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bstract

Artificial neural networks (ANNs) are generally considered as the most promising pattern recognition method to process the signals from a
hemical sensor array of electronic noses, which makes the system more bionics. This paper presents a chaotic neural network entitled KIII, which
odeled olfactory systems, applied to an electronic nose to discriminate six typical volatile organic compounds (VOCs) in Chinese rice wines.
hirty-two-dimensional feature vectors of a sensor array consisting of eight sensors, in which four features were extracted from the transient

esponse of each TGS sensor, were input into the KIII network to investigate its generalization capability for concentration influence elimination

nd sensor drift counteraction. In comparison with the conventional back propagation trained neural network (BP-NN), experimental results show
hat the KIII network has a good performance in classification of these VOCs of different concentrations and even for the data obtained 1 month
ater than the training set. Its robust generalization capability is suitable for electronic nose applications to reduce the influence of concentration
nd sensor drift.

2007 Published by Elsevier B.V.
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. Introduction

The molecular basis of odor recognition in the human olfac-
ory system has been successfully investigated [1], while the
nformation processing principle of olfactory neural systems still
emains not very clear. However, a bionic technology termed
lectronic noses inspired by the mechanism of biological olfac-
ory systems has been studied by many researchers during the
ast two decades [2]. An electronic nose is an instrument,
hich generally consists of an array of cross-sensitive electronic

hemical sensors and an appropriate pattern recognition method
PARC), to automatically detect and discriminate simple or com-
lex odors [3]. Generally speaking, electronic noses are faster to
espond, easier to use and relatively cheaper in comparison with

onventional analytical techniques, such as gas chromatogra-
hy/mass spectroscopy (GC/MS) and flame ionization detection
FID), so that they have wide applications in environmental

∗ Corresponding author. Tel.: +86 571 87952233 8228.
E-mail address: guangli@zju.edu.cn (G. Li).
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onitoring [4,5], food and beverage industry [6–8], medical
iagnosis [9], public security [10], etc.

As a multidisciplinary research, most studies on electronic
oses focused on the sensitivities of the chemical sensor array
nd the pattern recognition methods to process the signals
btained from the sensor array. With the development of func-
ional material technology, signals can be obtained via various
ensors, such as metal oxide semiconductor (MOS), optical, con-
ucting polymer (CP), quartz crystal microbalance (QCM) and
urface acoustic wave (SAW) sensors [11,12]. However, how to
eal with these signals is still crucial for artificial olfaction to
eliably recognize various odors. So far, a considerable number
f pattern recognition methods have been introduced into elec-
ronic noses [13,14]. And ANNs are usually considered to be one
f the most promising methods to solve this complicated prob-
em, because they can cope with nonlinear problems and handle
oise or drift better than conventional statistical approaches. So

any ANNs to process signals from sensor arrays are reported,

uch as back propagation trained neural network [15], radial
asis function neural network [16], probabilistic neural network
17], self-organizing network [18], etc.

mailto:guangli@zju.edu.cn
dx.doi.org/10.1016/j.snb.2007.02.058
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Although conventional ANNs simulate the hierarchy struc-
ure of cortex, only a few of ANNs mimic the architectures of

particular neural system. Multi-scale models entitled K sets
ere introduced by Freeman in the 70′, which described increas-

ng complexity of structure and dynamical behaviors. K-sets are
opological specifications of the hierarchy of connectivity in neu-
on populations, and the KIII network is a complex dynamics
ystem to imitate vertebrate olfactory systems [19,20]. When
he parameters are optimized and additive noise is introduced,
he KIII network can not only output electroencephalograph-
ike waveforms observed in electrophysiological experiments
21–23], but also be used in a wide range of applications,
ncluding spatiotemporal EEG pattern classification [24,25] and
andwritten numerals recognition [26]. Recently, Gutierrez-
suna and Gutierrez-Galvez have shown the potential use of

he KIII network to analyze the output signal of a chemical sen-
or array [27]. They also proposed a new Hebbian/anti-Hebbian
earning rule for this model to increase pattern separability for
ifferent concentrations of three VOCs [28].

