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Abstract

Cell Biology, the study of the morphological and functional organization of cells, is now
an established field in biochemical research. Computer Science can help the research in
Cell Biology in several ways. For instance, it can provide biologists with models and
formalisms able to describe and analyze complex systems such as cells. In the last few
years many formalisms, originally developed by computer scientists to model systems of
interacting components, have been applied to Biology. Among these, there are Petri Nets,
Hybrid Systems, and the w-calculus. Moreover, formalisms such as P Systems, originally
developed to study new computational paradigms inspired by Biology, have recently found
application to the description of biological phenomena. Finally, some new formalisms have
been proposed to describe biomolecular and membrane interactions.

The first advantage of using formal models to describe biological systems is that they
avoid ambiguities. In fact, ambiguity is often a problem of the notations used by biologists.
Moreover, the formal modeling of biological systems allows the development of simulators,
which can be used to understand how the described system behaves in normal conditions,
and how it reacts to changes in the environment and to alterations of some of its com-
ponents. Furthermore, formal models allow the verification of properties of the described
systems, by means of tools (such as model checkers) which are well established and widely
used in other application fields of Computer Science, but unknown to biologists.

In this thesis we develop a formalism for the description of biological systems, called
Calculus of Looping Sequences (CLS), based on term rewriting and including some typical
features of process calculi for concurrency. What we want to achieve is a formalism
that allows describing proteins, DNA fragments, membranes and other macromolecules,
without ignoring the physical structure of these elements, and by keeping the syntax and
the semantics of the formalism as simple as possible.

CLS terms are constructed from an alphabet of basic symbols (representing simple
molecules) and include operators for the creation of sequences (representing proteins and
DNA fragments), of closed sequences which may contain something (representing mem-
branes), and of multisets of all these elements (representing juxtaposition). A CLS term
describes the structure of the system under study, and its evolution is given by the ap-
plication of rewrite rules describing the events that may occur in the system, and how
the system changes after the occurrence of one of these events. We equip CLS with an
operational semantics describing the possible evolutions of the system by means of appli-
cation of given rewrite rules, and we show that other formalisms for the description of
membranes can be encoded into CLS in a sound and complete way.

We propose bisimilarity as a tool to verify properties of the described systems. Bisim-
ilarity is widely accepted as the finest extensional behavioral equivalence one may want
to impose on systems. It may be used to verify a property of a system by assessing the



bisimilarity of the considered system with a system one knows to enjoy that property. To
define bisimilarity of systems, these must have semantics based on labeled transition re-
lations capturing potential external interactions between systems and their environment.
A labeled transition semantics for CLS is derived from rewrite rules by using as labels
contexts that would allow rules to be applied. We define bisimulation relations upon this
semantics, and we show them to be congruences with respect to the operators on terms.

In order to model quantitative aspects of biological systems, such as the the frequency
of a biological event, we develop a stochastic extension of CLS, called Stochastic CLS.
Rates are associated with rewrite rules in order to model the speeds of the described
activities. Therefore, transitions derived in Stochastic CLS are driven by exponential
distributions, whose rates are obtained from the rates of the applied rewrite rules and
characterize the stochastic behavior of the transitions. The choice of the next rule to be
applied and of the time of its application is based on the classical Gillespie’s algorithm for
simulation of chemical reactions.

Stochastic CLS can be used as a formal foundation for a stochastic simulator, but also
to build models to be given as an input to model checking tools. In fact, the transition
system obtained by the semantics of Stochastic CLS can be easily transformed into a
Continuous Time Markov Chain (CTMC). If the set of states of the CTMC is finite
(namely, if the set of reachable CLS terms is finite) a standard probabilistic model checker
(such as PRISM) can be used to verify properties of the described system.

Finally, we propose a translation of Kohn Molecular Interaction Maps (MIMs), a com-
pact graphical notation for biomolecular systems, into Stochastic CLS. By means of our
translation, a simulator of systems described with Stochastic CLS can be used to simulate
also systems described by using MIMs.
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Chapter 1

Introduction

1.1 Motivation

Biochemistry, often conveniently described as the study of the chemistry of life, is a multi-
faceted science that includes the study of all forms of life and that utilizes basic concepts
derived from Biology, Chemistry, Physics and Mathematics to achieve its goals. Biochem-
ical research, which arose in the last century with the isolation and chemical characteri-
zation of organic compounds occurring in nature, is today an integral component of most
modern biological research.

Most biological phenomena of concern to biochemists occur within small, living cells.
In addition to understanding the chemical structure and function of the biomolecules that
can be found in cells, it is equally important to comprehend the organizational structure
and function of the membrane-limited aqueous environments called cells. Attempts to do
the latter are now more common than in previous decades. Where biochemical processes
take place in a cell and how these systems function in a coordinated manner are vital
aspects of life that cannot be ignored in a meaningful study of biochemistry. Cell biology,
the study of the morphological and functional organization of cells, is now an established
field in biochemical research.

Computer Science can help the research in cell biology in several ways. For instance, it
can provide biologists with models and formalisms able to describe and analyze complex
systems such as cells. In the last few years many formalisms originally developed by
computer scientists to model systems of interacting components have been applied to
Biology. Among these, there are Petri Nets [51], Hybrid Systems [2], and the m-calculus [20,
69]. Moreover, some new formalisms have been proposed to describe biomolecular and
membrane interactions [3, 13, 16, 23, 63, 66]. Others, such as P Systems [58, 59, 60], have
been proposed as new biologically inspired computational models and have been later
applied to the description of biological systems.

The m—calculus and new calculi based on it [63, 66] have been particularly successful in
the description of biological systems, as they allow describing systems in a compositional
manner. Interactions of biological components are modeled as communications on channels
whose names can be passed. Sharing names of private channels allows describing biological
compartments. However, these calculi offer very low—level interaction primitives, and
this causes models to become very large and difficult to be read. Calculi such as those
proposed in [13, 16, 23] give a more abstract description of systems and offer special
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biologically motivated operators. However, they are often specialized to the description of
some particular kinds of phenomena such as membrane interactions or protein interactions.
Finally, P Systems have a simple notation and are not specialized to the description of
a particular class of systems, but they are still not completely general. For instance,
it is possible to describe biological membranes and the movement of molecules across
membranes, and there are some variants able to describe also more complex membrane
activities. However, the formalism is not flexible enough to allow describing easily new
activities observed on membranes without defining new extensions of it.

From this discussion we conclude that there is a need of a formalism having a simple
notation, having the ability to describe biological systems at different levels of abstraction,
having some notions of compositionality and being flexible enough to allow describing new
kinds of phenomena as they are discovered, without being specialized to the description
of a particular class of systems. The aim of this thesis is to study a new formalism which
could represent a step towards the satisfaction of all these requirements.

Both the qualitative and the quantitative aspects of biological systems are interesting;:
the former are related to state dependent properties, such as reachability of states or
existence of equilibria and stable states; the latter are related to time and probability
dependent properties, like the time needed to reach a certain state and the probability of
reaching a certain state in a given time or in any time. In this thesis we shall develop
an extension of our formalism to take into account also quantitative aspects of biological
systems.

1.2 Contributions

In this thesis we present a new calculus based on term rewriting and called Calculus of
Looping Sequences (CLS). We describe several variants of CLS and we choose among
them the one which is expressive enough to describe the biological systems of interest
and having the simplest semantics. The terms of CLS are constructed by starting from
basic constituent elements and composing them by means of operators of sequencing,
looping, containment and parallel composition. Looping allows tying up the ends of a
sequence, thus creating a circular sequence of the constituent elements. We assume that
the elements of a circular sequence can rotate, and this motivates the terminology of
looping sequence. A looping sequence can represent a membrane and the containment
operator allows representing that some element is inside the membrane.

In order to show that CLS is suitable to describe biological systems and their evolutions
we give some guidelines for the modeling of such systems in CLS, and we show some
CLS models of real biological systems. Moreover, we show how other well-established
formalsisms for the description of biological systems can be translated into CLS.

Bisimilarity is widely accepted as the finest extensional behavioral equivalence one may
want to impose on systems. It may be used to verify a property of a system by assessing
the bisimilarity of the considered system with a system one knows to enjoy that property.
The notion of congruence is very important for a compositional account of behavioral
equivalence. This is true, in particular, for complex systems such as biological ones.

To define bisimilarity of systems, these must have semantics based on labeled transition
relations capturing potential external interactions between systems and their environment.
A labeled transition semantics for CLS is derived from rewrite rules by using as labels
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contexts in which rules can be applied, in the style of Sewell [72] and Leifer and Milner
[49]. We define bisimilarity relations and we show them to be congruences with respect to
the operators on terms.

Biologists usually describe quantitative aspects of a biological system by giving a set
of differential equations. Each equation gives the transformation rate of one of the com-
ponents of the described system. Hence, simulation of the system can be performed by
using a computer tool for solving differential equations (as, for example, [26] and [52]).

An alternative approach to the simulation of biological systems is the use of stochastic
simulators. This kind of tools are usually based on simulation algorithms proved to be
correct with respect to the kinetic theory of chemical reactions. The most used and well—
established of such algorithms is the one introduced by Gillespie in [31]. Other examples
are [6] and the one used in the StochSim simulator [73].

In his paper, Gillespie shows that the quantity of time spent between the occurrence
of two chemical reactions is exponentially distributed, with the sum of the kinetic rates of
the possible reactions as the parameter of the exponential distribution. This allows him
to give a very simple and exact stochastic algorithm for simulating chemical reactions.

Exponential distribution is a probability distribution for which some very useful prop-
erties hold. The most important one is the memoryless property, that allows forgetting
the history of the simulation in the choice of the time that will be spent by the next
reaction. These properties motivated the proliferation of a number of stochastic models
with exponentially distributed variables. From the mathematical point of view, the most
famous of such models are Continuous Time Markov Chains (CTMCs), while, from the
computer science point of view, most of these models fall into the category of Stochastic
Process Algebras (as, for example, [33, 36, 62]).

Exponential distribution is the trait—d’union between simulation of biological systems
and stochastic process algebras, and permitted the latter to be easily applied to the de-
scription of biological systems. In particular, the Stochastic m—Calculus [62] has been
successfully applied to the (quantitative) modeling of biological systems, becoming at the
moment one of the most used compositional formalisms [11, 45, 64] in the new field of
Systems Biology [39, 40].

In order to model quantitative aspects of biological systems, we develop a stochastic
extension of CLS. Rates are associated with rewrite rules in order to model the speeds of
the described activities. Therefore, transitions derived in Stochastic CLS are driven by
a rate which models the parameter of an exponential distribution and characterizes the
stochastic behavior of the transition. The choice of the next rule to be applied and of the
time of its application is based on the classical Gillespie’s algorithm [31].

