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Abstract

The dynamics of a bubble, initially stationary and spherical, rising in a viscous
Newtonian liquid have been studied numerically using 3-D Volume-of-Fluid (VOF)
method implemented in the Gerris flow solver. The study encompasses 8.7 < Eo

(= ApgD? /O') < 641 and FRe < 151. Additionally, results published in the literature

encompassing bubbles with lower values of Eo numbers were also considered, such that
the overall dependencies of bubble shape, wake characteristics, and drag coefficient over
a large range of Fo and Ke values can be identified. While it was found that the
deformation of the bubbles as predicted through the numerical study can generally
replicate experimental observations presented, several limitations were identified, such
as in the representation of skirt formation behind a skirted bubble and the formation of
satellite bubbles behind a bubble rising at high Reynolds numbers. The dependency of
the bubble aspect ratio on the Weber and Morton numbers was confirmed for cases of
spherical and ellipsoidal bubbles; whilst for spherical cap and skirted bubbles the aspect
ratio was found to depend largely on the Reynolds and Capillary numbers, respectively.
Finally, the expansion and formation of closed/open laminar wakes behind the rising
bubble were analysed and was found to correlate well with the bubble Re and FEo
numbers.

Keywords: Volume-of-fluid method; CFD, bubble shape, bubble rise velocity; drag force.

1. Introduction

The motion of bubbles in fluids is of great importance in various gas-liquid reactors and
processes, as well as numerous natural phenomena. As a result, extensive studies have
been conducted in the past (see reviews by Clift, Grace, and Weber (1978), Magnaudet &
Eames (2000), and Kulkarni & Joshi (2005)), although various aspects still remain
indeterminate, particularly in relation to the dynamic behaviour of the bubbles in
liquids. The complexity of the rise of bubbles is brought about by its dependence on
several factors: their buoyancy and the external and internal circulations of the two
fluids, which dictate the inertial and viscous forces experienced by the bubbles, as well
as the interfacial forces between the two phases, i.e. surface tension and the presence of
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impurities/surfactants in the system. Consequently, numerous bubble shapes can be
obtained. Relatively small bubbles rising in viscous fluids generally attain a spherical
shape as their hydrodynamics are largely dominated by the surface tension and the
viscous forces of the liquid phase. In fluids of lower viscosities, inertial forces can become
more dominant and the bubbles can no longer retain their spherical shape thus
exhibiting more oblate ellipsoidal shapes. Further instabilities may occur if the fluid
viscosity i1s reduced even further, resulting in a wobbling/zig-zag motion in the rise of
the bubbles. The behaviours of spherical and ellipsoidal bubbles have been studied
experimentally and numerically by Raymond & Rosant (2000); whilst the onset of path
instabilities has been studied experimentally by Zenit & Magnaudet (2009) and
numerically by Cano-Lozano et al. (2013). With larger bubbles the inertial forces caused
by their heightened buoyancy tend to cause a loss in fore-and-aft symmetry, and the
bubbles tend to adopt a spherical cap shapes. In some cases, the rim of the rear of the
bubble may become drawn out due to the viscosity of the fluids, and the bubbles develop
“skirts” and appear to have an elongated section in their wake.

The different shapes of bubbles rising in a stagnant fluid have been demonstrated
experimentally in the work of Bhaga & Weber (1981). Along with the shapes of the
bubble wakes and the general features of the velocity streamlines, they also measured
the drag experienced by the bubbles and their respective terminal velocities. Not
surprisingly, the work of Bhaga & Weber (1981) has been used as validation for a
number of numerical studies, including Hua & Lou (2007), Lai et al. (2003), Bonometti
& Magnaudet (2007) and Chen et al. (1999). Interestingly, most of the numerical results
appear to be in excellent agreement with the experimental observations, except for the
formation of unstable toroidal bubbles in systems with large bubbles and low surface
tension. Such an instability is not reported by Bhaga & Weber (1981), where it was
observed experimentally that these bubbles tended to form spherical-cap shapes. The
reason for the difference experimental and numerical simulation is generally attributed
towards the experimental setup, where an inverted hemispherical cup was used to
retain a known volume of gas which was slowly rotated to carefully release the bubble
within the stagnant liquid. From this procedure the initial shape of the bubble is
approximately ellipsoidal; whereas in most numerical studies an initial spherical bubble
is assumed. Ohta et al. (2005) have studied the effects of the initial bubble shape on the

final state of the bubble, and determined that in cases of high Eotvos (EO = ApgDz/a)
and low Morton (MO = Apg,u4/ p,20'3)nurnbers, an initially ellipsoidal bubble (i.e. with

its polar axis shorter than the diameter of its equatorial axis) generally assumes a
spherical cap bubble shape. Bubbles that are initially spherical or prolate spheroidal in
structure, however, tend to develop a toroidal bubble shape. The numerical study of
Bonometti & Magnaudet (2006) is in agreement with Ohta et al. (2005), and suggested a
phase diagram to delineate the transition of a spherical bubble to a toroidal shape based
on Archimedes and Bond numbers.

