeler FPGA board, outperforming the CPU-

only and GPU-based implementation by 293x and 134x, respectively. Chen et al.

[CCL15a] designed a throughput-oriented FPGA accelerator that is dedicated to

accelerating the customized Smith-Waterman kernel implemented in BWA-MEM,

the latest version of the BWA package, reporting a 26x speedup over a 12-core

server. Ahmed et al. [ASH15] also designed an accelerator for the Smith-Waterman

1The original BWA package is implemented in C++, re-implementing it in Java leads to a
slowdown of around 2x. Therefore, only a 7x speedup is reported for a 25-node cluster.
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kernel in BWA-MEM and claimed a 5.7x speedup over a 8-core server.

These proposed accelerators show a great potential for accelerating the Smith-

Waterman computational kernel in genome sequencing applications, but lack in-

tegration into the full pipeline for large-scale whole genome sequencing. In this

dissertation we focus on the integration of one recently-proposed Smith-Waterman

accelerator [CCL15a] into the Spark implementation CS-BWAMEM.

2.4 Related Work

This section presents the related work to this dissertation. We first summarize the

previous studies on the enhancement of the HLS technology in Section 2.4.1. Next,

we present in Section 2.4.2 the studies on the CPU-FPGA integration.

2.4.1 Enhancements to High-Level Synthesis

High-Level Synthesis Automation. Many automated code transformations for

the code reconstruction strategies covered in our best-effort practice (Chapter 3)

have been proposed using commercial HLS tools like Xilinx SDAccel [sda] and Intel

FPGA SDK for OpenCL [Int16], or open-source tools such as LegUp [CCA11] and

CHiMPS [PBD08] as a back-end.

For on-chip data caching, existing automation strategies mainly focus on analyz-

ing data access patterns, identifying data reuse between loop instances, and then

generating on-chip buffers with proper partitions [CZZ12, PZS13, PSK15]. However,

most solutions only consider arrays with affine accesses. Automated data caching

for an array with arbitrary (non-affine, random, or even both) access patterns is still
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an open research problem. For PE duplication, the difficulty is that if we dupli-

cate a large computation module, many hardware resources are required and imply

less number of PEs. As a result, some researchers deal with this problem by de-

veloping algorithms to realize the duplication of a suitable PE granularity under

resource constraints [HWB09, CHZ14], but leverage code modularization to users.

Therefore, the restrictions on transforming user programs are still necessary. For

pipelining, the impediments to achieving fine-grained fully pipelining mainly include

1) data/loop-carried dependency, 2) uncertain loop bounds [LBC15, LWC16], and

3) non-affine memory access [VHS15]. Although many researchers have figured out

some solutions to each problem, a complete solution is still missing. For double

buffering, the most widely used application is to form a coarse-grained (nested loop)

pipeline [PKB16, LGJ14, TLZ15]. They extract necessary information from the

problem using static analysis or user directives and apply predefined templates to

form a coarse-grained pipeline using double buffers. Again, those solutions are not

yet applicable to arbitrary user programs. On the other hand, there have some

advance techniques that highly rely on hardware expertise so we do not cover in

Chapter 3. For example, automated unified cache generation on FPGAs is imple-

mented by [PKB16, WH13]. Advanced on-chip memory partition optimizations to

avoid data access conflicts for improving pipelining and parallelism are also well-

studied [WLZ13, WLC14, CG15, SYZ16].

In summary, although many existing tools and frameworks are able to deal with

certain HLS code optimization, simply applying all of them may not achieve high

performance. The reason is that many kinds of optimization are related to hardware

characteristics and may be affected by coding style a lot, so the order and type of

applied optimization form a huge design space which is hard to be explored manu-
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ally. However, our best-effort code reconstruction practice provides a direction for

automation tool developers to figure out an effective solution of integrating existing

HLS optimization to be a comprehensive framework. This is where our AutoAccel

automated accelerator generation framework is inspired from.

Domain-Specific Languages. While generating accelerators from generic pro-

gramming languages presents challenges in discovering parallelism, pipeline struc-

tures and memory access, researchers have explored domain-specific languages [SBC]

to describe certain patterns and structures using domain knowledge. Lime [ABC10]

is a Java-based domain-specific language that provides several parallel patterns to

improve the programmability. Bluespec [Arv03] is a functional hardware descrip-

tion language based on Haskell with atomic actions. Chisel [BVR12] embeds hard-

ware construction primitives with Scala and supports high-level abstractions and

generators. DHDL [PKB16, KDP16] is an intermediate hardware representation

that can be generated from parallel patterns such as map, reduce, zip and filter.

This dataflow representation can be used to generate low-level HDL and aid de-

sign space exploration. TABLA [MPA16] provides an FPGA accelerator generator

for machine learning algorithms that produces synthesizable Verilog code from user

model specifications using a set of predesigned templates. Using a similar approach,

DNNWeaver [SPA16] targets deep neural models.

Although these tools can provide higher productivity and generate more efficient

hardware when applications have certain amenable characteristics, they are often

limited to small domains and do not work well for applications outside those domains.

Analytical Modeling. Fast performance estimation on FPGAs has become pop-

ular in recent years. In general, performance analysis is mainly performed at either
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IR level [WHZ16, ZPW17, PKB16, KDP16, GWC16] or source code level [ZMS16].

The performance analysis at IR level has to compile the source code to the IR

and perform analysis by traversing the control flow graph with dynamic profiling;

while the source code level analysis is performed by statically looking at high-

level constructs such as loops. Since most of the existing work performs analy-

sis without explicitly considering back-end design flow [WHZ16, ZPW17, GWC16,

PKB16, KDP16], their analysis cannot reflect the optimization done by the com-

mercial tool. On the other hand, similar to our CPP analytical model, [ZMS16]

builds the performance model with the help of the commercial tool, but [ZMS16]

provides neither the resource model nor automated code transformation, so users

still need to manually change the kernel code while considering the FPGA re-

source limitation. Although other studies also have the model for different kind

of resources [PKB16, KDP16, ZPW17, ZPL16, Zha17, DZZ18], their LUT models

are either based on machine learning [PKB16, KDP16, ZPW17, DZZ18] or even

missing [ZPL16, Zha17].

2.4.2 CPU-FPGA Platforms and Integration

CPU-FPGA Platform Analysis and Optimization. In addition to the com-

modity CPU-FPGA integrated platforms summarized in Section 5.2, there is also a

large body of academic work that focuses on how to efficiently integrate hardware

accelerators into general-purpose processors. Yesil et al. [YOK15] surveyed existing

custom accelerators and integration techniques for accelerator-rich systems in the

context of data centers, but without a quantitative study as we did. Chandramoor-

thy et al. [CTI15] examined the performance of different design points including
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tightly coupled accelerators (TCAs) and loosely coupled accelerators (LCAs) cus-

tomized for computer vision applications. Cotat et al. [CMD15] specifically analyzed

the integration and interaction of TCAs and LCAs at different levels in the memory

hierarchy. CAMEL [CGG13] featured reconfigurable fabric to improve the utilization

and longevity of on-chip accelerators. All these studies were done using simulated

environments instead of commodity CPU-FPGA platforms.

A number of approaches have been proposed to make accelerators more pro-

grammable by supporting shared virtual memory. NVIDIA introduced “unified

virtual addressing” beginning with the Fermi architecture [Nvi09]. The Heteroge-

neous System Architecture Foundation announced heterogeneous Uniform Memory

Accesses (hUMA) that will implement the shared address paradigm in future het-

erogeneous processors [Rog13]. Cong et al. [CFH17] propose supporting address

translation using two-level TLBs and host page walk for accelerator-centric architec-

tures. Shared virtual memory support for CPU-FPGA platforms has been explored

in CAPI and the Xeon+FPGA family [SBJ15, harb]. This dissertation covers both

the separate memory model (Alpha Data and F1 instance) and shared memory model

(CAPI, Xeon+FPGA v1 and v2).

There is also numerous work that evaluates modern CPU and GPU microarchi-

tectures. For example, Fang et al. [FMY15] evaluated the memory system microar-

chitectures on commodity multicore and many-core CPUs. Wong et al. [WPS10]

evaluated the microarchitectures on modern GPUs. This work is the first to evaluate

the microarchitectures of modern CPU-FPGA platforms with an in-depth analysis.

Integrating Accelerators into Datacenters. There is an increasing trend to

integrate FPGA accelerators into modern datacenters. For example, Microsoft has
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developed a customized FPGA board, Catapult, and placed it into each server to ac-

celerate the ranking stage of the Bing search engine in a 1632-node cluster [PCC14].

With a key focus on discussing the robust design of the large-scale system architec-

ture, this publication did not reveal many details of the programming framework.

Moreover, IBM has proposed the Coherent Accelerator Processor Interface (CAPI)

to connect a PCIe-based FPGA board to a POWER8 processor, and integrated such

FPGAs into its in-memory data structure store Redis to accelerate its Data Engine

for NoSQL [BRH15]. In addition, there are some young start-ups, like Falcon [Sol]

and Ryft [Ryf], that are working on the integration of FPGAs with Spark to ac-

celerate big-data analytics. In Chapter 5 we aim to provide a more generalized

methodology and insight for efficient integration of FPGA accelerators into state-

of-the-art big-data computing frameworks like Spark, and therefore stimulate more

innovations in this very hot area.

There are also several academic studies that deploy the Hadoop MapReduce

framework or Message Passing Interface (MPI) [GGL99] in an FPGA-based cluster.

In [LC13], Lin et al. deployed Hadoop in a cluster of low-end Xilinx Zynq FPGA

SoC boards to accelerate a standard FIR filter. Similarly, in [NMG15], Neshatpour et

al. deployed Hadoop in a Zynq-based cluster to accelerate machine learning kernels.

In [MK15], Moorthy et al. deployed both OpenMPI and MPICH in a Zynq-based

cluster to accelerate graph processing applications. In [TL10], Tsoi et al. proposed

a heterogeneous cluster with GPUs and FPGAs, and deployed OpenMPI to accel-

erate N-body simulation. Our application showcase focuses on integrating FPGA

accelerators into the Spark MapReduce framework due to its popularity and ease of

programming and deployment for big-data applications.

Meanwhile, there are also some efforts that integrate GPU accelerators into
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Hadoop and Spark. For example, in [GBS15], Grossman et al. proposed an au-

tomated flow to generate OpenCL kernels for Hadoop programs in a GPU-equipped

cluster. In [LL15], Li et al. integrated GPU accelerators with Spark for deep learning

algorithms. While these approaches usually target the integration of coarse-grained

accelerators, we mainly focus on the integration of fine-grained FPGA accelerators,

which introduces more challenges, like efficient communication and sharing.

A recent study in [SCN15] tried to automatically generate the OpenCL acceler-

ator code from original Java code in Spark, which is an interesting and challenging

direction for future work. Unfortunately it did not report any performance data.

Finally, some prior efforts [YTT08, SWY10] also tried to propose a new MapReduce

framework for easy accelerator development in a single-node FPGA-based platform.
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CHAPTER 3

Best-Effort Code Reconstruction Guidelines for

Microarchitecture Optimization

This chapter presents our analysis study that aims to demystify the gap between

software programs and hardware behavior descriptions1. We find from this study

that a best-effort code reconstruction practice with five refinement strategies is able

to effectively fill this gap and lead to high-quality accelerator designs. We then are

inspired to derive this best-effort practice into the composable, parallel, pipeline

(CPP) microarchitecture and propose our AutoAccel framework on top of it, which

is presented in Chapter 4.

3.1 Overview

Decades of research has been focusing on improving FPGA programmability. High-

Level Synthesis (HLS) [CLN11] can derive high-quality accelerator designs directly

from high-level behavioral descriptions, saving programmers from extensive hand-

coding in RTL and manual tuning. State-of-the-art HLS tools such as the Xilinx

SDAccel [sda] and Intel FPGA SDK for OpenCL [int] allow computational kernels

1This study is presented in [CFH18, CWY17]. I would like to convey my appreciation to all
coauthors for their contributions to this study.
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to be described in C/C++ and OpenCL, which can then be compiled and synthesized

into FPGA accelerators. Using these tools, programmers can easily write synthesiz-

able code or convert existing software implementations into FPGA accelerators. On

top of the HLS compilation flows, FPGA vendors further provide system-level de-

velopment environments that integrate a collection of intellectual properties (IPs),

drivers, libraries and APIs. This facilitates faster integration of FPGA accelerators

into CPU programs, frees developers from system-level integration such as external

memory interfacing and CPU-FPGA data communication. As a result, a software

programmer can extract targeted computational kernels from C programs (hosts),

connect kernels to hosts via IDE-provided APIs, and feed both to the IDEs to infer

FPGA accelerators from the kernels and integrate them into the hosts automatically.

This demonstrates a quantum leap on FPGA programmability towards software pro-

gramming, compared to the register-transfer level IC design.

However, a simple push-button process is far from producing high-performance

FPGA accelerators. To demonstrate this, we compare the performance of a single-

thread CPU with FPGA accelerators that are directly generated from the same soft-

ware code of benchmarks from MachSuite. Unfortunately, these naive FPGA acceler-

ators are more than 200x slower than the original software implementations running

on a Xeon CPU core, which defeats our purpose of accelerating these computational

kernels in the first place (see Section 3.3). To improve the quality of HLS-generated

accelerators, many prior studies [HWB09, CZZ12, WH13, WLZ13, PZS13, CHZ14,

LGJ14, LBC15, PSK15, VHS15, CG15, TLZ15, PKB16, LWC16, SYZ16] focus on

proposing enhancements to HLS languages to express certain hardware structures.

Nonetheless, most studies require the understanding of hardware intricacies in order

for programmers to direct HLS tools to generate the right hardware structure. Also,
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choosing the right combination of optimization strategies among an exponential set

of candidates is non-trivial even for experienced accelerator designers [WHZ16]. As

a result, programmers often get the impression that software programs and hardware

behavioral descriptions, though looking alike, are complete different.

In this study we aim to address the following questions: 1) what are the impedi-

ments that prevent software programs from being high-quality hardware behavioral

descriptions? (2) Is there a common code reconstruction practice that is able to

transform a broad class of computation kernel programs into high-quality behavioral

descriptions? To answer these questions, we attempt to apply various HLS optimiza-

tions to the ported computational kernels from MachSuite. We are encouraged by

the fact that the naively generated accelerators fall into a set of common sources of

inefficiency, and a best-effort code reconstruction practice can produce quite com-

pelling results: improving the accelerator performance by 42∼29,030× over the naive

baseline, and outperforming a Xeon CPU core by 34.4× on average. Specifically, we

use data-driven refinement to iteratively optimize the accelerator design: in each

refinement iteration, we pinpoint the performance bottleneck and apply a set of HLS

optimizations listed in Table 3.1. These HLS optimizations include explicit data

caching through batch processing and data tiling, customized pipelining, processing

element (PE) replication, double buffering and scratchpad reorganization. They take

effect by constantly improving the underlying microarchitecture of the accelerators,

which inspires us to derive the best-effort practice into the CPP microarchitecture

and propose the entire automated accelerator generation methodology.
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Table 3.1: Summary of optimization strategies.

HLS Optimization
Counterpart in

Soft. Programming
Speedup Example

Explicit Data Caching Data Tiling 5.6∼32.1x Fig. 3.4(a)

Customized Pipelining
Directive-Based

Programming
1.3∼10.3x Fig. 3.4(b)

PE Replication Multithreading 1.0∼53.6x Fig. 3.4(b)

Double Buffering
Comp./Comm.

Overlapping
1.0∼2.1x Fig. 3.4(c)

Scratchpad Reorganization Bit Packing 1.1∼19.1x Fig. 3.4(d)

3.2 Experimental Setup

In this study we focus on the currently more accessible PCIe-based CPU-FPGA plat-

form and HLS design flow to demonstrate the code reconstruction practice. Table 3.2

lists the detailed hardware and software configuration. A Xeon CPU is connected

with an Xilinx Virtex-7 FPGA board through the PCIe interface. For a fair com-

parison, both the CPU and the FPGA fabric were launched in 2012. On top of the

platform hardware, we use Xilinx SDAccel to provide a hardware-software co-design

environment.

This study presents the code reconstruction practice through a complete accel-

erator design demonstration on a collection of benchmarks in MachSuite [RAS14].

Starting from the accelerators synthesized directly from the MachSuite kernel func-

tions, Section 3.3, 3.4 and 3.5 present the five refinement strategies in the entire

accelerator refinement process. The acceleration for the SORT (merge sort) kernel
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Table 3.2: Configuration of hardware and software.

Host CPU Model Intel Xeon E5-2420 @ 1.9GHz (released in 2012)

Host Memory 64GB DDR3-1600

FPGA Fabric Xilinx Virtex-7 @ 200MHz (released in 2012)

Device Memory 16GB DDR3-1600 (Max Band.: 12.8GB/s)

CPU-FPGA Interface PCIe Gen3 x8 (Max Band.: 8GB/s)

Synthesis Environment SDAccel 2017.1

is relatively different from that of the others. Merge sort has a tree-reduce charac-

teristic, which means that the degree of parallelism will decrease by 2× after each

merge layer. The last few layers have very limited parallelism and are hard to be

accelerated by FPGAs which heavily rely on parallelism to outperform CPUs. A

common practice to resolve this issue is to let the FPGA accelerator focus on the

first few layers and let the CPU do the remainder. We adopt this approach and set

the goal of the SORT kernel to making every 1MB data chunk sorted.

3.3 Strategy #1: Explicit Data Caching

We start from the naive FPGA accelerators directly synthesized from the original

MachSuite kernel functions, which are slower than the Xeon CPU by 70∼765×.

Nonetheless, programmers are able to improve the performance of the accelerators

by 5.6∼32.1× through the code reconstruction that realizes explicit data caching.

Section 3.3.1 pinpoints the performance bottleneck in the naive baseline and analyzes

the underlying reason. Section 3.3.2 presents the use of explicit data caching to

resolve this.
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void aes(...) { ... }

void kernel(char* data, int size) {

#pragma HLS interface m_axi port=data

for (int i=0; i<size; i++) {

aes(data+i*16);

}}
Device	DRAM

FPGA	Fabric

Host	DRAM
PCIe

CPU Computation	
Logic

DRAM	Access

Figure 3.1: Example AES kernel and naively generated architecture.

To better demonstrate the refinement process, we use the AES (advanced encryp-

tion standard) kernel as an example to deliver the code implementation of each step.

Fig. 3.1 shows the baseline AES kernel code (we ignore the key in this example to

simplify the description). The kernel function accepts a certain size of data, and

iteratively calls aes function to encrypt the data. Each aes function call encrypts

a 128-bit data block, so the data pointer shifts by 16 bytes after each iteration.

The interface pragmas in the kernel function specify the interface between the host

program and the accelerator kernel. The data are transferred from the host to the

device through PCIe, and stored in the device DRAM.

3.3.1 Cache: Not a Free Lunch Any More

Fig. 3.2 presents the execution time breakdown of the FPGA accelerators for the

MachSuite kernels before any refinement. It suggests that the DRAM access is

dominating the overall execution for every kernel. This is due to the fact that the

cache hierarchy in CPUs, which provides a memory subsystem with low access latency

while retaining programmer transparency, does not exist on FPGAs. In contrast,

FPGAs’ on-chip BRAMs (block RAMs) that serve as the counterpart to caches

are conceptually scratchpads, and have to be explicitly manipulated by software
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Figure 3.2: Execution time breakdown before any refinement.

programs to realize data caching. With such manipulation missed in the kernel

function, the generated accelerator will connect the computation logic directly with

DRAM with no high-speed data caching component in-between, as illustrated in

Fig. 3.1. Every data access has to physically go off chip, which costs a per-access

initialization overhead of approximately 100 FPGA cycles (i.e., 500ns).

In summary, the programmer-transparent cache memory system is not a free

lunch any more for HLS-based FPGA accelerator programming. In order to continue

harnessing data caching to alleviate the DRAM access overhead, programmers must

reconstruct the computation kernel code to explicitly cache data into the FPGA

on-chip memory.

3.3.2 Batch Processing and Data Tiling

We present two techniques to implement explicit data caching: batch processing and

data tiling. Batch processing, as its name hints, batches a number of jobs together

and processes them in one action. This approach is used for computational kernels

whose working set sizes are far less than the total size of on-chip BRAM. We use the

34



AES kernel as an example to explain this approach. As introduced in the beginning of

Section 3.3, an AES job, i.e., an aes function call, encrypts only a 128-bit data block.

Since the working set size of an AES job is much smaller than the size of on-chip

BRAM (a few MBs), programmers can maximize data reuse, i.e., temporal locality,

by caching and processing one 128-bit data block at a time. However, fetching 128-bit

data at a time still leads to a serious DRAM access overhead because of the 100-cycle

per-access initialization overhead. One alternative is to process multiple contiguous

128-bit data encryption jobs in one batch. With batch processing, multiple DRAM

data fetches are combined into one memory burst operation, which spends 100 cycles

in initialization and approximately 1 cycle (5ns) in fetching each piece of data. The

DRAM access overhead is then amortized.

We now present data tiling which first divides a job into a set of subjobs and then

processes one or a few subjobs at a time. This approach is used for computational

kernels with relatively large working set sizes that are close to or far larger than

the total size of on-chip BRAM. We use the GEMM (general matrix multiplication)

kernel as an example to explain the approach. The GEMM kernel calculates the

product of two matrices. While the matrices may be too large to be fully cached in

BRAM, the matrix multiplication can be divided into additions and multiplications

of submatrices, each of which can be as small as 1x1. Programmers can then process

one or more subjobs at a time to explore the temporal locality in the subjob level.

An important design choice is the caching size. The experimental platform used

in this study supplies approximately 4MB BRAM for FPGA accelerators (and the

other few MBs for system-level IPs). While a larger caching size that enables larger

memory burst length is always beneficial in amortizing the 100-cycle initialization

overhead, the effect of this amortization diminishes as the burst length increases.
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Theoretically, if the payload size of a memory burst reaches 64KB, the burst length

will be over 1000, and the impact of the initialization overhead will be reduced to

less than 10%. This indicates that explicit data caching can be realized with a very

small BRAM consumption.