Focusing on the problems of concentration influence and sen-
or drift, this paper reports an application of the KIII neural
etwork on an electronic nose to recognize VOCs usually present
n the headspace of Chinese rice wine.

. Experimental

.1. Experimental setup and data acquisition

The experimental setup consists of an array of eight MOS
ensors in a sealed test chamber (3000 mL), a set of acquisi-
ion circuits including a 12-bit A/D converter and an IBM PC
ompatible computer (as shown in Fig. 1). The communica-
ion between the signal acquisition circuits and the computer
s via a RS232 cable. Eight sensors (TGS880 (2×), TGS813
2×), TGS822 (2×), TGS800, TGS823) are all commercially
vailable, purchased from Figaro Engineering Inc.

Six VOCs (ethanol, acetic acid, acetaldehyde, ethyl acetate,
actic acid and isoamyl alcohol) usually presenting in the
eadspace of Chinese rice wines [29] were of analytical grade

nd purchased from Sinopharm Chemical Reagent (Shanghai,
hina). For each VOC, 10 mL solution was rested on the bottom
f a 250 mL vial at least 20 min, so that saturated VOC could be
xtracted in the headspace of the vial as an analyte.

Fig. 1. Scheme of the experimental setup.
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ig. 2. A typical output of the sensor array. Features extracted from the response
f one sensor are indicated as Vm, Tm, Vf and S. The curves marked with the
ame symbol (�, © and �) were obtained from the same type sensors.

To distribute the analyte uniformly in the test chamber, a
an inside the chamber stirred air for 1 min after the VOC was
xtracted from the vial headspace and then injected into the
est chamber using a syringe. When a constant voltage (5 V dc)
as applied to the heater resistors of all sensors, the outputs of

ight sensors were simultaneously measured via the 12-bit 8-
hannel A/D converter and recorded on the hard disk of the PC
or further processing. The sampling rate for each sensor was
0 samples/s and the duration was 1 min. Fig. 2 shows typical
esponse curves of the sensor array. The same type of sensors
ave similar but not the same response characteristics, as shown
n Fig. 2, implying that no one is redundant. After measurement,
he test chamber was flushed with ambient airflow for 5 min to
urge the chamber and leave the sensors to recover by desorp-
ion. All measurements were carried out under open laboratory
onditions without special atmospheric, humidity or temperature
ontrol.

In order to investigate the sensor drift effect, data acqui-
ition were conducted during different periods. Dataset I was
ollected in May, containing 66 samples (11 samples for each of
ix VOCs), and Dataset II was collected in June, containing 120
amples (20 samples for each of six VOCs). All the concentra-
ions of VOCs for Datasets I and II are 30 mL/3000 mL. Dataset
II was acquired in August, containing 90 samples (five samples
or each of six VOCs of 30 mL/3000 mL, 50 mL/3000 mL and
0 mL/3000 mL concentrations).

.2. Feature extraction
A typical output of the sensor array consists of eight time
eries from eight individual sensors. Some features should be
xtracted to represent the original signals for further processing.
any feature extraction methods have been considered, includ-
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ng steady-state phase, transient phase or both. However, it is
ommonly believed that the transient response, which represents
ifferent dynamic behaviors of the sensors exposed to different
dors [30], may contain more information than steady-state one.
esides, utilizing transient response reduces the time require-
ent to collect data. In this work, four features were selected

as shown in Fig. 2) to construct a feature vector to represent one
esponse of the sensor array to a certain VOC; (1) the maximum
oltage of sensor output, Vm, (2) the time to reach the maximum
oltage, Tm, (3) the voltage at 40 s, Vf, and (4) the area covered
y the response curve during the first 40 s, S, which is estimated
s the sum of the data values of the first 40 s.