Landel et al. (2008) extended the experimental work of Bhaga and Weber (1981) and
demonstrated that bubbles released into a column of fluid using an inverted
hemispherical cup tend to form a leading spherical cap bubble that is followed by a
crown of satellite bubbles (‘crowned-cap bubbles’). They reported a dependency on the
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distribution of leading-to-satellite bubble volume on the size of the hemispherical cup,
with larger cups tending to produce a larger leading bubble with less satellite bubbles;
whereas smaller cups tended to produce a larger volume of satellite bubbles. The
conclusion here is that the rise dynamics of large spherical cap bubbles are very much
dependent on the initial conditions, although the physical cause of such phenomenon is
still largely unknown. It’s also noted the initial bubble conditions can determine the
onset of non-rectilinear rise behaviour (Wu & Gharib, 2002).

Whilst significant progress has been in the understanding of the behaviour of gas
bubbles rising in a stagnant viscous liquid, there are still many examples (e.g.
Cano-Lozano et al., 2013; Zenit & Magnaudet, 2009; Ellingson & Risso, 2001; Bonometti
& Magnaudet, 2006; Landel et al., 2008, Tripathi et al., 2015) where the shape, rise
velocity, and paths adopted by bubbles, especially in certain Morton, Reynolds and
Eotvos number ranges, is not well described numerically. For this reason, in this study a
fully 3-D, VOF numerical methodology has been employed to determine dynamic shape,
drag, mean bubble rise velocity and corresponding liquid flow field for a range of
different bubbles in viscous stagnant liquids. Of particular focus is the case for viscous
liquids with low surface tension (Fo > 8 and 7.4x104< Mo < 850), where there are noted
differences with the experimental observations of Bhaga & Weber (1981). Reasons for
these differences are discussed in the paper.

2. Numerical methodology

The simulations are conducted using the Gerris flow solver developed by Popinet (2009).
The solver is based on the conservation equations for incompressible flow with variable
density and surface tension:

V-u=0, (1
ou
P[EJFU'VU]Z—VP+V'(2ﬂD)+UK5sn, 2)

uis the velocity vector, p fluid density, p pressure, uthe dynamic viscosity, and Dis

the deformation tensor,
ou. _
L ®)
2l 6 9

o is the surface tension coefficient, o, is the Dirac function used to calculate the surface

tension force around the interface; xand nare the curvature and normal vector to the
interface.

At each computational cell, the density and viscosity of the fluid are calculated through
a volume-of-fluid variable, « :

p=ap, +(1-a)p,,



p=au +1-a)u,. (4)

Pis Py, My, and L1, are the density and viscosity of phase 1 and 2, respectively; « is the

volume fraction occupied by phase 1 in a cell, where an ¢ value of 1.0 indicates that the
computational cell is filled with the primary phase. The volume fraction variable is
advected with the local fluid velocity as follows,

0. (5)

%“w.(au)

Staggered temporal discretisation is employed in the solutions of equations 1, 2, and 5,
thus leading to a scheme that is second-order accurate in time (Popinet, 2009). A
time-splitting projection method is used to simplify the conservation equations, based on
a temporary velocity field,u*, which is calculated through the momentum equation
without the effect of pressure. The pressure gradient is then used to calculate the
corrected velocity field in the new time step. The pressure field is then obtained from the
Poisson equation, i.e.:

V-KEVpJ:iV-u*, (6)
Vo At

which is solved using the quad/octree-based multilevel solver (Popinet, 2009), with the
iterative procedure being repeated until the maximum volume-weighted residual is
smaller than 10%, and Gauss-Seidel relaxations per level is set to 6.

The advection equation for the volume-fraction is calculated through the piecewise
linear geometrical Volume-Of-Fluid (VOF) scheme, applied through the quad/octree
spatial discretisation. Additionally, the balanced-force surface tension discretization
scheme is used, in combination with a height function curvature estimation, such that
problems involving parasitic currents normally encountered in VOF-based algorithms
using the classical Continuum-Surface-Force (CSF) approach are avoided.

3. Results and discussion

3.1 Computational domain

A series of simulations were conducted in a 3-D rectangular domain (9.3D x 9.3D x
27.9D), where D is the initial diameter of the bubble. Periodic (slip) boundary conditions
were used for all of the boundaries of the domain. Adaptive mesh refinement was used,
with the maximum level of refinement being applied at the interface between the two
phases. The maximum level of refinement, Luax, was adjusted based on the predicted

Reynolds number of the bubble (Re= 0V,D/u, where V, is the terminal velocity of the

bubble). For Re < 55.3, a maximum of 9 levels of refinement, corresponding to 55 cells
per bubble diameter (CPD), was used at the liquid gas interface with respect to the



boundary of the domain. Higher orders of refinements were used to resolve cases of
skirted bubbles and cases where Ke > 55.3. Further discussions will be presented in the
following section regarding the grid dependence of these cases. Lower levels of
refinement were used away from the interface; with the minimum level of refinement,
Lmin, being set such that Lmin = Lmax — 5. This distribution of mesh ensured that the
simulations were computationally stable and efficient. A further refinement scheme
based on the velocity magnitude of the cell was employed; where the maximum Reynolds

number of the cell, Re p[\/|AX / i, with AX being the size of the cell and |V| the

cell —

magnitude of the local velocity field, did not exceed 10.