Fig. 3.4(a) illustrates the implementation of explicit data caching through a code

reconstruction of the AES baseline. We can see that the overall execution of the AES

kernel is decoupled into a series of load -compute-store iterations. Programmers only

need to declare local arrays that represent on-chip BRAM buffers, and iteratively load

input the data of a batch of jobs (batch processing) or one or few subjobs (data tiling)

to the arrays to compute, and store output data back to DRAM. The “memcpy”

operations for loading/storing data will be inferred into memory read/write bursts

to reduce the average DRAM access latency. This code reconstruction leads to the

addition of an intermediate BRAM layer between the computation logic and DRAM,

as illustrated in Fig. 3.5(a). Instead of letting the computation logic retrieve data

directly from DRAM, this on-chip BRAM layer caches all necessary data for each

iteration of computation.

Fig. 3.3 shows the normalized speedups of the accelerators compared to the Xeon

CPU core after applying explicit data caching. It also compares the performances

of the accelerators with various caching sizes (the SORT kernel targets the sorting

of each 1MB data chunk, so the caching size is set at 1MB only). Each “infinite”

bar delivers a speedup estimation where the caching size is infinite, so that no initial

overhead of memory bursts is counted. Two insights are revealed from the data.

First, explicit data caching results in a significant performance improvement over

the naive baseline. Second, the caching size has a negligible performance impact.

On one hand, the performances between the 64KB, 1MB and “infinite” groups are
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Figure 3.3: Normalized speedups in different caching sizes.

almost identical, which is consistent with our previous analysis on the design choice

of caching size. On the other hand, although there might be some performance

differences between the 64KB and 2KB (close to the size of one BRAM block) groups,

we observe that after explicit data caching is applied, the performance is dominated

by computation (see Section 3.4). Thus, the performances between the 2KB and

64KB groups are also very similar. This suggests that programmers can always

consider shrinking down the caching size from the maximum (∼4MB) to 1MB or

64KB to spare the BRAM resources for other optimization strategies.

3.4 Go Parallel

We now start from the accelerators that have been applied explicit data caching to.

Fig. 3.6 presents the execution time breakdown of the accelerators. As the data

hints, computation is dominating the overall execution for every kernel. The major

reason is that the accelerators are doing computation sequentially with the culprit: a

200MHz clock frequency that is 9.5× lower than that of the Xeon CPU. Consequently,

FPGA accelerators heavily rely on exploring parallelism to dissolve the frequency
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void aes(...) { ... }

void load(char *buf, char *in) {

memcpy(buf, in, BATCH_SIZE); }

void store(char *out, char *buf) {

memcpy(out, buf, BATCH_SIZE); }

void compute(char *buf_data) {

for (int i=0; i<BATCH_SIZE; i+=16) {

aes(buf_data+i*16); }}

void kernel(char *data, int size) {

char buf_data[BATCH_SIZE];

int batch_num = size/BATCH_SIZE;

for (int i=0; i<batch_num; i++) {

load(buf_data, data+i*BATCH_SIZE);

compute(buf_data);

store(data+i*BATCH_SIZE, buf_data);

}}

(a) Applying explicit data caching

int PE_BATCH = BATCH_SIZE / PE_NUM;

void aes(char *data) {

for (...i...) {

#pragma HLS pipeline

}}

void load(...) { ... }

void store(...) { ... }

void compute(char *buf_data) {

for (int j=0; j<PE_NUM; j++) {

#pragma HLS unroll

for (int i=0; i<PE_BATCH ; i+=16)

aes(buf_data[j]+i*16); }}

void kernel(char *data, int size) {

char buf_data[PE_NUM][PE_BATCH];

#pragma HLS array_partition var=buf_data dim=1

... }

(b) Applying pipelining and PE replication

void aes(...) { ... }

void load(...) { ... }

void store(...) { ... }

void compute(...) { ... }

void kernel(char *data, int size) {

char buf_data[3][PE_NUM][PE_BATCH];

#pragma HLS array_partition var=buf_data dim=1

#pragma HLS array_partition var=buf_data dim=2

for (int i=0; i < size/BATCH_SIZE; i++) {

switch (i % 3) {

case 0:

load(buf_data[0], data+i*BATCH_SIZE);

compute(buf_data[1]);

store(data+i*BATCH_SIZE, buf_data[2]);

break;

case 1: ...; break;

case 2: ...; break; }

}}

(c) Applying double buffering

void aes(...) { ... }

void load(...) { ... }

void store(...) { ... }

void compute(ap_uint<W> large_buf[][PE_BATCH])

{ char normal_buf[BATCH_SIZE];

#pragma HLS array_partition var=normal_buf

for (int j=0; j<PE_NUM; j++) {

#pragma HLS unroll

memcpy(...); // copy in

... // parallel compute

memcpy(...); }} // copy out

void kernel(ap_uint<W> *data, int size) {

ap_uint<W> buf_data[3][PE_NUM][PE_BATCH];

... }

(d) Applying scratchpad reorganization

Figure 3.4: Step-by-step example of applying the five optimization strategies to the

AES benchmark. The complete code after applying all strategies is shown in List 3.2.
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disadvantage. Section 3.4.1 and 3.4.2 present the use of two principal parallelism

exploration strategies to reduce the computation time: customized pipelining and

processing element (PE) replication. These code reconstruction strategies further

improve the performance of the MachSuite accelerators by up to 417.8×.

Device DRAM

Processing 
Engine (PE)

BRAM Regs

FPGA Fabric

(a) Explicit data

caching

Device DRAM

Buffer Group X
…

Buffer Group Y
…

Buffer Group Z
…

i%3==1 Comp i%3==2 Comp i%3==0 Comp

i%3==0 Load
i%3==2 Store

i%3==1 Load
i%3==0 Store

i%3==2 Load
i%3==1 Store

PE PE PE PEPE PE

(c) Double buffering

Device DRAM

PE #0 PE #1 PE #n…

…

(b) PE Replication

Device DRAM

Large-Width Buf X
…

Large-Width Buf Y
…

Large-Width Buf Z
…

PE PE PE PEPE PE

(d) Scratchpad Reorganization

Figure 3.5: High-level architecture diagram, corresponding to Figure 3.4.

3.4.1 Strategy #2: Customized Pipelining

Pipelining is a fundamental concept in computer science and is used by both CPUs

and accelerators. Given no pipeline stalls, a pipeline with N stages can boost the

39



throughput by N times. Although various events, including branch misprediction

and cache/TLB misses, impede the depth of a CPU pipeline to increase perpetually,

FPGA accelerator designers can customize very deep pipelines for pure computa-

tional units with hundreds or even thousands of stages to greatly improve the accel-

erator performance. Fine-grained pipelining to meet the maximum achievable data

transfer speed almost becomes a de facto standard for FPGA accelerator designers.

Customizing a full pipeline with an initiation interval (II) equal to 1 (i.e., the

pipeline can process one iteration of data every cycle) is difficult in many cases

even for hardware experts. However, a best-effort code reconstruction, i.e., simply

adding a “pipeline” pragma to a loop block, can often lead to impressive performance

improvement. We evaluate all 40 loop blocks in all benchmarks, and find that 27

loop blocks can be immediately pipelined, and 6 loop blocks can be pipelined if being

reconstructed into perfect loops. Moreover, a significant speedup on the computation

is observed for many kernels, as listed in Table 3.3. Some kernels such as SPMV,

NW, GEMM and KMP reach a 7.0∼10.9× speedup, because the main bodies of

these kernels are nested loop blocks. SPMV and GEMM do linear algebra in a two-

level and three-level nested loop, respectively; NW does a two-dimension dynamic

programming in a two-level nested loop; KMP matches a substring in a string in a

two-level nested loop. These loop bodies are well pipelined. Other kernels such as

AES, BFS and SORT have relatively complicated kernel function bodies, and reach

relatively moderate speedup—40%∼80% performance improvement. VITERBI is a

delicate case. Although it also does a dynamic programming in a nested loop body, it

requires each pipeline stage to complete a few floating-point additions, multiplications

and comparisons (subtractions), which results in a pipeline with a relatively large

II. In contrast, the NW kernel, with a similar computation pattern, requires each
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Figure 3.6: Execution time breakdown before exploring parallelism.

Table 3.3: Performance speedup of pipelining on computation.

Kernel Speedup Kernel Speedup Kernel Speedup

AES 1.4x BFS 1.4x GEMM 10.5x

KMP 7.0x NW 8.8x SORT 1.8x

SPMV 10.9x VITERBI 3.2x

pipeline stage to complete merely a few low-width integer additions and bit-level

comparisons, which can be finished in one cycle, i.e., achieving an II=1 pipeline.

Therefore, the speedup for VITERBI (3.2×) is fairly less than that for NW (8.8×),

but still considerable.

3.4.2 Strategy #3: Processing Element Replication

Processing element (PE) replication explores the task-level parallelism in kernels.

If a large number of independent jobs can be found in a kernel, then programmers

can create multiple PEs to process them in parallel. This concept is not new to

software programmers. With multicore becoming ubiquitous in modern processors,

41



programmers have been accustomed to mapping independent jobs onto multiple cores

and do them in parallel. Here, FPGA PEs and CPU cores are counterparts. As a

consequence, the implementation of PE replication can be considered as a special

“multithreading programming”.

Fig. 3.4(b) illustrates the implementation of customized pipelining and PE repli-

cation in one code example since the two strategies work on mutually exclusive code

regions. This code example is updated from the one in Fig. 3.4(a), which implements

explicit data caching. We intentionally omit the implementation details that remain

unchanged so as to highlight the newly added code regions. This update features

three major changes. First, the “pipeline” pragma is added into each loop block of

the aes function to perform customized pipelining. Second, the “unroll” pragma is

adopted to generate multiple PE replicas for parallel computation. In addition, the

“memory partition” pragma is used to partition the local arrays used for explicit

data caching into multiple segments, the number of which is equal to the PE repli-

cation factor. The first change pipelines the loop blocks, and the latter two changes

together realize PE replication. Figure 3.5(b) illustrates the refined architecture af-

ter applying pipelining and PE replication. Compared to Figure 3.5(a), the refined

architecture partitions the intermediate BRAM layer into multiple groups, each of

which communicates only with one PE replica.

One thing worthwhile mentioning here is memory partitioning, whose objective is

to realize parallel data supply for all PE replicas. FPGA is a kind of reconfigurable

logic that contains distributed computation building blocks: LUTs (lookup tables)

and DSPs (digital signal processors), and BRAM blocks (distributed on-chip memory

building blocks). The computation building blocks enable the creation of multiple

PE replicas, and the BRAM blocks supply a many-port on-chip memory system.
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Specifically, the Xilinx Virtex-7 FPGA fabric has approximately 3000 BRAM blocks,

i.e., a virtually 3000-port on-chip memory system which has the potential to feed up

to 3000 PEs concurrently. To fulfill this potential, however, a programmer needs

to partition the local array, i.e., the on-chip BRAM buffer for data caching, into

multiple segments, each made up of a set of BRAM blocks. When input data are

loaded into the BRAM buffer, they will be scattered into different segments and

processed by different PEs simultaneously.

Fig. 3.7 compares the performance improvement on computation with various PE

replication factors.2 For each kernel, we normalized all the performances to that of

the accelerator with one PE to ease the observation. Most kernels achieve a linear

performance improvement. Such kernels as AES, NW and VITERBI can be divided

into fully parallel jobs and thus reach close-to-ideal speedup. The performance of

the SORT kernel does not scale linearly due to its tree-reduce characteristic, i.e.,

the degree of parallelism is reduced by 2x after each merge layer. Therefore, the

last few merge layers will have less degrees of parallelism than the number of PEs

available, and it cannot be accelerated in fully parallel. For the BFS kernel whose

jobs are chain-dependent because of the sequentially accessed queue structure, PE

replication is not applicable and thus the kernel is not shown in Fig. 3.7.

Fig. 3.8 presents the overall speedup of each accelerator over the Xeon CPU core

after implementing pipelining and PE duplication. The number under each kernel’s

name represents the best PE duplication factor. The horizontal line (1) represents

the CPU baseline with the bars above the line representing speedup and below repre-

senting slowdown. Most accelerator designs have two-orders-of-magnitude speedups

2Some kernels may not generate a 128-PE design due to FPGA resource constraints. The
corresponding bar is thus left blank.
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Figure 3.7: Performance speedup on computation lead by PE replication.

over those being performed explicit data caching and start to outperform the CPU

core. But the speedups are still considerably far from satisfactory. This is due to

the fact that the DRAM access overhead comes back again to play an important role

in the overall execution (see Fig. 3.9) after the computation routine is significantly

accelerated. Section 3.5 further optimizes the data movement to address this issue.

3.5 Faster Data Movement

We now start from the accelerators that have applied explicit data caching, pipelining

and PE duplication. As shown in Fig. 3.9, DRAM access becomes the major perfor-

mance bottleneck again. Section 3.5.1 and 3.5.2 present the use of double buffering

and scratchpad reorganization to increase the DRAM bandwidth utilization from

the temporal and spatial aspects, respectively. After such code reconstruction, the

performance of the MachSuite accelerators can be further improved by 1.2∼19.2×.
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Figure 3.8: Overall performance speedup after applying loop pipelining and PE

replication.
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Figure 3.9: Execution time breakdown before applying Strategy #4.

3.5.1 Strategy #4: Double Buffering

As is illustrated in Fig. 3.4(b), although the accelerator designs perform computation

in parallel, each PE processes different load -compute-store iterations sequentially. In

other words, the N-th iteration starts to load data after the (N-1)-th iteration stores

data back to DRAM. However, the data loading of the N-th iteration could have

45



happened earlier, right after the (N-1)-th iteration finishes loading data and starts

computation, since the read channel of the AXI bus, which interfaces between the

accelerator and DRAM, becomes free. In general, the load, compute and store pro-

cedures of adjacent iterations can be overlapped to form a 3-stage coarse-grained

pipeline, which results in an improved resource utilization as well as a better perfor-

mance. Our best-effort practice uses the double buffering strategy to realize such a

coarse-grained pipeline.

Fig. 3.4(c) illustrates the implementation of double buffering through an update

of the code example in Fig. 3.4(b). This update features two major changes. First,

the local arrays for explicit data caching are duplicated into three identical copies.

This corresponds to the architectural change where the intermediate BRAM layer

is duplicated into three identical BRAM buffer groups, as illustrated in Fig. 3.5(c).

Second, a switch/case statement is added to schedule the load, compute and store

procedures. This schedule is the key to realizing double buffering.

To better explain the scheduling mechanism, we first make the following deno-

tations. We use the variable names in the code example to denote the three buffer

groups, i.e., buf data[0], buf data[1] and buf data[2], corresponding to the hardware

component X, Y and Z in Fig. 3.5(c). We also index the execution phases by letter

i. In addition, we denote the input and output data of the k-th iteration as Ik and

Ok. The scheduling mechanism is then described as follows.

• i == 0 : load I0 into buf data[0]

• i == 1 : load I1 into buf data[1] ; process I0 in buf data[0]

• i == 2 : load I2 into buf data[2] ; process I1 in buf data[1] ; store O0 and free
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buf data[0]

• i == 3 : load I3 into buf data[0] ; process I2 in buf data[2] ; store O1 and free

buf data[1]

• ...

As shown in Figure 3.10, double buffering contributes up to 2.1× performance

improvement. Most kernels achieve at least a 20% performance improvement. The

BFS kernel cannot be benefited from this technique, mainly because the queue-based

searching mechanism determines that the compute results of an iteration will affect

the input data to load in the next iteration. KMP is another kernel of which the

performance is almost not changed, which is mainly due to the fact that the output of

KMP is merely an integer representing the number of substrings found in MachSuite.

3.5.2 Strategy #5: Scratchpad Reorganization

When it comes to the spatial aspect, the issue of DRAM bandwidth utilization

becomes delicate. We use a piece of C code to reveal the issue. List 3.1 shows four C

statements that declare four arrays. While defined in different types with different

lengths, all such arrays represent a 1KB contiguous memory space and are equivalent

from a CPU programmer’s perspective. Specifically, each type of array can be cast

to and used as any other type, as shown in List 3.1.

List 3.1: Sample code to demonstrate the difference between CPUs and FPGAs in

interpreting arrays.

char arr_byte[1024]; // Statement #1

short arr_short[512]; // Statement #2
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int arr_int[256]; // Statement #3

long long arr_ll[128]; // Statement #4

// cast and use int array as char array

char* p = (char *)arr_int;

for (i=0; i<1024; i++) p[i] = 0;

// cast and use short array as long long array

long long* q = (long long *)arr_short;

for (i=0; i<128; i++) q[i] = 0;

In FPGA programming using HLS-C, however, the above four arrays are essen-

tially different from each other and cannot be cast to and used as other types. We

use Statement #1 and #3 in List 3.1 to explain the difference. Statement #1 defines

a 1024-entry byte array, which is synthesized into an on-chip BRAM buffer with

width 8 bits and depth 1024. In other words, an accelerator can at most read a byte

of data in each FPGA cycle from this buffer, and thus takes at least 1024 cycles to

traverse it. In contrast, Statement #3 represents a BRAM buffer with width 32 bits

and depth 256, indicating that it can be traversed in 256 FPGA cycles with each

cycle reading 32-bit data. In fact, SDAccel supports a BRAM buffer to have up to

512-bit data width, but primitive C types have at most 64-bit width. As a result,

the DRAM bandwidth utilization can achieve at most 12.5% of the ideal value, and

will be less than 2% of the ideal value if the buffer is defined as the char type.

The above analysis makes it clear that programmers can increase the BRAM

bandwidth utilization by declaring BRAM buffers used for explicit data caching with

larger widths. HLS-C provides a large-width integer type template - ap int<W>,

where W denotes the width of the data type. Harnessing this template, we propose
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the scratchpad reorganization technique to increase DRAM-BRAM transfer band-

width.

Fig. 3.5(d) illustrates the proposed approach which makes two major changes on

the accelerator architecture. First, we replace the three BRAM buffer groups, X, Y

and Z in Fig. 3.5(c), with three new BRAM buffer groups with the same capacity

but larger width. The value of the buffer width is restricted to be the power of two

between 8 and 512, so as to be compatible with C types and the AXI bus width

(512 bits) between the accelerator and DRAM. Second, we add another BRAM layer

which is identical to that in Fig. 3.5(b), i.e., one of the X, Y and Z in Fig. 3.5(c).

In other words, while the three buffer groups are updated with larger width, we still

keep a copy of the original, normal-width buffer group to directly communicate with

PEs. Given these architectural changes, the load, compute and store procedures are

updated as follows.

• Load. Loading input data from DRAM to one of the large-width BRAM buffer

group

• Compute.

- Transferring input data from the large-width to normal-width BRAM buffer

groups

- Parallel computing, which remains unchanged

- Transferring output data from the normal-wdith to large-width BRAM buffer

groups

• Store. Storing output data from one of the large-width BRAM buffer group

back to DRAM
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The code update to implement this scratchpad reorganization strategy is illus-

trated in Fig. 3.4(d). This approach increases the computation time by adding two

BRAM-BRAM data transfers in the compute function. However, since the bottle-

neck is on the DRAM side, and both the large-width and normal-width buffer groups

are partitioned, thus transferring data in parallel, the overhead on computation does

not seriously harm the overall performance.

Resource constraints play an important role in applying scratchpad reorganiza-

tion. Given a certain capacity, a BRAM buffer with a larger width usually consumes

more BRAM blocks. Specifically, a BRAM block in the Virtex-7 fabric has a 18Kb

capacity with at most 36-bit width. It costs at least 8 blocks to construct a 256-bit

BRAM buffer, and 15 blocks for a 512-bit buffer. For an accelerator design with 128

PEs, it costs at least 5760 BRAM blocks to allow 128 large-width BRAM buffers for

all three buffer groups, while there are only around 3000 BRAM blocks available on

the FPGA fabric. Therefore, a systematic design space exploration approach is nec-

essary to eliminate the manual effort in identifying the optimal resource allocation

strategy, which leads to our CPP analytical model presented in Section 4.3.

As shown in Fig.3.10, for the scratchpad reorganization strategy, the KMP and

AES kernels achieve significant speedups since their original input/output types are

the 8-bit char type. A char -type BRAM buffer can be enlarged to an int-type buffer

without even consuming any more BRAM, since a BRAM block can be configured

into a up-to-36-bit buffer. As a consequence, these two kernels can be greatly im-

proved via scratchpad reorganization without consuming too much BRAM. On the

other hand, kernels such as SPMV and GEMM have already used wider C types,

such as int, float and double. Each increment of the buffer width may lead to up to

2× BRAM consumption, and the speedup is thus limited.
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Figure 3.10: Performance improvement by applying five optimization techniques step

by step (accumulative).

List 3.2 presents the complete AES kernel code after applying all five optimization

strategies, and Fig. 3.10 summarizes the performance improvement of each optimiza-

tion strategy in the refinement steps. Except for the SPMV and BFS kernels that

have been determined non-acceleratable in our experimental platform even before

applying any refinement strategy (see Table 3.4 in Section 3.6), all the kernels have

outperformed CPU by at least 4.7×. 50% of the kernels achieve at least an order-of-

magnitude speedup. Meanwhile, compared to the naive accelerators generated from

the original software kernels in MachSuite, the proposed flow brings 42∼29,030×

performance improvement, which demonstrates the effectiveness of our best-effort

code reconstruction practice of five refinement strategies.

List 3.2: The complete AES kernel code after applying all five strategies.

// BATCH_SIZE: the size of data cached on chip

// PE_NUM: the number of PE replicas

// PE_BATCH: the size of data processed by each PE

int PE_BATCH = BATCH_SIZE / PE_NUM;
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// aes(...): performing the main computation; its body is elided

void aes(char data[]) {

...