The transition system obtained by the semantics of Stochastic CLS can be easily
transformed into a Continuous Time Markov Chain (CTMC). If the set of states of the
CTMC is finite (namely, if the set of reachable CLS terms is finite) a standard probabilistic
model checker (such as PRISM [46]) can be used to verify properties of the described
System.

Since the most used technique for studying biological systems is simulation, we have
developed a simulator for Stochastic CLS. In order to show the expressiveness of our
formalism, we model and simulate some real examples of biological systems.
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1.3 Related Work

We briefly describe some notable examples of formalisms that have been used in the
last few years for modeling biological systems. Some of them have been defined with the
specific purpose of describing biochemical networks and activity of membranes inside cells.
Moreover, some of them have been inspired by the m—calculus process algebra of Milner
[55], which is a standard foundational language for concurrency theory.

One of the oldest formalisms are Lindenmayer systems (or L Systems) [65]. An L
system is a formal grammar most famously used to model the growth processes of plant
development.

In the tradition of automata and formal language theory, a more recent formalism are
P Systems, introduced by Paun [58, 59, 60]. P Systems introduce the idea of membrane
computing in the subject of natural computing. They represent a new computational
paradigm which allow solving NP-complete problem in polynomial time (but in exponential
space), they originated a very big mass of work and recently they have been also applied
to the description of biological systems (see [74] for a complete list of references).

A pioneering formalism in the description of biological systems is the sk—calculus of
Danos and Laneve [23]. It is a formal language for protein interactions, it is enriched
with a very intuitive visual notation and it has been encoded into the w—calculus. The
k—calculus idealizes protein-protein interactions, essentially as a particular restricted kind
of graph-rewriting operating on graphs with sites. A formal protein is a node with a fixed
number of sites, and a complex (i.e. a bundle of proteins connected together by low energy
bounds) is a connected graph built over such nodes, in which connections are established
between sites. The rx—calculus has been recently extended to model also membranes [47].

An example of direct application of a model for concurrency to biochemical systems
has been introduced by Regev and Shapiro in [69, 67]. Their idea is to describe metabolic
pathways as m—calculus processes and in [64] they showed how the stochastic variant of the
model, defined by Priami in [62], can be used to represents both qualitative and quantita-
tive aspects of the systems described. Moreover, Regev, Panina, Silverman, Cardelli and
Shapiro in [66] defined the BioAmbients calculus, a model inspired by both the m—calculus
and the Mobile Ambients calculus [14], which can be used to describe biochemical systems
with a notion of compartments (as, for instance, membranes). More details of membrane
interactions have been considered by Cardelli in the definition of Brane Calculi [13], which
are elegant formalisms for describing intricate biological processes involving membranes.
Moreover, a refinement of Brane Calculi have been introduced by Danos and Pradalier in
[24].

We conclude by mentioning some works by Harel [35][38], in which the challenging
idea is introduced of modelling a full multi—cellular animal as a reactive system. The
multi—cellular animal should be, specifically, the C. elegans nematode worm [12], which
is complex, but well defined in terms of anatomy and genetics. Moreover, Harel proposes
to use the languages of Statecharts [34] and Live Sequence Charts (LSC) [21], which
are visual notations with a formal semantics commonly adopted in the specification of
software projects. Harel applies the same formalisms also to cellular and multi—cellular
systems related to the immune systems of living organisms in [37] and [27].
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1.4 Structure of the Thesis

The thesis is structured as follows.

- In Chapter 2 we recall some background notions of Biology, probability theory and
Computer Science that will be assumed in the rest of the thesis.

In Chapters 3, 4 and 5 we introduce qualitative models of biological systems and their
relationships with other well-established formalisms.

- In Chapter 3 we present a family of calculi based on term-rewriting and called
Calculi of Looping Sequences. The family consists of three formalisms: the first is
Full-CLS, in which terms are constructed by using operators of sequencing, paral-
lel composition, looping and containment without any syntactical constraint. The
second calculus of the family is CLS, and it differs from Full-CLS in the presence of
some syntactical constraints which make its semantics very simple, without loosing
too much from the viewpoint of expressiveness. The third calculus is called LCLS,
and it is an extension of CLS which can be used to model protein interaction at
the domain level, as it allows creating links (bindings) between individual elements
of different sequences, modeling different proteins. The increased expressiveness of
LCLS causes the need of a more complex semantics able to preserve a notion of well—
formedness in order to ensure that links are not established between more than two
elements, and they are established only between elements in the same membrane—
delimited compartment. For each of the three calculi we give an application to the
modeling of a real biological phenomenon.

- In Chapter 4 we give some guidelines for the modeling of biological systems with
CLS. We choose CLS among the formalisms of the family of Calculi of Looping
Sequences as it is the best compromise between expressiveness and simplicity. In
this chapter, we also consider another variant of CLS, called CLS+, in which a form
of commutativity can be introduced on looping sequences, as it could allow modeling
membranes in a more natural way. We show that CLS+ can be translated into CLS.

- In Chapter 5 we compare CLS with two of the formalisms most related with it,
namely with Brane Calculi [13] and P Systems [58, 59, 60]. We show that both
Brane Calculi and P Systems can be translated into CLS, in particular we show
the encodings into CLS of the PEP calculus, the simplest of Brane Calculi, and of
transition P Systems, the most common variant of P Systems. In the case of the
PEP calculus we can give a formally defined sound and complete translation of PEP
systems into CLS terms. By applying the CLS rewrite rules associated with the
encoding it is possible to obtain a semantic model from the term obtained by the
translation which is equivalent to the semantic model of the original PEP system. In
the case of P Systems, instead, we face in particular the problem of translating their
maximal parallelism into an interleaving (sequential) model as CLS is. This is the
main problem to be faced (the translation of Sequential P Systems [22] would be quite
easy) and in order to solve it, we define a simulation algorithm for P Systems and
we show how it can be “implemented” into CLS. We do not provide the translations
of CLS into Brane Calculi and P Systems as the complete absence of constraints in
the definition of CLS rewrite rules would make the work practically intractable.
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In Chapters 6 and 7 we propose bisimulations as formal tools for the verification of prop-
erties of biological systems

- In Chapter 6 we develop a labeled semantics and bisimulation relations for CLS. The
labeled semantics is defined by using as labels the context in which the term would
permit the application of a rewrite rule. The main results of these chapters are
that the bisimilarity relations defined on CLS terms are congruences. Moreover, we
give bisimulation relations on systems, namely we allow comparing terms which may
evolve by means of application of rewrite rules from two different sets. In this case
the bisimulation relations are not congruences, however, as we show in an example,
they can be used to verify interesting properties of the described systems, such as
causality relationships between events.

- In Chapter 7 we develop a labeled semantics and bisimulation relations for the
simplest of Brane Calculi, namely for the PEP calculus. As far as we know, this has
never been done for such a calculus. Consequently, we compare the bisimulations of
the PEP calculus with those of CLS defined in Chapter 6 by using the encoding of
the PEP calculus into CLS defined in Chapter 5.

In Chapters 8 and 9 we study an extension of CLS for describing quantitative aspects of
biological systems.

- In Chapter 8 we develop a stochastic extension of CLS, called Stochastic CLS, suit-
able to describe quantitative aspects of biological systems such as the frequencies
and the probabilities of events. The extension is obtained by allowing rate constants
to be specified in rewrite rules of CLS, and by incorporating the stochastic frame-
work of the Gillespie algorithm [31] in the semantics of the formalism. This is the
standard way of extending a formalism to model quantitative aspects of biological
systems, but, as we shall see, this is not a trivial exercise in the case of CLS. From
the semantics of a Stochastic CLS model it is possible to derive a Continuous Time
Markov Chain, and this allows simulating and analyzing the system. We have devel-
oped a prototype simulator for Stochastic CLS, and we show the result of simulation
of a real example of biological system.

- In Chapter 9 we show how Kohn’s Molecular Interaction Maps (MIMs) [1, 43] can
be translated into Stochastic CLS in order to allow simulating them. MIMs are a
graphical notations for the description of biological pathways which can be used to
describe a wide variety of interactions between cellular entities. Unfortunately, MIMs
have not a formal syntax and semantics, hence we will describe their translation
into Stochastic CLS by showing relevant examples. The translation of MIMs into
Stochastic CLS allows simulating systems described by using MIMs, and also allows
using them as a graphical user interface for a simulator based on Stochastic CLS.

Finally, we give some conclusions and discuss further work in Chapter 10.

1.5 Published Material

Part of the material presented in this thesis has appeared in some publications or has been
submitted for publication, in particular:
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The definitions of Full-CLS presented in Section 3.1 and of the encoding of the PEP
Calculus into CLS presented in Section 5.1 have appeared in [7].

The definition of CLS presented in Section 3.3, the labeled semantics and the bisimu-
lation relations presented in Chapter 6 have appeared in [8]. Moreover, an extended
version of [8] that includes also the labeled semantics and the bisimulation relations
for Brane Calculi presented in Chapter 7 has been submitted for publication [9].

The definition of LCLS presented in Section 3.6 has appeared in [4].
The definition of Stochastic CLS has been submitted for publication [5].

The chemical reactions describing the activity of the Sorbitol Dehydrogenase enzyme
simulated in Section 8.1.4 have been studied before in [3, 6].

The main results of our work on CLS will be published as an invited contribution in
the proceedings of the 8th Workshop on Membrane Computing [10].

All the published material is presented in this thesis in revised and extended form.
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Chapter 2

Background

2.1 Notions of Biochemistry and Cell Biology

There are two basic classifications of cell: procaryotic and eucaryotic. Traditionally,
the distinguishing feature between the two types is that a eucaryotic cell possesses a
membrane—enclosed nucleus and a procaryotic cell does not. Procaryotic cells are usually
small and relatively simple, and they are considered representative of the first types of
cell to arise in biological evolution. Procaryotes include, for instance, almost all bacteria.
FEucaryotic cells, on the other hand, are generally larger and more complex, reflecting an
advanced evolution, and include multicellular plants and animals.

In eucaryotic cells, different biological functions are segregated in discrete regions
within the cell, often in membrane-limited structures. Subcellular structures which have
distinct organizational features are called organelles. As an organelle, for example, the
nucleus contains chromosomal DNA and the enzymatic machinery for its expression and
replication, and the nuclear membrane separates it from the rest of the cell, which is
called cytoplasm. There are organelles within the cytoplasm, e.g. mitochondria, sites of
respiration, and (in some cells) chloroplasts, sites of photosynthesis. In contrast, procary-
otic cells have only a single cellular membrane and thus no membranous organelles. One
molecular difference between the two types of cells is apparent in their genetic material.
Procaryotes have a single chromosome (possibly present in more than one copy), while
eucaryotes possess more than one chromosome.

