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Abstract. An application of a theorem on the optimality
of integer least-squares (LS) is described. This theorem
states that the integer LS estimator maximizes the
ambiguity success rate within the class of admissible
integer estimators. This theorem is used to show how the
probability of correct integer estimation depends on
changes in the second moment of the ambiguity `¯oat'
solution. The distribution of the `¯oat' solution is
considered to be a member of the broad family of
elliptically contoured distributions. Eigenvalue-based
bounds for the ambiguity success rate are obtained.
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1 Introduction

Global positioning system (GPS) models on which ambi-
guity resolution is based can all be cast in the following
conceptual frame of linear(ized) observation equations:

y � Aa� Bb� e �1�
where y is the given GPS data vector of order m, a and b
are the unknown parameter vectors respectively of order
n and o, and e is the noise vector. The matrices A and B
are the corresponding design matrices. The data vector y
will usually consist of the `observed minus computed'
single- or dual-frequency double-di�erence (DD) phase
and/or pseudorange (code) observations accumulated
over all observation epochs. The entries of vector a are
then the DD carrier-phase ambiguities, expressed in
units of cycles rather than range. They are known to be
integers, a 2 Zn. The entries of the vector b will consist of
the remaining unknown parameters, such as, for in-
stance, baseline components (coordinates) and possibly
atmospheric delay parameters (troposphere, iono-
sphere). They are known to be real valued, b 2 Ro.

The structure of the above conceptual model applies
to a great variety of GPS models currently in use. They
range from single-baseline models used for kinematic
positioning to multi-baseline models used as a tool for
studying geodynamic phenomena. An overview of these
and other GPS models, together with their application
in surveying, navigation and geodesy, can be found in
textbooks such as those of Leick (1995), Parkinson and
Spilker (1996), Hofmann-Wellenhof et al. (1997), Strang
and Borre (1997) and Teunissen and Kleusberg (1998).

The procedure which is usually followed for solving
the GPS model of Eq. (1) can be divided into three steps
(for more details we refer to e.g. Teunissen 1993 or de
Jonge and Tiberius 1996). In the ®rst step we simply
disregard the integer constraints a 2 Zn on the ambigu-
ities and perform a standard adjustment. As a result we
obtain the (real-valued) estimates of a and b, together
with their variance±covariance (VC) matrix

â
b̂

� �
;

Qâ Qâb̂
Qb̂â Qb̂

� �
�2�

This solution is referred to as the `¯oat' solution. In the
second step the `¯oat' ambiguity estimate â is used to
compute the corresponding integer ambiguity estimate �a.
This implies that a mapping F : Rn 7! Zn, from the
n-dimensional space of reals to the n-dimensional space
of integers, is introduced such that

�a � F �â� �3�
Once the integer ambiguities are computed, they are
used in the third step to ®nally correct the `¯oat' estimate
of b. As a result we obtain the `®xed' solution
�b � b̂ÿ Qb̂âQÿ1â �âÿ �a�.

In this contribution we will study some aspects of the
probabilistic consequences of Eq. (3). In particular, we
study the dependence of the probability of correct inte-
ger estimation on the VC matrix of the ambiguity `¯oat'
solution. For that purpose, we ®rst give a brief review of
the theory of integer ambiguity estimation in Sect. 2.
Special attention is given to the optimality property of
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the integer LS estimator. The theorem presented gives a
probabilistic justi®cation for using the integer LS esti-
mator. The probability of correct integer ambiguity es-
timation will also be referred to as the ambiguity success
rate, being the frequentist interpretation of this proba-
bility. In the two sections following, the theorem is used
to prove a number of results regarding the relation be-
tween the ambiguity success rate and ambiguity preci-
sion.

2 Optimality of integer LS

There are many ways of computing an integer ambiguity
vector �a from its real-valued counterpart â. To each such
method belongs a mapping F : Rn 7!Zn from the
n-dimensional space of real numbers to the n-dimen-
sional space of integers. Due to the discrete nature of Zn,
the map F will not be one-to-one, but instead a many-to-
one map. This implies that di�erent real-valued ambi-
guity vectors will be mapped to the same integer vector.
We can therefore assign a subset Sz � Rn to each integer
vector z 2 Zn