}

// load(...): load off-chip data to on-chip buffer

void load(ap_uint<512> buf[PE_NUM][PE_BATCH/64], char *in) {

for (int i=0; i<PE_NUM; i++) {

memcpy(buf[i], in+i*PE_BATCH/64, PE_BATCH);

}

}

// store(...): store on-chip data off chip

void store(char *out, ap_uint<512> buf[PE_NUM][PE_BATCH/64]) {

for (int i=0; i<PE_NUM; i++) {

memcpy(out+i*PE_BATCH/64, buf[i], PE_BATCH);

}

}

// compute(...): employing a set of PEs for computation

void compute(ap_uint<512> large_buf[PE_NUM][PE_BATCH/64]) {

char normal_buf[PE_NUM][PE_BATCH];

#pragma HLS array_partition var=normal_buf dim=1

for (int i=0; i<PE_NUM; i++) {

#pragma HLS unroll

// SDAccel does not support using memcpy(...) between two arrays

// We use it here for simplicity

memcpy(normal_buf[i], large_buf[i], PE_BATCH);

for (int j=0; j<PE_BATCH; j+=16) {
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#pragma HLS pipeline

aes(&normal_buf[i][j]);

}

// Same as the memcpy(...) call above

memcpy(large_buf[i], normal_buf[i], PE_BATCH);

}

}

// kernel(...): the top-level computation kernel function

void kernel(ap_uint<512> *data, int size) {

ap_int<512> large_buf[3][PE_NUM][PE_BATCH/64];

#pragma HLS array_partition var=buf_data dim=1

#pragma HLS array_partition var=buf_data dim=2

// Here we omit the code for boundary cases for simplicity

for (int i=0; i<size/BATCH_SIZE; i++) {

switch(i % 3) {

case 0:

load(large_buf[0], data+i*BATCH_SIZE/64);

compute(large_buf[1]);

store(data+i*BATCH_SIZE/64, large_buf[2]);

break;

case 1:

load(large_buf[1], data+i*BATCH_SIZE/64);

compute(large_buf[2]);

store(data+i*BATCH_SIZE/64, large_buf[0]);

break;

default: // case 2
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load(large_buf[2], data+i*BATCH_SIZE/64);

compute(large_buf[0]);

store(data+i*BATCH_SIZE/64, large_buf[1]);

break;

}

}

}

3.6 Discussion

Section 3.3, 3.4 and 3.5 present our best-effort code reconstruction practice. We can

see from our step-by-step evaluation results that this practice does benefit a variety of

computation kernels. In this section, we further discuss a series of important issues

about to what extent this best-effort practice shorten the gap between software

programs and hardware behavioral descriptions, what problems it still leave, and in

what direction we should move on to further improve the FPGA programmability.

Adaptability. We first discuss what types of computation kernels are better bene-

fited by our best-effort practice. First, kernels that are compute-intensive have the

potential to be accelerated by the platform. The two kernels that do not achieve

speedup are both communication-intensive kernels. The MachSuite BFS kernel sim-

ply traverses all the nodes in a graph without doing any computation, and sparse

matrix-vector multiplication is a well-known communication-intensive problem. Such

communication-intensive kernels often lead to a serious data transfer overhead com-

pared to the CPU execution, which can probably be detected by the CPU-FPGA
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communication time measurement.

While previous work often omits host-device communication when calculating

speedup, our study considers the system-level speedup that includes all the compu-

tation off- loading overhead from a CPU to an FPGA, which is more practical in real

deployment of FPGAs in servers. In our platform that uses the PCIe connection be-

tween the CPU and FPGA, we calculate the PCIe transfer time as the elapsed time

of data movement from the host memory to the device memory through PCIe-based

direct memory access (DMA). Although the optimization on PCIe transfer is beyond

the scope of this study (and is addressed in Chapter 5), the PCIe transfer time (or

more generally, the CPU-FPGA communication time) serves as a valuable indicator

to filter out the FPGA acceleration for communication-bounded kernels before any

refinement.

Table 3.4 lists the PCIe transfer time of the MachSuite kernels used in the pa-

per. Each kernel’s PCIe transfer time is normalized to its execution time on the

Xeon CPU. While most kernels have negligible PCIe transfer time and large speedup

potentials, the BFS and SPMV kernels show severe PCIe transfer overheads This

explains why the BFS and SPMV kernels are not accelerated in our experimental

platform.

Table 3.4: PCIe transfer time normalized to CPU runtime

Kernel PCIe Kernel PCIe Kernel PCIe

AES 2.2× 10−3 BFS 0.8 GEMM 6.0× 10−4

KMP 5.9× 10−2 NW 1.5× 10−3 SORT 4.9× 10−3

SPMV 1.3 VITERBI 1.4× 10−2

Moreover, kernels that conceive massive task-level parallelism can be accelerated.
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The FPGA fabric consists of a great many distributed computation and memory

building blocks and is naturally fit for applications with a large number of paral-

lel tasks. As will be discussed in Chapter 5, we have explored the integration of

FPGA accelerators into Apache Spark applications that feature massive degree of

parallelism.

Finally, our best-effort practice benefits kernels that spend a large portion of

time on loop blocks. Programmers can customize a hardware pipeline for a loop

block through just a pragma, which allows multiple loop iterations to be executed

simultaneously in a pipeline. In addition, PE replication that enables task-level

parallelism can also be easily programmed through a pragma to unroll the loop with

proper memory partitioning pragmas.

Moving Software Programs Closer to Hardware Descriptions. One of the

most fundamental differences between software programs and hardware behavioral

descriptions is that explicit manipulation of the cache memory system is required

in accelerator programming. Both CPU and FPGA architectures require program-

mers to specify algorithms, but the former virtualize to programmers a low-latency

memory system through hardware-supported cache hierarchy. FPGAs, contrarily,

supplies programmers with on-chip scratchpads that have more flexibility, but the

fulfillment of this flexibility advantage requires explicit program statements. There-

fore, almost all the suggested strategies are doing various on-chip scratchpad ma-

nipulations, e.g., explicit data caching, memory partitioning, double buffering and

scratchpad reorganization. As a result, our best-effort practice effectively shortens

the gap.

However, while pinpointing results guide the accelerator refinement to move for-
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ward, resource constraints let programmers feed back to the design choice made in

prior iterations. This is a critical issue to the best-effort practice since it is in-

evitable to lead to try-and-fails to find the best resource allocation approach. Worse

still, there is an exponential design space of resource distribution to various resource-

conflict optimization strategies. As a consequence, a systematic approach for design

space exploration is crucial to the improvement of the FPGA programmability.

Most prior work attempts to automatically search for the optimal solution for

an individual strategy, e.g., automatic data tiling. As an initial attempt, Wang et

al. [WHZ16] also proposes a performance analysis framework to guide designers in

choosing proper optimizations for OpenCL applications on Altera FPGAs. However,

they still target hardware designers and do not present convincing speedups over

CPU. A comprehensive decision-making mechanism across all the strategies applied

in an entire design flow was still an open problem, which motivates us to propose

our automated accelerator generation methodology to address it.

From Manual Refinement to Design Automation. It is always the ultimate

objective to make everything automated. While the paper delivers an encouraging

message that a software programmer may also make high-quality FPGA accelerators

without systematically learning RTL design expertise, the gap towards complete au-

tomation is still considerable. Most existing automation strategies, as we summarize

in Section 2.4.1, focus on one optimization problem and more or less make some re-

strictions to user programs. It implies that these strategies are not only specific but

hard to integrate together to form a comprehensive automation tool. For example,

if we first apply an optimal auto-caching approach, which tries to utilize as many

as memory to minimize computation latency, then other optimizations may have no

room to perform. Although some developers attempt to build system-level automa-
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tion frameworks [ZHX15, CHP16a], the lack of a mature open source infrastructure

and community prevents researchers from contributing their solutions to coordinate

with others. Nonetheless, the proposed best-effort practice may serve as a direction

for researchers and vendors to develop an effective automation flow that works for a

broad class of applications. The AutoAccel framework that is going to be presented

in Chapter 4 is one in this direction.

3.7 Conclusion

While the FPGA is changing its role from special-purpose hardware to primary com-

puting resource, we demonstrate that a best-effort code reconstruction practice does

produce compelling FPGA accelerators, which lays the foundation for further de-

sign automation. For a wide class of applications from a state-of-the-art accelerator

benchmark suite MachSuite, our best-effort practice improves the naive accelerator

performance by 42∼29,030×, which is 34.4× faster than a Xeon CPU core. Regard-

ing the objective of shortening the gap between software programs and hardware

behavioral descriptions, the best-effort practice provides a promising direction, but

still leaves a great deal of manual effort. This inspires us to perform design automa-

tion on top of it to deliver a nearly push-button experience to end users.
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CHAPTER 4

Automated Accelerator Generation

This chapter presents our automated accelerator generation methodology. The

methodology is inspired by the pros and cons of the best-effort code reconstruction

practice. Specifically, we derive from the practice the composable, parallel, pipeline

(CPP) microarchitecture as an accelerator design template as the basis for automa-

tion. The proposed CPP analytical model and the automatic code transformation

framework AutoAccel avoids the manual try-and-fails for identifying the best design

configuration, and deliver a nearly-push button experience to end users1.

4.1 Overview

Our analysis study in the previous section delivers a best-effort code reconstruction

practice of five transformation strategies, which is applicable to a variety of computa-

tion kernels and leads to 42∼29,030× performance improvement of the accelerators.

We first summarize the transformation strategies as follows:

• Strategy #1: Explicit data caching.

• Strategy #2: Pipelining.

1This study is presented in [CWY18b]. I would like to convey my appreciation to all coauthors
for their contributions to this study.
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• Strategy #3: PE Replication.

• Strategy #4: Coarse-grained pipelining.

• Strategy #5: On-chip memory organization.

Through the demonstration of the best-effort practice and the further discussion,

we conclude that performing these transformations still require heavy code recon-

struction and intimate knowledge of hardware intricacies. In particular, these trans-

formations are intervened with each other in terms of performance and resource con-

sumption, which considerably increases the complexity of the performance-resource

trade-offs. Even for experienced hardware designers, it still requires a great deal of

effort to resolve such complicated trade-offs and identify the optimal design choice.

For instance, it takes a graduate student with solid HLS programming capabilities

many hours to perform the necessary code transformations for the AES kernel, and

a few extra days to figure out the optimal design parameters.

Motivated by the pros and cons of the best-effort practice, we propose the com-

posable, parallel and pipeline (CPP) microarchitecture that is derived from the best-

effort practice as an accelerator design template. By doing this, we significantly

reduce the design space from “anything possible” to only the scope of CPP. Then,

we perform design space exploration to realize the optimal configuration of the CPP-

based accelerator design to maximize the performance under the resource constraints.

In particular, we derive an analytical model to analyze and evaluate the design space

as well as the performance and resource consumption, and further propose a series of

pruning strategies to reduce the design space so that it can be exhaustively searched

within one hour. Finally, we develop the AutoAccel framework to automate the en-

tire accelerator generation process and provide end users with a nearly push-button

60



experience. Our experiments show that the AutoAccel-generated accelerators out-

perform their corresponding software implementations by an average of 72× for the

MachSuite computation kernels.

4.2 Accelerator Design Template

In this section we present our approach to automatically transform a user C program

to a high-quality accelerator behavioral description. We first formulate the problem,

and then introduce the CPP microarchitecture that serves as an accelerator design

template to address the problem.

4.2.1 Problem Formulation

Formally, this paper aims to solve the following problem: given an input C/C++

computational kernel that satisfies the following constraints, perform automatic code

transformation to the kernel under the hardware resource constraints so that the

performance of generated accelerator design is maximized.

• Synthesizable . The input kernel must be synthesizable via commercial HLS

tools. That is, it should not include recursive function calls or dynamic memory

allocation. However, this constraint does not affect the scope of supported

kernels since it is always possible for programmers to manually transform such

code structures to equivalent, synthesizable structures.

• Cacheable . The memory footprint of any single instance of the top-level loop

must be smaller than the FPGA on-chip memory capacity to ensure that the

kernel computation and external memory transaction can be fully decoupled.
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That is, no matter how large the kernel’s input is, we can divide it based on

each iteration’s need, and cache and process the data needed for at least one

loop iteration at a time.

We develop Algorithm 1 to determine whether an input program meets the con-

straints (we call this process legalization checking). Algorithm 1 accepts a HLS-

synthesizable computation kernel program as input, and traverses each top-level loop

(Lk) to determine whether it can be mapped to the CPP microarchitecture, wherein

the determination further depends on the following two factors.

Task-dependent vector chunk size . If the data of an input vector can be

split into different chunks, each of which can be processed by an individual PE, then

the input vector is called a task-dependent vector. For instance, in the AES kernel

the input data to encrypt can always be split into 128-bit chunks to process, no

matter how large the entire input data is. For each task-dependent input vector,

Algorithm 1 tries to analyze the minimum size of the data chunk to ensure that at

least one chunk can be entirely cached on chip. If the size is either not obtainable or

too large, then the kernel fails legalization checking.

Task-independent vector capacity . A task-independent vector, on the other

hand, is an input vector that is shared by all PEs. The input encryption key of

the AES kernel, which is apparently needed by all encryption instances, serves as

a perfect example of the task-independent vector. Algorithm 1 tries to analyze the

capacity of each task-independent vector to ensure that the on-chip BRAM blocks

can hold at least one copy of it. If the capacity is either not obtainable or too large,

then the kernel fails legalization checking.

We perform legalization checking by traversing an abstract syntax tree (AST).
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We analyze the iteration domain to reason kernel accessed data size by the polyhedral

analysis from [PZS13].

Algorithm 1 Legalization Checking
Require: A C computation kernel K that is HLS-synthesizable.

Ensure: For each top-level loop Lk if it can be mapped to the CPP microarchitecture.

1: for each Lp ∈ Lk do

2: Aref ← ∅

3: for each A ∈ K .InterfaceArrays() do

4: if I ← A.GetRefIdxOf(Lp) = ∅ then

5: Aref .insert(A)

6: else

7: for each i ∈ I do

8: (a, b)← i.GetCoeffAndOffset()

9: if hasIter(a) ∨ hasIter(b) ∨ b > a then

10: continue

11: end if

12: end for

13: end if

14: end for

15: TotalSize← 0

16: for each A ∈ Aref do

17: if Not(s← A.GetArraySize()) then

18: continue

19: end if

20: TotalSize← TotalSize+ s

21: end for

22: if TotalSize > BRAMSize then

23: continue

24: end if

25: return True

26: end for

27: return False

Based on our problem formulation, computational kernels featuring extensive ran-

dom accesses on a large memory footprint, e.g., PageRank [PBM99] and the breadth-
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first search (BFS) algorithm, will probably not meet the Cacheable constraint. On

the contrary, computational kernels that process input data block by block generally

meet these constraints. In fact, almost all streaming and batch processing kernels

with regular data-level parallelism fall into this category. These kernels are also well-

known to potentially benefit from FPGA acceleration. For the kernel that satisfies

the above constraints, we implement it using our proposed microarchitecture, which

we will discuss in the following section, to bound the design space.

4.2.2 Composable, Parallel, Pipeline Microarchitecture

The composable, parallel, pipeline (CPP) microarchitecture is proposed as a tem-

plate of accelerator designs. For an input kernel that meets the above constraints,

our approach first fits the kernel into the CPP microarchitecture, then performs de-

sign space exploration to identify the optimal parameter configuration, and finally

transforms the input kernel code to the CPP microarchitecture description code.

The CPP microarchitecture guarantees the quality of the output accelerator design

by providing a series of features to realize the transformations we summarized in

Section 4.1. In the remainder of this section, we introduce the key features of the

CPP microarchitecture using the AES benchmark.

Feature #1: Coarse-grained pipeline with data caching. The overall CPP

microarchitecture consists of three stages: load, compute and store. The kernel

function in the AES source code only corresponds to the compute module instead

of defining the entire accelerator. The input data to encrypt are processed block

by block, i.e., iteratively loading a certain number of 128-bit data chunks into on-

chip buffers (Stage load), encrypting these chunks (Stage compute), and storing
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the encrypted data chunks back to DRAM (Stage store). This feature is derived

from Strategy #1 because off-chip data movement only happens in the load and

store stages, leaving data accesses of computation completely on chip. In general,

as far as the input kernel meets the Cacheable constraint, it is able to fit into this

load-compute-store execution process.

The load and store modules connect to two input and output DRAM buffers,

respectively, through AXI channels. The bit-widths of these buffers, i.e., the data

widths of the AXI channels, are decoupled from the type sizes of the top-level function

arguments. This allows the off-chip data transfer to be performed with the maximum

achievable throughput of the underlying CPU-FPGA platform. Furthermore, if no

dependency or only forward dependency exists between different blocks of input, the

load, compute and store stages of different blocks can be processed in pipeline, and

these three stages then form a coarse-grained pipeline that overlaps computation

with off-chip data communication. This feature of the CPP microarchitecture could

further improve the effective bandwidth of the accelerator. Strategy #4 is realized

as well.

Feature #2: Loop scheduling. The CPP microarchitecture tries to map every

loop statement presented in the computational kernel function to either 1) a circuit

that processes different loop iterations in parallel, 2) a pipeline where the loop body

corresponds to the pipeline stages, or 3) a combination of both. As for the AES

example, the loop statement in the kernel function is mapped to a set of PEs to

process the sequence pairs in parallel. The loop statements in each PE are mapped

to parallel and pipeline circuits as well. This realizes Strategy #2 and #3.

Feature #3: On-chip buffer reorganization. In the CPP microarchitecture, all
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the on-chip BRAM buffers are partitioned to meet the port requirement of parallel

circuits, where the number of partitions of each buffer is determined by the dupli-

cation factor of the parallel circuit that connects to the buffer. This feature is used

for realizing Strategy #5. In the AES example, the on-chip buffers that cache the in-

put and output sequence pairs are partitioned into multiple segments, each segment

feeding one PE.

In summary, the CPP microarchitecture provides these features to realize the

aforementioned transformations so as to ensure the quality of output accelerator

designs. Moreover, the use of an accelerator design template implies a clear design

space: all valid configurations of the CPP microarchitecture. We analyze the design

space in the following section.

4.2.3 Design Space Analysis

The CPP microarchitecture design space is determined by all its loops and external

memory buffers, which is formulated as follows:

A = {L,B} (4.1)

whereA denotes the overall design space, and L and B mean the loop set and external

memory buffer set, respectively.

We then formulate the possible scheduling of loops as follows:

∀L ∈ L, L = {(α, β) | 1 < α < Ltc, β = {0, 1}} (4.2)

66



where α is the integer unroll factor of loop L with trip count Ltc as its maximum,

and β is a binary variable to indicate if the pipeline scheduling is enabled or not. As

a result, the design space complexity of L is O(2m×
∏

L∈L Ltc) where m denotes the

total number of loops.

Finally, the possible design choices for external memory buffers can be represented

as follows:

∀B ∈ B, B = {(µ, ν) | 8 ≤ µ ≤ 512, 0 ≤ ν ≤ CBRAM}∑
B∈B

Bν ≤ CBRAM
(4.3)

where µ and ν are the integer bit-width and the capacity of the on-chip memory

buffer that caches a certain external memory buffer B, respectively. CBRAM denotes

the total capacity of all BRAM blocks. Thus, the design space complexity of B is

O((512× CBRAM)n), where n denotes the total number of buffers.

Consequently, the overall design space complexity is O((512× CBRAM)n × 2m ×∏
L∈L Ltc), which is too large to be explored exhaustively. In fact, even the NW

motivating example contains roughly 1.4 × 1017 design points. To rapidly find the

optimal design choice among such a tremendous design space, we analytically model

performance and resource utilization in Section 4.3, and introduce our design space

exploration flow with a series of pruning strategies in Section 4.4.
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4.3 CPP Analytical Model

This section presents our analytical model to quantify performance and resource

consumption of the CPP microarchitecture. While a number of previous studies

have attempted to model FPGA designs [KDP16, WHZ16, ZMS16, ZPL16, ZPW17,

Zha17], our model targets at a well-defined accelerator microarchitecture and thus

features a highly accurate modeling of the utilization of the FPGA on-chip resources.

On the other hand, some of the existing models for general FPGA accelerator designs

focus on only the performance estimation [ZMS16, WHZ16]. Although others also

have the model for different kind of resources [KDP16, ZPL16, ZPW17, Zha17],

their LUT models are either based on machine learning [KDP16, ZPW17] or even

missing [ZPL16, Zha17] (see Section 2.4.1).

4.3.1 Performance Modeling

The performance model estimates an accelerator’s overall execution cycle (C)

through Eq. 4.4:

C = max(Cl + Cs, Cc) (4.4)

where Cl, Cc and Cs denote the cycles of the load, compute, and store modules,

respectively. Since the load and store modules share the off-chip bandwidth in our

experimental platform, we make a maximum operation between the cycles of the

load/store modules and that of the compute module.

The execution cycles of the load, compute and store modules, as well as all of their
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submodules, can be quantified as the total cycles of all the loops (Cloop), submodules

(Cmod) and standalone logic (Cr), as shown in Eq. 4.5.

Cmod(M) =
∑

i∈M.loops

Cloop(i) +
∑

m∈M.mods

Cmod(m) + Cr(M) (4.5)

where M denotes an arbitrary hardware module.

Then we model the loop execution. Although a loop statement can be scheduled

in pipeline, parallel, or the combination of both, the first two can be treated as

special cases of the last one, and can together be modeled as Eq. 4.6:

Cloop(L) = Citer(L) + II(L)× TC(L)

UF (L)
(4.6)

where L denotes an arbitrary loop; Citer, II, TC and UF denote the iteration latency,

initiation interval, trip count and unroll factor, respectively.

Subsequently, we break down and model the loop iteration in Eq. 4.7, where the

loop iteration latency is composed of the total cycles of all the sub-loops, submodules

and standalone logic.

Citer(L) =
∑

i∈L.loops

Cloop(i) +
∑

m∈L.mods

Cmod(m) + Cr(L) (4.7)

Eq. 4.5 and Eq. 4.7 reflect the architecture hierarchy with nested modules and

loops. The proposed model recursively traverses all the loops and modules until a

loop or module does not contain any sub-structures. In addition, we can find that
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Eq. 4.5 and Eq. 4.7 are almost identical. This is because the loop iteration can be

treated as a special “module” and modeled in the same way for both performance

and resource.

4.3.2 Resource Modeling

The resource model estimates the consumptions of the four FPGA on-chip resources:

BRAMs, LUTs, DSPs and FFs. As the DSP model is fairly straightforward and the

FF model is similar to the LUT model, we only demonstrate the BRAM and LUT

models.