Proteins

A eucaryotic or procaryotic cell contains thousands of different proteins, the most abun-
dant class of biomolecules in cells. The genetic information contained in chromosomes
determines the protein composition of an organism. As is true of many biomolecules,
proteins exhibit functional versatility and are therefore utilized in a variety of biological
roles. A few examples of biological functions of proteins are enzymatic activity (catalysis
of chemical reactions), transport, storage and cellular structure.

Although biologically active proteins are macromolecules that may be very different
in size and in shape, all are polymers composed by amino acids that form a chain. The
number, chemical nature, and sequential order of amino acids in a protein chain determine
the distinctive structure and characteristic chemical behavior of each protein. The native
conformation of a protein is determined by interactions between the protein itself and
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its aqueous environment, in which it reaches an energetically stable three-dimensional
structure, most often the conformation requiring the least amount of energy to maintain.
In this three dimensional structure, often very complex and involving more than one chain
of amino acids, it is sometimes possible to identify places where chemical interaction with
other molecules can occur. This places are called interaction sites, and are usually the
basic entities in the abstract description of the behavior of a protein.

Nucleic Acids (DNA and RNA)

Similarly to proteins, nucleic acids are polymers, more precisely they are chains of nu-
cleotides. Two types of nucleic acid exist: the deozyribonucleic acid (DNA) and the
ribonucleic acid (RNA). The former contains the genetic instructions for the biological
development of a cellular form of life. In eucaryotic cells, it is placed in the nucleus and it
is shaped as a double helix, while in procaryotic cells it is placed directly in the cytoplasm
and it is circular. DNA contains the genetic information, that is inherited by the offspring
of an organism. A strand of DNA contains genes, areas that regulate genes, and areas
that either have no function, or a function yet unknown. Genes are the units of heredity
and can be loosely viewed as the organism’s “cookbook”.

Like DNA, most biologically active RNAs are chains of nucleotides forming double
stranded helices. Unlike DNA, this structure is not just limited to long double-stranded
helices but rather collections of short helices packed together into structures akin to pro-
teins. Various types of RNA exist, among these we mention the Messenger RNA (mRNA),
that carries information from DNA to sites of protein synthesis in the cell, and the Transfer
RNA (tRNA), that transfers a specific amino acid to a growing protein chain.

The Central Dogma of Molecular Biology

The description of proteins and nucleic acids we have given suggests a route for the flow
of biological information in cells. In fact, we have seen that DNA contains instructions for
the biological development of a cellular form of life, RNA carries information from DNA
to sites of protein synthesis in the cell and provides amino acids for the development of
new proteins, and proteins perform activities of several kinds in the cell. Schematically
we have this flux of information:

transcription

A translation

DNA RN Protein

in which transcription and translation are the activities of performing a “copy” of a portion
of DNA into a mRNA molecule, and of building a new protein by following the information
found on the mRNA and by using the amino acids provided by tRNA molecules. This
process is known as the Central Dogma of Molecular Biology.

Enzymes

Enzymes are proteins that behave as very effective catalysts, and are responsible for the
thousands of coordinated chemical reactions involved in biological processes of living sys-
tems. Like any catalyst, an enzyme accelerates the rate of a reaction by lowering the
energy of activation required for the reaction to occur. Moreover, as a catalyst, an en-
zyme is not destroyed in the reaction and therefore remains unchanged and is reusable.
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The reactants of the chemical reaction catalyzed by an enzyme are called substrate. Sub-
stances that specifically decrease the rate of enzymatic activity are called inhibitors, and,
in enzymology, inhibitory phenomena are studied because of their importance to many dif-
ferent areas of research. Inhibitors can be classified mainly in two types, either competitive
or noncompetitive. The former are substances almost always structurally similar to the
natural enzyme substrates and they bind to the enzyme at the interaction site where the
substrates usually bind to. The latter are substances that bear no structural relationship
to the substrates and that cannot interact at the active site of the enzyme, but must bind
to some other portion of an enzyme.

Enzymes perform many important activities in cells. For example, DNA transcription
and RNA translation are performed by enzymes, and in the external membrane of the
cell there are enzymes responsible for transporting some molecules from the outside to the
inside of the cell or vice—verse.

2.2 Notions of Probability Theory

A probability distribution is a function which assigns to every interval of the real numbers
a probability P(I), so that Kolmogorov axioms are satisfied, namely:

- for any interval I it holds P(I) >0
_ P(R) =1
- for any set of pairwise disjoint intervals Iy, Ia, ... it holds P(I; ULy U...) = > P(I;)

A random variable on a real domain is a variable whose value is randomly determined.
Every random variable gives rise to a probability distribution, and this distribution con-
tains most of the important information about the variable. If X is a random variable,
the corresponding probability distribution assigns to the interval [a,b] the probability
P(a < X <)), i.e. the probability that the variable X will take a value in the interval
[a,b]. The probability distribution of the variable X can be uniquely described by its
cumulative distribution function F(x), which is defined by

F(z)=P(X <z

for any = € IR.

A distribution is called discrete if its cumulative distribution function consists of a
sequence of finite jumps, which means that it belongs to a discrete random variable X: a
variable which can only attain values from a certain finite or countable set.

A distribution is called continuous if its cumulative distribution function is continuous,
which means that it belongs to a random variable X for which P(X = z) =0 forallz € R.

Most of the continuous distribution functions can be expressed by a probability density
function: a non-negative Lebesgue integrable function f defined on the real numbers such
that

P(aﬁXﬁb):/bf(x)dw

for all @ and b.
The support of a distribution is the smallest closed set whose complement has proba-
bility zero.



12 CHAPTER 2. BACKGROUND

An important continuous probability distribution function is the ezponential distri-
bution, which is often used to model the time between independent events that happen
at a constant average rate. The distribution is supported on the interval [0,00). The
probability density function of an exponential distribution has the form

e ™M >0

f(:“):{ 0 x<0

where A > 0 is a parameter of the distribution, often called the rate parameter.
The cumulative distribution function, instead, is given by

l—e™ >0
F(w’)‘):{ 0 2<0

The exponential distribution is used to model Poisson processes, which are situations
in which an object initially in state A can change to state B with constant probability per
unit time A. The time at which the state actually changes is described by an exponential
random variable with parameter A\. Therefore, the integral from 0 to T over f is the
probability that the object is in state B at time T.

In real-world scenarios, the assumption of a constant rate (or probability per unit time)
is rarely satisfied. For example, the rate of incoming phone calls differs according to the
time of day. But if we focus on a time interval during which the rate is roughly constant,
such as from 2 to 4 p.m. during work days, the exponential distribution can be used as a
good approximate model for the time until the next phone call arrives.

The mean or expected value of an exponentially distributed random variable X with
rate parameter A is given by

EX] = 5

In light of the example given above, this makes sense: if you receive phone calls at an
average rate of 2 per hour, then you can expect to wait half an hour for every call.

Exponential distributions are at the base of Continuous Time Markov Chains (CTMCs).
A CTMC is a family of random variables {X (¢)[t > 0}, where X (¢) is an observation made
at time instant ¢ and ¢ varies over non—negative reals. The state space, namely the set
of all possible values taken by X (t), is a discrete set. Moreover, a CTMC must satisfy
the Markov (memoryless) property: for any integer k > 0, sequence of time instances
tg < t1 < --- <t} and states sq, ..., s it holds

P(X(tk) = Sk‘X(tk_l) = Sk_l,...,X(tl) = 81) = P(X(tk) = Sk‘X(tk_l) = Sk—l)

where P(F1|E2) denotes the probability of event E; when it is known that event Es
happens (this is called conditional probability).

Intuitively, the memoryless property means that the probability of making a transition
to a particular state at a particular time depends only on the current state, not the previous
history of states passed through. The exponential distribution is the only continuous
probability distribution which exhibits this memoryless property, hence it is the only one
that can be used in the definition of CTMCs.

Formally, a CTMC is defined as follows.

Definition 2.1 (Continuous Time Markov Chain). A CTMC is a triple (S, R, 7), where
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- S is the set of states,
- R:Sx S+ IRZY is the transition function,
- m: S+ [0,1] is the starting distribution.

The system is assumed to pass from a configuration modeled by a state s to another one
modeled by a state s’ by consuming an exponentially distributed quantity of time, in which
the parameter of the exponential distribution is R(s, s’). The summation ) ¢ R(s,s’) is
called the exit rate of state s. Finally, the system is assumed to start from a configuration
modeled by a state s € S with probability 7(s), and }° g7 (s) = 1. If the set of states of
the CTMC is finite (S = {s1,...,sn}), then the transition function R can be represented
as a square matrix of size n in which the element at position (7, j) is equal to R(s;, s;).

2.3 Stochastic Simulation of Chemical Reactions

The fundamental empirical law governing reaction rates in biochemistry is the law of mass
action. This states that for a reaction in a homogeneous medium, the reaction rate will
be proportional to the concentrations of the individual reactants involved. A chemical
reaction is usually represented by the following notation:

k
0151 + 0355 k‘:‘ l3S3 + €45,
-1

where S1,...,S4 are molecules, /1,...,¢4 are their stoichiometric coefficients, and k, k_1
are the kinetic constants. We denote with L the sum of the stoichiometric coefficients,
that is the total number of reactant molecules. The use of the symbol = denotes that
the reaction is reversible (i.e. it can occur in both directions). Irreversible reactions are
denoted by the single arrow —.

For example, given the simple reaction

k
2A = B
k_1

the rate of the production of molecule B for the law of mass action is:

dB 2
— =klA
i [A]
and the rate of destruction of B is:
dB_
—— =k_{[B
b ok

where [A],[B] are the concentrations (i.e. moles over volume unit) of the respective
molecules. In general, the rate of a reaction is:

kS - ()%

where S1,...,S, are all the distinct molecular reactants of the reaction.
The rate of a reaction is usually expressed in moles - s~ (it is a speed), therefore the
measure unit of the kinetic constant is moles~ (L1 . s=1,
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In [31] Gillespie gives a stochastic formulation of chemical kinetics that is based on the
theory of collisions and that assumes a stochastic reaction constant ¢, for each considered
chemical reaction R,. The reaction constant ¢, is such that c,dt is the probability that
a particular combination of reactant molecules of R, will react in an infinitesimal time
interval dt, and can be derived with some approximations from the kinetic constant of the
chemical reaction.