3.2 Numerical validation and grid independence

The simulated shapes of the bubbles after reaching a steady rise velocity are shown in
Figure 1. Refer to Table 1 for corresponding numerical values of dimensionless numbers.
At low values of Fo and Re, it can be seen that the bubbles tend to retain their spherical
shape (see Figures 1a and 1b). With higher values of Eo, the bubbles tend to lose their
sphericity, as decreasing influence of surface tension causes the outer rim of the bubble
to be drawn-out, thus creating the dimpled (Figures 1g-1), oblate ellipsoidal cap (Figures
1d, j-1, and skirted (Figures le-f) bubble shapes, which are in agreement with the
observations of Bhaga & Weber (1981). The effects of fluid viscosity and inertia are
evidenced in the bubble shapes shown in Figures 1g-1. The bubble rising in liquid of
lower viscosity tends to become flatter due to effects of inertia. Figure 1lc shows a
flattened disk-like bubble shape, resulting from the inertia due to the buoyancy of the
bubble dominating the viscous forces of the fluids. The elongation of the rim of the
bubble is resisted, however, due to the high surface tension between the two phases and
results in a disk-like bubble shape.



Figure 1. Bubble shapes after reaching constant rise velocity ( 2/ P, =1103.7, 0=0.07845 N/m)
[LHS: Iso-surface and isoline contours at a = 0.5; RHS: Images from Bhaga & Weber (1981)]



Table 1. Bubble dimensionless numbers (see Figure 1)

Figure 1 Fo Mo Re

reference (Bhaga and Weber, 1981)
(a) 8.67 711 0.078
(b) 17.7 711 0.232
(c) 32.2 | 8.2x10+ 55.3
(d) 243 266 7.77
(e) 339 43.1 18.3
® 641 43.1 30.3
(g) 115 848 2.47
(h) 115 266 3.57
&) 115 41.1 7.16
G) 115 5.51 13.3
(k) 115 1.31 20.4
() 115 0.104 42.2
(m) 115 0.005 94.0
(n) 115 0.001 151.0

The relatively good agreement in computed in bubble shape with those reported by
Bhaga & Weber (1981) at Re < 55.3 is further evidenced by comparison in the respective
bubble rise velocities as shown in Figure 2. Good agreement was obtained, especially at
low values of bubble Reynolds numbers (Re < 20). At higher Reynolds numbers,
boundary layer separation tends to develop in the wake of the bubble, thus causing an
increase in drag and a decrease in velocity. Consequently, the bubbles would firstly
attain a maximum velocity, before decreasing towards a (lower) terminal velocity as
demonstrated by the instantaneous velocity graphs shown in Figures 2b-2d. The time
variance of the simulated bubble velocity is quantified by the vertical error bars. Given
that Bhaga & Weber (1981) determined the velocity of the bubbles by calculating the
distance travelled by a particular bubble in two adjacent frames and dividing the
distance with the time elapsed, the agreement shown in Figure 2a is an excellent result.
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Figure 2a. Simulated vs Bubble Reynolds number reported by Bhaga & Weber (1981)
[Points (b) and (c): Bubble rise velocity and fluid streamlines shown in Figures 2b and 2c]
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Figure 2b. Bubble rise velocity and vs time and liquid streamline at t =0.4 s
[Point b: Re= 3.57 Eo= 116, Mo = 266]
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Figure 2c. Bubble rise velocity and vs time and liquid streamline at t =0.4 s
[Point b: Re=42.2, Fo= 116, Mo = 0.103]
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Figure 3. Average skirt thickness as a function of time
[Refer to Figure 1f: Eo= 339, Mo= 43.1, Re=18.3]

The behaviour of bubbles at higher values of Re is generally complicated by the
formation of thin and fragmented segments, which require higher levels of refinement
for their resolution. This is especially true for the formation of skirted bubbles. Figure 3
shows the development of the skirt segment of a bubble rising at Fo=339 and

Re=18.3. The average thickness of the skirt was calculated by & = IyL 5oy / .[yL oy, where
Yo Yo

& 1is the thickness of the skirt at point y, and Yy, —Y,is the length of the skirt section.
The thickness of the skirt produced by the 110 cpd (Lmax = 10) simulation is = 40% lower



than that of the 55 cpd (Lmax = 9) simulation. This indicates that the simulations of the
skirt regions of the bubbles cannot be considered grid independent. In comparison to the
work of Wairegi (1974), the average thickness of the skirt based on the 110 cpd
simulations is found to be considerably higher (~ 50 times) than the predicted value,

5= | OHbumer )
(p, ~ Phubble )g
Equation 7 is derived based on the balance between the pressure gradient in the skirt
along the vertical direction with the pressure gradient outside the boundary layer of the
host liquid (Ray and Prosperetti, 2014). Ohta and Sussman (2012) have performed a set
of 2-D simulation studies on skirted bubbles and drops using the Coupled Level Set

Volume of Fluid (CLSVOF) method, and found a dependency in the average thickness of
skirt formations on the density (pgas / p”quid) and viscosity (ygas / y”quid) ratios of the

discrete and continuous phases. The thickness of the skirt was found to decrease with
decreasing density and viscosity ratios. Resolution levels of up to 1024 cpd were used to
analyse the thickness and length of the skirt section. Their results indicated that at the
typical density and viscosity ratios of gas-liquid systems, a bubble rising at £o= 339 and
Fe=18.3 would form a very thin trailing skirt, which, even with 1024 cpd resolution
formed a skirt that is less than one-grid cell thick. In 3-D simulations, such level of grid
resolution is highly unfeasible with the current level of computing power; accurate
analysis of skirted bubbles at high Reynolds numbers is therefore an area in need of
further research, requiring a greater understanding on the spatial discretisation of the
skirt segment.