BRAM modeling : The BRAM consumption of a hardware module consists of

the BRAM blocks used by all its local buffers (Rmem
buf ) and those used by all its

submodules (Rmem
mod ), as shown in Eq. 4.8:

Rmem
mod (M) =

∑
b∈M

Rmem
buf (b) +

∑
m∈M.mods

Rmem
mod (m)×DF (m) (4.8)

where DF (m) is the duplication factor of submodule m which is equivalent to the

unroll factor of the loop that includes this submodule. We use “duplication factor”

instead of “unroll factor” since the former is a better fit for depicting hardware

modules, and the latter is more suitable for describing loop statements.

Then we model the BRAM consumption of on-chip buffers. A buffer’s BRAM

consumption is determined by three factors: 1) partition factors on all dimensions,∏
d∈dim(B) PF (d); 2) the size of unit partition, d S(B)∏

d PF (d)
e; and 3) the bit-width of the
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buffer, bw(B), as shown in Eq. 4.9:

Rmem
buf (B) =

∏
d∈dim(B)

PF (d)× V
(
d S(B)∏

d PF (d)
e, bw(B)

)
(4.9)

Eq. 4.9 adopts a function V (s, bw) in [CWY17] (Eq. 4) to calculate the BRAM

consumption of a single partition. The two parameters are the size (s) and the

bit-width (bw) of the partition. Eq. 4.10 presents its expression:

V (s, b) = d s

Nblk(b)× Sunit
e ×Nblk(b) (4.10)

Nblk(b) = d b

bphy
e (4.11)

where Sunit denotes the size of a BRAM block that is a platform-dependent constant.

Nblk(b) is also a function borrowed from [CWY17], which calculates the minimum

number of BRAM blocks needed to compose a buffer with bit-width b. Eq. 4.11

shows its expression, where bphy is a platform-dependent constant that represents

the largest supported bit-width of a BRAM building block.

LUT modeling : The LUT consumption of a hardware module (Rlut
mod) is composed

of the number of LUTs used by all loops, submodules, BRAM buffers (for control
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logic) and the standalone logic:

Rlut
mod(M) =

∑
l∈M.loops

Rlut
iter(l)× UF (l) +

∑
b∈M.bufs

Rlut
buf (b)

+
∑

m∈M.mods

Rlut
mod(m)×DF (m) +Rlut

r (M)

(4.12)

where Rlut
iter depicts the LUT consumption of the loop iteration that is, again, treated

and modeled as a special “module.” Rlut
r denotes the LUT consumption of the

standalone logic.

Besides, the LUT usage of a loop iteration can be further decoupled and quantified

as follows:

Rlut
loop(L) =

∑
l∈L.loops

Rlut
iter(l)× UF (l) +

∑
m∈L.mods

Rlut
mod(m)×DF (m) +Rlut

r (L)

(4.13)

which is almost identical to Eq. 4.12. Since we always perform loop-invariant code

motion in advance, we guarantee that there has no BRAM used in the loop body.

We then model the LUT consumption of on-chip buffers (Rlut
buf ). It can be decou-

pled into two parts: 1) the control (Rlut
ctrl) and data (Rlut

data) signals of each BRAM

partition, and 2) the k-to-1 multiplexer (Rlut
mux(k)) that selects the desired data from

all the partitions, as shown in Eq. 4.14:

Rlut
buf (B) = Rmem

buf (B)× (Rlut
ctrl +Rlut

data) +Rlut
mux

 ∏
d∈dim(B)

PF (d)

× bw(B) (4.14)
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where Rlut
mux(k) can be calculated using Eq. 7 in [CWY17]. These equations quantify

the relationship between a buffer’s LUT consumption and its BRAM usage.

Because of the existence of non-linear equations in the proposed model, the prob-

lem of identifying the optimal CPP configuration is formulated as an integer non-

linear programming (INLP) problem which is not able to be solved in polynomial

time. Fortunately, like [CWY17], we can initialize the model by running HLS once

(for cycle and BRAM) or twice (for DSP, LUT and FF) to obtain the values of a

subset of parameters, since such parameters remain constant once the CPP microar-

chitecture is constructed: Cr(M), II, TC, Cr(L), Sunit, bphy, R
lut
r (M), Rlut

ctrl and

Rlut
data.

We use the performance modeling for an example kernel in List 4.1 to demonstrate

this process. List 4.1 presents a kernel of integer vector addition, which accepts

an integer vector as input, adds each element with a fixed integer 7, and writes

the results back to the same vector. The macros NUM PE and PE SIZE are design

parameters whose different possible values will be explored to find the ones that lead

to the optimal performance.

List 4.1: Integer vector addition kernel code.

#define OVERALL_SIZE 4194304

#define NUM_PE 2

#define PE_SIZE 1024

#define BATCH_SIZE ((NUM_PE)*(PE_SIZE))

void load(int in_buf[NUM_PE][PE_SIZE], int input, int size, bool flag) {

if (!flag) return;
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memcpy(in_buf, input, size);

}

void store(int out_buf[NUM_PE][PE_SIZE], int output, int size, bool flag) {

if (!flag) return;

memcpy(output, out_buf, size);

}

void pe(int buf[PE_SIZE]) {

for (int i=0; i<PE_SIZE; i++) {

#pragma HLS pipeline

buf[i] += 7;

}}

void compute(int buf[NUM_PE][PE_SIZE], bool flag) {

if (!flag) return;

for (int i=0; i<NUM_PE; i++) {

#pragma HLS unroll

pe(buf[i]);

}}

void kernel(int* data) {

int buf_x[NUM_PE][PE_SIZE];

#pragma HLS array_partition variable=buf_x dim=1 complete

int buf_y[NUM_PE][PE_SIZE];

#pragma HLS array_partition variable=buf_y dim=1 complete

int buf_z[NUM_PE][PE_SIZE];

#pragma HLS array_partition variable=buf_z dim=1 complete

int num_batches = OVERALL_SIZE / BATCH_SIZE;

for (int i=0; i<num_batches+2; i++) {
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if (i % 3 == 0) {

load(buf_x, data+i*BATCH_SIZE, BATCH_SIZE*sizeof(int), i<num_batches);

compute(buf_z, i > 0 && i < num_batches+1);

store(buf_y, data+(i-2)*BATCH_SIZE, BATCH_SIZE*sizeof(int), i>1);

}

// coarse-grained pipelining, elided for brevity

else if (i % 3 == 1) {...}

else {...}

}}

The first step of the modeling process is to obtain the kernel code hierarchy by

parsing the input program. The output of this step is illustrated in Fig. 4.1 (a). We

can see that the trip counts and unroll/pipeline information are collected as well.

Next, a C-to-RTL synthesis instance is performed. By parsing the synthesis report,

we obtain sufficient information to establish the model. Fig. 4.1 (b) illustrates the

cycle data retrieved from the report; Fig. 4.1 (c) illustrates the cycle data (mainly

cycles for various standalone logic) derived from them. Finally, when another set of

design parameters are explored, e.g., changing NUM PE from 2 to 4 to explore a larger

loop unroll factor, the established model can be used to directly calculate the overall

execution cycle, as shown in Fig. 4.1 (d).

4.4 Design Space Exploration

Fig. 4.2 illustrates our design space exploration (DSE) flow. The DSE flow first

initializes the analytical model by performing HLS synthesis instances and parsing

the generated reports, and then fetch the set of design parameters from the C kernel
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code. As we pointed out in the previous section, exhaustively searching in such

a tremendous design space is impractical. As a result, we propose the following

strategies to prune the design space:

Small loop flatten: Empirically, it is better to flatten the innermost loops with

fixed, small trip counts. For one thing, it provides more opportunities for HLS to

generate a more efficient scheduling. For another, it exerts moderate pressure on the

overall resource utilization. As a result, we make an ad hoc strategy to fully unroll

innermost loops with trip count less than 16.
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(a) Static code analysis (b) Retrieving synthesis report

(c) Model establishment (d) Applying model to new case

Figure 4.1: Step-by-step demonstration of the performance modeling process.
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Power-of-two bit-widths: We prune the design space by only searching the power-

of-two bit-width values. We note that this pruning strategy covers the optimal design

point because the BRAM utilization would be the same for all bit-width values that

have the same rounding up the the power of two.

Power-of-two buffer capacities: In general, setting the capacity of each on-

chip buffer to be a power-of-two value achieves the highest efficiency for the buffer

control logic. In fact, commercial tools such as Xilinx SDAccel usually round up the

capacity of user-defined on-chip buffers to the nearest power-of-two value by default.

Therefore, it does not lose optimality to apply this pruning strategy.

Loop unroll factor pruning: Loop unroll factors determine the number of on-chip

BRAM partitions. This number is bounded by the total number of BRAM blocks

available for user-defined accelerators, which is approximately a few thousand. This

pruning strategy is particularly beneficial for programs with deep, complicated loop

hierarchy.

Saddleback search for loop unroll factors: The search problem of all loop

unroll factors can be formulated as finding a particular value in a N -dimension

matrix where the values are sorted in each individual dimension. N denotes the

total number of loops. The formulation is based on the following theorem.

Theorem 1. For unroll factor Lα of loop L in the design parameter set, the overall

execution cycle C is negatively correlated to Lα; the consumption of any type of

resource R is positively correlated to Lα.

Proof. For an arbitrary loop L in a computation kernel, the partial derivative of its
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unroll factor Lalpha, based on Eq. 4.6, can be simplified as

d

dLα
C = −k × 1

L2
α

(4.15)

where k is a positive number. It will remain negative.

Also, the partial derivative for any type of resource, based on Eq. 4.8 (for BRAMs)

and Eq. 4.13 (for LUTs), can be simplified as

d

dLα
R = k (4.16)

where k is a positive number. It will remain positive.

Theorem 1 indicates the monotonicity of the performance and resource models

with respect to any individual loop unroll factor. This property of monotonicity

implies two strategies for design space reduction. First, we can perform binary

search on the domain of any single loop unroll factor, especially the one with the

largest domain. For many computation kernels, e.g., AES, the domain for the unroll

factor of the outermost loop is orders-of-magnitude larger than those of all the other

loops, where the binary search strategy turns out to be dramatically effective, e.g.,

300× design space reduction.

On the other hand, for any two-dimensional M ×N matrix (assuming M ≥ N)

where each row and column is sorted, the matrix can be searched through via an

O(M) algorithm, the Saddleback search algorithm [Bir06]. If M is not far larger
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than N , Saddleback search will perform better than binary search. By consid-

ering both strategies and applying the one in favor in different cases, we can re-

duce the time complexity of searching all loop unroll factors from O(
∏

L∈L Ltc) to

O(
∏

L∈L∧L/∈{Lp,Lq} Ltc×Lp× log Lq
Lp

), where Lq and Lp denote the unroll factors of the

two loops with the largest trip counts. This strategy works very well for programs

with shallow loop hierarchies.

Merlin Code Transformation High-level Synthesis Analytical Model Initialization
Baseline in HLS C HLS Report

Microarchitecture Analysis

Full Design Space

Model Initialization
C kernel code w. parameters

Optimized Kernel Code

Design Space Pruning Pruned Design Space

Design SpaceExploration
Figure 4.2: Design Space Exploration Flow

Fine-grained pipeline pruning: In general, loop pipelining achieves higher re-

source utilization and better performance than parallelism in most cases. Formally,

we derive the following theorem to realize the loop that is always benefit pipeline.

Theorem 2. Given a loop L with trip count Ltc, iteration latency CL and resource

consumption Rnp
L before enabling pipelining, and initiation interval IIL and resource

consumption Rp
L after enabling pipelining. Enabling pipelining is always better if

Lα
Ltc
≤ (e− 1) for unroll factor Lα of L, where e = CL/IIL

RpL/R
np
L

.

Proof. Since the unroll factor Lalpha is the number of pipelined PE replicas, the
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overall resource consumption (R) of the entire pipelined design is

R = Lα ×Rp
L (4.17)

The same amount of resource can then generate the following number of non-

pipelined PEs (Nnp):

Nnp = b R
Rnp
L

c ≤ R

Rnp
L

(4.18)

Next, we quantify the execution cycles for the loop L in both pipelined (Cp) and

non-pipelined (Cnp) cases.

Cnp = CL × d
Ltc
Nnp
e ≥ CL ×

Ltc
Nnp

≥ CL ×
Ltc

R/Rnp
L

(4.19)

Cp = IIL × d
Ltc
Lα
e (4.20)

To ensure that the pipelined design is better, i.e., Cp ≤ Cnp, we can have

CL ×
Ltc

R/Rnp
L

≥ IIL × d
Ltc
Lα
e (4.21)
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Denote CL/IIL
RpL/R

np
L

by e, the above equation is equivalent to

e ≥ Lα
Ltc
× dLtc

Lα
e (4.22)

The condition Lα
Ltc
≤ (e− 1) can ensure the validation of the above equation.

The e in Theorem 2 means the efficiency of enabling pipelining for loop L. Theo-

rem 2 illustrates that when e ≤ 1, the pipeline implementation is inherently inefficient

and should always be disabled. On the other hand, the pipeline implementation is

much more efficient than the sequential design and should always be enabled when

e ≥ 2. Finally, when 1 < e < 2, the unroll factor should not be too large so that the

pipelined PE is able to process a sufficient number of loop iterations to ensure the

pipeline efficiency.

Although pipelining is generally favorable because of its dramatic performance

boost with merely a small amount of resource overhead. However, theorem 2 reveals

the fact that it might not always be a preferable design choice. In actuality, applying

the pipeline pragma to a loop structure may even decrease the efficiency of resource

utilization. List 4.2 demonstrates such an example. It is the code snippet of the

most time-consuming loop statement in the kernel. The pipeline pragma of the

outermost loop leads to a II = 16 pipeline that consumes 75 DSPs; meanwhile, the

design without the pragma consumes only 30 DSPs and has a 26-cycle loop iteration

latency. That is to say, the 1.6× cycle reduction is traded with a 2.5× resource

consumption.
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The reason for this inefficient resource utilization is that the optimization objec-

tive of the pipelining strategy is to minimize the II of the loop. However, the price

to pay for this objective is sometimes too high to afford, just like this example case.

Consider the job that we want to schedule two independent floating-point addition

operations. Since the latency for a floating-point addition is about eight cycles,

we can achieve a minimum eight-cycle latency by employing six DSPs (one adder

needs three DSPs). However, if a nine-cycle latency is tolerable, then one adder of

3 DSPs will be sufficient. That is, a one-cycle improvement is traded by 2× DSP

consumption.

List 4.2: Code snippet of the VITERBI kernel where applying loop pipelining results

in an inefficient design

// Iteratively compute the probabilities over time

L_timestep: for( t=1; t<128; t++ ) {

#pragma HLS pipeline

L_curr_state: for( curr=0; curr<5; curr++ ) {

#pragma HLS unroll

// Compute likelihood HMM is in current state and where it came from.

L_prev_state: for( prev=0; prev<5; prev++ ) {

#pragma HLS unroll

p = llike[t-1][prev] +

transition[prev*5+curr] +

emission[curr*5+obs[t]];

if (!prev || p < min_p) {

min_p = p;

}
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llike[t][curr] = min_p;

}

}

}

Taking our motivating example as an instance, the design space is reduced from

1.4 × 1017 to only 3.2 × 106 by applying the above strategies. The scale of reduced

design space is sufficient to be searched within an hour even using a single modern

CPU core.

4.5 Experimental Evaluation

In this section we first present the AutoAccel framework that automates the entire

accelerator generation process. Then we describe our experimental setup, followed

by the evaluation of the model accuracy as well as the performance of the generated

accelerators.

4.5.1 AutoAccel Framework

As shown in Fig. 4.3, we implement a push-button framework called AutoAccel that

takes a nested loop in C as input and performs a series of transformations to pro-

duce a high-quality FPGA accelerator under the CPP microarchitecture. AutoAccel

is implemented on top of the Merlin compiler [mer, CHP16a], a source-to-source

transformation tool for FPGA acceleration based on the CMOST [ZHX15] compila-

tion flow. The Merlin compiler takes C/C++ programs with user directives as input,

and generates the optimized accelerator kernel code automatically. It provides a li-
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brary of code transformation primitives which are leveraged by AutoAccel to agilely

construct the CPP microarchitecture. On the other hand, without the need for users

to manually insert directives in the input code, the CPP microarchitecture provides

an automated way to organize these primitives to come up with high-quality designs.

Subsequently, we use static analysis to extract the necessary information (e.g., loop

trip count) to form the design space. Then the design space exploration flow we

introduced in the previous section is adopted to realize the best design specifica-

tion in minutes. This design can be directly fed into Xilinx SDAccel to produce a

high-quality accelerator bitstream.

C kernel code CPP Construction Design Space Exploration
Optimized Kernel Code

Commercial FPGA Design Flow
Accelerator Bitstream

Figure 4.3: AutoAccel Framework Overview

4.5.2 Experimental Setup

The evaluation of AutoAccel is performed on the mainstream PCIe-based CPU-

FPGA platform with the Xilinx SDAccel design flow. Table 4.1 lists the detailed

hardware and software configuration. An Xeon CPU is connected with a Xilinx

Virtex-7 FPGA board through the PCIe interface. For a fair comparison, both the

CPU and the FPGA fabric were launched in 2012. On top of the platform hard-

ware, we use Xilinx SDAccel to provide a hardware-software co-design environment.

To evaluate the AutoAccel framework, we use the MachSuite benchmark suite that

contains a broad class of computational kernels programmed as C functions for accel-

erator study. For each kernel, MachSuite provides at least one implementation that

is programmed without the consideration of FPGA acceleration, which makes it a
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natural fit for demonstrating AutoAccel. Please note that for computation kernels

like BFS that fail legalization checking, AutoAccel simply returns and lets CPU take

over their execution.

Table 4.1: Configuration of Hardware and Software

Host CPU Model Intel Xeon E5-2420 (12 cores) @ 1.9GHz

Host Memory 64GB DDR3-1600

FPGA Fabric Xilinx Virtex-7

Device Memory 8GB DDR3-1600 (Max Band.: 12.8GB/s)

CPU-FPGA Interface PCIe Gen3 x8 (Max Band.: 8GB/s)

Transformation Flow Merlin compiler 2017.1

Synthesis Flow SDAccel (SDx) 2017.2

4.5.3 Evaluation Results

We first evaluate whether the model-generated results are consistent with those col-

lected from HLS reports. In detail, we randomly select 20 design points for each

benchmark, and compare the performance and resource usage for each design point

between the model estimation and HLS report. Table 4.2 presents the average ab-

solute difference rates for all cases. We can see that the proposed model aligns

with the HLS report accurately on performance and BRAM/DSP usage, and also

results in only moderate differences on LUT/FF usage. The differences are lead

by the fact that the HLS tool adopts some resource-efficient implementations for

its building blocks when a design requires a large proportion of on-board resources.

For example, VITERBI includes a loop statement with initiation interval equaling

to 40 (II=40). The hardware circuit for this loop has some 25-to-1 multiplexers
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to select one floating-point number from 25 numbers. We observe that when the

number of PEs in the VITERBI design grows, the HLS tool automatically replaces a

fully-pipelined multiplexer implementation that consumes over 500 LUTs with the

implementation that consumes only 32 LUTs to 1) meet the II=40 restriction and 2)

save on-board resources. Since such dynamic optimization strategies are hard to be

captured in a static analytical model, a few percentages of differences on LUT/FF

usage is inevitable.

Table 4.2: Differences Between Model and HLS Reports

Parameter Perf. BRAM DSP LUT FF

Avg. error <1% <1% <1% 6.5% 4.3%

We then compare this result with the actual on-board result, and list the error

rate for each benchmark in Table 4.3. We can see that the average error rate among

all the benchmarks is only 6.2%. We further analyze the benchmarks with over 10%

error rate, i.e., AES and KMP. We find that such a relatively large error rate is mainly

because the accelerator designs for these benchmarks have a very small execution

time (∼10 ms). For these time frames, the start-up and end overhead bias the time

significantly. On the contrary, we also observe that the error rate of the model to

on-board execution is always less than 5% when a design has an over 100-millisecond

execution time. Hence, the proposed model is able to accurately predict the on-

board execution time of a design given that its execution time is tens of milliseconds

or larger.

We then evaluate the performance improvement of the generated FPGA acceler-

ator designs. Fig. 4.4 compares the performances between the naive implementation

of MachSuite, AutoAccel-generated accelerator designs, manual HLS designs and the
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Table 4.3: Differences Between Model and On-board Results

Bench. AES SPMV KMP FFT

Avg. err. 13.5% 9.5% 12.2% 0.1%

Bench. VITERBI NW STENCIL GEMM

Avg. err. 2.1% 1.1% 7.7% 3.3%

OpenMP-based multicore CPU implementations, all of which are normalized to the

performances of the corresponding single-core software implementations. We can

clearly see that AutoAccel-generated accelerators outperform the naive implemen-

tations by 27,000×, indicating that AutoAccel dramatically improves the quality of

accelerator designs without manual programming effort. Meanwhile, the AutoAccel-

generated accelerators also outperform the single-core software implementations by

72×, indicating that our approach does lead to competitive accelerator designs. Even

compared with the OpenMP-based multicore (12 cores in our experimental platform)

implementations, the FPGA accelerators are still competitive. The multicore imple-

mentations win the FPGA accelerators in merely two cases: SPMV and FFT. We

can clearly see that these two cases are the ones that the accelerators have the least

amounts of speedups, 1.6x and 3.8x over their single-core counterparts, respectively.

Both SPMV and FFT are floating-point intensive and require large memory band-

widths, which makes the multicore implementations the favorite.

We can also see that the manual designs only outperform the AutoAccel-generated

designs by an average 2.5×, even after we spent several days to weeks perform-

ing more sophisticated code reconstruction to each kernel. In fact, the AutoAccel-

generated designs for the AES, SPMV, KMP and STENCIL kernels have already achieved

the optimal performance since they have fully utilized the off-chip bandwidth. Al-

88



AES SPMV KMP FFT VITERBI NW GEMM STENCIL AVG
10-3

10-2

10-1

100

101

102

103
S
p
e
e
d
u
p

CPU

453.7x

1.6x

39.5x

3.8x
9.8x

16.0x
30.2x 21.5x

72.0x

Native Impl. Ours Manual Impl. (opt) OpenMP

Figure 4.4: Speedup over an Intel Xeon CPU Core

though we are able to further improve the performance of other kernels by manu-

ally applying very specialized circuit designs not covered by AutoAccel, e.g., Race

Logic [MSS14] for the NW kernel, AutoAccel still preserves a high quality of results

while substantially reducing the programming effort.