Sz � fx 2 Rn j z � F �x�g; z 2 Zn �4�
The subset Sz contains all real-valued ambiguity vectors
that will be mapped by F to the same integer vector
z 2 Zn. This subset is referred to as the pull-in region of z
(Jonkman 1997; Teunissen 1998b). It is the region in
which all ambiguity `¯oat' solutions are pulled to the
same `®xed' ambiguity vector z. Using the pull-in
regions, we can give an explicit expression for the
corresponding integer ambiguity estimator. It reads

�a �
X
z2Zn

zsz�â� �5�

with the indicator function

sz�â� � 1 if â 2 Sz

0 otherwise

�
Since the pull-in regions de®ne the integer estimator
completely, we can de®ne classes of integer estimators by
imposing various conditions on the pull-in regions. In
Teunissen (1998c) we de®ned one such class, which we
called the class of admissible integer estimators. These
integer estimators are de®ned as follows.

De®nition. The integer estimator �a �Pz2Zn zsz�â� is said
to be admissible if

1.
S

z2Zn
Sz � Rn

2. Sz1

T
Sz2 � ;; 8 z1; z2 2 Zn; z1 6� z2

3. Sz � z� S0; 8 z 2 Zn

This de®nition was motivated as follows. Each one of
the above three conditions describes a property of
which it seems reasonable that it is possessed by an
arbitrary integer ambiguity estimator. The ®rst condi-
tion states that the pull-in regions should not leave any

gaps and the second that they should not overlap. The
absence of gaps is needed in order to be able to map
any `¯oat' solution â 2 Rn to Zn, while the absence of
overlaps is needed to guarantee that the `¯oat' solution
is mapped to just one integer vector. Note that we
allow the pull-in regions to have common boundaries.
This is permitted if we assume to have zero probability
that â lies on one of the boundaries. This will be the
case when the probability density function (pdf) of â is
continuous.

The third and last condition follows from the re-
quirement that F �x� z� � F �x� � z; 8 x 2 Rn; z 2 Zn.
This condition is a reasonable one to ask for. It states
that when the `¯oat' solution is perturbed by z 2 Zn, the
corresponding integer solution is perturbed by the same
amount. This property allows us to apply the integer
remove±restore technique: F �âÿ z� � z � F �â�. It there-
fore allows us to work with the fractional parts of the
entries of â, instead of with its complete entries.

Although various integer estimators exist which are
admissible, some may be better than others. Having the
problem of GPS ambiguity resolution in mind, we are
particularly interested in the estimator which maximizes
the ambiguity success rate. For that purpose we ®rst
need the probability mass function (pmf) of the integer
estimator. Since

�a � z , â 2 Sz �6�
we have P ��a � z� � P �â 2 Sz�. The pmf of �a follows
therefore as

P ��a � z� �
Z
Sz

pa�x�dx; 8 z 2 Zn �7�

where pa�x� denotes the pdf of the `¯oat' solution â. The
subscript a is used to show that the pdf still depends on
the unknown ambiguity vector a 2 Zn.

From Eq. (7) the probability of correct integer esti-
mation follows as P ��a � a�. This probability will be
di�erent for di�erent estimators. In order to ®nd the
estimator which gives the largest ambiguity success rate,
we need to know which estimator maximizes P��a � a�.
The answer to this question is given by the following
theorem.

Theorem 1. (Teunissen) Let the integer LS estimator be
de®ned as

�aLSQ � argmin
z2Zn
k âÿ z k2Qâ

�8�

and the pdf of â be given as

pa�x� �
�������������������
det�Qÿ1â �

q
G�k xÿ a k2Qâ

� �9�

where G: R 7! �0;1� is decreasing and Qâ is positive
de®nite. Then

P ��aLSQ � a� � P��a � a� �10�
for any admissible estimator �a.
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This theorem gives a probabilistic justi®cation for
using the integer LS estimator. For GPS ambiguity reso-
lution it shows that we are better o� using the integer LS
estimator than any other admissible integer estimator.
The theorem was introduced and proved in Teunissen
(1998c). The family of distributions de®ned in Eq. (9) is
known as the family of elliptically contoured distributions
(Chmielewsky 1981). Several important distributions
belong to this family. Themultivariate distribution can be
shown to be a member of this family by choosing
G�x� � �2p�ÿn

2 expÿ 1
2 x; x 2 R. Another member is the

multivariate t distribution.
In the sections following, we will use the above the-

orem to prove a number of conjectures concerning the
relation between the ambiguity success rate and ambi-
guity precision. Some of these results also allow us to
compute bounds for the ambiguity success rate.