In order to reduce the influence of concentration fluctuation
n classification results, a vector normalization is applied as
escribed in Eq. (1). Each set of vector is individually divided
y its Euclidean norm so that it lies in a hyper-sphere of unit
adius.

new(i) = P(i)(∑8
i=1P

2(i)
)1/2 , i = 1, 2, ..., 8 (1)

here P(i) represents Vm, Tm, Vf and S, respectively. Eq. (1)
s given for each feature from the eight sensors. Therefore, the
esponse of the sensor array to a certain VOC can be represented
y a 32-dimensional feature vector.

. Pattern recognition method

.1. KIII neural network

The KIII network modeling biological olfactory systems is
massively parallel architecture with multiple layers coupled
ith both feedforward and feedback loops through distributed
elay lines. Fig. 3 shows the topological diagram of the KIII
etwork. Odorant sensory signals from receptors (R) propagate
o periglomerular cells (P) and olfactory bulb (OB) layers via the
rimary olfactory nerve (PON) in parallel. The OB layer consists
f a set of mutually coupled neural oscillators, each being formed
y two mitral cells (M) and two granule cells (G). Then the sum
utput of all lateral M1 nodes transmits via a lateral olfactory
ract (LOT) to the AON and PC, which provides the final output
f the olfactory system to other parts of the brain from deep
yramidal cells (C), as well as back to the OB and AON layers.
etails of the KIII network and its neurophysiologic foundations

re given in Refs. [19,21,23,31,32].
In Fig. 3, every node representing a population of interactive

eurons can be described by a second-order ordinary differential
quation (ODE) as follows:

1

ab
[x′′

i (t) + (a + b)x′
i(t) + abxi(t)]

=
N∑ [

WijQ(xj(t), qj)
] + Ii(t) (2)
j �=i

here xi(t) represents the state variable of the ith node, xj(t)
epresents the state variable of the jth node, which is connected to
he ith, while Wij indicates the connection strength from j to i. Ii(t)

R
a
n
s

Fig. 3. Topology of the KIII neural network.

s an external input signal to the ith node. The parameters a and b
eflect two rate constants. Q(x(t), q) is a static sigmoid function
erived from the Hodgkin-Huxley equation and evaluated by
xperiments [33].

Q(x(t), q) =
{

q(1 − exp(−(exp(x(t)) − 1)/q)), x(t) > −x0

−1, x(t) ≤ −x0

x0 = − ln

(
1 − q ln

(
1 + 1

q

))
(3)

Therefore, the dynamics of the whole olfactory model can be
athematically described by a set of such ODEs, as details in
efs. [19,22]. Here, the fourth-order Runge-Kutta method with
fixed step of 1 was applied for numerical integration of the
DEs.
The parameters in the model are determined by a set of reli-

ble parameter optimization algorithms [21] to make the KIII
odel output EEG-like waveform as observed in olfactory sys-

ems. All parameters without declaration in this paper come from

ef. [22]. Moreover, it seems to be very important to introduce
dditive noises into the KIII network for its stability and robust-
ess. Therefore, a low-level Gaussian noise is injected into two
ignificant points, R and AON to simulate both peripheral and
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ig. 4. An example of time series from (a) P2, G2, E1, A1 and (b) M1 node of t
eceptor. (c) The phase portrait of attractor with M1 node against G2 node in O
o colour in this figure legend, the reader is referred to the web version of the ar

entral sources of noise in olfactory systems. It offers a conver-
ence of statistical measures on the KIII output trajectories under
erturbations of initial conditions of variables and parameter
alues [22].