Despite the differences in the thicknesses of the skirts formed in the 55 and 110 cpd
simulations, the terminal velocities of the bubbles are found to be relatively uniform
(0.373 m/s and 0.394 m/s for the 55 and 110 cpd simulations, respectively). This is
consistent with the findings of Ohta and Sussman (2012), who found that the thickness
of the trailing skirt have little effect on the rise velocity of the bubble. This indicates
that while the current level of grid refinement is inadequate in resolving the skirt region
of the bubbles, it is able to yield a representative description of the flow fields
surrounding them. For the current study, resolution level of 110 cpd is used to simulate
skirted bubbles cases.

The formation of satellite bubbles evident in Figure 1m results from the development of
a trailing skirt behind the rising bubble. As the trailing skirt gets pulled along, its
thickness tends to decrease, eventually breaking apart and forming detached bubbles in
the wake of the larger bubble. The formation of satellite bubbles in the wake is therefore
also dependent on the resolution of the trailing skirt. As in the case with the skirted
bubbles, the 110 cpd simulation is found to produce a thinner trailing skirt than the 55
cpd simulation, thus resulting in a lower rate of satellite bubble production. At 0.4 s
from the start of the simulation, the 110 cpd bubble is found to produce = 2.3% satellite
bubbles with respect to the original volume of the bubble. On the other hand, the 55 cpd
bubble sheds 7.4% of its original volume within 0.4 s from the start of the simulation.
This results in a slight discrepancy in the bubble terminal velocity; the 55 cpd
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simulation produces a bubble terminal velocity that is = 5% lower than the 110 cpd (the
110 cpd simulation produces terminal velocity of 0.319 m/s, or Re = 83.8, = 10.8% lower
than the reported terminal velocity value of Bhaga and Weber (1981)). The maximum
velocity reached by the bubble in both cases is 0.408 m/s, corresponding to Remax of
107.1. The range of Reynolds number attained by the simulations therefore still tends to
fall within the reported value of Bhaga & Weber (1981) (see Table 1, Figures 1m and 2),
despite the uncertainties involved with the production rate of the satellite bubbles.

Simulations of large bubbles (Re > 100, Eo > 100) that are initially spherical in shape
generally result in a toroidal bubble formation (Chen et al., 1999; Ohta et al., 2005;
Bonometti & Magnaudet, 2006, Hua and Lou, 2007; Tripathi et al., 2015). This is in
contrast to the observations of Bhaga & Weber, who reported the formation of spherical
cap bubbles with open wakes in the region of 151 < Re <259 and 115 < Fo<237. The
discrepancies appear to be largely caused by the initial shape of the bubble: those that
are initially spherical in shape tend to inhibit a toroidal bubble formation, whereas
bubbles that are initially ellipsoidal in shape tend to inhibit a spherical cap bubble
formation (Ohta et al., 2005). Indeed, due to the experimental setup employed by Bhaga
& Weber, wherein the bubble is initially contained in an inverted hemispherical cup,
which is then turned slowly to release the bubble into the column of fluid, the initial
shape of large bubbles may have been rendered ellipsoidal upon release.

The findings of Ohta et al. (2005) were further supported by the study of Bonometti &
Magnaudet, who suggested the presence of stable and unstable regions, in which the
final shape of an initially spherical bubble rising at large E£o and Re values could either
be spherical cap or toroidal, depending on the viscous and capillary contributions of the
fluid properties. This was further analysed by Tripathi et al. (2015), who suggested a
slightly different delineation for stable and unstable regions based on their 3-D
simulation results. Based on these stability criteria suggested by both Bonometti &
Magnaudet (2006) and Tripathi et al. (2015), the parameters used in the case of Ko =
115 and Re = 151.0 fall within the unstable region; it is therefore expected that the
bubbles attain toroidal bubble formation throughout all levels of refinement. As can be
seen in Figure 4, simulations with lower levels of resolution (55 and 110 cpd) indeed
show this behaviour, with the bubble developing a stable toroidal formation after
0.08-0.10 s. However, in the case of the 220 cpd simulation, the bubble tends to only
temporarily adopt a semi-toroidal structure, before re-forming the top layer and
reverting into a spherical cap structure. The 3-D shape of the bubble based on the 220
cpd simulation, 0.67 s from stationary can be seen in Figure 1n. The terminal velocity of
the bubble based on the 220 cpd was 0.338 m/s, = 9% lower than the reported value of
Bhaga and Weber (1981). Similar to previous cases of flow separation, some fluctuation
occurs in the rise velocity of the bubble. The maximum velocity achieved by the bubble
during its rise from rest is 0.457 m/s, thus corresponding to Kemax of 185.2, indicating
that the range of Reynolds numbers produced by the 220 cpd simulation encompasses
the Reynolds number reported by Bhaga and Weber (1981) (see Table 1, Figures 1n and
2). The asymmetry of the bubble, as evident in Figure 1n, suggests the formation of an
open wake; this will be discussed in the following sections.
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The formation of the toroidal structure is driven by the development of a very thin film
at the centre of the leading edge of the bubble. The mechanism of this formation has
previously been studied by Walters & Davidson (1963), Chen et al. (1999), and
Bonometti and Magnaudet (2006). It was found that the lower surface of large bubbles
rising in liquids tend to undergo significant deformation due to the presence of a upward
liquid jet in the wake, which then pierces the top surface. The development of the liquid
jet for two cases presented by Bhaga & Weber (1981) can be seen in Figures 5a and b.
The first case (Figure 5a) is essentially the one presented in Figures 1n and 4 (Re= 151,
Mo = 1x103, Eo = 115), whereas the second case has higher values of Re and Eo
numbers (Re = 259, Mo = 1x103, Eo= 237). In both cases, maximum resolution levels of
220 cpd were used. Both Figures 5a and 5b show that as the top surface of the bubble is
pierced, the jet becomes wider, and its intensity decreases somewhat due to the increase
in surface area. In the case presented in Figure 5a, the decrease in the intensity of the
jet within the bubble torus, combined with the effect of fluid recirculation at the outer
layer of the bubble, is sufficient to create a net force that pushes the top layer of the
bubble back inwards, thus reforming a spherical cap shape. On the other hand, the jet
formation in the case presented in Figure 5b is considerably more prominent, i.e. the
average velocity in the jet is much higher in comparison to the bubble rise velocity.
Upon rupture, the intense kinetic energy of the jet tends to push the sides of the torus
apart, therefore causing the bubble toroid to widen.
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The formation of toroidal bubbles, as shown in Figure 5b, therefore depends on the
intensity of kinetic energy of a liquid jet that is formed at the wake of the bubble, and
the recirculation of fluid surrounding it. Further, the formation of an open turbulent
wake as evident in Figure 1n (to be discussed in the following section), which tends to
weaken the upward jet and thus stabilises the spherical cap bubble shape, could not
have been captured with the 2-D simulations performed by Bonometti and Magnaudet
(2006) and Ohta et al. (2005). These findings highlight the importance of 3-D flow field
and the spatial resolution in the simulation of high Fe and Fobubbles.