3 The e�ect of using an approximate ambiguity VC
matrix

It is well known from standard LS theory that the linear
unbiased (real-valued) LS estimator may lose its
optimality property of minimum variance when a
positive-de®nite matrix other than the VC matrix is
used for the weighting of the data. We may expect that a
similar situation will hold true for the integer LS
estimator. That is, we expect the integer LS estimator
to lose its optimality property of maximizing the
probability of correct integer estimation when an
arbitrary positive-de®nite matrix is used for the weight-
ing. That this is true can be shown as a direct
consequence of the above theorem.

Corollary 1. Let R be any positive-de®nite matrix of
order n and de®ne

�aR � argmin
z2Zn
k âÿ z k2R �11�

Then �aR is admissible and

P ��aLSQ � a� � P ��aR � a� �12�

Proof. In order to prove this corollary, we only need to
show that �aR is admissible. Once this has been estab-
lished, the stated result of Eq. (12) follows from theorem
1. The admissibility can be shown as follows. The ®rst
two conditions of the de®nition are satis®ed, since
Eq. (11) produces ± apart from boundary ties ± a unique
integer vector for any `¯oat' solution â 2 Rn. And since
�aR � argminz2Znkâÿ uÿ zk2R � u holds true for any
integer u 2 Zn, the integer remove±restore technique
also applies.

As the corollary shows, a proper choice of the data
weight matrix is also of importance for ambiguity reso-
lution. The choice of weights is optimal when the weight
matrix equals the inverse of the ambiguity VC matrix. A
too optimistic precision description or a too pessimistic
precision description will both result in a less than

optimal ambiguity success rate. In the case of GPS,
the observation equations (the functional model) are
su�ciently known and well documented. However, the
same cannot be said of the VCmatrix of the GPS data. In
the many GPS textbooks available, we will usually ®nd
only a few comments, if any, on this VC matrix. Only a
few studies have been reported in the literature. Examples
are as follows: Euler and Goad (1991), Gerdan (1995),
Gianniou (1996), and Jin and de Jong (1996), who studied
the elevation dependence of the observation variances;
Jonkman (1997) and Tiberius (1998), who considered
time correlation and cross correlation of the pseudo
ranges and carrier phases as well; and Scha�rin and Bock
(1988), Bock (1998) and Teunissen (1998a), who consid-
ered the inclusion of stochastic ionospheric constraints.

A systematic study of the stochastic model is of
course far from trivial. Not only do the noise charac-
teristics depend on the mechanization of the measure-
ment process, and therefore on the make and type of the
receiver used, but the residual terms which are not
captured by the observation equations, such as envi-
ronmental e�ects, will also have their in¯uence. Despite
these di�culties though, we believe that the time has
come to put more research e�ort into the stochastic
model. Examples showing that improved stochastic
modelling indeed pays o� in terms of an increased am-
biguity success rate can be found in Jonkman (1997) and
Teunissen et al. (1998).

Quite another aspect made clear by the corollary, is
the relation between `integer rounding' and `integer LS'.
One of the simplest choices for R would be a diagonal
matrix. In that case kâÿ zk2R reduces to a sum of squares
and �aR becomes the integer estimator that follows from
a rounding to the nearest integer of the entries of â. Thus
�aR � �â�, where `���' denotes the operation of compo-
nentwise rounding, and

P ��aLSQ � a� � P��â� � a� �13�

We can generalize this result to a whole class of integer
estimators based on rounding, when the choice
R � �ZT DZ�ÿ1 is made, where D is a diagonal matrix
with positive entries and Z is an admissible ambiguity
transformation. Ambiguity transformations are said to
be admissible when all the entries of both Z and its
inverse are integer (Teunissen 1995). For this particular
choice of R, we have kâÿ zk2R� �Zâÿ u�T D�Zâÿ u�,
with u � Zz 2 Zn. Hence, when parametrized in u,
kâÿ zk2R again reduces to a sum of squares. Thus
�u � �Zâ� and �aR � Zÿ1�Zâ�. In this case the integer
estimator is computed by ®rst transforming the `¯oat'
solution, then applying the componentwise rounding
scheme, followed by the back transformation. For the
probability of correct integer estimation, we thus have