Finally, we analyze the energy efficiency gain of AutoAccel-generated designs.

We estimate the energy efficiency (performance per watt) of our experiments by

considering execution time and thermal design power (TDP). The TDP of the Intel

Xeon CPU and the Xilinx FPGA used in this comparison is 80W and 25W, respec-

tively. Accordingly, AutoAccel-generated designs can achieve up to a 1677.9× energy

efficiency improvement, and 260.4× on average.

4.6 Conclusion

While the CPU-FPGA heterogeneous architectures are becoming a promising

paradigm for providing continued performance and energy improvement in mod-

ern datacenters, accelerator programming arises as a serious challenge to application
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developers. Based on our analysis study and the best-effort code reconstruction

practice, we propose the AutoAccel framework to provide a nearly push-button ex-

perience on mapping C functions into high-quality FPGA accelerator designs for

general datacenter application developers. Featuring the CPP microarchitecture,

analytical-based design space exploration and automatic code transformation, Au-

toAccel achieves 72× speedup for a broad class of computation kernels.

Furthermore, we believe that the design principles of AutoAccel can be further

generalized to stimulate more research on the adoption of FPGAs in datacenters.

The CPP microarchitecture serves as a proof-of-concept that using accelerator de-

sign templates as specifications of the program-to-behavioral-description transforma-

tion fundamentally reduces the design space while preserving the accelerator qual-

ity. Future work could be to support more microarchitectural templates and more

sophisticated code transformation techniques to improve the coverage of computa-

tion kernels. Hence, more microarchitectures, with their analytical models and code

transformation techniques, might be added in AutoAccel to improve the coverage of

computation kernels. Also, more sophisticated, high-abstract code transformations

(e.g., loop permutation) are able to be supported in the future, along with polyhedral

analysis, to form a larger design space and create more optimization opportunities.
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CHAPTER 5

CPU-FPGA Integration

In this chapter, we focus on the issues in the integration of FPGA accelerators into

conventional CPU systems, with a key focus on the JVM-FPGA integration since

many prevalent datacenter programming frameworks are based on the Java Virtual

Machine (JVM) [PHA17]. We start from our application showcase, the acceleration

for the genome sequencing application, and present the host program and the FPGA

accelerator design in Section 5.1. Based on the issues found in the integration, we

then present our quantitative analysis study on the microarchitectures of five state-

of-the-art CPU-FPGA platforms (Section 5.2). The study reveals three key factors

that affect the efficiency of the integration. We then get back to the application

showcase, and present our solutions for each of these three factors (Section 5.3 and

5.4).

5.1 Genome Sequencing Acceleration: The Story Begins

5.1.1 Overview

With the ever-growing volume, variety and velocity of data, scaling out big-data

computation into a datacenter scale has attracted increasing attention from both

academia and industry. There has been great success in programming frameworks
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that enable efficient development and deployment of large-scale applications in con-

ventional datacenters composed of general-purpose processors. Examples include the

pioneering MapReduce framework [DG08] initially proposed by Google, the open-

source Hadoop MapReduce framework [Whi12], and the more recent Apache Spark

framework [ZCD12] that improves the performance of Hadoop by up to 100× through

in-memory cluster computing.

Meanwhile, the power and energy efficiency of general-purpose processors have

become two of the primary constraints that limit the performance scaling of conven-

tional datacenters. To provide continued performance and energy efficiency improve-

ment in datacenters, harnessing FPGA-based heterogeneous platforms is considered

one of the most promising approaches since FPGAs provide low power and high

energy efficiency, as well as reprogrammability. With the emerging FPGA-enabled

datacenter trend, one key question is: how can we efficiently integrate FPGAs into

state-of-the-art big-data computing frameworks like Spark? Our goal is to provide a

comprehensive analysis of challenges and generalized insights for efficient integration

of FPGA accelerators into the widely used big-data computing framework, Spark.

Our approach is to conduct an in-depth case study for the acceleration of an impor-

tant and representative application: next-generation DNA sequencing [SJ08]1.

We choose the next-generation DNA sequencing application as a representative

case study for the following reasons. First, it is a very important application that

has been widely used in medical and biological research and is transitioning into

real clinical use where sequencing time is a matter of life and death. Second, it

is a real-world big-data application that needs the power of cluster-scale comput-

1This study is presented in [CCF16a]. I would like to convey my appreciation to all coauthors
for their contributions to this study.

92



ing. Even a single human genome occupies more than 300GB data and aligning

it to the golden reference genome—a key step in sequencing that we focus on—

using state-of-the-art aligners like BWA-MEM [Li13] on a modern multicore server

takes tens of hours. Third, there are already available cloud-scale solutions (e.g., CS-

BWAMEM [CCL15b]) using CPU-only clusters and pure FPGA accelerator solutions

(e.g., [CCL15a]). Therefore, we can leverage these existing solutions and focus on

the integration part not well studied in prior work. Finally and most importantly,

the FPGA accelerator for this application represents a category of fine-grained ac-

celerators that impose further challenges for the integration. Unlike conventional

coarse-grained accelerators, these fine-grained accelerators execute for a very short

time (e.g., a microsecond or so), and thus a straightforward offloading of the CPU

computation onto the FPGA could significantly degrade the overall performance due

to the overwhelming JVM-FPGA communication overhead (e.g., a few milliseconds

for data to be transferred from JVM to native machine and then to FPGA).

To provide more general insights into efficient Spark-FPGA integration methodol-

ogy, throughout this case study we systematically analyze the integration challenges

at three levels.

• Single-thread level. First, state-of-the-art big-data computing frameworks

like Spark rely on Java Virtual Machines (JVMs) for ease of deployment; while

FPGA accelerators are typically manipulated by C/C++ programs. To en-

able JVMs to manipulate FPGA accelerators, we leverage the support of Java

Native Interface (JNI) [Lia99]. Second, although JNI can make the integra-

tion work, a straightforward integration for the fine-grained FPGA accelerators

could actually slow down the overall system performance due to the overwhelm-
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ing JVM-FPGA communication overhead.

• Single-node multi-thread level. The first challenge is how to efficiently

share an FPGA accelerator among multiple CPU threads. Second, more

threads impose more thread contention and increasing memory pressure, which

puts more constraint.

• Multi-node level. Multi-nodes further introduce potential inter-node com-

munication overhead that may hurt the system performance. In general, inter-

FPGA communication is rarely needed in a Spark-FPGA integration. The

reason is that an FPGA accelerator is usually designed for a computational

kernel that resides in a Spark program’s map function, which inherently has

no communication with other map functions. Nevertheless, in our case study,

we do observe a system-wide communication overhead when broadcasting mas-

sive read-only input data, which is caused by Spark’s broadcasting mechanism

instead of the Spark-FPGA integration.

In this section, we mainly focus on the identification of the problem and its

quantitative impact. The findings motivate us to perform the CPU-FPGA analysis

study to find the key factors of integration, and our proposed techniques to address

them.

5.1.2 Experimental Setup

Before presenting challenges and solutions with quantitative analysis for efficient

Spark and FPGA integration, we first describe the software and hardware setup

of our experimental system used throughout the study. Our experimental system
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comprises a cluster of 1 master node and 6 worker nodes, as shown in Fig. 5.1.

Except for the master node of the Spark framework, all Spark’s worker nodes are

equipped with a PCIe-attached Alpha Data ADM-PCIE-7V3 FPGA board [Xil17].

Table 5.1 lists the detailed configuration of each server.

Table 5.1: Experimental setup

Host CPU two 6-core Xeon E5-2620v3@2.40GHz

Host Memory 48GB DDR3-1600

FPGA Fabric Xilinx Virtex 7@200MHz

CPU ↔ FPGA PCIe Gen3 x8, 8GB/s as advertised

FPGA Device Memory 16GB DDR3-1600

Development Environment SDAccel 2017.1

Driver Node 

HDFS Namenode 

Spark Master 

HDFS Datanode 1 

Spark Worker 1 

HDFS Datanode 2 

Spark Worker 2 

Master Node 

HDFS Datanode N 

Spark Worker N 

HW Acc. HW Acc. HW Acc. 

Accelerator 
Manager 1 

Accelerator 
Manager 2 

Accelerator 
Manager N 

Map Task: align reads, 
invoke the S-W kernel 

Figure 5.1: An overview of the Spark-FPGA cluster

Software configuration. We use Spark 1.5.1 as our cluster computing frame-

work and HDFS 2.5.2 as our underlying distributed file system, and run CS-

BWAMEM 0.2.2 on top of them. As illustrated in Fig. 5.1, each read is aligned by
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a CS-BWAMEM’s map function that invokes the Smith-Waterman kernel. Our test

cases are derived from the genome sample of a human with breast cancer (HCC1954

[GKV98]). The sample contains almost 1 billion reads, each with 101 nucleotides

(denoted by a 101-character ASCII string).

Accelerator configuration. We adopt the FPGA accelerator for the Smith-

Waterman algorithm proposed in [CCL15a] since it is dedicated to the customized

Smith-Waterman kernel in BWA and CS-BWAMEM, and no change of the accelera-

tor is needed. We configure the accelerator to contain 40 processing elements (PEs),

and it is synthesized using the Xilinx SDAccel Development Environment [sda].

Without considering any communication overhead, in our system, we observe around

120× and 10.5× speedup for the FPGA Smith-Waterman accelerator itself, com-

pared to the single-thread CPU and 16-thread CPU (the best performance setting

with hyper-threading, according to Section 5.3.2), respectively.

Profiling methodology. The distributed computing nature of Spark applica-

tions makes them relatively harder to profile compared to single-thread applications.

In order to conduct a quantitative analysis, we implement an embedded MapReduce

profiler along with CS-BWAMEM. In detail, we embed a profiling map function in-

side CS-BWAMEM’s original map function to collect profiling data, and embed a

profiling reduce function inside CS-BWAMEM’s original reduce function to accumu-

late each measurement across all map function calls. To compare the performance of

different implementations, we use the notation of ”kilo reads per second (KRPS),”

which is referred to as the number of kilo-reads processed in a second.

For convenience, we will denote the original CS-BWAMEM program as CS-

BWAMEM/CPU, and the CS-BWAMEM program with the Smith-Waterman ac-
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celerator as CS-BWAMEM/FPGA in the rest of this dissertation. CS-BWAMEM

will be also used in the scenarios where both CS-BWAMEM/CPU and CS-

BWAMEM/FPGA fit.

5.1.3 Harnessing FPGA in JVM

To harness FPGAs’ low power and high energy efficiency in a Spark cluster, we have

to enable Spark to manipulate FPGA accelerators, i.e., make JVMs and FPGAs

work together. To make things easier, we start with a single-thread integration

by leveraging the Java Native Interface (JNI) to connect a JVM instance with an

FPGA accelerator. Nevertheless, a straightforward JNI integration for fine-grained

FPGA accelerators could actually slow down the overall system performance. A

quantitative analysis reveals a preliminary reason: the data transfer overhead from

a JVM to a native machine (through JNI) and then to an FPGA (through PCIe)

could overwhelm the benefits of short-executed FPGA accelerators. The following

text presents the problem and the preliminary reasoning.

Spark programs are mainly written in Java and/or Scala, and run on JVMs.

FPGA accelerators are typically manipulated by C/C++ programs, and JVMs do

not support the use of FPGAs in default. Therefore, the first challenge in the single-

thread level is essentially to bridge the gap between Java/Scala and C/C++.

Our proposed approach leverages JNI to enable Spark programs to indirectly

invoke FPGA accelerators from JVM. JNI is a programming interface that empow-

ers Java/Scala applications to call and be called by applications written in other

languages. We create a C-based native library that uses the OpenCL APIs pro-

vided by Xilinx SDAccel to manipulate the Smith-Waterman accelerator, and modify
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CS-BWAMEM/CPU’s map function to call the library whenever the map function

invokes the Smith-Waterman kernel.

The above approach produces a working solution to the Spark-FPGA integration

problem, and could be relatively efficient if the computation time of each accel-

erator invocation is long enough (i.e., coarse-grained accelerators as discussed in

prior work) to ignore the JVM-FPGA communication overhead. However, in our

case study, the fine-grained Smith-Waterman FPGA accelerator executes for a very

short time (a microsecond or so) but will be invoked hundreds of millions of times.

This straightforward integration significantly degrades the overall performance. We

compare the performance of CS-BWAMEM/CPU and CS-BWAMEM/FPGA, and

find that CS-BWAMEM/CPU achieves 2.1 KRPS (kilo reads per second) while

CS-BWAMEM/FPGA, with the straightforward Spark-FPGA integration, reaches

merely 1.6×10−3 RPS. In other words, the straightforward integration does not fulfill

the 120× speedup, but instead decreases the overall performance by three orders of

magnitude.

After a quantitative analysis, we find that the main reason for the performance

degradation is the tremendous JVM-FPGA communication overhead aggregated

through all the invocations of the Smith-Waterman accelerator. To be specific, one

read produces 24 Smith-Waterman invocations (either software or hardware imple-

mentation) on average, and it takes about 480µs for the software to process them in

JVM. That is, each Smith-Waterman invocation of the software version should cost

no more than 20µs on average. Meanwhile, a complete routine of a Smith-Waterman

accelerator invocation involves: 1) data copy between a JVM and a native machine,

2) DMA transfer between a native machine and an FPGA board though PCIe, and

3) computation on the FPGA board. The communication process, including 1) and
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2), costs over 25ms per invocation. That is, even if an accelerator could reduce

the computation time of the Smith-Waterman kernel down to 0, the communication

overhead would degrade the performance by 1000×.

5.1.4 Conclusion

We have now identified the most critical issue to address in the JVM-FPGA inte-

gration process. Given a high-performance application and an accelerator, we sur-

prisingly obtain a 1000× system-wide slowdown. Although the preliminary analysis

explains to us that it is the extra JVM-FPGA data communication overhead that is

going to be blamed. However, we need more deep understanding on the CPU-FPGA

communication so as to actually find a way to resolve this overhead. In the follow-

ing section, we conduct a quantitative analysis on five state-of-the-art CPU-FPGA

platforms to acquire a better understanding. Based on this, we propose our tech-

niques for an efficient integration, and continue from the breakpoint to improve our

integration results.

5.2 The Mystery of CPU-FPGA Communication

5.2.1 Overview

With the trend of adopting FPGAs in datacenters, various CPU-FPGA acceleration

platforms with diversified microarchitectural features have been developed. We clas-

sify state-of-the-art CPU-FPGA platforms in Table 5.2 according to their physical

integration and memory models. Traditionally, the most widely used integration

is to connect an FPGA to a CPU via the PCIe interface, with both components
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equipped with private memories. Many FPGA boards built on top of Xilinx or In-

tel FPGAs use this way of integration because of its extensibility. The customized

Microsoft Catapult board integration is such an example. Another example is the

Alpha Data FPGA board [Xil17] with the Xilinx FPGA fabric that can leverage the

Xilinx SDAccel development environment [sda] to support efficient accelerator design

using high-level programming languages, including C/C++ and OpenCL. The Ama-

zon F1 instance also adopts this software/hardware environment to allow high-level

accelerator design. On the other hand, vendors like IBM tend to support a PCIe con-

nection with a coherent, shared memory model for easier programming. For example,

IBM has been developing the Coherent Accelerator Processor Interface (CAPI) on

POWER8 [SBJ15] for such an integration, and has used this platform in the IBM

data engine for NoSQL [BRH15]. Meanwhile, the CCIX consortium has proposed the

Cache Coherent Interconnect for Accelerators which can connect FPGAs with ARM

processors through the PCIe interface with coherent shared memory as well [cci18].

More recently, closer CPU-FPGA integration becomes available using a new class

of processor interconnects such as Front-Side Bus (FSB) and the newer QuickPath

Interconnect (QPI), and provides a coherent, shared memory, such as the FSB-based

Convey machine [Bre10] and the Intel Xeon+FPGA Accelerator Platform [harb].

While the first generation of the Xeon+FPGA platform (Xeon+FPGA v1) connects

a CPU to an FPGA only through a coherent QPI channel, the second generation

of the Xeon+FPGA platform (Xeon+FPGA v2) adds two non-coherent PCIe data

communication channels between the CPU and the FPGA, resulting in a hybrid

CPU-FPGA communication model.

The evolution of various CPU-FPGA platforms brings up a challenging question:

which platform should we choose to gain better performance and energy efficiency

100



Table 5.2: Classification of modern CPU-FPGA platforms

Separate Private Memory Shared Memory

PCIe Peripheral Interconnect

Alpha Data [Xil17],

Microsoft Catapult [PCC14],

Amazon F1 [amab]

IBM CAPI [SBJ15],

CCIx [cci18]

Processor Interconnect N/A
Intel Xeon+FPGA v1 [harb] (QPI),

Convey HC-1 [Bre10] (FSB)

Hybrid N/A Intel Xeon+FPGA v2 (QPI, PCIe)

for a given application to accelerate? There are numerous factors that can affect the

choice, such as platform cost, programming models and efforts, logic resource and

frequency of FPGA fabric, CPU-FPGA communication latency and bandwidth, to

name just a few. While some of them are easy to figure out, others are nontrivial, es-

pecially the communication latency and bandwidth between CPU and FPGA under

different integration. One reason is that there are few publicly available documents

for the newly announced platforms like the Xeon+FPGA family, CAPI and Amazon

F1 instance. More importantly, those architectural parameters in the datasheets are

often advertised values, which are usually difficult to achieve in practice. Actually,

sometimes there could be a huge gap between the advertised numbers and practical

numbers. For example, the advertised bandwidth of the PCIe Gen3 x8 interface is

8GB/s; however, our experimental results show that the PCIe-equipped Alpha Data

platform can only provide 1.6GB/s PCIe-DMA bandwidth using OpenCL APIs im-

plemented by Xilinx (see Section 5.2.2). Quantitative evaluation and in-depth analy-

sis of such kinds of microarchitectural characteristics could aid CPU-FPGA platform

users to accurately predict the performance of a computation kernel to accelerate on

various candidate platforms, and make the right choice. Furthermore, it could also

benefit CPU-FPGA platform designers for identifying performance bottlenecks and
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providing better hardware and software support.

Motivated by those potential benefits to both platform users and designers, this

study aims to discover what microarchitectural characteristics affect the perfor-

mance of modern CPU-FPGA platforms, and evaluate how they will affect that

performance. We conduct our quantitative comparison on five state-of-the-art CPU-

FPGA platforms: 1) the Alpha Data board and 2) Amazon F1 instance that rep-

resent the conventional PCIe-based platform with private device memory, 3) IBM

CAPI that represents the PCIe-based system with coherent shared memory, 4) Intel

Xeon+FPGA v1 that represents the QPI-based system with coherent shared mem-

ory, and 5) Xeon+FPGA v2 that represents a hybrid PCIe (non-coherent) and QPI

(coherent) based system with shared memory2. These five platforms cover various

CPU-FPGA interconnection approaches, and different memory models as well.

In summary, this study makes the following contributions.

• The first quantitative characterization and comparison on the microar-

chitectures of state-of-the-art CPU-FPGA acceleration platforms—including

the Alpha Data board and Amazon F1 instance, IBM CAPI, and Intel

Xeon+FPGA v1 and v2—which covers the whole range of CPU-FPGA con-

nections. We quantify each platform’s CPU-FPGA communication latency and

bandwidth and the results are summarized in Fig. 5.2.

• An in-depth analysis of the big gap between advertised and practically achiev-

able performance (Section 5.2.2), with step-by-step decomposition of the inef-

ficiencies.

2This study is presented in [CCF16b]. I would like to convey my appreciation to all coauthors
for their contributions to this study.
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Figure 5.2: Summary of CPU-FPGA communication bandwidth and latency (not to

scale)

• Seven insights for both application developers to improve accelerator designs

and platform designers to improve platform support (Section 5.2.3). Specif-

ically, we suggest accelerator designers avoid using the advertised platform

parameters to estimate the acceleration effect, which almost always leads to

(extremely) overly optimistic estimation. Moreover, we analyze the trade-off

between private-memory and shared-memory platforms, and analytically model

the effective bandwidth with the introduction of the memory data reuse ratio

r. We also propose the metric of computation-to-communication (CTC ) ra-

tio to measure when the CPU-FPGA communication latency and bandwidth

are critical. Finally, we suggest that the complicated communication stack

and hard-to-use coherent cache system may subject to improve in the next-

generation of CPU-FPGA platforms.
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5.2.2 Characterization of CPU-FPGA Microarchitectures

This work aims to reveal how the underlying microarchitectures, i.e., processor or pe-

ripheral interconnect, and shared or private memory model, affect the performance of

CPU-FPGA platforms. To achieve this goal, in this section, we quantitatively study

those microarchitectural characteristics, with a key focus on the effective bandwidth

and latency of CPU-FPGA communication on five state-of-the-art platforms: Alpha

Data, F1 instance, CAPI, Xeon+FPGA v1 and v2.

To measure the CPU-FPGA communication bandwidth and latency, we de-

sign and implement our own microbenchmarks, based on the Xilinx SDAccel SDK

2017.4 [sda] for Alpha Data and F1 instance, Alpha Data CAPI Design Kit [IBM15]

for CAPI, and Intel AALSDK 5.0.3 [Int16] for Xeon+FPGA v1 and v2. Each mi-

crobenchmark consists of two parts: a host program and a computation kernel. Fol-

lowing each platform’s typical programming model, we use the C language to write

the host programs for all platforms, and describe the kernel design using OpenCL

for Alpha Data and F1 instance, and Verilog HDL for the other three platforms.

The hardware configurations of Alpha Data, F1 instance, CAPI, Xeon+FPGA v1

and v2 in our study are listed in Table 5.3.

5.2.2.1 Effective Bandwidth

Effective Bandwidth for Alpha Data. Traditional CPU-FPGA platforms like

Alpha Data contain two communication phases: 1) PCIe-based direct memory access

(DMA) between host memory and device memory, and 2) device memory access.

We measure the effective bandwidths with various payload sizes for both phases.