.2. Learning rule and classification algorithm

When a pattern to be learned expressed by an n-dimension
ector is input in parallel into an n-channel KIII network, the
ystem that presents an aperiodic oscillation in its basal state at
rst will soon go to a specific local basin of an attractor wing,
ith a gamma range of quasi-periodic burst, corresponding to

his pattern, as shown in Fig. 4. The system memory is defined
s the collection of basins and attractor wings of the KIII net-
ork, and a recall is the induction by a state transition of a

patiotemporal gamma oscillation [24]. When used for pattern
ecognition, the outputs of the KIII network are expressed in the
orm of a spatial amplitude modulated (AM) pattern of a chaotic
scillation in the multi-channel OB layer. Many mathematical
ethods to extract information from the outputs of the model are

roposed, such as standard deviation (SD) [24], singular-value
ecompositions (SVD) [34], root mean square (RMS), principal
omponents analysis (PCA) and fast Fourier transform (FFT)
35].

In this work, the SD method is adopted. The burst in each M1
ode is portioned into s equal segments, and the mean value of
he individual SD of these segments is calculated as SD(k), as
n Eq. (4).

1 s∑

D(k) =

s
r=1

SDr, k = 1, 2, ..., n (4)

hen a new sample is presented to the KIII network with n
hannels, the activity measure over the whole OB layer in this

v
m

m

-channel KIII network with constant stimulus from 50 to 250 steps injected via
rt from red, then to black and end in blue) (For interpretation of the references
.

raining can be expressed by a vector:

= [SD(1), SD(2), . . . , SD(n)] (5)

In training phase, every time the modified Hebbian learning
ule and the habituation learning rule [24] are employed to mod-
fy lateral weights Wmml between all M1 nodes in the OB layer
short for Wij and Wji), as shown in Eq. (6). If the activities of two
odes, M1(i) and M1(j) for each pair of i and j, are larger than
he mean activity of the OB layer, they are considered to be co-
ctivated by the external stimulus and their connection weights
re strengthened by the modified Hebbian learning rule. Other-
ise their connection weights decrease at the habituation rate

hab and eventually diminish asymptotically toward zero after
everal learning cycles.

IF SD(i) > (1 + K)SDm AND SD(j) > (1 + K)SDm

THEN W ′
ij = hHeb, W ′

ji = hHeb

ELSE W ′
ij = hhabWij, W ′

ji = hhabWji

(6)

here SDm = (1/n)
∑n

k=1SD(k) and i, j, k = 1, 2, . . ., n and i �= j.
′ stands for the weight after learning, while W is the original
eight; hHeb and hhab are the learning constant of the Hebbian

einforcement and habituation, respectively. The bias coefficient
is defined to avoid the saturation of the weight space.
The learning process continues until the weight changes of

mml converge to a desired level. At the end of learning, the
luster centroid of every pattern Ci is determined and the connec-
ion weights are fixed in order to perform classification using the
rained network. While inputting an unknown sample t from the
est set, the Euclidean distances from the corresponding activity

ector Φt to those training pattern cluster centroids Ci are esti-
ated, and the minimum distance determines the classification.
All calculations and data processing in this study were imple-

ented in MATLAB (version 7.1, Mathworks, USA) on a
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ell Pentium-4 personal computer (CPU 3.00 GHz and RAM
.00 GB, Dell Inc., USA) running Windows XP (Mircosoft,
SA).

. Results and discussion

.1. KIII neural network implementation

Each simulation of a trial for either training or testing lasts
bout 400 steps. The first 50 steps is the initial period in which
he KIII network enters its basal state, and the input is on during
0–250 steps. In the last 150 steps, the KIII network goes back
o the initial state. All output information of the KIII network are
bserved from M1 nodes in the OB layer, and the burst between
0 and 350 steps in each M1 is equally partitioned into five
egments, as shown in Fig. 4(b). The parameters mentioned in
ection 3.2 are hHeb = 0.0395, hhab = 0.8607 and K = 0.4, which
re determined empirically.