P ��aLSQ � a� � P�Zÿ1�Zâ� � a� �14�

for any admissible ambiguity transformation Z.
Note that Eq. (13) is a special case of Eq. (14). The

choice Z � In, however, is not usually the best one. That
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is, we can often improve upon the ambiguity success rate
by choosing an appropriate transformation matrix Z.
This is particularly true in the case of GPS, when the
DD ambiguities are used. Since the equality in Eq. (14)
will hold true in the case that the VC matrix of Zâ is
diagonal, an ambiguity transformation should be used
that results in an as close to diagonal form as possible.
This is achieved when using the decorrelation process of
the LAMBDA method. Hence, when we decide to use
the integer estimator based on rounding, we should at
least decorrelate the ambiguities ®rst, before applying
the integer rounding scheme. In this way we will obtain
a success rate which is higher than the one obtained
without using the decorrelation process.

4 The e�ect of improving the ambiguity precision

Another result which we may conjecture on intuitive
grounds is the increase in the success rate when the
ambiguity precision improves. This is not too di�cult
to prove when the distribution of the `¯oat' solution is
normal and the ambiguity VC matrix is diagonal. In that
case we can make direct use of the independence
between the individual ambiguities. We will show,
however, that the result also holds true when the
distribution is elliptically contoured and the VC matrix
is nondiagonal.

Before stating the theorem, we ®rst specify the notion
of `precision improvement' in the case that the VC ma-
trix is nondiagonal. Let R1 and R2 be the VC matrices of
the two `¯oat' solutions âR1 and âR2 . The precision of the
®rst estimator is then said to be better or as good as the
precision of the second estimator, when the variance of
every linear function of âR1 is smaller than or as large as
the variance of the same function of âR2 . Thus
f T R2f � f T R1f must hold true for every f 2 Rn. The
di�erence of these two VC matrices must therefore be
positive semide®nite, or, R2 � R1.

Theorem 2. Let the integer LS estimator be given as

�aR
LSQ � argmin

z2Zn
k âR ÿ z k2R �15�

and the pdf of âR as

pR
a �x� �

������������������
det�Rÿ1�

q
G�k xÿ a k2R� �16�

where G: R 7! �0;1� is decreasing and R is positive
de®nite. If R2 � R1, then

P ��aR1

LSQ � a� � P ��aR2

LSQ � a� �17�

Proof. The proof follows from combining our theorem
1 with a theorem of Anderson (1996). According to
Anderson's theorem, if R2 � R1, then P�âR1 2 Ca� �
P �âR2 2 Ca�, for any convex set Ca � Rn symmetric
about a. Since the pull-in region of the integer LS esti-
mator �aR2

LSQ, SR2
a � fx 2 Rn j a � argminz2Znkxÿ zk2R2

g,

is convex and symmetric about a, we may take
Ca � SR2

a , which gives us the inequality

1: P �âR1 2 SR2
a � � P �âR2 2 SR2

a � � P��aR2

LSQ � a�
According to our theorem 1, P ��aR1

LSQ � a� � P ��a � a�
for any admissible estimator �a. If this admissible
estimator is chosen to be the one that uses the pull-in
regions of �aR2

LSQ to map âR1 , we have P��a � a� �
P �âR1 2 SR2

a �, and therefore

2: P ��aR1

LSQ � a� � P �âR1 2 SR2
a �

Combining (1) with (2) proves the theorem.
In words the theorem states that the ambiguity suc-

cess rate gets larger when the precision improves. We
remark that the theorem should not be confused with
corollary 1. In corollary 1, the two probabilities of the
inequality of Eq. (12) are evaluated with respect to the
same pdf, pa�x�. Moreover, no conditions are imposed
on the de®niteness of the di�erence Qâ ÿ R. That is,
either Qâ � R or R � Qâ may hold true. In theorem 2,
the two probabilities of Eq. (17) are evaluated with
respect to two di�erent pdfs, namely pR1

a �x� and pR2
a �x�.

And, in addition, the condition R2 � R1 is imposed.
As an almost direct consequence of theorem 2, we

have the following corollary.

Corollary 2. Let y 2 Rm be distributed as y � N�Aa� Bb;
Qy�with a 2 Zn, b 2 Ro and the constraintsCT b � c 2 Rp.
Then

P ��aC
LSQ � a� � P��aLSQ � a� �18�

where the constraints CT b � c were used for computing
the integer LS estimator �aC

LSQ and not used in the
computation of �aLSQ.