The probability that a reaction R, will occur in the whole solution in the time in-
terval dt is given by c,dt multiplied by the number of distinct R, molecular reactant
combinations. For instance, the reaction

R1: 51+ 85 — 25 (2.1)

will occur in a solution with X; molecules S; and X5 molecules Sy with probability
X1Xsc1dt. Instead, the inverse reaction

Ry :251 — S1+ 55 (2.2)
will occur with probability W@dt. The number of distinct R, molecular reactant
combinations is denoted by Gillespie with h,, hence, the probability of R, to occur in dt
(denoted with a,dt) is

ay,dt = hyc,dt .

Now, assuming that Sq,...,.5, are the only molecules that may appear in a chemical
solution, a state of the simulation is a tuple (Xi,..., X)) representing a solution contain-
ing X; molecules S; for each 7 in 1,...,n. Given a state (X1,...,X,), a set of reactions
Ry, ..., Ry, and a value t representing the current time, the algorithm of Gillespie per-
forms two steps:

1. The time ¢ + 7 at which the next reaction will occur is randomly chosen with 7
exponentially distributed with parameter Z]VM: 1au;

2. The reaction R, that has to occur at time ¢ + 7 is randomly chosen with probability
a,dt.

The function Py(7, iu)dt represents the probability that the next reaction will occur in the
solution in the infinitesimal time interval (¢ +7,¢ 4+ 7 + dt) and will be R,,. The two steps
of the algorithm imply

Py(r,p)dt = PY(1) - adt

where P;(T) corresponds to the probability that no reaction occurs in the time interval
(t,t+ 7). Since P)(7) is defined as

M
P;(T) = exp (— Z a,ﬂ'>

we have, for 0 < 7 < o0,

M
Py (1, p)dt = exp (— Za,n-) -aydt .
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Finally, the two steps of the algorithm can be implemented in accordance with Py (7, 1)
by choosing 7 and p as follows:

1 1 = M a
T = <ZM7> In <—) = the integer for which Z a, < Ty Zav < Z a,
1
v=1

v=1av v=1 v=1

where 71,79 € [0,1] are two real values generated by a random number generator. After
the execution of the two steps, the clock has to be updated to ¢t + 7 and the state has to
be modified by subtracting the molecular reactants and adding the molecular products of
R,.

2.4 Transition Systems and Bisimulations

In this section we present some basic notions of process description language theory that
are needed in the remainder of the thesis. In particular we recall the definitions of Transi-
tion System (TS), Labeled Transition System (LTS) and bisimulation relation over LTSs,
and we show how a LTS can be specified by means of inference rules.

A TS is a mathematical model describing something having a notion of state (or
configuration) which may evolve by performing steps from one state to another. A TS is
formally defined as follows.

Definition 2.2 (Transition System). A Transition System (TS) is a pair (S, —) where S
is the set of states ranged over by s, sg, s1,..., and —C S x S is the transition relation.
We write s; — s; when (s;,sj) €—.

In a TS, the nature of the elements of S usually depends on what the TS describes.
For instance, if the TS is used to describe the execution of programs written in some
imperative programming language, its states will be pairs (C,0) where C is a program
and o is its store. Instead, if the TS is used to describe the evolution of chemical solution
in which reactions may occur, its states will be multisets M describing the multitude
of molecules that are present in the chemical solution. The transition relation, instead,
represents the steps that can be performed by the system from one state to another one. In
fact, sp — s1 means that a system in state sg in one step can change its state to s;. In the
example of the imperative programming language one step corresponds to the execution
of a single command of the program, and in the chemical example one step corresponds
to one occurrence of a chemical reaction in the chemical solution.

In a TS, a state s is reachable from another one sq if a system in state sg can perform
a finite (and possibly empty) sequence of transition at the end of which the state of
the system is s. More precisely, s is reachable from sg if either sg = s, or there exist
$1,...,8, € S such that sp — s;1 — ... — s, — s. We write sy = s if s is reachable from
so. We denote with Reach(sg) C S the set of all states that are reachable from sp.

A LTS is a TS in which transitions are enriched with labels.

Definition 2.3 (Labeled Transition System). A Labeled Transition System (LTS) is a
triple (S, L,—) where S is the set of states (or configurations) ranged over by s, sg, s1, - - -,
L is a set of labels ranged over by l,ly,l1,... and —C S x L x S is the labeled transition

. : l
relation. We write so — s1 when (sg, 1, $1) €—.
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In a LTS the label of a transition usually denotes the event that has caused the tran-
sition. For instance, the operational semantics of CCS [54] is a LTS. CCS is a formalism
describing concurrent processes that are able to interact by synchronizing on channels.
A synchronization is obtained by two processes performing one input and one output ac-
tions, respectively, on the same channel. In the LTS of CCS, a label @ denotes an output
action on channel a, while a label a denotes an input on the same channel. An internal
synchronization is represented by a transition labeled with 7.

Often, the set of labels L of a LTS contains a special label denoting an hidden action.
In CCS, for example, label 7 denotes this kind of actions, and we use the same notation in
this section. We denote with sy = s, a finite (and possibly empty) sequence of 7-labeled
transitions from sg to s,, namely sg = s, if either sy = s,, or there exist s1,...,8,-1 € S

such that sy — $1 — ... = Sp_1 — S,. Moreover, if | # 7 we denote with sg % Sn a
finite (and non empty) sequence of transitions from sg to s3 such that there exist sj, s9 € S

such that sg = s1 4 s9 = s3. Finally, we denote with —Ls the relations corresponding

either to = if [ = T, orto%ifl;ér

LTSs may describe the behavior of the modeled system in great detail. Relations on
states of a LTS can be defined to compare the behavior of two modeled systems. In
particular, behavioral equivalences are reflexive, transitive and symmetric relations that
relate systems that are not distinguished by any external observer, according to a given
notion of observation. We recall here the notion of (strong) bisimulation equivalence which
relates two states in a LTS when they are step by step able to perform transitions with
the same lables.

Definition 2.4 (Strong Bisimulation). Given an LTS (S,L,—), a relation R C S x S is
a strong bisimulation if whenever (sg, s2) € R the following two conditions hold:

so — §1 = ds3z € S such that sy — s3 and (s1,3) € R;

S9 — 83 = ds1 € S such that s) — s1 and (s1,s3) € R.
The strong bisimilarity ~ is the largest of such relations.

In comparing the behavior of two systems, most of the time hidden actions can be
ignored. For this reason a different notion of bisimulation equivalence, called weak bisim-
ulation, is often considered.

Definition 2.5 (Weak Bisimulation). Given an LTS (S,L,—), a relation R C S xS is a
weak bisimulation if whenever (sg, s2) € R the following two conditions hold:

S0 4 $1 = ds3 € S such that s N s3 and (s1,s3) € R;

S9 4 s3 = ds; € S such that sg L s1 and (s1,s3) € R.
The weak bisimilarity =~ is the largest of such relations.

Following the Structural Operational Semantics (SOS) approach [61], LTSs in which
states are terms built over some signature are usually specified by means of a set of
inference rules. Before discussing this point, let us recall some preliminary notions.

Let us consider a countably infinite set of variables V', ranged over by z,y,z,.... A
signature consists of a set of function symbols, disjoint from V', together with an arity
mapping that assigns a natural number ar(f) to each function symbol f. Functions of
arity zero are usually called constants, while function of arity greather than zero are usually
called operators. Given a constant f we write f for f().
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Definition 2.6 (Open Terms). The set of open terms T'(X) over a signature 3 is the least
set such that: (i) V CT(X), and (i) given a function symbol f and t1,... te ) € T(X)
it holds f(t1,...,ter(r)) € T(X). The set T(X) is ranged over by t,u,v,.. ..

Terms that does not contain variables are usually called closed terms (or ground terms).
The set of closed terms is denoted by Ty(X). In the rest of the thesis we will use also the
terminology of pattern and term to denote open and closed terms, respectively.

The set of closed terms over X gives the term algebra of . We recall that, given a
signature X, a Y—algebra is a pair (A,X 4), where A is a set called carrier and X 4 is a set
of functions {f4 : A" — A|f € ¥ and ar(f) = n}. Essentially, (A4,%4) is an interpretation
of 3. Now, the term algebra of ¥ is the ¥-algebra having T,(X) as carrier, and, for each
f € X with ar(f) = n, a function mapping closed terms t1,...,t, to term f(t1,...,t5).

A substitution is a mapping o : V — T(X). A substitution can be extended trivially
to a mapping from terms to terms, namely, o(t) is the term obtained by replacing all
the variables occurring in ¢ by o(z). A substitution is called instantiation (or closed
substitution) if it maps variables to closed terms.

A context C[x1,....x,] denotes an open term in which at most the distinct variables
x1,...,T, may appear. The term Clti,...,t,] is obtained by replacing all occurrences of
variables x; in C[z1,...,zy] by t;, for 1 <i <n.

An LTS whose states are terms built over some signature can be specified by means
of a set of inference rules. An inference rule for the specification of an LTS (a transition
rule) is a logical rule having the form

where t; LN t, for 1 < i < n, are the premises and ¢ L 1 is the conclusion. A transition
rule states that whenever the premises are transitions of the LTS, then also the conclusion
is a transition of the LT'S. Side conditions can be associated to a transition rule with the
effect of imposing that the conclusion of the rule is a transition of the LTS whenever both
the premises and the side conditions are satisfied. A transition rule without premises is
called an aziom, and a (non empty and possibly infinite) LTS can be specified by providing
a set of transition rules with at least one axiom.
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Qualitative Modeling of Biological
Systems






Chapter 3

Calculi of Looping Sequences

Process calculi, in particular the m—calculus, allow modeling cellular components by de-
scribing their interaction capabilities as input/output actions on communication channels
representing chemical reactions. This kind of abstractions favors semantic composition-
ality as, in principle, the behavior of a cellular component can be described as a labeled
transition system, and the behavior of a system of cellular components can be obtained
by appropriately merging the labeled transition systems of its components.

Compositionality is an extremely useful property of a formalism, and it is one of the
main motivations for the application of process calculi to the description of biological
systems. Moreover, the lack of compositionality is the typical criticism on models of
biological systems based on rewrite rules. On the other hand, rewrite systems often allow
describing biological systems with a notation which is much more readable than the one
of process calculi, as they separate the description of the states of the system from the
description of the reactions that may occur. Moreover, rewrite systems often allow a
more detailed description of the physical structure of the modeled biological components,
and usually are more general than process calculi. With generality we mean the ability
of describing new kinds of interactions when needed. This is often allowed in rewrite
systems by the fact that interactions are described by rewrite rules, which are part of the
specification of a system, while in process calculi they are described by applications of
pre—defined operators, hence the possible kinds of interactions are determined a priori.