Firstly, how the weight matrices of Wmml converge with the
earning cycle number is studied to determine how many learn-
ng cycles are needed. The Dataset I is used to train the KIII
etwork. The KIII network is trained 10 cycles alternately with
OCs’ feature vectors. The overall weight change, �Wmml,

ndicated by the sum of square of each weight change, is shown
n Fig. 5. It can be seen that �Wmml descends rapidly with an
ncrease of the number of learning cycles. When a threshold
f the weight change is fixed, the number of the learning cycles
eeded can be easily determined. An example is shown in Fig. 5.
n our experiments, the number of learning cycles is between

our and six, which guarantees �Wmml in the order of 10−4.

Dataset I, containing 66 samples (11 samples for each of six
OCs), was used here to investigate the general performance
f the KIII network. Trained with one of the samples of each

4

d

ig. 6. Euclidean distance from all samples in Dataset I to different cluster centroid
lcohol and (f) acetaldehyde. Symbols: (♦) lactic acid, (�) ethanol, (�) acetic acid, (
ig. 5. Convergence curve of the overall weight change, �Wmml, with respect
o the number of learning cycles in a semi-log plot. The number of training
ycles can be easily determined by the threshold (e.g., 6 × 10−4).

f six VOCs, the Euclidean distances of all samples, includ-
ng the training set, to different cluster centroids of those six
lasses are shown in Fig. 6. According to the classification cri-
eria described in Section 3.2, the classification results clearly
how that the correction rate of most samples are close to 100%,
xcept two samples were misclassified. Two lactic acid samples
ere misrecognized as acetic acid (as shown in Fig. 6(a)), while

nother sample of acetic acid was misrecognized as lactic acid
as shown in Fig. 6(c)). In each subplot, the Euclidean distance
f the first VOC sample to its own cluster centroid is usually the
mallest, since the sample was used to train the KIII.
.2. Concentration influence elimination by the KIII

A challenge of electronic nose applications is the pattern
ispersion caused by concentration difference. Most work to

s of: (a) lactic acid, (b) ethanol, (c) acetic acid, (d) ethyl acetate, (e) isoamyl
©) ethyl acetate, (*) isoamyl alcohol and (�) acetaldehyde.
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Table 1
Correction rate of classification (%) of the KIII trained by 30 mL/3000 mL,
50 mL/3000 mL and 70 mL/3000 mL samples, respectively

30 mL/3000 mL 50 mL/3000 mL 70 mL/3000 mL

Lactic acid 100 100 100
Ethanol 50.0 100 66.7
Acetic acid 100 91.7 75.0
Ethyl acetate 100 100 100
Isoamyl alcohol 75.0 100 100
A
A
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cetaldehyde 100 100 100
verage 87.5 98.6 90.3

liminate this influence concentrated on applying different nor-
alization methods to preprocess the data. However, linear

ormalization methods like Eq. (1) only work in a small scale
f concentration fluctuation because most sensor responses are
ogarithmically dependent on gas concentration. In other words,
or nonlinear sensors this normalization does not cancel the con-
entration dependence completely. An efficient algorithm for an
lectronic nose should identify chemicals independently of their
oncentrations. And ANNs seem one of the appropriate algo-
ithms. Here Dataset III was used to test the KIII network to
liminate the concentration influence.

Three samples with the same concentration were ran-
omly chosen to train the KIII network, while the others
n Dataset III were used for testing. Classification results of
he KIII trained by different concentrations (30 mL/3000 mL,
0 mL/3000 mL and 70 mL/3000 mL) are shown in Table 1.
he average classification accuracy of the KIII network trained
y 50 mL/3000 mL samples is 98.6%, which is higher than
hose by 30 mL/3000 mL and 70 mL/3000 mL. It is reasonable
ecause the pattern normally varies from one to another grad-
ally as the concentration changes and 50 mL/3000 mL is in
he middle of the concentration gradient. No matter which con-
entration is used to train, a correction rate better than 87% is
chieved. In other words, the concentration error tolerance in
span of 40 mL/3000 mL should be about 87%. Although it
ay be not good enough in comparison with biological olfac-

ion, this concentration tolerance may meet some application
equirements when the data acquisition conditions are strictly
ontrolled.