The results presented in this section demonstrate thoroughly the validity of the current
numerical methodology in representing the various shape regimes of bubbles rising in
viscous liquids. However, some limitations remain, especially in the representation of
thin skirt segments of skirted bubbles. As a result, the formation of satellite bubbles in
the wake of a leading bubble also cannot be represented with good accuracy.
Nevertheless, the excellent agreement of the rise velocity of the bubbles with the
experimental observations of Bhaga and Weber (1981) indicate good representation of
the flow fields around the bubbles have been obtained.

3.3 Bubble aspect ratio

The shape of the bubbles presented in Table 1 can be seen to generally fall into 6
categories: spherical (Figure 1a), oblate ellipsoidal (Figure 1b), oblate ellipsoidal disk
(Figure 1c), oblate ellipsoidal cap (Figures 1d, g-1), skirted (Figures le-f) and spherical
cap (Figures 1m-n). In this section, the dependency of the bubble aspect ratio on the
parameters of the liquid and gas phases will be analysed.

In the case of the spherical and ellipsoidal bubbles (Figures 1a and b), the aspect ratio [
= minor (vertical) axis / major (horizontal) axis] of the bubbles is found to be relatively

close to 1.0 (y = 0.97 and 0.95 respectively for bubbles of Figures la and 1b). The

boundary layer stays attached to the surface of the bubble, maintaining fore-and-aft
symmetry in the velocity flow field.

The fore-and-aft symmetry observed in the shapes of the spherical and ellipsoidal
bubbles is absent for cases of oblate ellipsoidal cap bubbles (Figures 1d, 1g-1). This is
reflected in the flow fields around the bubbles, in which liquid particles at the rear of the
bubbles have to move along the rim before progressing downstream. In the case of the
bubble presented in Figure 1g (y = 0.76), the inertia within the flow field is sufficiently

low such that liquid at the rear of the bubble could move along the bubble interface
without separating away from it. Boundary layer separation starts to occur in cases with
slightly higher values of Re, i.e. in the cases presented in Figures 1d and 1h-i ( y = 0.64,
0.70, and 0.63, respectively, with 3.57 < Re < 7.77). However, the separation in these
cases does not induce any further flow irregularities downstream from the bubble
surface (see Figure 2b). In cases with higher values of Re (13.3 < Re < 44.2), boundary
layer separation at the rear of the bubbles causes the formation of a toroidal wake.
Additionally, an area of re-circulation just behind the rim of the bubble could also be
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seen to form at even higher values of Re, notably at Re > 20.4 and y < 0.47 (see Figure

2¢ for the wake formation of the bubble presented in Figure 11).

In the case of oblate ellipsoidal disk bubbles (Figure 1c), strong fore-and-aft asymmetry
in the shape of the bubble induces flow separation that leads to the formation of a closed
toroidal wake, similar to the case of the oblate ellipsoidal cap bubbles.

Legendre (2012) has proposed a correlation for the aspect ratio of spherical and
ellipsoidal bubbles based on their experimental observations:

7 =1-9,WelL+0.2Mo*We)" ®)

64

where We is the Weber number, We = p|Vt2D / o . The agreement of this correlation with

the bubble cases presented in Table 1 can be seen in Figure 6. The data has been
classified into two groups: (A) cases of bubbles without a standing eddy and (B) cases of
bubbles with a standing eddy, including skirted and spherical cap bubbles. It can be
seen that the correlation generally provides good prediction of the aspect ratio of the
bubbles as a function of We and Mo numbers, except for cases where the bubbles exhibit
spherical cap or skirted bubble formations. The errors associated with case A bubbles,
l.e. those without a standing eddy or toroidal wake formations, are relatively low
(< 10%), whereas the prediction of the bubble aspect ratio for case B bubbles involve
greater levels of uncertainties (10-46%). The correlation was found to fail in cases of
spherical cap and skirted bubbles.