In this chapter we develop a formalism for the description of biological systems based
on term rewriting and including some typical features of process calculi for concurrency.
What we want to achieve is a formalism that allows describing (at least) proteins, DNA
fragments, membranes and macromolecules in general, without ignoring the physical struc-
ture of these elements, and by keeping the syntax and the semantics of the formalism as
simple as possible.

The kind of structures that most frequently appear in cellular components is probably
the sequence. A DNA fragment, for instance, is a sequence of nucleic acids, and it can be
seen, at a higher level of abstraction, also as a sequence of genes. Proteins are sequences
of amino acids, and they can be seen also as sequences of interaction sites. Membrane,
instead, are essentially closed surfaces interspersed with proteins and molecules of various
kinds, hence we can see them abstractly as closed circular sequences whose elements or
subsequences describe the entities that are placed in the membrane surface. Finally, there
are usually many components in a biological system, some of which may be contained
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in some membranes, and membranes may be nested in various ways, thus forming a
hierarchical structure that may change over time.

By following the viewpoint of cellular systems just presented, in order to model these
systems we should be able to describe the evolution of sequences, which may be circular
and which may contain something, for instance other sequences. In the rest of the chapter
we develop a formalism based on term rewriting which tries to fulfill these requirements.
The formalism is called Calculus of Looping Sequences (CLS for short) and it is presented
in three variants: the first one, called Full-CLS, is defined simply by considering a signa-
ture for terms in which the operators can be used without syntactical constraints and can
be used to describe biological systems quite easily, as we show in an example of bacte-
riophage replication and bacterial sporulation. The second variant, that we actually call
CLS, contains a restriction on the syntax of terms which simplifies the semantics of the
formalism. This restriction reduces the expressiveness of the model, but we claim that the
expressiveness of CLS is anyway sufficient to describe the biological systems of interest.
To this aim, we give a real example of gene regulation in E.coli. Finally, the third variant,
called LCLS, is an extension of CLS in which links can be established between elements
of different sequences. These links allow modeling protein interaction at the domain level
and are inspired by the way of modeling protein interactions introduced in the seminal
work by Danos and Laneve [23].

3.1 Definition of Full-CLS

In this section we introduce the Full Calculus of Looping Sequences (Full-CLS). As already
said before, we have to define terms able to describe (i) sequences, (ii) which may be closed,
(iii) which may contain something, and (iv) which may be juxtaposed to other sequences
in the system. For each of these four points we define an operator in the grammar of
terms. Moreover, we assume a possibly infinite alphabet of elements £ ranged over by
a,b,c,... to be used as the building blocks of terms, and a neutral element € representing
the empty term. Terms of the calculus are defined as follows.

Definition 3.1 (Terms). Terms T' of Full-CLS are given by the following grammar:
T:=a | e | T-T | (TV" | TJT | T|T
where a is a generic element of £. We denote with T the infinite set of terms.

Terms include the elements in the alphabet £ and the empty term e. Moreover, the
following operators can be used to build more complex terms:

- Sequencing (or concatenation) _- _: creates a sequence whose elements are the two
terms to which it is applied.

- Looping (_)L : creates a closed circular sequence of the term to which it is applied.
The operator is called looping because, as we shall see, it is always possible to rotate
the representation of the circular sequence.

- Containment _|_ : represents the containment of the second term to which it is
applied into the first one.
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(&/y (&J

(a) (b) (C)

Figure 3.1: Examples of CLS terms

- Parallel composition _|_ : represents the juxtaposition of the two terms to which it
is applied.

Brackets can be used to indicate the order of application of the operators in a term.
We assume the - operator to have the highest precedence and the |operator to have
the precedence over the |operator. Therefore T} | T | T stands for (77 | 1) |T. More-
over, we assume | to be right—associative, therefore with 77 | 75 | T' we denote the term
T | (T»]T).

Some simple examples of terms are depicted in Figure 3.1. In the figure, example (a)

shows the simple term (a b C)L representing a looping sequence composed by elements

a,b and c¢. Example (b) shows the term (a -b- (c -d- e)L)L, that is similar to the term of
example (a) but with the ¢ element replaced by another looping sequence whose elements
are ¢,d and e. Note that the small looping sequence (c -d - e)L is not contained into the
bigger one, but it is one of the elements that compose it. Finally, example (c) shows the
term (a-b-((c-d- e)LJ h))LJ f - g. In this case we have the same looping sequences of
example (b), but they are not empty, namely the smaller one contains element h, by the
application of the containment operator to (c -d - e)L, and the bigger one contains the
sequence f - g, by the other application of the containment operator.

The syntax of terms is single—sorted, hence operators can be applied freely. This causes
some ambiguous situations that must be discussed. Let us consider the following examples
of terms:

(M) Ts (4T (4T T

In all these three examples we have an operator applied to the parallel composition of
T1 and T5. In the first case sequencing is applied, in the second case looping and in the
third case containment. Now, consider the first example: parallel composition represents
juxtaposition, hence the two components can be close to each other, but they are not
connected. Sequential composition, instead, denotes a physical connection between its
components, hence in this case T3 what is connected to? It cannot be connected to both
T1 and T3, otherwise this would create a connection between them that we do not want,
hence it must be connected either only to 7} or only to 75. The same situation occurs
in the other two examples: in the second one, since we want a looping sequence to be a
single completely connected component as it must model closed surfaces, we cannot allow
it to be formed by a parallel composition. In the third example, again, we have that term
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T3 cannot be contained in both 77 and 75, because they represent two separated entities.

Another ambiguous situation regards containment. The use of the containment opera-
tor makes sense only if its first operand is a looping sequence, which represents something
closed, and therefore able to contain something. Hence, what a use of containment as in
a-b-c|T should mean?

All these ambiguities can be removed by appropriately defining a structural congruence
relation. The notion of structural congruence is very common in process calculi: it is a
relation used to consider as equal syntactically different terms representing the same pro-
cess. A notion similar to structural congruence exists also in term rewriting systems, and
it is the additional relation used in class rewriting [75] (or rewriting modulo a congruence).
We define a structural congruence relation on Full-CLS terms as follows.

Definition 3.2 (Structural Congruence). The structural congruence = is the least con-
gruence relation on terms satisfying the following axioms:

Al <T1!T2> =(T1-T)| T A8, (Ti-T)" = (- Ty)"

A2, T-(Ty|Ty) = (T -TY) | T A9. (T1-T) T3=T (T2 Ty)
3. (111" = ()" |1y A10. (1 |To) | T3 =T | (T | T3)
Ad. (T | D) |T=(T1 | T)| T All. T|T|Th=T|T|T

A5. a|T =al|T A12. T|e=T|e=T

A6. (T -To) | T=(T1-Te)|T Al3. T-e=e-T=T

AT, (V| D) | Ts =T, | (Th | Ts) Ald. (o =e

Axioms Al, A2, A3 and A4 deal with the ambiguity of the parallel composition de-
scribed above, and state that if we apply either sequential composition, containment or
looping to a parallel composition of terms, these operators act upon the first term of the
parallel composition.

Axioms A5, A6 and A7, instead, deal with the ambiguity related to the containment
operator, and state that when containment is applied to something that is not a looping
sequence, it can be replaced by parallel composition.

Another very important axiom, which motivates the terminology of looping sequence,
is A8. This axiom states that a sequence having a looping operator applied to it can be
rotated freely.

A structural congruence relation usually states associativity and commutativity of
operators. Here, we want sequencing and parallel composition to be associative, and this
is expressed by axioms A9 and A10, respectively. Moreover, we want parallel composition
to be commutative. However, since the first term of a parallel composition plays the
special role described by axioms Al, A2, A3 and A4, we cannot allow full commutativity.
To explain the problem, let us assume for a moment that T} | Ty = T, |7 is an axiom of
the structural congruence, and consider the term a - b|c. By applying axiom Al, then
the full commutativity axiom just introduced, and then axiom Al again, we obtain the
following sequence of equalities:

a-ble=(alc)-b=(cla)-b=c-bl|a

hence the initial term would be considered equivalent to a term in which c takes the place
of a in the sequence. In order to avoid this kind of mistakes, we forbid commutativity
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of the first element of a parallel composition, as stated by axiom All. However, in what
follows we will show that the full commutativity can be derived by the other axioms of
the structural congruence in all safe cases.

The last three axioms, namely axioms A12, A13 and A14, describe the neutral role of
€ and (e)L with respect to the operators of the calculus. We remark that in axiom A2
the neutral term e is placed on the right hand side of the | operator, otherwise € could be
inserted at the left hand of a series of parallel compositions and its first term would lose
its privileged role.

We want to remark that assigning a special role to an element of a parallel composition
is not unusual. For instance, in [29, 32] the last element in a series of parallel compositions
has the special role of giving the result of the computation of the whole series. Thus, it
cannot be commuted.

Proposition 3.3. T | (T |T2) =T | (T2 | T1).

Proof. The equivalence can be derived as follows: T'| (11| T5) 4 (T |e) | (Ty | To)

T(e| Ty | To) 2 T) (| 1| Th) £ (T]e)) (| Th) E T (15| Th).

N
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The proposition shows that the first element of a series of parallel compositions can
be commuted when the whole series is contained inside another term. As a consequence,
to have unrestricted commutativity of a parallel composition at the top level of a term,
one can insert the term into the term (E)L by using the containment operator. In this
way we forbid the first element of a series of parallel compositions to commute only when
the whole series is an element of a sequence. Standard commutativity holds otherwise. In
what follows we will always assume that Full-CLS terms are contained at top—level into
(e)L, hence we will always assume full-commutativity of the parallel composition operator
at top—level.

Now we define rewrite rules, which can be used to describe the evolution of terms.
Roughly, a rewrite rule is a triple consisting of two terms and one condition to be satisfied.
The two terms describe what term the rule can be applied to and the term obtained after
the application of the rule, respectively, and the condition must be satisfied before applying
the rule.

In order to allow a rule to be applied to a wider range of terms, we introduce variables
in the terms of a rule. We assume a set V of variables ranged over by X,Y, Z, ..., and we
call patterns terms enriched with variables. The syntax of patterns is therefore as follows.

Definition 3.4 (Patterns). Patterns P of Full-CLS are given by the following grammar:
Pi=a | ¢ | PP | (P)" | PP | PP | X

where a is a generic element of £, and X is a generic element of V. We denote with P
the infinite set of patterns.