The measurement results are illustrated in Fig. 5.3. Since the bandwidths for both
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Table 5.3: Platform configurations of Alpha Data, F1, CAPI, Xeon+FPGA v1

and v2
Platform Alpha Data CAPI Amazon EC2 F1 Xeon+FPGA v1 Xeon+FPGA v2

Host CPU
Xeon E5-2620v3

@2.40GHz

Power8 Turismo

@4GHz

Xeon E5-2686v4

@2.3GHz

Xeon E5-2680v2

@2.80GHz

Xeon E5-2600v4

@2.4GHz

Host Memory 64GB DDR3-1600 16GB DDR3-1600 64GB DDR4-2133 96GB DDR3-1600 64GB DDR4-2133

FPGA Fabric
Xilinx Virtex 7

@200MHz

Xilinx Virtex 7

@250MHz

Xilinx UltraScale+

@250MHz

Intel Stratix V

@200MHz

Intel Arria 10

@400MHz‡

CPU ↔ FPGA
PCIe Gen3 x8,

8GB/s

PCIe Gen3 x8,

8GB/s

PCIe Gen3 x16,

16GB/s

Intel QPI,

12.8GB/s

1× Intel QPI &

2× PCIe Gen3 x8

Device Memory 16GB DDR3-1600 16GB DDR3-1600† 64GB DDR4-2133 N/A N/A

† The device memory in CAPI is not used in this work.

‡ The user clock can be easily configured to 137/200/273 MHz using the supplied SDK, in addition to max 400MHz frequency.

directions of PCIe-DMA transfer are almost identical (less than 4% difference), we

only present the unidirection PCIe-DMA bandwidth in Fig 5.3.

While Fig. 5.3 illustrates a relatively high private DRAM bandwidth (9.5GB/s

for read, 8.9GB/s for write3); the PCIe-DMA bandwidth (1.6GB/s) reaches merely

20% of PCIe’s advertised bandwidth (8GB/s). That is, the expectation of a high

DMA bandwidth with PCIe is far away from being fulfilled.

The first reason is that there is non-payload data overhead for the useful payload

transfer [Law14]. In a PCIe transfer, a payload is split into small packets, each packet

equipped with a header. Along with the payload packets, there are also a large

number of packets for control purposes transferred through PCIe. As a result, the

maximum supplied bandwidth for the actual payload, which we call as the theoretical

bandwidth, is already smaller than the advertised value.

Another important reason is that a PCIe-DMA transaction involves not only

PCIe transfer, but also host buffer allocation and host memory copy [Coo12]. The

3If not specifically indicated, the bandwidth appearing in the rest of this paper refers to the
maximum achievable bandwidth.
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Figure 5.3: Effective bandwidth of Alpha Data, CAPI, Xeon+FPGA v1 and v2, and

F1

host memory stores user data in a pageable (unpinned) space from which the FPGA

cannot directly retrieve data. A page-locked (pinned), physically contiguous memory

buffer in the operating system kernel space then serves as a staging area for PCIe

transfer. When a PCIe-DMA transaction starts, a pinned buffer is first allocated

in the host memory, followed by a memory copy of pageable data to this pinned

buffer. The data is then transferred from the pinned buffer to device memory through

PCIe. These three steps—buffer allocation, host memory copy and PCIe transfer—

are sequentially processed in Alpha Data, which significantly deceases the PCIe-DMA
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Figure 5.4: PCIe-DMA bandwidth breakdown

bandwidth.

Moreover, there could be some implementation deficiencies in the vendor-provided

environment which serve as another source of overhead4. One possibility could be the

data transfer overhead between the endpoint of the PCIe channel, i.e., the vendor-

provided FPGA DMA IP, and the FPGA-attached device DRAM. Specifically, the

device DRAM does not directly connect to the PCIe channel; instead, the data from

the host side first reach the on-chip DMA IP, and then are written into the device

DRAM through the vendor-provided DRAM controller IP. If this extra step were not

well overlapped with the actual data transfer via the PCIe channel through careful

pipelining, it would further reduce the effective bandwidth. Our experiments do show

that a considerable gap still exists between the measured bandwidth and the theo-

retical value, indicating that the vendor-provided environment could be potentially

improved with further performance tuning.

4The Xilinx SDAccel environment is close sourced, so we are not able to precisely reason this
overhead. The following is our best guess.
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Next, we quantitatively evaluate the large PCIe-DMA bandwidth gap step by

step, with results shown in Fig. 5.4.

1. The non-payload data transfer lowers the theoretical PCIe bandwidth to

6.8GB/s from the advertised 8GB/s [Law14].

2. Possible implementation deficiencies in the vendor-provided environment pre-

vent the 6.8GB/s PCIe bandwidth from being fully exploited. As a result, the

highest achieved effective PCIe-DMA bandwidth without buffer allocation and

host memory copy decreases to 5.2GB/s.

3. The memory copy between the pageable and pinned buffers further degrades

the PCle-DMA bandwidth to 2.7GB/s.

4. The buffer allocation overhead degrades the final effective PCIe-DMA band-

width to only 1.6GB/s. This is the actual bandwidth that end users can obtain.

Effective Bandwidth for CAPI. CPU-FPGA platforms that realize the shared

memory model, such as CAPI, Xeon+FPGA v1 and v2, allow the FPGA to retrieve

data directly from the host memory. Such platforms therefore contain only one

communication phase: host memory access through the communication channel(s).

For the PCIe-based CAPI platform, we simply measure the effective read and write

bandwidths of its PCIe channel for a variety of payload sizes, as shown in Fig. 5.3.

Compared to the Alpha Data board, CAPI supplies end users with a much higher

effective PCIe bandwidth (3.3GB/s vs. 1.6GB/s). This is because CAPI provides

efficient API support for application developers to directly allocate and manipulate

pinned memory buffers, eliminating the memory copy overhead between the pageable
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and pinned buffers. However, Alpha Data’s private local memory read and write

bandwidths (9.5GB/s, 8.9GB/s) are much higher than those of CAPI’s shared remote

memory access. This phenomenon offers opportunities for both platforms. As is

discussed in Section 5.2.3, if an accelerator is able to smartly use the private memory

as a “shortcut” for accessing the host memory, it will probably obtain a similar or

even higher effective CPU-FPGA communication bandwidth in a traditional platform

like Alpha Data than in a shared-memory platform like CAPI or Xeon+FPGA.

Another remarkable phenomenon shown in Fig. 5.3 is the dramatic falloff of the

PCIe bandwidth at the 4MB payload size. This could be the side effect of CAPI’s

memory coherence mechanism. CAPI shares the last-level cache (LLC) of the host

CPU with the FPGA, and the data access latency varies significantly between LLC

hit and miss. Therefore, one possible explanation for the falloff is that CAPI shares

2MB of the 8MB LLC with the FPGA. The payloads of which the sizes are not

larger than 2MB can fit into LLC, resulting in a low LLC hit latency that can be

well amortized by a few megabytes of data. Nevertheless, when the payload size

grows to 4MB and cannot fit into LLC, the average access latency of the payload

data will suddenly increase, leading to the observed falloff. With the payload size

further growing, this high latency is gradually amortized and the PCIe bandwidth

gradually reaches the maximum value.

Effective Bandwidth for Xeon+FPGA v1. The CPU-FPGA communication of

Xeon+FPGA v1 involves only one step: host memory access through QPI; therefore,

we just measure a set of effective read and write bandwidths for different payload

sizes, as shown in Fig. 5.3. We can see that both the read and write bandwidths

(7.0GB/s, 4.9GB/s) are much higher than the PCIe bandwidths of Alpha Data and

CAPI. Therefore, the QPI-based CPU-FPGA integration does demonstrate a higher
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effective bandwidth than the PCIe-based integration. However, the remote memory

access bandwidths of Xeon+FPGA v1 are still lower than those of Alpha Data’s

local memory access. That is, similar with CAPI, Xeon+FPGA v1 can possibly be

outperformed by Alpha Data if an accelerator keeps reusing the data in the device

memory as a “shortcut” for accessing the host memory.

We need to mention that Xeon+FPGA v1 provides a 64KB cache on its FPGA

chip for coherency purposes [harb]. Each CPU-FPGA communication will first go

through this cache and then go to the host memory if a cache miss happens. There-

fore, the CPU-FPGA communication of Xeon+FPGA v1 follows the classic cache

access pattern. Since the bandwidth study mainly focuses on large payloads, our

microbenchmarks simply flush the cache before accessing any payload to ensure all

requests go through the host memory. The bandwidths illustrated in Fig. 5.3 are,

more accurately, miss bandwidths. Section 5.2.2.2 discusses the cache behaviors in

detail.

Effective Bandwidth for Xeon+FPGA v2. While its CPU-FPGA communi-

cation involves only one phase as well, Xeon+FPGA v2 allows the user accelerator

to work on different frequencies. Therefore, we measure the effective bandwidths

of various sizes of payloads under 200MHz and 400MHz, respectively. 200MHz is

the frequency that is also used by Alpha Data and Xeon+FPGA v1; 400MHz is the

maximal frequency supported by Xeon+FPGA v2. Note that this change does not

affect the frequency of the internal logic of the communication channels, but just the

interface between the channels and the user accelerator. Fig. 5.3 illustrates the mea-

surement results. We can see that Xeon+FPGA v2 outperforms the aforementioned

three CPU-FPGA platforms in terms of effective bandwidth (20GB/s at 400MHz,

12.8GB/s at 200MHz). This is due to the fact that Xeon+FPGA v2 connects the
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CPU and the FPGA through three communication channels: one QPI channel and

two PCIe channels, resulting in a significantly high aggregate bandwidth.

Same as its first generation, Xeon+FPGA v2 also provides a 64KB on-chip cache

for coherency purposes. However, this cache maintains coherence only for the QPI

channel, and the two PCIe channels are of no coherence properties. As a conse-

quence, Xeon+FPGA v2 actually delivers a partially-coherent memory model. We

will discuss the cache behaviors of the Xeon+FPGA family in Section 5.2.2.2, and

the coherence issue in Section 5.2.3.

Effective Bandwidth for F1 Instance. The Amazon EC2 F1 instance represents

the state-of-the-art advance of the canonical PCIe-based platform architecture. Same

as the Alpha Data board, it connects the CPU with the FPGA through the PCIe

channel, with private memory attached to both components. It is powered by the

Xilinx SDAccel environment as well to achieve the behavior-level hardware acceler-

ator development. Both the PCIe channel and the private DRAM are upgraded to

supply higher bandwidths. However, the end-to-end bandwidth delivered to the end

user is rather surprising. As illustrated in Fig. 5.3, the effective PCIe bandwidth of

the F1 instance turns out to be even worse than that of the Alpha Data board which

adopts an old-generation technique. The breakdown in Fig. 5.4 shows that the PCIe

bandwidth does become doubled without the consideration of the buffer allocation

and memory copy overhead. In other words, the buffer allocation and memory copy

impose more overhead on the F1 instance than on the Alpha Data board. It might

be due to the virtualization overhead of the F1 instance.

Recall the phenomenon that the CPU-FPGA bandwidth of Xeon+FPGA v1

lies between the PCIe bandwidth and the private device DRAM bandwidth of the
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Alpha Data board, which provides opportunities for both platforms. The F1 instance

and Xeon+FPGA v2 form another (more advanced) pair of CPU-FPGA platforms

that follows such a relation. As discussed in Section 5.2.3, we expect that this relation

between a private-memory platform and a shared-memory platform will continue to

exist in future CPU-FPGA platform advances, and thus provide opportunities for

both kinds.

5.2.2.2 Effective Latency

Coherent Cache Behaviors. As described in Section 5.2.2.1, the QPI channel

of the Xeon+FPGA family includes a 64KB cache for coherence purposes, and the

QPI-based communication thus falls into the classic cache access pattern. A cache

transaction is typically depicted by its hit time and miss penalty. We follow this

traditional methodology for cache study and quantify the hit time and miss latency

of the Xeon+FPGA coherent cache, as shown in Table 5.4.

Table 5.4: CPU-FPGA access latency in Xeon+FPGA

Access Type Latency (ns)

Read Hit 70

Write Hit 60

Read Miss avg: 355

Write Miss avg: 360

A noteworthy phenomenon is the long hit time – 70ns (14 FPGA cycles) for read

hit and 60ns (12 FPGA cycles) for write hit – in this 64KB cache. We investigate this

phenomenon by decomposing the hit time into three phases — address translation,

cache access and transaction reordering — and measuring the elapsed time of each
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phase, as shown in Table 5.5.

Table 5.5: Hit latency breakdown in Xeon+FPGA

Access Step Read Latency (ns) Write Latency (ns)

Address Translation 20 20

Cache Access 35 35

Transaction Reordering 15 5

The data demonstrate a possibly exorbitant price (up to 100% extra time) paid

for address translation and transaction reordering. Worse still, the physical cache

access latency is still prohibitively high — 35ns (7 FPGA cycles). Given this small

but long-latency cache, it is extremely hard, if not impossible, for an accelerator to

harness the caching functionality.

It is worth noting that the Xeon+FPGA v2 platform supports higher clock fre-

quencies than its first generation, and thus can potentially lead to a lower cache

access latency. However, this does not fundamentally change the fact that the la-

tency of accessing the coherent cache is still much longer than that of accessing the

on-chip BRAM blocks. Therefore, Xeon+FPGA v2 does not fundamentally improve

the usability of the coherent cache. As is discussed in Section 5.2.3, we still sug-

gest accelerator designers sticking to the conventional FPGA design principle that

explicitly manages the on-chip BRAM resource.

Communication Channel Latencies. We now compare the effective latencies

among the PCIe transfer of Alpha Data, F1 instance and CAPI, the device memory

access of Alpha Data and F1 instance, and the QPI transfer of the Xeon+FPGA

family5. Table 5.6 lists the measured latencies of all five platforms for transferring a

5For simplicity, we mainly discuss the CPU-to-FPGA read case, the observation is similar for
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single 512-bit cache block (since all of them have the same 512-bit interface bitwidth).

We can see that the QPI transfer enjoys orders-of-magnitude lower latency compared

to the PCIe transfer, and is even smaller than that of Alpha Data or Amazon F1’s

private DRAM access. This rather surprising observation is due largely to the im-

plementation of the vendor-provided environment. In particular, Xilinx SDAccel

connects the accelerator circuit to the FPGA-attached DRAM through not only the

DRAM controller but an AXI interface that is implemented on the FPGA chip. The

data back and forth through the AXI interface impose a significant overhead to the

effective device DRAM access latency6, resulting in the fact that the local DRAM

access latency of Alpha Data is even longer than the remote memory access latency of

Xeon+FPGA. This phenomenon implies that a QPI-based platform is preferable for

applications with fine-grained CPU-FPGA interaction. In addition, we can see that

CAPI’s PCIe transfer latency is much lower than that of the Alpha Data board. This

is due to the fact that the Alpha Data board harnesses the SDAccel SDK that en-

ables accelerator design and integration through high-level programming languages.

Such a higher level of abstraction introduces an extra CPU-FPGA communication

overhead in processing the high-level APIs.

Table 5.6: Latencies of transferring a single 512-bit cache block

Platform Alpha Data CAPI Xeon+FPGA v1 Xeon+FPGA v2 Amazon EC2 F1

Latency
PCIe: 160µs

882ns 355ns 323ns
PCIe: 127µs

DRAM: 542ns DRAM: 561ns

the FPGA-to-CPU write case.

6While not being able to perfectly reason the long latency of the Xilinx platforms, we have
confirmed with Xilinx that the phenomenon is observed by Xilinx as well and the AXI bus is one
of the major causes.
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5.2.3 Analysis and Insights

Based on our quantitative studies, we now analyze how these microarchitectural

characteristics can affect the performance of CPU-FPGA platforms, and propose

seven insights for both platform users to optimize their accelerator designs, as well

as platform designers to improve the hardware and software support in future CPU-

FPGA platform development.

Insight 1: application developers should be cautioned use the advertised communi-

cation parameters, but measure the practically achievable parameters to estimate the

CPU-FPGA platform performance.

Experienced accelerator designers are generally aware of the data transfer over-

head led by the non-payload data, e.g., packet header, checksum, control packets,

etc., and expect approximately 10% to 20% or even less bandwidth degradation.

Quite often, this results in a significant overestimation of the end-to-end bandwidth,

due to the unawareness of the overhead led by the system software stack, like the host-

to-kernel memory copy pointed out by this paper. As analyzed in Section 5.2.2.1,

the effective bandwidth provided by a CPU-FPGA platform to end users is often far

worse than the advertised value that reflects the physical limit of the communica-

tion channel. For example, the PCIe-based DMA transfer of the Alpha Data board

fulfills only 20% of the 8GB/s bandwidth of the PCIe Gen3 x8 channel; the Amazon

F1 instance that adopts a more advanced data communication technique delivers an

even worse effective bandwidth to the end user. Evaluating a CPU-FPGA platform

using these advertised values will probably result in a significant overestimation of

the platform performance. Worse still, the relatively low effective bandwidth is not

always achievable. In fact, the communication bandwidth for a small size of payload
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is up to two orders of magnitude smaller than the maximum achievable effective

bandwidth. A specific application may not always be able to supply each communi-

cation transaction with a sufficiently large size of payload to reach a high bandwidth.

Platform users need to consider this issue as well in platform selection.

Insight 2: In terms of effective bandwidth, both the private-memory and shared-

memory platforms have opportunities to outperform each other. The key metric is

the device memory reuse ratio r.

Bounded by the low-bandwidth PCIe-based DMA transfer, the Alpha Data board

generally reaches a lower CPU-FPGA effective bandwidth than that of a shared-

memory platform like CAPI or Xeon+FPGA v1. The higher private memory band-

width, however, does provide opportunities for a private-memory platform to perform

better in some cases. For example, given 1GB input data sent to the device memory

through PCIe, if the FPGA accelerator iteratively reads the data for a large number

of times, then the low DMA bandwidth will be amortized by the high private mem-

ory bandwidth, and the effective CPU-FPGA bandwidth will be nearly equal to the

private memory bandwidth which is higher than that of the shared-memory plat-

form. Therefore, the data reuse of FPGA’s private DRAM determines the effective

CPU-FPGA bandwidth of a private-memory platform, and whether it can achieve

higher effective bandwidth than a shared-memory platform.

Quantitatively, we define the device memory reuse ratio, r, as:

r =

∑
dev Sdev∑
dma Sdma

where
∑

dev Sdev denotes the aggregate data size of all device memory accesses, and∑
dma Sdma denotes the aggregate data size of all DMA transactions between the host
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and the device memory.

Then, the effective CPU-FPGA bandwidth for a private-memory platform,

bwcpu−fpga, can be defined as:

bwcpu−fpga =
1

1

r ∗ bwdma
+

1

bwdev

where bwdma and bwdev denote the bandwidths of the DMA transfer and the device

DRAM access, respectively.

According to the above formula, the larger r is, the higher the effective CPU-

FPGA bandwidth is, and the better the performance could possibly be. It is worth

noting that since the FPGA on-chip BRAM data reuse is typically important for

FPGA design optimization, the above finding suggests that accelerator designers

using a private-memory platform need to consider both on-chip BRAM data reuse

and off-chip DRAM data reuse. Moreover, by comparing this effective CPU-FPGA

bandwidth of a private-memory platform to the DRAM bandwidth of a shared-

memory platform, we can get a threshold of device memory reuse ratio, rthreshold. If

the r value of an application is larger than rthreshold, the private-memory platform

will achieve a higher bandwidth; and vice versa. This could serve as an initial

guideline for application developers to choose the appropriate platform for a specific

application. Also, this phenomenon continues to exist between the next-generation

platforms, i.e., the Amazon EC2 F1 instance and Xeon+FPGA v2, meaning that

the proposed device memory reuse ratio is not merely applicable to the evaluated

platforms in this paper, but provides guidance to the selection of the private-memory

and shared-memory CPU-FPGA platforms across generations.
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Fundamentally, the device memory reuse ratio quantifies the trade-off between

private-memory and shared-memory platforms based on the following two ground

truths. First, local memory access tends to be faster than remote memory access.

Using the same technology, the private-memory platform can always come up with

a higher device memory access bandwidth compared to the shared-memory platform

which retrieves data from the CPU-attached memory. Second, the end-to-end CPU-

FPGA data transfer routine of the shared-memory platform is a subset of that of the

private-memory platform. Specifically, the routine of the private-memory platform

contains data transfers 1) from CPU-attached memory to FPGA, 2) from FPGA

to FPGA-attached memory, and 3) from FPGA-attached memory to FPGA, where

the shared-memory platform performs only the first step. While both of them are

well known and do not need to be reiterated, the proposed device memory reuse

ratio serves as a way to utilize them for helping application developers choose the

right platform. Furthermore, since these truths will not change over time, we expect

that the trade-off between these two kinds of platforms will still exist and the device

memory reuse ratio will remain to be a critical parameter.

Insight 3: In terms of effective latency, the shared-memory platform generally out-

performs the private-memory platform, and the QPI-based platform outperforms the

PCIe-based platform.

As shown in Table 5.6, the shared-memory platform generally achieves a lower

communication latency than the private-memory platform with the same communi-

cation technology (CAPI vs Alpha Data). This is due to the fact that the private-

memory platform first caches the data in its device memory, and then allows the

FPGA to access to the data, resulting in a longer communication routine. This

advantage, together with easier programming model, motivates the new trend of
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CPU-FPGA platforms with a PCIe connection and coherent shared memory, such

as CAPI and CCIx.

Meanwhile, compared to the PCIe-based platform, the QPI-based platform brings

the FPGA closer to the CPU, leading to a lower communication latency. Therefore,

a QPI-based, shared-memory platform is preferred for latency-sensitive applications,

especially those that require frequent (random) fine-grained CPU-FPGA communi-

cation. Some examples like high-frequency trading (HFT), online transaction pro-

cessing (OLTP), or autonomous driving might benefit from the low communication

latency of the QPI channel. Compared to Xeon+FPGA systems, the major drive

of PCIe-based shared memory system is its extensibility for more FPGA boards in

larger scale systems.

Insight 4: CPU-FPGA communication is critical to some applications, but not all.

The key metric is the computation to communication ratio CTC.

Double buffering and dataflow are well-used techniques in accelerator design op-

timizations. Such techniques can realize a coarse-grained data processing pipeline

so as to overlap the computation and data communication processes. As a result,

the performance of the FPGA accelerator is generally bounded by the coarse-grained

pipeline stage that consumes more time. Based on this criterion, FPGA accelerators

can be roughly categorized into two classes: 1) computation-bounded ones where the

computation stage takes longer time, and 2) communication-bounded ones where the

communication stage takes longer time.