Figure 6 shows an excellent linear fit between the two sets of simulation results with
the results of equation 8 (this was obtained through considerations of all data, with the
exception of spherical cap and skirted bubble formations), although a much better fit
was clearly shown for cases where non-toroidal wake formation is obtained.
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Figure 7. The aspect ratios of spherical cap bubbles as a function of Reynolds number.

The discrepancy in the bubble aspect ratio values in the case of spherical cap bubbles in
comparison to the correlation suggested by Legendre et al. (2012) may have been caused
by the strong dependency of the aspect ratio in bubbles of these cases to the Re values.
Figure 7 shows the aspect ratio of spherical cap bubble cases as a function of Re a
generally strong decreasing trend of the aspect ratio with increasing values of Re is
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evident. This is in agreement with the results of Bhaga and Weber (1981), where a
correlation between the bubble aspect ratio and its Reynolds number has been
suggested.

On the other hand, the deviation of the cases of skirted bubbles from the predicted
values of aspect ratio is caused by the length of the bubble skirt, which has not been
taken into account in equation (8). The dimensions of the skirt segment of skirted
bubbles and drops have previously been studied by Ray and Prosperetti (2014). The
length of the skirt, L=y, —Y,, where Y, is the lowest point of the bubble at its line of
symmetry and Y, is the lowest point of the skirt, is made dimensionless through
considerations of the gravitational acceleration and the rise velocity of the bubble,

L*= gL/Vt2 . Ray and Prosperetti postulated that L* is a function of the combination of

the Capillary and Eotvos numbers, Ca/ E0®, as well as the viscosity and density ratios

of the two phases. The Capillary number is defined as a ratio between viscous and
surface tension forces,

Ca=puV,/o. 9)

The dependency of the dimensionless skirt length as a function of Ca and the viscosity
ratio (g, /u, , where u, and u, are the viscosities of the dispersed and continuous
phases, respectively), for cases of skirted bubbles in the current study (cases e-f in
Figure 1 and Table 1) can be seen in Figure 7. In combination with this data, the results
presented by Wairegi (1974) on the length of skirted droplets in sucrose solutions have
been included. The complete data, which comprises of 115 < Eo < 717, and density ratios
of 9.06x10* < p,/p. < 1.15, shows that a strong linear correlation occurs between L *

and Ca.
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Figure 8. Dimensionless parameter of skirt length as a function of the Capillary number.
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The findings in this section suggest that the aspect ratio of bubbles in different regimes
of bubble shape is dependent on a number of different dimensionless parameters. In the
case of spherical and ellipsoidal bubbles, strong dependency is demonstrated with the
Morton and Weber number, indicating that it is largely driven by the surface tension
between the two phases. In the case of spherical cap bubbles, inertia and viscous forces
tend to dominate, and a strong dependency of the bubble aspect ratio on the bubble
Reynolds number is demonstrated. Finally, in the case of skirted bubbles, strong
dependency was found to occur between the length of the skirt on the surface tension
and viscosity of the two phases. The aspect ratio of these bubbles is therefore expected to
be a strong function of the Capillary number of the system.

3.4 Wake characteristics and liquid-induced velocity

In the simulation results presented in Figure 1, except for cases where FKe < 2.5 and
cases with the high Reynolds number (Re > 55.3), the formation of laminar and
hydrodynamically stable toroidal wakes are obtained, with a toroidal vortex ring formed
inside them. Inside the wake, the axial velocity of the liquid phase increases away from
the gas-liquid interface, before decreasing steadily towards zero. This can be seen in
Figure 9a, where variation of the vertical component of the velocity vector along the
vertical axis of symmetry of the bubble has been presented for two different cases: the
oblate ellipsoidal cap bubble presented in Figure 11 (Figure 2c for streamline) and the
skirted bubble presented in Figure 1f (Figure 9b for streamline). In the case of the
skirted bubble, the velocity profile within the primary wake is slightly different, mainly
due to the presence of a large circulatory region close to the rim of the bubble (see
Figure 9b). While this is also observed in the case of oblate ellipsoidal cap bubbles rising
at Re>20.4 and y < 0.47 (see Figure 2c), the size of the recirculation area in the case of

the skirted bubble appears to be significantly larger. As a result, the axial velocity in the
liquid phase tends to decrease away from the surface of the bubble, before increasing
towards a maximum value at 70% of the length of the primary wake, Lw.
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Skirted bubble (Eo=641,
N Mo=43.1, Re=30.3)

= = = Oblate ellipsoidal cap
(Eo=116, M0=0.103, Re=42.2)

Distance from the rear of the bubble, x/L,

Figure 9a. Vertical velocities in the liquid along the vertical axis of symmetry of the bubble.
Refer to Figure 9b for the notation of the axes.