.3. Sensor drift counteraction by the KIII

Another key issue for an electronic nose is that the chemical
ensors tend to show significant variations over long time periods
hen exposed to identical atmospheres. These so-called sensor
rifts are due to the aging of the sensors, poisoning effects, and
erhaps fluctuations in the sensor temperature because of envi-
onmental changes [36]. It is very important for an electronic
ose to have robust generalization and error tolerance capability
n order to avoid the regular requirement of sensor calibration or
NN retraining before each use. The need to deal with the sensor

rift of electronic noses has been long recognized and various
trategies [36,37] have been developed to solve this problem.
he following experiments were addressed to investigate the
rift counteraction capability of the KIII network.

t
p
3
w

ig. 7. PCA plots of six VOCs collected in May (Dataset I, red), June (Dataset
I, black) and August (Dataset III, blue). Symbols: (♦) lactic acid, (�) ethanol,
�) acetic acid, (©) ethyl acetate, (*) isoamyl alcohol and (�) acetaldehyde.

A dimension reduction technique, PCA, can help to get a
etter understanding of the nature of sensor drifts, through giving
n appropriate visual representation of the raw data with fewer
imensions. Fig. 7 illustrates the PCA plots, which show the
ifference between Datas I, II and III, obtained in May (red),
une (black) and August (blue), respectively. Different VOCs are
epresented by different symbols. Examining these PCA plots,
he first three principal components accounted for 86.1% of the
ariance of the data. The clustering of different VOC samples
rom one dataset (samples collected during the same time period)
s obvious. However, some sensor drifts occurred significantly,
or examples the acetaldehyde (�) samples in June and August
re far away from those in May, the ethyl acetate (©) samples
eing the same.

The KIII network was trained with six samples, corre-
ponding to six kinds of VOCs, chosen from Dataset I. Then

he procedure, in which other samples in Dataset I, all sam-
les in Dataset II and the samples with a concentration of
0 mL/3000 mL in Dataset III were classified by the trained net-
ork, was considered as one trial. The average correction rates
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Table 2
Classification correction rates (%) of Datasets I, II and III using the KIII, NPA and BP-NN

Dataset I (May) Dataset II (June) Dataset IIIa (August)

KIII NPA BP-NN KIII NPA BP-NN KIII NPA BP-NN

Lactic acid 85.0 100 87.7 98.0 100 78.3 50.0 83.3 48.6
Ethanol 100 100 100 100 100 87.6 100 100 62.0
Acetic acid 100 100 86.3 100 100 74.5 86.7 100 52.6
Ethyl acetate 100 100 100 100 100 99.3 0 0 44.6
Isoamyl alcohol 100 100 97.3 100 100 86.5 86.7 93.3 52.0
Acetaldehyde 100 100 86.0 65.0 0 18.3 46.7 0 28.7

Average 97.5 100 92.9 93.9 83.3 74.1 61.6 62.7 48.1
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a Only the samples with concentration of 30 mL/3000 mL in Dataset III are u

f six trials are shown in Table 2. For the KIII network, the
verage correction rates for the samples of Datasets I, II and
II are 97.5%, 93.9% and 61.6%, respectively. It is clear that
he classification accuracy declined a little 1 month later though
t dropped dramatically 3 months later. It can be seen that the
III network has capability to counteract the sensor drift in 1
onth. It is not surprising that the KIII network misrecognized

ll ethyl acetate as acetaldehyde in Dataset III since the samples
f ethyl acetate obtained in August moved into the region of
cetaldehyde, as shown in the PCA plots in Fig. 7.

A simple nonparametric algorithm (NPA) based on the
uclidean distance metric was used for comparison. In our
xperiments, the training set was adopted as the pattern tem-
lates and the Euclidean distances between testing samples and
emplates were calculated. The nearest neighbors are classified
s one class. The same classification criteria were employed in
he KIII application. Comparing the classification accuracy of
he KIII and NPA (as shown in Table 2), we can find that the
III network has better generalization capability.