If an accelerator is communication-bounded, then a better CPU-FPGA commu-

nication stack will greatly improve its overall performance. In this case, the high-

bandwidth F1 instance and Xeon+FPGA v2 platform are preferred. On the other
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hand, if an accelerator is computation-bounded, then switching to another platform

with a better communication stack does not make considerable difference. In this

case, the traditional PCIe-based private-memory platform may be preferred because

of its good compatibility. One may even prefer not to choose a platform with state-

of-the-art CPU-FPGA communication technology for cost efficiency. Application

developers should be aware of the condition whether the application to accelerate

is compute-intensive or communication-intensive, in order to select the appropriate

platform.

Quantitatively, we use the computation-to-communication (C2C) ratio [ZLS15]

(which is also named “operational intensity” in [WWP09]) to justify whether a com-

putation kernel is computation/communication bounded. Specifically, the C2C ra-

tio is defined as the division of the computation throughput and the data transfer

throughput:

C2C ratio =
Throughputcompute
Throughputtransfer

The computation throughput is referred to as the speed of processing a certain

size of input for a given FPGA accelerator; the data transfer throughput is referred

to as the speed of transferring this certain size of input into or out of the FPGA

fabric. When the C2C ratio of a kernel is above 1, this kernel is then computation

bounded; otherwise, it is communication bounded. In general, the data transfer

throughput is linearly proportional to the input size. Therefore, a computation kernel

with super-linear time complexity, such as matrix multiplication, is computation

bounded. Meanwhile, computation kernels like matrix-vector multiplication that is

of linear time complexity are often bounded by the CPU-FPGA communication. For
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computation bounded kernels, the CPU-FPGA communication bandwidth is not the

performance bottleneck, so the accelerator designers do not need to chase for high-

end communication interfaces. On the other hand, the CPU-FPGA communication

is critical to communication bounded kernels with C2C ratio less than 1, and the

efficiency of the communication interface is then a key factor in platform selection.

Insight 5: CPU-FPGA memory coherence is promising, but impractical to be used

in accelerator design on existing platforms.

The newly-announced CPU-FPGA platforms, including CAPI, CCIx and the

Xeon+FPGA family, attempt to provide memory coherence support between the

CPU and the FPGA either through PCIe or QPI. Their implementation methodology

is similar: constructing a coherent cache on the FPGA fabric to realize the classic

snoopy protocol with the last-level cache of the host CPU. However, although the

FPGA fabric supplies a few megabytes of on-chip BRAM blocks, only 64KB (the

Xeon+FPGA family) or 128KB (CAPI) of them are organized into the coherent

cache. That is, these platforms maintain memory coherence for less than 5% of the

on-chip memory space, leaving the majority as scratchpads of which the coherence

needs to be maintained by application developers. Although users may choose to

ignore the 95% scratchpads and store data on chip only through the coherent cache

to obtain transparent coherence maintenance, this approach is apparently inefficient.

For one thing, the coherent cache has a much longer access latency than that of the

scratchpads. Also, the coherent cache provides much fewer parallel access capability

compared to the scratchpads that can potentially feed thousands data per cycle. As a

consequence, application developers may still have to stick to the conventional FPGA

accelerator design principle to explicitly manage the coherence of the scratchpad

data.
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While the current implementation of the CPU-FPGA memory coherence seems

to be impractical due to the aforementioned prohibitive overhead, the methodol-

ogy does conceive great potential to ease the FPGA programming. The coherent

cache is particularly beneficial for computation kernels with unforeseeable memory

access patterns such as hashing. As will be discussed in Insight 7, implementing

the coherent cache on the FPGA fabric considerably restricts its capacity, latency

and bandwidth. Should it be implemented as a dedicated ASIC in future platforms,

application developers could harness the power of the cache coherence. Insight 6:

The coherent cache design could be greatly improved.

The coherent cache of the recently-announced CPU-FPGA platforms aims to pro-

vide the classic functionalities of CPU caches: data caching and memory coherence

that are transparent to programmers. However, the long latency and small capacity

make this component impractical to be used in FPGA accelerator design.

One important reason for such a long-latency, small-capacity design is that the

coherent cache is implemented on the FPGA fabric. Therefore, compared to the CPU

cache counterpart, the FPGA-based coherent cache has a much lower frequency and

thus a much worse performance. One possible approach to address this issue is to

move the coherent cache module out of the FPGA fabric as a hard ASIC circuit

instead. This could potentially catch up with the scratchpad latency and realize a

larger capacity, so as to be more practical to adopt in accelerator designs.

Another important reason is that the cache structure generally has very limited

number of data access ports. On the contrary, the thousands of BRAM blocks on

the FPGA fabric can potentially supply thousands of data in parallel. It is very

common for an FPGA accelerator to have over a hundred processing elements each
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of which has a dedicated BRAM buffer to achieve parallel data supply. Since massive

parallelism is a widely adopted way for FPGA acceleration, the future cache design

may also need to take this into consideration, e.g., a distributed, many-port cache

design might be preferred to a centralized, single-port one.

Insight 7: There still exists a large room for improvement to bridge the gap be-

tween the practically achieved bandwidth and the physical limit of the communication

channel.

For example, neither Alpha Data nor CAPI fulfills the 8GB/s PCIe bandwidth,

even without considering the overhead of pinned memory allocation and pageable-

pinned memory copy, so does the Amazon F1 instance. Meanwhile, it proves to be a

good alternative to alleviate the communication overhead by allowing direct pageable

data transfer through PCIe, which is realized in the CAPI platform. Another alterna-

tive is to offer end users the capability to directly manipulate pinned memory space.

For example, both the Xeon+FPGA family and unified virtual addressing (CUDA

for GPU) provide efficient and flexible API support to allow software developers to

operate on allocated pinned memory arrays or objects just like those allocated by

malloc/new [Nvi09]. Nevertheless, these solutions result in “fragmented” payloads,

i.e., the payload data may be stored in discrete memory pages, causing reduced

communication bandwidth.

Another alternative optimization is to form the CPU-FPGA communication stack

into a coarse-grained pipeline, like the CUDA Streams technique in GPUs. This may

slightly increase the communication latency for an individual payload, but could sig-

nificantly boost the throughput of CPU-FPGA communication for concurrent trans-

actions.
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Both solutions should work, and actually have been proved by two of our follow-

up studies. Guided by this insight, [RHL18] proposes a completely new environment

that achieves a much higher effective bandwidth in the Amazon F1 instance; in

Section 5.4 we propose a deep pipeline stack to overlap the communication and

computation steps.

5.2.4 The JVM-FPGA Communication Routine

Based on the above analysis, we now present the entire JVM-FPGA communica-

tion routine, and the key factors that affect the communication efficiency. We use

the conventional PCIe-based platform to demonstrate the routine, which can be

easily adapted to other platforms. Fig. 5.5 illustrates the entire JVM-FPGA data

movement process of the conventional PCIe-based CPU-FPGA platform. In the be-

ginning, the accelerator input data, in the form of Java objects, are packed together

to be transferred out of JVM ( 1 ). The accelerator host program that directly ma-

nipulates the FPGA accelerator then receives the data from JVM ( 2 ), and initiates

a PCIe-based direct memory access (DMA) to send the data to the FPGA off-chip

memory ( 4 ). This DMA transfer is coupled with a host-side memory copy ( 3 ) from

the pageable space to the pinned space, as analyzed in Section 5.2.2.1. The data

sent into the off-chip memory has to be loaded to the FPGA on-chip registers and

block RAM (BRAM) ( 5 ), and finally be seen by the accelerator compute logic ( 6 ).

Moreover, the generated output will go through all the above steps in the reverse

direction to reach JVM ( 7 - 11 ), contributing the other half of the communication

routine.

We now summarize the three factors that affect the JVM-FPGA communication

124



Host

Kernel Memory Space

User Memory Space

JVM

JVM Buf
1 11 Native Buf2

10

Pinned Buf

3 9

Device

Device Memory

FPGA Fabric

FPGA Accelerator

BRAM and Flip-Flops

Pinned Buf

5 7

4

8

6

Figure 5.5: JVM-FPGA Data Communication Routine

efficiency as follows.

• The payload size of each transaction. As illustrated in Fig. 5.3, the

maximum achievable bandwidth is much different from that with small sizes

of payloads for every CPU-FPGA platform. For example, a designer can enjoy

the 1.6 GB/s bandwidth if ensuring that every transaction conceives a few MBs

of data, but has to take the pain of a 100× smaller bandwidth if sending data

KBs by KBs.

• The complicated communication routine. Fig. 5.5 reveals to us with a

complicated, multi-stage JVM-FPGA communication routine. The fact that

these steps are performed sequentially further worsens the overall communi-

cation throughput. Our experiments show that the throughput of the overall

JVM-FPGA communication routine is only a few tens to hundreds of MB/s

even if we keep the payload size large.
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• Sharing of the FPGA resource among CPU threads. State-of-the-art

CPU-FPGA platforms generally have only one FPGA fabric, which is going

to be shared by all CPU threads 7. An efficient resource sharing strategy is a

must to the JVM-FPGA integration, since JVM-based frameworks like Apache

Hadoop and Spark are all multi-threaded.

5.2.5 Conclusion

In this section we present our analysis study that aims to evaluate and analyze the

microarchitectural characteristics of state-of-the-art CPU-FPGA platforms in depth.

The study covers all the latest-announced shared-memory platforms as well as the

traditional private-memory Alpha Data broad and the Amazon EC2 F1 instance,

with detailed data published (most of which not available from public datasheets).

We found that the advertised communication parameters are often too ideal to be

delivered to end users in practice, and suggest application developers avoiding over-

estimation of the platform performance by considering the effective bandwidth and

the communication payload. Moreover, we demonstrate that the communication-

bounded accelerators can be significantly affected by different platform implemen-

tations, and propose the device memory reuse ratio as a metric to quantify the

boundary of platform selection between a private-memory platform and a shared

memory platform. Also, we demonstrate that the CPU-FPGA communication may

not matter for computation-bounded applications where the data movement can be

overlapped by the accelerator computation, and propose to use the computation to

communication ratio CTC to measure it. In addition, we point out that the trans-

7Amazon EC2 supplies an eight-board F1 instance, but it is very expensive and the number of
FPGAs is still much smaller than that of CPU threads.

126



parent data caching and memory coherence functionalities may be impractical in the

current platforms, because of the low-capacity and high-latency cache design.

We believe these results and insights can aid platform users in choosing the best

platform for a given application to accelerate, and facilitate the maturity of CPU-

FPGA platforms. Furthermore, based on the analysis results, we present the entire

JVM-FPGA communication routine and summarize the key factors that affect the

integration efficiency. Since FPGA accelerators, compared to CPUs, work at a much

lower frequency and utilize deep pipelining and extensive parallelism to achieve high

performance, they in turn demands high-throughput data transfer to achieve large

speedup. This explains why we observe a 1000× system-wide slowdown when inte-

grating our Smith-Waterman accelerator into CS-BWAMEM straightforwardly. In

the following section, we will switch back to the application showcase, propose our

techniques to these three factors, respectively, and demonstrate how they reverse the

significant slowdown back to 3.5× system-wide speedup.

5.3 Batch Processing and FaaS: the Story Continues

5.3.1 JVM-FPGA Communication Reduction

To make the integration work efficiently, we have to find a way to alleviate the

tremendous JVM-FPGA communication overhead. Section 5.2 has revealed to us

that the overhead can be amortized by a large number of FPGA accelerator invoca-

tions if they are grouped together and offloaded to the FPGA board at a time, i.e.,

processed in batches. Therefore, we propose batch processing to reduce the commu-

nication overhead. Next we discuss opportunities and challenges of batch processing
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for the CS-BWAMEM/CPU and Smith-Waterman accelerator integration.

1. Each Smith-Waterman task has only 1-2KB input data and 20B output data.

These small payloads result in an extremely low communication bandwidth

utilization rate and leave opportunities for batch processing. Batching a large

number of Smith-Waterman tasks and transferring their input and output data

together can significantly increase the communication payload size and thus

improve the bandwidth utilization of both DRAM (from a JVM to a native

machine) and PCIe (from a native machine to an FPGA).

2. A Spark MapReduce program inherently offers a massive degree of parallelism.

All map function calls in a map stage are completely independent of each

other, which leaves opportunities for batch processing. To be specific, we

merge a certain number of CS-BWAMEM/FPGA’s map tasks derived from

the straightforward integration into a new map function, and conduct a series

of code transformations to batch the Smith-Waterman kernel invocations from

different map tasks together.

3. There is a delicate issue in CS-BWAMEM that imposes challenges in the code

transformation for batch processing, however. We use an example in Fig. 5.6

to illustrate this issue in the CS-BWAMEM algorithm, and how we design our

batch processing accordingly. First, a read generates N leftward/rightward ex-

tending tasks, indicating that a map function of CS-BWAMEM (before the code

transformation for batch processing) needs to process N Smith-Waterman tasks

(a row in Figure 5.6), where N is highly varied for different reads. Moreover, all

these Smith-Waterman tasks generated in the same read are completely chain-

dependent (a row in Figure 5.6)—in any two neighbors, the successor depends
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Figure 5.6: Batch processing of multi-reads in CS-BWAMEM

on the predecessor—and thus cannot be batched together. Therefore, a batched

map function has to consider multiple reads (rows) as a group and produce mul-

tiple Smith-Waterman batches (columns) for this group, as illustrated in Figure

5.6: the first Smith-Waterman batch contains the first Smith-Waterman tasks

of all the reads (first column); the second Smith-Waterman batch contains the

second Smith-Waterman tasks of all the reads (second column); and so forth.

To make it clear, we define two batch sizes: one is the read batch size, i.e.,

number of reads (rows) in a batch; the other is the Smith-Waterman batch

size, i.e., number of Smith-Waterman tasks in a column.

To achieve an optimal performance of batch processing, we have to carefully

select the right read batch size, i.e., number of reads to batch at a time. On one

hand, if the read batch size is too small, the batch cannot effectively amortize the

JVM-FPGA communication overhead. On the other hand, a larger read batch size

comes at the cost of more memory consumption, since the host machine has to store
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Figure 5.7: Performance under different read batch sizes

the intermediate data generated by all the batched reads. This situation will become

even worse in the multi-thread scenario, since each thread obtains much less memory.

Fig. 5.7 compares the performance of processing a set of reads in CS-

BWAMEM/FPGA and with different read batch sizes, as well as the performance

of CS-BWAMEM/CPU. We can see that the FPGA integration starts to outper-

form the CPU-only version when the read batch size reaches 16k. The performance

continues to increase until the program runs out of memory, where the batch size

exceeds 512k.

Ideally, if all the reads in a read batch have the same Smith-Waterman task

chain length and generate the same number of Smith-Waterman tasks, the batched

map function will produce a number of unified-size Smith-Waterman batches, which

could maximize the effectiveness of batch processing. However, the number of Smith-

Waterman tasks generated by each read varies drastically, ranging from 1 to several

hundred. As a result, the Smith-Waterman batch within these batched reads (each
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column in Figure 5.6) will become smaller when approaching the tail of these Smith-

Waterman task chains, as illustrated in Figure 5.6.

To address this issue, we further optimize the batched map function by adding a

threshold to the Smith-Waterman batch size: only Smith-Waterman batches (within

reads) with batch size no less than the threshold should be offloaded to the FPGA

accelerator. Then, we simply process all the smaller Smith-Waterman batches on

CPU. Fig. 5.8 shows the performance of CS-BWAMEM/FPGA with different Smith-

Waterman batch size thresholds. We only show results for read batch sizes of 16k, 32k

and 64k because larger read batch sizes will lead to an “out of memory” error in the

single-node multi-thread case. In addition, although a precise threshold depends on

the read batch size, a threshold of 64 generally achieves close-to-optimal performance,

which is around 8 KRPS and over 4x faster than CS-BWAMEM/CPU in the single-
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thread case.

5.3.2 Sharing FPGA Among Multiple Threads

Due to the high performance of FPGA accelerators, offloading a single-thread CPU

workload onto the FPGA usually makes the FPGA underutilized, which leaves op-

portunities for FPGA accelerators to be shared by multiple threads in a single node.

The major challenge is how to efficiently manage the FPGA accelerator resources

among multiple CPU threads. To tackle this challenge, we propose an FPGA-as-

a-Service (FaaS) framework and implement the FPGA management in a node-level

accelerator manager.

The FaaS framework abstracts the FPGA accelerator and its management soft-

ware on the CPU (called Accelerator Manager (AM)) as a server, and treats each

CPU thread as a client. Client threads communicate with AM via a hybrid of JNI

and network sockets. Different client threads send requests independently to the

AM to accelerate Smith-Waterman batches, and the AM processes the requests in

a first-come-first-serve way. Fig. 5.9 describes the functionality and the detailed

implementation of the FaaS framework.

In the single-thread integration, CS-BWAMEM/FPGA’s map functions have

been modified into batched map functions. The Smith-Waterman tasks from these

map functions have also been reorganized into a series of Smith-Waterman batches,

which are sent through JNI to the native library that manipulates the FPGA accel-

erator. The FaaS framework extends the native library into AM, and extends the

communication mechanism between the batched map function and AM as follows

1. When a batched map function in a CPU thread needs to use the FPGA ac-
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celerator, it will first allocate a shared memory buffer and then send the input

data of the Smith-Waterman batch from JVM to this buffer through JNI.

2. The batched map function then sends a request to AM through a socket in

order to use the accelerator. The request in this step contains only the address

of the shared buffer created in Step 1, thus generating negligible overhead.

3. If the accelerator is available, it will be locked and start to process the Smith-

Waterman batch; otherwise, the batched map function waits in a spin loop

until it successfully gets permission to use the accelerator.
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4. After the accelerator completes the current Smith-Waterman batch, it will

write the output data back to the shared memory buffer created in Step 1, and

become available again to accept another request.

When the number of CPU threads that share the FPGA accelerator increases,

thread contention and corresponding memory pressure will become more serious.

If the processing speed of the FPGA Smith-Waterman accelerator cannot match

the producing speed of Smith-Waterman task requests by CPU threads, it will lead

to a performance decrease. To understand the impact of thread contention, we

compare the performance of CS-BWAMEM/FPGA and CS-BWAMEM/CPU with

various numbers of CPU threads (there are 24 hyper-threads in a 12-core server). To

address the increasing memory pressure issue caused by multi-threads, we adapt our

read batch size to 32k to avoid running out of memory. As shown in Fig. 5.10, the

performance of CS-BWAMEM/FPGA starts to decrease when 20 threads share the

FPGA board. Meanwhile, the performance of CS-BWAMEM/CPU sightly decreases

at this point as well, which indicates that hyperthreading does not always help

performance improvement for CS-BWAMEM. Therefore, we will use 16 threads per

CPU throughout this paper since it achieves the best performance for both CS-

BWAMEM/CPU and CS-BWAMEM/FPGA. Under this 16-thread configuration,

the FPGA integration achieves almost 3x speedup.

5.3.3 Scaling FPGAs into Cluster Scale

Finally, we address challenges when scaling FPGA integration into cluster scale.

Two well-known major performance challenges in conventional datacenters are load

balancing and communication optimization. In this paper we mainly focus on com-
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Figure 5.10: Impact of thread contention

munication optimization since we did not observe serious load balancing issues in our

case study. Generally, the inter-node communication in a Spark program occurs 1)

between the driver node and map/reduce stages, i.e., broadcast; and 2) between map

stages and reduce stages, i.e., shuffle. Since FPGA accelerator integration usually

resides entirely in map functions, like the Smith-Waterman accelerator integration

in CS-BWAMEM, we only need to optimize the broadcast communication.

In CS-BWAMEM, a read-only human reference genome is needed as the input

data of all the Smith-Waterman tasks. First, this reference data is very large, which

costs about 10GB memory space to store in a JVM, and needs to be shared among

all Spark’s map functions. Second, it is read-only, so all the CPU threads in the

same node need only one shared copy. The original CS-BWAMEM/CPU leverages

Spark’s broadcast variables to implement this data-sharing functionality. Before

launching the map stage, Spark loads the reference data from the driver node and
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sends a copy to each worker node (only once) through the network. Though this

mechanism avoids creating a copy for each map function, it still costs a considerable

amount of time to broadcast the 10GB data through the network, especially for a

large-scale cluster. While it takes only 40 minutes to sequence a whole-genome sam-

ple through CS-BWAMEM/CPU in a 32-worker cluster, we observed a 5.5-minute

overhead generated by broadcasting, i.e., a 14% performance overhead. This over-

head would occupy an even larger percentage in CS-BWAMEM/FPGA where the

computation is further accelerated.

We propose a broadcast-avoidance approach to address this issue. This approach

is based on the observation that the human reference genome is very stable: it

is updated once or twice per year. Therefore, we can store a copy of the reference

genome in every worker node and reuse it for a great many DNA sequencing processes

until there is an update for the reference genome released. Below, we describe how

our broadcast-avoidance approach works.

1. We copy the disk files storing the reference data across all the worker nodes in

the cluster, and locate them in the same absolute path.

2. Then we extend Spark’s Broadcast class to implement the following mechanism.

When a broadcast object needs to be processed, we first check to determine if

the reference file can be found based on its ”absolute path” member variable.

If so, we directly load the data from the path and register the variable in

Spark’s block manager; otherwise, we follow the original broadcast mechanism

of Spark.

3. Finally, the reference genome is copied to the FPGA device memory for the

accelerators through PCIe.
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Clearly, our approach makes broadcast a constant-time of local file loading that

takes only tens of seconds. More importantly, it is transparent to Spark’s manage-

ment; i.e., Spark can use the variable in the exact same way as its original broadcast

variable.

After overcoming all the challenges in the single-thread, single-node multi-thread

and multi-node levels, now we have an efficient integration of CS-BWAMEM/FPGA.