We assume the structural congruence relation to be trivially extended to patterns. An
instantiation is a partial function ¢ : ¥V — 7. Given P € P, with Po we denote the
term obtained by replacing each occurrence of each variable X € V appearing in P with
the corresponding term o(X). With ¥ we denote the set of all the possible instantiations
and, given P € P, with Var(P) we denote the set of variables appearing in P. Note that
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if Var(P) = @, then P € 7. Finally, we define a function occ : £ x T — IN such that
occ(a,T) returns the number of the elements a syntactically occurring in the term 7. Now
we can define rewrite rules.

Definition 3.5 (Rewrite Rules). A rewrite rule is a triple (Py, Py, Y') such that Py, Py €
P, P #£¢€ Var(Py) C Var(Py), ¥ C X and, for all 0 € ¥/, Var(Py) C Dom(c). We
denote with R the infinite set of all the possible rewrite rules. We say that a rewrite rule
is ground if Var(P;) = Var(Py) = @, and a set of rewrite rules R € R is ground if all
the rewrite rules it contains are ground.

A rewrite rule (P, P»,Y’) states that a term Pyo, obtained by instantiating variables
in P, by an instantiation function o € ¥’, can be transformed into the term Po. Note
that we assume Var(Py) C Var(Py) € Dom(o), hence all the variables of P and P»
are instantiated by o. A rule can be applied to all the terms which can be obtained by
instantiating the variables in P; with any of the instantiations in ¥’. For instance, if
¥ = {o € X|occ(a,0(X)) = 0}, then arule (b X -b,c- X - ¢,¥') can be applied to b-c- b
(obtaining ¢-c¢-¢) and to b-c-c- b (obtaining ¢- ¢+ c- ¢), but not to b-a - b.

In what follows, we shall often write a rewrite rule as 7' — 7" [C] instead of (T, 7", %' =
{o € ¥ | Co}), where C is a condition, and we shall omit ¥’ when ¥’ = ¥ and write
T +~— T'. For instance, with b- X b +— c¢-X - ¢ [occ(a,X) = 0] we denote
(b-X -byc-X-¢,5 ={o € X|oce(a,o(X)) =0}).

The association of rewrite rules with conditions to be satisfied before each application
is quite usual in term rewriting, in particular it is typical of conditional rewriting [75].

Now we define the semantics of Full-CLS as a transition system. States of the transi-
tion system are terms, and transitions corresponds to rule applications. Given an initial
term one can use the transition relation to compute all the possible evolutions caused by
applications of rewrite rules to its subterms.

Definition 3.6 (Semantics). Given a set of rewrite rules R C R, the semantics of Full-
CLS is the least transition relation — on terms closed under =, _|_, _|_, _-_, (_)L and
satisfying the following inference rule:
(Pl,Pg,El) ER P10'§é6 ceY
Pio — Pyo

A model in Full-CLS is given by a term describing the initial state of the modeled
system and by a set of rewrite rules describing all the possible events that may occur in the
system. We now give two simple examples of Full-CLS models of biological phenomena.
The examples aim at showing some peculiarities of the formalism and the use of the
semantics to study the possible evolutions of the described systems.

Example 3.7. We describe a very simple interaction between two membranes, one inside
the other, in which the inner one contains a molecule. (Think for example of a vesicle
containing a molecule inside the cellular membrane.) To make the example a bit more
complete we assume that the two membranes can increase their size, until they reach some
precise boundaries. When the inner membrane becomes greather than a certain size, it
could break and leave the contained molecule in the environment. Moreover, at any time,
but before breaking, the inner membrane can join the outer one.

The system can be modeled as follows. We model the outer membrane as a looping
sequence composed by a elements, and the inner one as a looping sequence composed by



3.1. DEFINITION OF FULL-CLS 27
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Figure 3.2: The transition system of the example.

b elements. Moreover, c is the molecule contained in the inner membrane. We model the
size of a membrane as the number of elements composing it, and we assume n,m and k to
be the maximum size of the outer membrane, the maximum size of the inner one, and the
size after which the inner membrane can break, respectively. The rewrite rules describing
the possible events occurring in the system are the following:

1. (a-X)L — (a-a-X)L [occ(a,0(X)) < n—1]
2. (b-X)L — (b-b-X)L [oce(b, o(X)) <m —1]
3. (b-X)" — b-b-X loce(b, o(X)) > K]
4 (@X) ez~ (@ X ((0-7)]2)"

The four rules describe growth of the outer membrane, growth of the inner membrane,
breaking of the inner membrane and joining of the two membranes, respectively. We model
the initial state of the system as the term

(a)"] (b)" Je

and we show in Figure 3.2 the transition system obtained from this term when n =m = 2
and k = 1.

First of all, note that the set of states of the transition system is finite (unfortunately,
this happens rarely in models of real systems). Moreover, note that the system may
reach two different final states: the first, on the bottom right of the figure, is the state
in which the inner membrane has broken before joining the outer one, the second, on
the bottom left, is the state in which the inner membrane has broken after joining the
outer one. It is worth noticing that in the latter case the content of the inner membrane
is freed in the environment, and not inside the outer membrane (see Figure 3.3 for a
graphical representation of this phenomenon). This is caused by axiom A3 of the structural



28 CHAPTER 3. CALCULI OF LOOPING SEQUENCES

@ (b)

Figure 3.3: The effect of opening a looping sequence that is an element of another one.

congruence relation. The opposite default behavior could be obtained by replacing axiom
L L
A3by (T|Ty)" = (T)" | T1.

Example 3.8. We describe the first few steps of the epidermal growth factor receptor
(EGFR) signaling pathway to show the power of the structural congruence. The EGFR
is a transmembrane protein that binds to an EGF protein on its extracellular domain,
then forms a dimer with another EGFR protein in the same state, and then, after a
phosphorylation, binds to a protein called ShC on its intracellular domain.

The system can be modeled as follows. We model the cell membrane as a looping
sequence composed by R elements representing EGFR proteins. We denote with £ an EGF
protein, with RE a receptor bound to an EGF protein, and with R2P the dimerization of
the complex, assumed to be phosphorylated. Finally, we denote with ShC an ShC protein,
and with R2S the complex formed by R2P and ShC. The rules describing the evolution
of the system are the following;:

R|E — RE
RE-X-RE — R2P-X
(R2P-X)" | 5hC — (R25-X)"
The three rules describe the formation of the EGFR/EGF complex, the formation of the

phosphorylated dimer, and its binding to the ShC protein, respectively. We model the
initial state of the system with a few instances of each protein as the term

(R-R-R-R-R-R)"|(ShC|ShC)|E|E|E
and we show the following sequence of transitions as an example of possible evolution:

(R-R-R-R-R-R)" | (ShC|ShC | ShC) | E|E|E
= (R-R-(R|E)-R-(R|E)-R)" | (ShC | ShC | ShC) | E
— (R-R-RE-R-(R|E)-R)" | (ShC|ShC | ShC) | E
— (R-R-RE-R-RE-R)" | (ShC|ShC|ShC)|E
— (R-R-R2-R-R)" | (ShC | ShC | ShC) | E
= (R2-R-R-R-R)" | (ShC|ShC|ShC)|E
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— (R28-R-R-R-R)"|(ShC|ShC)|E

—

In this sequence of transitions the structural congruence relation has been applied
twice. The first time it has been used to permit the application of the first rewrite
rule when R is an element of a looping sequence and E is outside the looping sequence.
The second time it has been used to rotate the looping sequence and hence to allow the
application of the third rewrite rule. A powerful structural congruence relation allows
defining simpler rewrite rules.

To conclude the presentation of Full-CLS, we give a result on its expressiveness.

Theorem 3.9 (Turing Completeness). The class of Full-CLS models is Turing complete.

Proof. We adapt the proof for rewrite systems in [25] to Full-CLS. Turing machines can
be simulated by Full-CLS models. Each state symbol ¢ and tape symbol a,b, ... of the
machine will be a symbol in the alphabet £ of the Full-CLS model. The tape of the
machine will be represented by a sequence [-aq - - - - - ai—1-h-a;----- Qn 7T, With [, h € £.
In this sequence, | and r denote the left and right ends of the tape, and h the position of
the read head. The symbol that is being scanned is a;, and the left portion of the tape
cannot be blank. The state ¢ of the machine will be represented by the sequence s - ¢ with
s € £. We assume [,7,h and s to differ from any state symbol and tape symbol of the
machine.

A transition of the machine will be encoded into a sequence of one of the following
forms:

1. t-b-g-a-s-q¢-b-a-t
2. t-l-q-a-l-s/'q’-#-a’~t
3. t-b-q-a-b-a-s-q-t
4. t-b-q-r-b-d-s-¢-r-t

where # is the blank symbol of the machine, and ¢, s’ € £ are assumed to differ from any
state symbol and tape symbol of the machine.

Symbol t is used to specify that the sequence describes a transition of the machine. In
all the four forms of transitions we have that the three symbols that follow the first ¢ in
the sequence represent the configuration of the machine in which the transition can occur.
In particular: in 1 and 3, b - ¢ - a denotes a machine in state ¢ in which the symbol being
scanned is a and the symbol immediately to the left of ¢ is b; in 2, [-¢-a denotes a machine
in state g in which the symbol being scanned is a and it is at the left end of the tape; in
4, b-q-r denotes a machine in state ¢ in which the read head is at the right end of the
tape and the last symbol of the tape was b. In all the four forms of transitions, the rest of
the sequence denotes how the configuration of the machine changes after the occurrence
of the transition. The symbol s’ is used in transition to mark the position where the read
head will be placed after the occurrence of the transition.

Now, for each left-moving instruction of the form “if in state ¢ reading a, write o,
move left, and go into state ¢’”, in the CLS term there must be sequences of the form

t.b.q.a.sl.q/.b.a/.t
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for every tape symbol b, as well as an extra sequence of the form
t.l.q.a.l.s/.q/.#.a/.t

to handle the left end of the tape. For each right—-moving instruction of the form “if in
state ¢ reading a, write a’, move right, and go into state ¢’”, there must be sequences of
the form

t-b-qg-a-b-a-s-q-t

for every type symbol b, as well as an extra sequence of the form
t.b.q.r.b.a/.sl.q,.r.t

when the symbol being scanned is #, to handle the right end of the tape. The parallel
composition of all these transition sequences, together with a sequence [ -aq ---- - a;_1-h-
Qi an -1, and with a sequence s - ¢, is the Full-CLS term corresponding to a machine
in state ¢ with tape ay - - - a, in which the tape symbol being scanned is a;. Summing up,
such a term is the following:

Finally, the set of rewrite rules that must be included in the model contains only the
following rule, and it is the same for all machines.