The extension of the primary wake can be estimated by calculating the distance from
the lowest point of the bubble at its line of symmetry to the point at which the vertical
velocity is equal to the rise velocity of the bubble. Except for cases with high values of Re
(Re>55.3 — these cases will be discussed later in this section), the extension of the
primary wakes is found to attain steady state values within 0.4-0.8 s.

The presence of toroidal wakes behind a rising bubble has previously been examined by
Cano-Lozano et al. (2013), who presented a critical curve of Galileo number as a function
of the Bond (= Eotvos) number. Above this curve, a recirculating (or toroidal) wake is
expected to occur, and vice versa. In the current work, this critical curve has been
translated into an Eotvos-Reynolds number curve. Additionally, data based on the
observations obtained so far at 8.67 < Ko < 641 on the presence (or absence) of toroidal
wakes has been incorporated, by estimating the critical values of Re at different values
of Eo in this range. The resulting curve of critical Reynolds number can be seen in
Figure 10a, where it is evident that the critical value of Reynolds number can be
correlated with the Eotvos number through a power function.
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Figure 9b. Streamline of the velocity flow field [Eo= 641, Mo= 43.1, Re= 30.3].
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Figure 10a. The critical Reynolds number, as a function of the Eotvos number, above which
toroidal wake formation is expected, and vice versa.

By comparing the Reynolds number of a bubble with the critical value, the presence (or
absence) of toroidal wake can then be predicted. This is shown in Figure 10b, where the
dimensionless length of the wake, Lw/D, as a function of Re-Rec, with Rec being the
critical Reynolds number calculated based on the power correlation obtained in Figure
10a, has been presented. At Re-Rec < 0.0, Lw/D values of 0.0 were obtained, indicating
that there is no toroidal wake being formed behind the bubbles in this range. On the
other hand, at 0.0 < Re-Rec < 37.6, Lw/D can be seen to increase in a linear fashion with
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Re-Rec. This is in agreement with the observations of Bhaga and Weber (1981), who
noted the apparent dependency of the dimensionless length of the wakes on the
Reynolds number of the bubble. At higher values of Re-Rec (> 79.1), the linear
dependency of Lw/D ceases to exist, and the dimensionless length of the wake appears to
decrease with decreasing Reynolds number. This is due to the formation of open and
unsteady toroidal wakes behind the bubbles. Further discussion on the extension of
open toroidal wakes will be presented in this section.
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Figure 10b. The length of the wake underneath a rising bubble normalised against the diameter
of the bubble. For cases where Re-Rec < 37.6, values at steady state were presented, whereas at
Re-Rec > 37.6, the lengths of the wakes at 0.8 s were presented. The dotted line indicates a
linear fit in the range of 0 < Re-Rec < 37.6.

Figure 10b also shows that despite the significant differences in the velocity distribution
within the primary wakes of skirted bubbles in comparison to those of non-skirted
bubbles, the lengths of the wake are still predictable through the Reynolds number of
the bubble and fall within the range of the dimensionless wake lengths of non-skirted
bubbles.

The extension of an open toroidal (laminar) wake can be inspected through the
variations of the normalised axial velocities in Figures 11a and b, respectively, where
the growth of the primary and secondary wakes for two different cases, oblate ellipsoidal
bubble [Re = 42.2, Eo = 115, Mo = 0.1] and spherical cap bubble [Re = 94.0, Eo= 115,
Mo = 0.005], has been presented. Rather than reaching a steady-state configuration, the
primary wakes in the latter case appear to steadily increase in length over time. This is
caused by the kinetic energy induced within the wake itself, which is significantly
higher in the latter case (Figure 11b). This is a result of the complete separation of the
wake from the internal flow of the bubble (see Figure 12); the rotational flow field inside
the vortex induces a strong centrifugal force that results in the formation of a region of
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minimum pressure at the vortex centre. The resulting kinetic energy thus needs to
dissipated over a larger wake area, resulting in its expansion over time.
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Figure 11a. Development of vertical velocities in the liquid phase along the vertical axis of
symmetry of the bubble [Re= 42.2, Eo= 115, Mo=0.1].
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Figure 11b. Development of vertical velocities in the liquid phase along the vertical axis of
symmetry of the bubble [Re = 94.0, Eo= 115, Mo = 0.005].
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The streamlines presented in Figure 12 show that, unlike in previous cases where
Re<94.0, the flow fields surrounding the bubble is non-axisymmetric, indicating the
onset of wake and bubble path instabilities. Even greater instabilities are found to occur
in the case of a bubble rising at e = 151 and £o = 115 (see Figure 1n), the velocity field
and streamlines of which have been presented in Figure 13. In this case, the instabilities
in the bubble wake are compounded by the formation of an additional vortex in the near
wake region.

Figure 12. Streamline of the velocity flow field [Fo= 641, Mo= 0.005, e = 94], 1.2 seconds after
the release of the bubble.

04s 05s 0.6s

Figure 13. Streamline of the velocity flow field [Fo= 115, Mo= 0.001, Re= 151], 0.4-0.6 s after
the release of the bubble.