.4. Performance comparison with BP-NN

Usually, PARC selections are application-oriented and empir-
cal. Some criteria, including high classification accuracy, fast,
imple to train, low memory requirement, robust to outliers and
o produce a measure of uncertainty, are proposed to attempt to
etermine the optimal classifier [38]. And several researchers
ave compared different PARCs employed by electronic noses
38,39]. To compare the performances, a conventional ANN,
he back propagation trained neural network (BP-NN), as well
s the KIII network, was applied to the classification. The BP-
N algorithm was taken from the neural network toolbox in
ATLAB.
Being one of the most popular ANNs in electronic noses, BP-

N has become the de facto standard for pattern recognition of
ignals from a chemical sensor array. BP is a supervised learn-
ng algorithm based on the generalized delta rule, usually using
radient descent for minimizing the total squared output error

etween the desired and the actual net outputs. The performance
f BP-NN is dependent on several factors, e.g., the number of
idden layers, learning rate, momentum and training data. More
etails can be referred to Ref. [40].

f
c
d
r

make the results comparable with Datasets I and II.

The BP-NN used in this paper is composed of 32 input nodes,
0 hidden nodes and six output nodes representing the clusters.
he tan-sigmoid transfer function is selected for both the hid-
en and the output layers. A gradient descent with a learning
atio of 0.05 is chosen. To make fair comparison, both BP-NN
nd the KIII were trained using the same training set until both
ean-squared errors reached the same order of magnitude. The

euron in BP-NN with the highest score in the output layer
ndicates which class the input sample belongs to. This tolerant
lassification criterion is similar to what used with the KIII. Five
ifferent runs were conducted for each trial to reduce the effect
f the random initial weights in the training phase. The classi-
cation results of BP-NN are presented in Table 2 along with

hose of the KIII. The performance of BP-NN is not as good
s the KIII under similar situation, although an optimization by
rial and error may improve it quite a lot.

. Conclusions

In this paper, a biologically inspired neural network, based
n anatomical and electroencephalographic studies of biological
lfactory systems, is applied to pattern recognition in elec-
ronic noses. Classifying six VOCs commonly presented in the
eadspace of Chinese rice wine, its performance to eliminate the
oncentration influence and counteract sensor drift is examined
nd compared with the simple nonparametric algorithm and the
ell-known BP-NN.
The KIII neural network has a good performance in classi-

cation of six VOCs of different concentrations, even for the
atterns obtained 1 month later than what was used for training.
ts flexibility and robust fault tolerance are quite suitable for
lectronic nose applications, subjecting to the problems associ-
ted with the susceptibility to concentration influence and sensor
rift. Compared with BP-NN, the application of the KIII neu-
al network is time-consuming and requires a lot of memory
o solve lots of ODEs constructing the KIII; e.g., a 32-channel
III network consists of over 200 ODEs. Although one classifi-

ation performance required about 1 min in our experiments, it is

ast enough to satisfy application requirement. Efficient numeri-
al computation methods and DSP and VLSI hardware specially
esigned for parallel implementation are under research for other
eal-time applications.
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The purpose of this paper is not to prove that the KIII net-
ork is superior to other techniques of signal processing in the

lectronic nose community. Instead, we just like to introduce a
ew method to process sensor array signals and to attract more
esearchers to pay attentions to this biological model of olfac-
ory systems. Future works will be addressed on improving the
erformance of the KIII network in electronic nose application,
specially fully utilizing the spatio-temporal dynamics proper-
ies of the model for time series signals from chemical sensor
rrays. More biologically oriented learning and classification
ules are still under investigation. We are sure that the study
n electronic noses will help to understand signal processing in
iological olfactory systems and vice versa.
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