Proof. When disregarding the integer constraints
a 2 Zn, the two real-valued LS estimators of a, based
on imposing, respectively not imposing, the constraints
CT b � c, are distributed as âC � N�a;QâC� and
â � N�a;Qâ�. Since the two VC matrices are related as

QâC � Qâ ÿ Qâb̂C�CT Qb̂C�ÿ1CT Qb̂â

we have QâC � Qâ. The corollary now follows from
theorem 2.

This result shows that we may improve upon the
probability of correct integer estimation by including
constraints on the real-valued parameter vector b 2 Ro.
In the context of GPS ambiguity resolution, the vector b
may consist of DD receiver±satellite ranges, baseline
components and/or atmospheric (ionosphere, tropo-
sphere) delays.

In the case of GPS, there are various applications
where we can see this corollary at work. Three such
examples are given. The ambiguity success rate of the
geometry-free GPS model is usually experienced to be
poorer than that of the geometry-based GPS model.
The reason lies in the di�erent parameterizations used
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for the two models. In the case of the geometry-free
model, the observation equations are parametrized in
terms of the DD ranges. Hence, the relative receiver±
satellite geometry which ties these DD ranges to a
common baseline is not used in this model. These con-
straints are however used in the geometry-based model.

As a second example consider the in¯uence of the
ionosphere. Ambiguity resolution is known to be par-
ticularly successful in the case of short baselines. For
su�ciently short baselines, we can often constrain the
ionospheric delays to be zero. Since this is not permitted
for longer baselines, more parameters will be included in
the model and thus less constraints will be imposed.
Finally, consider the problem of GPS attitude determi-
nation. Ambiguity resolution is also often successful in
this case. The reason lies in the assumed absence of the
atmospheric delays and the additional geometric con-
straints that may be imposed on the con®guration of the
baselines.

As a completely di�erent application, theorem 2 can
also be used to formulate easy-to-compute bounds for
the success rate. This is particularly useful in case the
success rate itself is di�cult to compute. A large enough
lower bound would then inform us whether ambiguity
resolution can expected to be successful, while a too
small upper bound would indicate that successful am-
biguity resolution cannot be expected. Two such bounds
are given in the following corollary.

Corollary 3. Let â 2 Rn be distributed as â � N�a;Qâ�
and let �aLSQ be the integer LS estimator of a 2 Zn. Then

2U
1

2
���������
kmax

p
� �

ÿ 1

� �n

� P ��aLSQ � a�

� 2U
1

2
���������
kmin

p
� �

ÿ 1

� �n

�19�

with kmin; kmax the extreme eigenvalues of Qâ and

U�x� �
Zx

ÿ1

1������
2p
p expfÿ 1

2
y2gdy

Proof. In order to prove the two bounds, we have to
apply theorem 2 twice. For the upper bound, let
R1 � kminIn and R2 � Qâ. Then R2 � R1, and therefore
according to theorem 2, P ��aLSQ � a� � P ��aR1

LSQ � a�.
Since R1 is diagonal, �aR1

LSQ corresponds to a component-
wise integer rounding of the entries of âR1 . This,
combined with the independence of the entries of âR1 ,

gives P ��aR1

LSQ � a� �Qn
i�1 P �j âR1

i ÿ ai j � 1
2�. Since the

variances of âR1
i ; i � 1; . . . ; n, are all the same and

equal to kmin, we ®nally obtain
Qn

i�1 P �j âR1
i ÿ ai j � 1

2� ��2U� 1
2
������
kmin

p � ÿ 1�n. This concludes the proof of the upper

bound. The proof of the lower bound follows in a

similar way by choosing R1 � Qâ and R2 � kmaxIn.
The two bounds of Eq. (19) coincide when the two

extreme eigenvalues coincide. This will be the case when
the ambiguity VC matrix itself is a scaled unit matrix. In
the actual practice of GPS this will not happen. How-

ever, in order for the bounds to be sharp we would like
the di�erence between the two eigenvalues to be small.
This will usually not be the case when the VC matrix of
the DD ambiguities is used. This shows that we should
apply Eq. (19) to the VC matrix of the decorrelated
ambiguities as produced by the LAMBDA method. By
means of the decorrelation process of this method, the
elongation of the ambiguity search space is considerably
reduced. Hence, the above bounds are much sharper
when using the eigenvalues of the transformed ambi-
guity VC matrix, than when using the eigenvalues of the
original DD ambiguity VC matrix.
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