The apparent independence of Lu/D from Re-Recin the case of open wake formations, as
shown in Figure 10b, is in agreement with the findings of Fan and Tsuchiya (1990), who
found that the average size of open unsteady wakes is more constant at high values of
Reynolds number.
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The effects of the flow separation and toroidal recirculation at the wake on the path
stability of a rising bubble have been studied previously by Cano-Lozano et al. (2013). It
was shown that, at high values of Ko numbers (Fo > 1.5), the presence of a standing
eddy tends to induce instabilities in the rising path of a bubble, whereas at lower values
of Ko (Fo < 1.5), path instabilities in rising bubbles are driven largely by the
development of azimuthal vorticity in the boundary layer. In the current case, the path
instability of bubbles rising at Fo = 115 has been quantified through the maximum
deviation of the radial position of the bubble from its original position in the first 1 s of
bubble rising. This has been presented in Figure 14, where the maximum deviation of
the bubble radial position, normalised against the equivalent radius of the bubbles, has
been presented against their Ke value. In this graph, it is evident that path deviation
starts to occur at Re > 13.2, corresponding to Galileo number of 22.9. The onset of the
path instability appears to occur at a lower value of Galileo (Ga) number in comparison
to the critical Ga value observed by Cano-Lozano, which at Fo > 6 appears to become
constant at ~ 70. This could be caused by the significant fore-and-aft asymmetry of
dimpled and spherical cap bubbles, resulting from the reduced relative contribution of
surface tension in the current case (Fo= 115).
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Figure 14. Onset of instability in the rising path of a bubble at £o=115.

3.5 Drag correlation

As can be seen from Figure 2a, Bhaga & Weber (1981) tended to over-estimate the
terminal velocities of the bubbles. This could be caused by the fluctuations in the bubble
rise velocity, which tend to occur in cases where flow separation develops in the wake
region. As the experimental determination of the bubble velocity was conducted through
the calculation of the distance travelled by a particular bubble in two adjacent frames
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and dividing the distance with the time elapsed, such fluctuations in bubble velocity
may have gone unnoticed. As such, in the current study, updated values of the terminal
velocity, and the ensuing drag coefficient, have been presented in Figure 15. The drag
coefficient for each bubble is calculated as follows:

Cp = Fo (10)

0.5p, (Z D° )\/12

The values of the drag coefficient are compared with the correlation proposed by
Dijkhuizen et al. (2010), using the corrected values of equivalent bubble diameter,

D =3 VOIIeading bubble (11)

« 7/6 ’

for cases where satellite bubbles are formed due to film breakage. Excellent agreement
between the simulation results and the correlation of Dijkhuizen et al. (2010) is
obtained, with an error margin of + 7% in the prediction for the bubble terminal velocity.
In comparison, the results presented by Bhaga and Weber (1981) generally show lower
values of drag coefficients in comparison to the VOF results, particularly at high
Reynolds numbers.
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Figure 15. Drag coefficient of the bubbles as a function of Reynolds number.
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4. Conclusions

A numerical study on the rise of a bubble in a stagnant liquid has been conducted,
encompassing a range of 8.7 < Fo < 641 and Re < 151. The bubble is initially spherical
and stationary, and, depending on the surface tension and viscous contribution and
inertia could deform into ellipsoidal, dimpled, skirted, and spherical cap formations. The
requirement for spatial resolution in the simulations is examined, particularly in cases
involving high Re (= 90-151) and Eo (> 115) values. In these cases, the formation of thin
sections of gas filaments is often encountered, which in turn need to be adequately
resolved in computations. It is observed that while the current 3-D simulations still
cannot comprehensively reproduce the formation of skirt sections behind a deforming
bubble, representative flow fields around the bubbles can still be obtained, such that the
rise behaviour of the bubbles reflect the experimental observations of Bhaga and Weber
(1981). As a result of this limitation, the formation of satellite bubbles behind a leading
bubble rising at high Reynolds number also could not be predicted with good accuracy
with the current methodology. At high values of Reynolds numbers, thin gas filaments
can also be formed at the top of the bubble, as a result of liquid recirculation upon the
separation of the boundary layer at the bottom rim of the bubble. Inadequate resolution
of the thin gas filament in this case can result in the misrepresentation of the rupture
and reformation of the thin film, which determine the final shape of the bubble; either
spherical cap, if the top section of the bubble recovers, or toroidal. In the current study,
the formation of a spherical cap bubble with open, unsteady wake at Ke =~ 151 and
FEo= 115, have been presented, in agreement with the experimental observation of
Bhaga and Weber (1981). The limitations and requirements for spatial resolution for the
study of a bubble rising in a viscous liquid have therefore been identified.

The results of the simulations indicate that the aspect ratio of spherical, ellipsoidal and
dimpled bubbles can be predicted through the Morton and Weber numbers of the
bubbles. On the other hand, spherical cap bubbles demonstrate a greater dependency of
its aspect ratio on the Reynolds number of the bubble. In the case of skirted bubbles, the
prediction of the aspect ratio is complicated by the skirt formation itself, and its length
is found to be highly dependent on the Capillary number.

The development of toroidal wakes behind the bubble is found to depend largely on the
Fonumber of the bubble; a correlation is therefore proposed, such that the critical value
of Reynolds number, Rec, can be predicted as a function of Fo. Bubbles rising at Re
values above the corresponding value of Recis found to inhibit toroidal wake formation,
and vice versa. Furthermore, a dependency is found on the expansion of the toroidal
wake as a function of Re Rec. Finally, the formation and development of open toroidal
wakes in the case of bubbles rising at Re > 55.3 are discussed, and analysis on the
influence of the wake formation on the onset of path stability of the bubble was
presented.
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