As shown in Figure 5.11, the performance of Spark-FPGA integration scales well

with one to six worker nodes, where each node runs 16 threads. Through the efficient

integration of FPGA accelerators, CS-BWAMEM/FPGA improves the overall system

performance of a 6-worker cluster by 2.6x, compared to CS-BWAMEM/CPU. Under

the same configuration, CS-BWAMEM/FPGA consumes only 8% additional power

per worker node. That is, CS-BWAMEM/FPGA achieves 2.4x energy efficiency

improvement and 2.6x performance speedup. This result goes along with Microsoft’s

findings for the ranking stage of the Bing search engine where the performance is

improved by 2x while consuming 10% more power per server. It is quite promising

that FPGAs can greatly improve performance and energy efficiency in datacenters.

5.3.4 Analysis of Communication Overhead

To better demonstrate the effectiveness of FPGA acceleration, we present the de-

tailed execution time breakdown (normalized to the CS-BWAMEM/CPU baseline) of

our 6-worker Spark-FPGA system in Figure 5.12. The upper bar illustrates that the

Smith-Waterman accelerator targets at 86% of the overall execution time, where the

rest 14% of time mainly involves Spark’s task scheduling and the Smith-Waterman

tasks that are processed on CPU due to the Smith-Waterman batch size thresh-
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old mechanism presented in Section 5.3.1. As shown in the lower bar, the Smith-

Waterman accelerator reduces the acceleratable part (86%) to 8% while paying a 16%

communication overhead. The communication between the Spark program and AM

through JNI introduces 5% overhead, and the communication between AM and the

FPGA accelerator through PCIe introduces another 11% overhead. The existence of
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the above communication overhead reduces the overall system speedup to 2.6×. We

can see that there is still room to improve the overall performance if we are able to

further reduce the CPU-FPGA communication overhead.

5.3.5 Conclusion

In this section we continue to the JVM-FPGA integration process. With the find-

ings in our analysis study on CPU-FPGA platform microarchitectures, we propose

the batch processing and FaaS techniques to address the challenges at single-thread,

single-node multi-thread, and multi-node levels. Using the next-generation DNA se-

quencing application CS-BWAMEM and its Smith-Waterman accelerator integration

as a case study, we demonstrated how we turned a 1000× slowdown of the straight-

forward integration into an efficient integration with 2.6× overall system performance

improvement step-by-step, at the cost of consuming only 8% more power per worker

node. We believe that our methodology and insights can be applied to more general

cases where a fine-grained FPGA accelerator with short execution time would be

invoked by a Spark program a large number of times.

Meanwhile, our evaluation results show that the JVM-FPGA communication still

leaves room for further improvement. In the following section, we propose our fully-

pipeline JVM-FPGA data communication stack to further improve the integration

efficiency.
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5.4 Fully-Pipelined Communication Stack: The Story Ends.

5.4.1 Overview

As illustrated in Fig. 5.5, two impediments still exist to prevent the JVM-FPGA

integration efficiency from being further improved: 1) the overall routine is fairly

complex and involves many steps of data movement, and 2) these steps are per-

formed sequentially. To resolve these impediments, in this section we proposes a

high-bandwidth JVM-FPGA communication stack. Specifically, we propose a fully

pipelined JVM-FPGA communication stack that allows different jobs to be trans-

ferred and processed simultaneously, i.e., overlapping different data movement steps

and the computation step. As a result, the JVM-FPGA communication throughput

is greatly improved to several GB/s. Furthermore, to free users from implementing

the pipeline stack that involves 1) concurrent programming in Java, C and hardware

description languages, 2) FPGA runtime management, and even 3) circuit design, we

propose a programming framework to automatically generate most of the pipeline

code, leaving only a simple Java interface to users.

One key feature of our proposed pipeline stack is that different pipeline stages

can be configured with different data transfer granularities, i.e., different payload

sizes, to achieve the optimal throughput because the payload size of a data trans-

fer stage generally determines its data transfer throughput. While it is nontrivial

for programmers to manually identify the best configuration of payload sizes, we

formulate the problem of pipeline throughput optimization into an integer linear

programming (ILP) problem and apply its solution to pipeline code generation to

achieve the optimal throughput.
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While implemented for generic Java programs, the proposed pipeline stack could

be particularly beneficial for cloud computing frameworks, e.g., Apache Hadoop and

Spark that feature a massive degree of data-level parallelism. We discuss as fu-

ture work the potential integration of the pipeline stack into these frameworks. In

summary, this study makes the following contributions:

• A JVM-FPGA communication pipeline that overlaps multiple communication

and computation steps.

• A programming framework to automatically generate most of the pipeline code,

freeing users from the bothersome concurrent and hardware intricacies.

• An ILP formulation of the pipeline optimization problem and automation of

the optimization process.

Our experiments show that our approach achieves 4.9× speedup for a variety of

computation kernels. By applying this technique into the application showcase, we

further improve the integration efficiency and achieve a 3.5× speedup.

5.4.2 Pipelined Communication Stack

In this section we present our fully pipelined JVM-FPGA communication stack8.

Section 5.4.2.1 describes its overall architecture and major components; Section 5.4.3

introduces our user programming model.

8This study is presented in [CWY18a]. I would like to convey my appreciation to all coauthors
for their contributions to this study.
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5.4.2.1 System Overview

In a nutshell, the proposed approach aims to form different JVM-FPGA data move-

ment steps and the computation step into a multistage pipeline, so the overall system

performance could be determined only by the stage with the longest latency, instead

of the latency of the entire JVM-FPGA routine. Fig. 5.13 illustrates the overall ar-

chitecture of the proposed 7-stage fully pipelined JVM-FPGA communication stack.

The pipeline accepts a series of Java objects that contain the input data of the FPGA

accelerator, transfers the data through three pipeline stages to the FPGA fabric, per-

forms the computation, and finally transfers the output data back to JVM through

another three pipeline stages. Each stage corresponds to one or two data movement

steps illustrated in Fig. 5.5. Every two adjacent stages are glued by a concurrent

queue structure which may be implemented as software lock-free queues or hardware

FIFO channels. Since the last three stages are symmetric to the first three stages,

we only describe the detailed functionalities of the first four stages in the remainder

of this section.

Pack. The pack stage performs data reorganization. It corresponds to 1 in

Fig. 5.5. Specifically, it retrieves the necessary input data from Java objects and

puts them into a Java byte array—so it happens completely inside JVM. The byte

array is then pushed into the send queue, a fixed-size, lock-free Java queue structure,

and finally moved to the FPGA accelerator for computation. One objective of the

pack stage is to achieve batch processing, i.e., batching the input of many jobs

together to form a large payload to improve the data transfer throughput.

Send. The send stage accepts byte arrays from the head of the send queue, and

sends them to the FPGA accelerator management program via socket. Since the
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host Java program, e.g., a Hadoop or Spark program, may have multiple threads

using the FPGA accelerator simultaneously, we use our FPGA-as-a-service (FaaS)

framework [CCF16a, HWY16] to realize such resource sharing. The accelerator man-

ager in FaaS collects the data from different threads and pushes them into the gather

queue that is a fixed-size, lock-free C++ queue structure storing OpenCL memory

objects. These OpenCL memory objects are managed by the Xilinx SDAccel runtime

environment [sda], and stored in the pinned memory space to be transferred to the

FPGA memory via PCIe. The entire stage corresponds to 2 3 in Fig. 5.5.

DMALoad. The DMALoad stage accepts OpenCL memory objects from the

gather queue and performs two data transfers. First, an OpenCL object is sent to

the FPGA off-chip memory via the PCIe interface. Next, it is loaded streamingly

from the off-chip memory to the load queue that resides in the FPGA on-chip block
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RAM (BRAM). The entire stage corresponds to 4 5 in Fig. 5.5. The load queue is

a hardware FIFO channel that connects the off-chip memory to the on-chip BRAM.

Compute. The compute stage performs the actual computation of the FPGA

accelerator. It loads input data from the off-chip memory via the load queue, and

stores output data back to the off-chip memory via the store queue that is symmetric

to the load queue. The output data are then transferred through the DMAStore, Recv

and Unpack stages back to JVM, which completes the JVM-FPGA routine.

In summary, the proposed JVM-FPGA communication stack pipelines the com-

putation and the data transfers crossing a variety of layers, including JVM, host

native memory space, FPGA off-chip memory space and on-chip BRAM. While sig-

nificantly improving the JVM-FPGA communication efficiency, this heterogeneous

pipeline is not easy to be manually implemented. The following section presents our

programming model for the system to significantly simplify user efforts.

5.4.3 Programming Model

Our programming model only requires programmers to implement an application-

specific interface for the Pack and Unpack stages. For example, the interface of the

Pack stage outputs an iterator with a series of byte arrays, as shown in Code 5.1. In

this example, we assume an Advanced Encryption Standard (AES) accelerator with

two arguments: key and value. The two arguments correspond to a user-defined

class StringWithKey (line 1-4), where value is object-specific and key is shared by

all StringWithKey objects. As can be seen in Code 5.1, the programmer only needs

to implement a PackIterator with two methods. In particular, the next method

(lines 13-29) returns one byte array at a time, where the first byte specifies which
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accelerator argument the byte array corresponds to. The Pack stage will invoke

UserPacker iteratively and pack byte arrays with a certain size and push them to

the send queue. Note that to avoid sending the shared data (i.e., key) redundantly,

our interface provides a field isFirstObject to indicate whether the shared data

have been sent out before.

By using our programming interface to specify how to pack/unpack Java objects

and byte arrays, the remainder of the pipeline stack will be automatically gener-

ated. The remaining issue in pipeline generation is to determine the data transfer

granularity, i.e., payload size, which determines the throughput of its corresponding

pipeline stage. Since it is nontrivial for users to find the best payload size for each

stage, we hide the payload size tuning from users and present our approach for auto-

matically identifying the best configuration of payload sizes to maximize the pipeline

throughput in the next section.

List 5.1: Programming Model with AES Example

class StringWithKey {

String key = ...;

String value = ...;

}

class UserPacker implements PackIterator {

int ptr = 0;

StringWithKey data;

public UserPacker(StringWithKey data) {

this.data = data;

}
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public boolean hasNext() { return (ptr < 2); }

public Byte[] next() {

if (ptr == 0 && !this.isFirstObject)

return // Convert key to byte array

else if (ptr == 1)

return // Convert value to byte array

ptr++;

return null;

}}

5.4.4 Pipeline Throughput Optimization

In this section we focus on the optimization of the overall pipeline throughput, i.e.,

the identification of the best payload sizes for all the pipeline stages. Section 5.4.4.1

first analyzes the impact of the payload size on pipeline throughput. According to

the analysis, we formulate the problem to an integer linear programming (ILP) in

Section 5.4.4.2 to find the best payload sizes.

5.4.4.1 Analysis of Data Transfer Throughput

In general, the latency of transferring a certain size of payload can be decoupled into

two parts: 1) a constant time setup overhead, and 2) the payload movement time

that is proportionate to the size of the payload. Because of the setup overhead, the

data transfer throughput grows rapidly with respect to the payload size when it is

small, and gradually reaches a stable value since the impact of the setup overhead

is amortized. Some of the pipeline stages, e.g., the DMALoad stage, follow this rule
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very well, as is demonstrated in Fig. 5.14 (a). In this case, a larger payload size is

always favored.

Not all the pipeline stages, however, deliver a perfect linear relation. Fig. 5.14 (b)

shows the changes of latency with respect to the payload size for the Send stage.

The payload size ranges from 0 to 32 MBs. We can see that the linear trend is not

overall applicable, but still persists when the payload size is below a few megabytes,

as shown in Fig. 5.14 (c). A key reason is that the last-level cache is not able to

hold all the intermediate data any more with the growing payload size, resulting

in the sharp performance degradation in Fig. 5.14 (b). In detail, the PCIe-based

CPU-FPGA data transfer is implemented as a direct memory access (DMA) which

utilizes the cycle stealing technology [Mar80] to efficiently share the host-side mem-

ory bandwidth between regular CPU memory accesses and the DMA. The efficiency

of this sharing, therefore, depends on the memory bandwidth requirement of the

CPU. If the CPU suffers a high last-level cache (LLC) miss rate, i.e., a large number

of memory accesses, then the cycle stealing mechanism will not work well. By using

the Linux perf tool to profile the LLC cache miss rate for different payload sizes,

we observe a greatly increased LLC miss rate: 19.8% for 1MB payload, and 33.2%

for 4MB payload. As a consequence, the throughput optimization problem becomes

more complicated when the memory constraint is taken into consideration. Conse-

quently, the payload size should be allocated wisely among different stages for global

optimality given certain memory constraints (in our case the LLC capacity).

However, as shown in Fig. 5.14 (c), even for data transfer stages that show ob-

vious non-linear trend with large payload sizes, they still persist linear trend with

small sizes of payload. Therefore, by confining the payload sizes inside certain upper

bounds, the problem can still be linearized. Such confinement does not lose opti-

147



0 10 20 30
Size (MB)

0.010

0.005

0.000

0.005

0.010

0.015

0.020

0.025

La
te

nc
y 

(s
ec

on
ds

)

(a) DMALoad

0 10 20 30
Size (MB)

0.00

0.05

0.10

0.15

0.20

La
te

nc
y 

(s
ec

on
ds

)
(b) Send (0∼32MB)

0 1 2 3 4
Size (MB)

0.010

0.005

0.000

0.005

0.010

0.015

La
te

nc
y 

(s
ec

on
ds

)

(c) Send (0∼4MB)

Figure 5.14: Latency-Size Curve for Different Stages

mality since for any point in Fig. 5.14 (b) that falls in the large-size area, we can

always replace it with a point inside the small-size area which has an even larger

throughput. The following section presents our ILP-based approach to solve this

problem mathematically.

5.4.4.2 Payload Size Tuning

In a nutshell, we attempt to formulate the problem of tuning the payload size of

each pipeline stage into an ILP problem in which the solution can be obtained via a

standard ILP solver.

Problem Formulation: Given a computation kernel K, find a set of payload

sizes S = {Spack, Ssend, ..., Sunpack} so as to maximize the overall throughput TK .

Since the throughput of a pipeline is bounded by the stage that has the minimal

throughput, the overall throughput can be modeled via Eq. 5.1:

TK = Min(Tpack, Tsend, ..., Tunpack) (5.1)
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where Tpack, ..., Tunpack denote the throughputs of the seven stages, respectively.

Also, we know that the throughput of a stage Tstage is inversely proportional to its

latency Lstage, which can be represented as a function related to the payload size

Sstage:

Tstage =
1

Lstage
=

1

fstage(Sstage)
(5.2)

Therefore, to solve the problem, we need to determine each function fstage.

Integer Linear Programming Formulation: To form an ILP, we model fstage

for each stage to a linear function while preserving the practicality and optimality.

First, the data transfer stages, i.e., Pack/Unpack, Send/Recv and DMALoad/D-

MAStore, have linear relations between the payload size and the latency. For the

Send/Recv stage where the latency increases dramatically after the payload size hits

a certain threshold, these large sizes can be filtered out since we can always find a

better (smaller) size with a similar or higher data transfer throughput. Therefore,

we are able to formulate function fstage for these six stages as linear functions. Note

that the Pack/Unpack stages are application-specific, so we profile the the applica-

tion with a small dataset. The other four stages, however, are platform-specific, so

we only need to profile the platform once to derive fstage, which is then used for all

applications running on this platform.

We then model the Compute stage. Depending on the time complexity of the

accelerator, the computation latency may not have linear dependency to the input

size. To address this issue, we profile the compute time with a set of factor-of-two
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input sizes, since factor-of-two data sizes generally achieve high efficiency in circuit

design. Subsequently, the accelerator latency can be represented by the following

linear equation:

Lcompute =
∑
i

pi × LSi , where
∑
i

pi = 1, pi ∈ {0, 1} (5.3)

where LSi denotes the latency of the i-th profiled performance point; pi is a bi-

nary variable for each point and only one of them will be 1, i.e., only one profiled

performance point with the best input size will be delivered.

Finally, we specify the memory constraint. It indicates that the overall sizes of

all the queue structures cannot exceed a given memory capacity, as shown in Eq. 5.4:

∑
SQstage =

∑
i

(Sstage ×Dstage) ≤ Scapacity (5.4)

where SQstage denotes the overall size of the queue structures for each stage and is

determined by the size of each entry (Sstage) as well as the queue depth (Dstage,

fixed in the proposed pipeline). Note that the software and hardware queues occupy

different memory space and thus are evaluated separately.

The list below summarizes the complete analytical model. By constraining the

overall memory footprint not exceeding the capacity of the last-level cache, all equa-

tions, in particular the latency equations for all the data communication stages, are

linear, so the payload sizes can be determined with an ILP solver.
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max : TK = Min(Tpack, Tsend, ..., Tunpack) (5.5)

subject to

Tstage =
1

Lstage
, where stage ∈ S = {pack, send, ..., unpack} (5.6)

Lcomm = Linit + Scomm × Lper bytecomm , where comm ∈ S − {compute} (5.7)

Lcompute =
∑
i

pi × LSi , where
∑
i

pi = 1, pi ∈ {0, 1} (5.8)

∑
SQstage =

∑
i

(Sstage ×Dstage) ≤ Scapacity (5.9)

5.4.5 Experiments

We perform the experiments based on the PCIe-based CPU-FPGA platform that

connects a Xeon CPU (E5-2420) and an Xilinx FPGA board (Alpha Data ADM-

PCIE-7V3 [Xil17]) via the PCIe interface (Gen3 x8). On top of it, we use the Xilinx

SDAccel runtime environment v2017.2 [sda] to drive the FPGA acceleration. On

the host side, we use a set of computation kernels from the MachSuite benchmark

suite [RAS14], to demonstrate the effectiveness of the pipeline stack on variant types

of kernels. We demonstrate the effectiveness of the proposed pipeline by writing a

single-thread Java program for each kernel to continuously invoke its FPGA acceler-

ation routine.

Fig. 5.15 compares the execution time between the proposed pipeline stack and

the conventional sequential stack with 512KB, 1MB and 2MB payload sizes. We can

see that the proposed pipeline stack achieves significant performance improvement on
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Figure 5.15: Throughput comparison between the pipeline and sequential JVM-

FPGA communication stacks.

all kernels (4.9× on average), especially AES, KMP and STENCIL (5.7× to 6.1×).

This is because these computation kernels are of linear time complexity, and the

effective computation time after the FPGA acceleration is smaller than any of the

data movement steps. The other kernels, i.e., FFT, NW and VITERBI, have super-

linear time complexity, and the computation time still takes an important portion of

the overall routine. Therefore, the achieved speedup (2.8× to 5.0×) is smaller, but

still remarkable.

This trend is also exhibited in the throughput optimization results. Fig. 5.16

illustrates the performance difference between our ILP-based approach and the ones

using constant-size payloads (512KB, 1MB or 2MB). We can see that the proposed

approach is particularly beneficial for AES, KMP and STENCIL (34% to 65% im-

provement), but has moderate impact on FFT, NW and VITERBI (up to 7% im-

provement). This is because in the former three kernels the Compute stage is fully

overlapped by the communication stages, allowing us to do more on throughput op-
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solutions.

timization via changing the payload sizes. On the other hand, Compute is still the

most time-consuming stage in the latter three kernels, so having payloads with a

reasonable constant size is sufficient.

Finally, we apply the pipeline technique to the genome sequencing acceleration

process. The results show that we further improve the system-wide performance to

3.5×, which demonstrates the effectiveness of the pipeline solution in real applica-

tions.

5.4.6 Conclusion

This study concludes our JVM-FPGA integration methodology. In summary, we

propose three techniques to address the three factors that affect the integration effi-

ciency. The batch processing technique aims to create large sizes of payloads to better

utilize the communication channels. The FaaS framework aims to share the FPGA

resource among multiple CPU threads. The pipeline stack aims to overlap multiple
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communication stages and the compute stage to improve the overall throughput.

Our application showcase demonstrates that these three techniques can be combined

and applied together, and reverse a 1000× slowdown to a 3.5× system-wide speedup.
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CHAPTER 6

Conclusions

This dissertation is dedicated to facilitating the current trend of adopting FPGAs

in datacenters. We focus on the two major issues that prevent general datacenter

application developers from accepting FPGAs: the notoriously poor programmabil-

ity and the severe CPU-FPGA integration overhead, and propose our methodology

to address both of them. For the first issue, we find that a best-effort code recon-

struction practice can actually lead to high-quality accelerator designs from software

programs for a variety of computation kernels. Inspired by this finding, we derive

the best-effort practice into the CPP microarchitecture as a template of accelerator

designs. The beauty of introducing such a template is to significantly reduce the

design space from “anything possible” to only the scope of CPP. Moreover, this well-

defined microarchitecture enables us to develop an analytical model to quantify the

performance-resource trade-offs among different configurations of CPP. The CPP

model in turn leads to fast design space exploration to identify the optimal CPP

configuration in a reasonable time. With all these advantages, we implement the

AutoAccel framework to automate the entire accelerator generation process. This

delivers to general datacenter application developers a nearly push-button experience

to obtain FPGA accelerators with good performance.

We identify the second issue via a case study for the genome sequencing accelera-
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tion. When integrating a high-quality accelerator into a high-performance datacenter

application based on the Apache Spark framework, we find that such an “alliance

between giants” actually leads to a 1000× system-wide performance degradation.

By conducting a quantitative analysis on the microarchitectures of five state-of-the-

art CPU-FPGA platforms, we identify three key factors that affect the efficiency of

CPU-FPGA integration: the payload size of each transaction, the multi-stage com-

munication routine, and the sharing of the FPGA resource among CPU threads. We

then propose three techniques, batch processing, the fully-pipelined communication

stack, and the FaaS framework, to address these factors, respectively. By apply-

ing them back to our case study for genome sequencing acceleration, we reverse the

drastic slowdown back to a system-wide speedup.

We believe that our methodologies have effectively addressed these two issues,

and could inspire more research in both directions. For the AutoAccel framework, it

serves as a proof of concept that a template-based design automation approach does

work well. However, the CPP microarchitecture does not cover the entire spectrum

of computation kernels, and thus more templates are expected to be proposed, with

their own analytical models and code transformation practice. For the CPU-FPGA

integration, the constant evolution of CPU-FPGA platforms makes it always a “hot

topic”. For instance, the Amazon EC2 F1 instance brings virtualization into con-

sideration, and we expect more FPGA instances on a variety of public clouds in

the future. It is still an open topic to consider both FPGA features and system

virtualization for a more efficient and secure integration.
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