Y-hY'|s X|t-Y-XY' 28X 2t — ZhZ|sX|tY-XY 28X 7't

(X, X",Y,Y' € €.
O

3.2 Bacteria Sporulation and Bacteriophage Viruses in Full—
CLS

In this section we show how Full-CLS can be used to describe some aspects of the repro-
duction of bacteria and of bacteriophage viruses. For the sake of our study we can assume
that a bacterium consists of a cellular membrane containing its DNA. In particular, as
regards bacteria reproduction, we consider the sporulation mechanism, which allows pro-
ducing inactive and very resistant forms, called spores. A spore can germinate and then
produce a new bacterium.

Schematically, the sporulation process (shown in Fig. 3.4) proceeds as follows:

1. the DNA inside the bacterium is duplicated (duplication);

2. inside the bacterium a new membrane is formed containing the copy of the DNA
(prespore);

3. around the prespore a second membrane layer is formed (coat);

4. eventually, the spore passes through the bacterium membrane and becomes a free
spore (release).
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The bacterium Step 1: Duplication Step 2: Prespore

@

Step 3: Coat Step 4: Release

Figure 3.4: The Sporulation Process

For the sake of clarity, before giving the rules for the process, let us introduce some
denotations for terms which occur very often:

PRESPORE := (m)"|DNA,
SPORE, == (¢)" | PRESPORE ~ SPORE, := (d)"| PRESPORE

Now, the rewrite rules for describing the steps of the process are the following:

S1. L

m-m

(m-m)" | (DNA,| X) — (m-m)" | (DNA,|DNA,|X)  [occ(DN Ay, X) = 0]
52. (m-m)" | (DNAy|DNA4,|X) ~— (m-m)"|(DNA,| PRESPORE|X)
$3. (m-m)" | (X|PRESPORE|Y) — (m-m)"|(X|SPORE,|Y)
S4. (m-m)" | (X|SPORE,|Y) — (SPORE;-m-m)"|(X|Y)

S5. (SPORE;-m-m)" | X w— ((m-m)"]X)|SPORE,

S6. SPORE; ~ d|(m-m)" | DNA,

Rule S1 describes DNA duplication inside a bacterium (step 1 of the process). The
bacterium membrane is represented by a looping of two membrane elements m; element
DN Ay represents the bacterium DNA and the term variable X represents any other ele-
ment inside the bacterium membrane. The condition that DN A, does not appear in the
term X means that a sporulation process must terminate before starting a second one (no
more than one copy of DNA inside the bacterium at one time).

Rule S2 models the forming of a prespore (step 2). Conventionally, we assume that
the number of membrane elements of a prespore is one, hence the size of a prespore is
roughly a half the size of a bacterium.

Rule S3 models the forming of the spore coat (step 3), where ¢ represents the elements
of the outer coat. The double layer of the spore is represented by two looping terms, one
inside the other:

(C)LJ ((m)LJ DN Ay).
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@ I &
Step 3: Replication Step 4: Maturation Step 5: Release

Figure 3.5: The Bacteriophage Replication Process

Rules S4 and S5 model the exiting of the spore from the bacterium (step 4). In a first
phase (rule S4) the spore adheres to the bacterium membrane, becoming one element of
the looping representing it. Note that the spore is represented in the rule as first element
of the looping, but it can be shifted to any position by using the congruence rules. In a
second phase (rule S5) the spore becomes free. In this phase, in order to distinguish a free
spore from a spore inside the bacterium, the outer coat of the spore changes its elements
from c¢ to d.

A free spore may germinate by loosing its coat, which becomes an open membrane,
and by growing to a normal size of two membrane elements (rule S6).

Bacteriophage viruses (or phages) exploit the enzymes of the bacteria for duplicating
their DNA. In particular, they behave according to the following pattern (depicted in
Figure 3.5):

[

. the phage joins with the bacterium membrane (adsorption);
2. the phage releases its DNA inside the bacterium (penetration);
3. the DNA of the phage replicates itself using bacterium enzymes (replication);

4. each copy of the phage DNA forms a new phage inside the bacterium membrane
(maturation);

5. when the number of new phages inside the bacterium reaches a certain number, the
membrane breaks and the new phages become free (release).

As before, we introduce a denotation for a term which occurs quite often:

VIRUS == (v)"|DNA,
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The rewrite rules for describing the steps of the process are the following:
V1. VIRUS|(m-m)"|X w— (VIRUS-m-m)"|X
V2. (VIRUS-m-m)"|X — (m-m)"](X|DNA,)|v

V3. (m-m)"|(X|DNA,) — (m-m)"|(X|DNA,|DNA,)
[occ(DN Ay, X) < mazx — 1]

Va. (m-m)"|(X|DNA,) — (m-m)"|(X|VIRUS)

V5. (m'm)LJX — m-m|X [occ(VIRUS, X) > max — s

Rule V1 describes the joining of phage with the bacterium membrane (step 1 of the
process). The phage membrane is represented by a looping of one element v; DN A,
represents the phage DNA. The application of the rule causes the phage to become part of
the bacterium membrane. Namely, the looping representing the phage becomes an element
of the looping representing the bacterium membrane.

Rule V2 models the releasing of phage DNA inside the bacterium. The phage mem-
brane becomes a free open membrane (step 2).

Rule V3 describes the replication of phage DNA inside the bacterium (step 3). We
assume that the replication happens only if the occurrences of DN A, inside the bacterium
are less than a number mazx.

Rule V4 describes the formation of a membrane around a phage DNA inside the
bacterium (step 4).

Rule V5 models the breaking of the bacterium membrane when the number of phages
inside it reaches a value close enough to maz (the distance is less then a value s > 0).
The bacterium membrane becomes a free open membrane, and everything contained in it
(variable X) is released (step 5).

Note that we have assumed that bacteria and phages cannot die a natural death.
In particular, bacteria can die only if parasitized by viruses, and viruses die only when
inoculating their DNA inside the bacterium.

Given a Full-CLS model of a biological system, it is possible to verify properties of
reachability of particular states by computing all the possible evolutions of the model. A
model checker would allow verifying these kinds of properties automatically, under the
condition that the transition system representing all the possible evolutions has a small or
simple state space. This condition is often not satisfied, but usually one can simplify the
verification by performing approximations. The easiest of such approximations is verifying
bounded reachability (reachability after a limited number of transition) of the states of
interest.

Example 3.10. Assume max = 2 and s = 0, namely that no replication of DN A,
can occur in a bacterium already containing two or more copies of DN A,, and that the
bacterium membrane can break when at least two viruses are inside. Consider the initial
configuration in which there is one bacterium and three phages. This is represented by
the term:

((m-m)" | DNA,)|VIRUS|VIRUS|VIRUS.

We can prove that, in a possible evolution, we can reach the configuration:

(m-m)" | (DNA,| DNA,| DNA,| DNA, | DNA,)|v|v|v.
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Figure 3.6: (i) represents (a - b- C)L; (ii) represents (a - b- C)Lj (d- e)L; (iii) represents
(a'b-c)LJ ((d-e)L]f'g).

The configuration represents a situation in which the bacterium contains a number of
copies of virus DNA greater than max.

Actually, the steps to reach the configuration are the following: one virus infects the
bacterium and its DNA is replicated inside the bacterium membrane (by application of
rules V1, V2 and V3, in the order). Then the other two phages infect the bacterium (rule
V1) and inoculate their DNA in it (rule V2).

3.3 Definition of CLS

In Section 3.1 we have seen that the structural congruence relation of Full-CLS is quite
complex, because it has to handle some ambiguities that may arise in terms. These ambi-
guities are caused by the combined use of an operator representing juxtaposition (which
implies disconnectedness) and of another one representing physical connection (such as
sequencing). Another cause of ambiguity is the non—combined use of the looping operator
and of containment.

In this section we introduce the Calculus of Looping Sequences (CLS). Its main dif-
ference with respect to Full-CLS is that it assumes restrictions on the syntax of terms
aiming at avoiding ambiguities. In particular, in CLS terms we have that sequences can
be composed only by elements of the alphabet &£, and the containment operator can be
applied only to looping sequences. The alphabet £ and the neutral term € are assumed as
in Full-CLS.

Definition 3.11 (Terms). Terms T and Sequences S of CLS are given by the following
grammar:

T w=S8 | (T | TIT
S =€ ‘ a | S-S

where a is a generic element of £. We denote with T the infinite set of terms, and with
S the infinite set of sequences.

As in Full-CLS, we have a sequencing operator _- _, a looping operator (_)L, a parallel
composition operator _| _, and a containment operator _ | _. Sequencing can be used only
to compose elements of the alphabet £, as it is used in an independent syntactic category
S. A term can be a sequence, or a looping sequence containing a term, or the parallel
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composition of two terms. By the definition of terms, we have that looping and contain-
ment are always applied together, hence we can consider them as a single binary operator
(_)LJ _ which applies to one sequence and one term.

Brackets can be used to indicate the order of application of the operators, and we
assume (_)LJ - to have the precedence over _| _. In Figure 3.6 we show some examples of
CLS terms and their visual representation.

The constraints on the syntax imposed in CLS simplify the definition of the structural
congruence relation. Since we have different syntactic categories, we define two different
relations, one on sequences and one on terms.

Definition 3.12 (Structural Congruence). The structural congruence relations =g and
=7 are the least congruence relations on sequences and on terms, respectively, satisfying
the following rules:

S1-(Sy-53) =g (S1-52) 53 S-e=ge-S=g 8

S1 =g Sy implies S1 =1 Sy and (Sl)LJ T=r (SQ)LJ T
T1|TQETT2|T1 T1|(T2|T3)ET(T1|T2)|T3 T|€ETT

O Je=e  (S1-8)" )T =r (S-5)" T

Rules of the structural congruence state the associativity of - and |, the commutativity
of the latter and the neutral role of e. Moreover, axiom (51 . Sg)Lj T =7 (52 . Sl)LJ T
says that elementary sequences in a looping can rotate. We remark that, differently from
Full-CLS, we have (e)LJ T #T if T # ¢, hence (e)L does not play a neutral role if it is
not empty. In the following, for simplicity, we will use = in place of =7.

Patterns in CLS include three different types of variables: two are associated with the
two different syntactic categories of terms and sequences, and one is associated with single

alphabet elements. We assume a set of term variables TV ranged over by X,Y,Z,..., a
set of sequence variables SV ranged over by 2,79, 7z, ..., and a set of element variables X
ranged over by x,y, z,.... All these sets are possibly infinite and pairwise disjoint. We

denote by V the set of all variables, V=TV USV U X.

Definition 3.13 (Patterns). Patterns P and sequence patterns SP of CLS are given by
the following grammar:

P := 5P | (SP)"JP | PP | X
SP w=¢ | a | SP-SP | T | «

where a is a generic element of £, and X, x and x are generic elements of TV, SV and X,
respectively. We denote with P the infinite set of patterns.

We assume the structural congruence relation to be trivially extended to patterns.
As in Full-CLS, an instantiation is a partial function ¢ : ¥V — 7. An instantiation
must preserve the type of variables, thus for X € TV, € SV and z € X we have
o(X) e T,o(x) €S and o(x) € &, respectively. Given P € P, with Po we denote the
term obtained by replacing each occurrence of each variable X € V appearing in P with
the corresponding term o(X). With ¥ we denote the set of all the possible instantiations
and, given P € P, with Var(P) we denote the set of variables appearing in P.
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Now we define rewrite rules. For the sake of simplicity, differently from Full-CLS we
do not allow application conditions to be included in rules. However, an extension of
CLS with these conditions could be defined without problems by following the Full-CLS
approach.

Definition 3.14 (Rewrite Rules). A rewrite rule is a pair of patterns (Py, Py), denoted
with Py Py, where Py, Py € PP, P| # € and such that Var(Py) C Var(Py). We denote
with R the infinite set of all the possible rewrite rules. We say that a rewrite rule is ground
if Var(Py) = Var(Py) = &, and a set of rewrite rules R € Re is ground if all the rewrite
rules it contains are ground.

A rewrite rule (Pp, P») states that a term Pjo, obtained by instantiating variables in
P; by some instantiation function o, can be transformed into the ground term P,o. Rule
application is the mechanism of evolution of CLS terms. We define the semantics of CLS
as a transition system, in which states corresponds to terms, and transitions corresponds
to rule applications.

Definition 3.15 (Semantics). Given a set of rewrite rules R C R, the semantics of CLS
is the least transition relation — on terms closed under =, and satisfying the following
inference rules:

(Pl,PQ) ER P10'§é6 ogEXN T — 15 Ty — 15
Pio — Po TIT =TT, ()" |T - (5)" | T

where the symmetric rule for the parallel composition is omitted.

A model in CLS is given by a term describing the initial state of the modeled system
and by a set of rewrite rules describing all the possible events that may occur in the
System.

Finally, as for Full-CLS, Turing—completeness holds for CLS.

Theorem 3.16 (Turing Completeness). The class of CLS models is Turing complete.

Proof. The proof is essentially the same as the one of Theorem 3.9, but with a difference
in the forms of the sequences representing transitions of the simulated Turing machine,
and in the rewrite rule that allow the CLS model to evolve. We show here only the
differences with respect to the other proof. A transition of the machine will be encoded
into a sequence of one of the following forms:

1. t-b-qg-a-s-q-b-d

2. t.l.q.a.l.s.q/.#.a/

/

w

t.b.q.a.b.a/.s.q
4. t-b-q-r-b-d-s-¢-r

where # is the blank symbol of the machine, and ¢ € £ is assumed to differ from any state
symbol and tape symbol of the machine.

Differently from the proof of Theorem 3.9, in a sequence describing a transition we do
not need the t symbol at the right end, and we can reuse symbol s instead of introducing
symbol s’.
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Figure 3.7: The lactose operon.

Now, for each left-moving instruction of the form “if in state ¢ reading a, write o,
move left, and go into state ¢’”, in the CLS term there must be sequences of the form

t.b.q.a.s.q/.b.a,
for every tape symbol b, as well as an extra sequence of the form
t.l.q.a.l.s.q/.#.a/

to handle the left end of the tape. For each right-moving instruction of the form “if in
state ¢ reading a, write a’, move right, and go into state ¢’”, there must be sequences of
the form

t-b-qg-a-b-d-s-q

for every type symbol b, as well as an extra sequence of the form

/

t.b.q.r.b.a/.s.q g

when the symbol being scanned is #, to handle the right end of the tape.
A machine in state ¢ with tape a; - - - a,, in which the tape symbol being scanned is a;,
is encoded into the following term:

S.Q‘l.al.....ai_l.h.ai.....an.r‘t.... ‘ ‘t

and the set of rewrite rule that must be included in the model contains only the following
rule:

s-z|y-y-h-z-Z|t-y-x-z-u-s-k-w — s-kly-u-h-w-Z|t-y-x-2-u-s-k-w

where x,y, 2,k € X and y,u,w,z € SV. O

3.4 Modeling Gene Regulation in E.Coli with CLS

In this section we develop a CLS model of the regulation process of the lactose operon
in E. coli (Escherichia coli). E. coli is a bacterium often present in the intestine of many
animals. As most bacteria, it is often exposed to a constantly changing physical and
chemical environment, and reacts to changes in its environment through changes in the
kinds of proteins it produces.
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Figure 3.8: The regulation process. In the absence of lactose (case a) the lac Repressor
binds to gene o and precludes the RNA polymerase from transcribing genes z,y and a.
When lactose is present (case b) it binds to and inactivates the lac Repressor.

In general, in order to save energy, bacteria do not synthesize degradative enzymes un-
less the substrates for these enzymes are present in the environment. For example, E. coli
does not synthesize the enzymes that degrade lactose unless lactose is in the environment.
This phenomenon is called enzyme induction or, more generally, gene regulation since it
is obtained by controlling the transcription of some genes into the corresponding proteins.

Let us consider the lactose degradation example in E. coli. Two enzymes are required to
start the breaking process: the lactose permease, which is incorporated in the membrane of
the bacterium and actively transports the sugar into the cell (without this enzyme lactose
can enter the bacterium anyway, but much more slowly), and the beta galactosidase, which
splits lactose into glucose and galactose. The bacterium produces also the transacetylase
enzyme, whose function is marginal.

The sequence of genes in the DNA of E. coli which produces the described enzymes,
is known as the lactose operon (see Fig. 3.7). It is composed by six genes: the first
three (i, p, o) regulate the production of the enzymes, and the last three (z, y, a), called
structural genes, are transcribed (when allowed) into the mRNA for beta galactosidase,
lactose permease and transacetylase, respectively.

The regulation process is as follows (see Fig. 3.8): gene i encodes the lac Repressor,
which in the absence of lactose, binds to gene o (the operator). Transcription of structural
genes into mRNA is performed by the RNA polymerase enzyme, which usually binds to
gene p (the promoter) and scans the operon from left to right by transcribing the three
structural genes z, y and a into a single mRNA fragment. When the lac Repressor is
bound to gene o, it becomes an obstacle for the RNA polymerase, and transcription of
the structural genes is not performed. On the other hand, when lactose is present inside
the bacterium, it binds to the Repressor and this cannot stop any more the activity of
the RNA polymerase. In this case transcription is performed and the three enzymes for
lactose degradation are synthesized.

Now we describe how to model the gene regulation process with CLS. For the sake of
simplicity we give a partial model, in the sense that we describe how the transcription of the
structural genes is activated when the lactose is in the environment, but we do not describe
how the transcription of such genes is stopped when the lactose disappears. Moreover, in
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order to simplify the example, we assume that genes are transcribed directly into proteins
(thus avoiding the modeling of the mRNA), that the lac Repressor is transcribed from
gene i without the need of the RNA polymerase and that it can be produced only once.
Finally, we assume that one RNA polymerase is present inside the bacterium.

We model the membrane of the bacterium as the looping sequence (m)L, where the
elementary constituent m generically denotes the whole membrane surface in normal con-
ditions. Moreover, we model the lactose operon as the sequence lacl - lacP - lacO - lacZ -
lacY -lacA (lacI=A for short), in which each element corresponds to a gene, and we replace
lacO with RO in the sequence when the lac Repressor is bound to gene o. When the lac
Repressor is unbound, it is modeled by the elementary constituent repr. Finally, we model
the RNA polymerase as the elementary constituent polym, a molecule of lactose as the
elementary constituent LACT, and beta galactose, lactose permease and transacetylase
enzymes as elementary constituents betagal, perm and transac, respectively.

When no lactose is present the bacterium is modeled by the following term:

Ecoli = (m)LJ (lacI -lacP - lacO -lacZ - lacY - lacA| polym)

The transcription of the DNA is modeled by the following set of rules:

lacl - +w lacl’ - T|repr (R1)
polym |z -lacP -y +— T-PP-y (R2)
Z-PP-lacO-y +— Z-lacP-PO -y (R3)
z-PO-lacZ -y — x-lacO-PZ -3y (R4)
T-PZ-lacY -y +— Z-lacZ - PY -y|betagal (R5)
Z-PY -lacA — T -lacY - PA|perm (R6)
T-PA — T-A|transac|polym (R7)

Rule (R1) describes the transcription of gene i into the lac Repressor. After tran-
scription lacl becomes lacl’ to avoid further productions of the lac Repressor. Rule (R2)
describes the binding of the RNA polymerase to gene p. We denote the complex formed
by the binding RNA polymerase to a gene lac_ with the elementary constituent P_. Rules
(R3)—(R6) describe the scanning of the DNA performed by the RNA polymerase and the
consequent production of enzymes. Rule (R3) can be applied (and the scanning can be
performed) only when the sequence contains lacO instead of RO, that is when the lac
Repressor is not bound to gene o. Finally, in rule (R7) the RNA polymerase terminates
the scanning and releases the sequence.

The following rules describe the binding of the lac Repressor to gene o, and what
happens when lactose is present in the environment of the bacterium:

repr|T - lacO -y +— Z-RO -y (R8)
LACT| (m-%)" | X ~— (m-%)" | (X|LACT) (R9)
%-RO-§|LACT + -lacO 3| RLACT (R10)

Rule (R8) describes the binding of the lac Repressor to gene o, rule (R9) models the
passage of the lactose through the membrane of the bacterium and rule (R10) the removal
of the lac Repressor from gene o operated by the lactose. In this rule the elementary
constituent RLACT denotes the binding of the lactose to the lac Repressor.
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Finally, the following rules describe the behavior of the enzymes synthesized when
lactose is present, and their degradation:

(f)LJ (perm|X) +— (perm-:f)LJ X (R11)
LACT| (perm -7)" | X~ (perm-7)" | (LACT | X) (R12)
betagal | LACT +— betagal | GLU | GAL (R13)

perm +— € (R14)

betagal — ¢ (R15)

transac + € (R16)

Rule (R11) describes the incorporation of the lactose permease in the membrane of the
bacterium, rule (R12) the transportation of lactose from the environment to the interior
performed by the lactose permease, and rule (R13) the decomposition of the lactose into
glucose (denoted GLU) and galactose (denoted GAL) performed by the beta galactosidase.
Finally, rules (R14),(R15) and (R16) describe degradation of the lactose permease, the beta
galactosidase and the transacetylase enzymes, respectively.

Let us denote the set of rewrite rules {(R1), ..., (R16)} a