
Intelligent Straggler Mitigation in
Massive-Scale Computing Systems

by

Xue Ouyang

Submitted in accordance with the requirements
for the degree of Doctor of Philosophy.

The University of Leeds
School of Computing

March 2018

The candidate confirms that the work submitted is her own, and the appropriate
credit has been given where reference has been made to the work of others.

Intellectual Property and Publication
Statements

The candidate confirms that the work submitted is her own, and the works formed part
of jointly authored publications have been included. The contribution of the candidate
and the other authors to this work has been explicitly indicated. The candidate confirms
that, the appropriate credit has been given within the thesis where reference has been
made to the work of others. This copy has been supplied on the understanding that it is
copyright material and that no quotation from the thesis may be published without proper
acknowledgment.

The jointly authored publications are organized according to the main contents. The pa-
pers that provide the basis for Chapter 3, the straggler quantitative analysis, are:

• P. Garraghan, X. Ouyang, R. Yang, D. McKee, J. Xu, “Straggler root-cause and im-

pact analysis for massive-scale virtualized cloud datacenters”, IEEE Transactions on

Services Computing, 2016.

• X. Ouyang, P. Garraghan, R. Yang, P. Townend, J. Xu, “Reducing late-timing fail-

ure at scale: straggler root-cause analysis in cloud datacenters”, Fast Abstract in

the 46th IEEE/IFIP International Conference on Dependable Systems and Networks

(DSN), 2016.

• P. Garraghan, X. Ouyang, P. Townend, J. Xu, “Timely long tail identification through

agent based monitoring and analytics” in the proceedings of the 18th IEEE Interna-

tional Symposium on Real-Time Distributed Computing (ISORC), pp. 19-26, 2015.

In the ISORC paper, the candidate was responsible for data analytics. This includes the
straggler problem severance analysis using the Google and Ali datasets, revealing the core
observation that, limited task stragglers can lead to significant consequence on total job

i

completion. P. Garraghan was responsible for conducting the hive query tests on the mini
cluster built for experiments. P. Townend and J. Xu offered help in reviewing and im-
proving the paper writing. For the DSN fast abstract, the candidate was responsible for
conducting the correlation analysis towards the straggler occurrence and the system con-
ditions. R. Yang helped in collecting and providing the data. P. Garraghan, P. Townend,
and J. Xu offered help in editing the paper. The TSC paper is a journal extension mainly
based on the ISORC paper, but combining the DSN observations. Therefore the contents
that directly attributable to the candidate and to the other authors are similar to the two
previous conference papers.

The papers that provide the basis for Chapter 4, the adaptive straggler threshold, are:

• X. Ouyang, P. Garraghan, B. Primas, D. McKee, P. Townend, J. Xu, “Adaptive Specu-

lation for Efficient Internetware Application Execution in Clouds”, ACM Transactions

on Internet Technology, 18(2): 15, 2018.

• X. Ouyang, P. Garraghan, D. McKee, P. Townend, J. Xu, “Straggler detection in par-

allel computing systems through dynamic threshold calculation” in the proceedings of

the 30th IEEE International Conference on Advanced Information Networking and Ap-

plications (AINA), pp. 414-421, 2016.

• P. Garraghan, D. McKee, X. Ouyang, D.Webster, J. Xu, “Seed: A scalable approach for

cyber-physical system simulation”, IEEE Transactions on Services Computing, 9(2):

199-212, 2016.

In the AINA paper, an adaptive straggler threshold algorithm is proposed in order to
properly evaluate the most suitable task stragglers for mitigation under different system
conditions. The candidate proposes the method design. P. Garraghan joined the discus-
sion in order to improve the algorithm design and to chose the suitable parameter settings.
D. McKee helped setting up the simulation using SEED. P. Townend and J. Xu offered
help in reviewing and revising the paper. The ToIT paper is the journal extension based
on the AINA one. The major extension is in respect of implementation and evaluation. I
implemented the adaptive threshold algorithm into the YARN architecture for experiment
evaluation, B. Primas helped with the theoretical example chapter. The role for other
authors is similar to the previous conference paper. As for the TSC paper, the content
is not directly linked to the straggler problem, instead, it is an introduction to the self-
developed simulator, of which D. McKee is the main developer. The candidate uses the
SEED simulator when evaluating the performance of her own algorithm. For the paper,

ii

the candidate mainly contributes to the literature review and the “practicality of SEED”
chapter, in which the Google Cloud behavior was simulated as a use case of datacenter
simulation. The candidate helped with the implementation of the job and the task charac-
teristics, including average length and completion times, average resource requirements
for CPU and memory, user submission rate, etc.

The papers that provide the basis for Chapter 5, the node execution performance modeling
and prediction, are:

• X. Ouyang, P. Garraghan, C. Wang, P. Townend, J. Xu, “An Approach for Modeling

and Ranking Node-level Stragglers in Cloud Datacenters” in the proceedings of the

13th IEEE International Conference on Service Computing (SCC), pp. 673-680, 2016.

• X. Ouyang, C. Wang, R. Yang, G. Yang, P. Townend, J. Xu, “ML-NA: A Machine Learn-

ing based Node Performance Analyzer Utilizing Straggler Statistics” in the proceed-

ings of the 24th IEEE International Conference on Parallel and Distributed Systems

(ICPADS), 2017.

• X. Ouyang, C. Wang, David McKee, P. Townend, J. Xu, “NEPAB: Node Execution

Performance Aware Blacklisting for Straggler Mitigation within Cloud Environments”.

[This manuscript is currently ready for submission]

In the SCC paper, a node execution performance modeling framework was proposed,
and it was mainly based on statistical analysis. The idea of leveraging normalized task
duration as a metrics was proposed by C. Wang. The candidate designed the modeling
framework using this metrics, and demonstrated a case study through conducting the anal-
ysis on the Google data. P. Garraghan helped in the distribution fitting process as well as
the sampling process. P. Townend and J. Xu joined the discussion and helped with the
paper review process. The candidate then proposed a machine learning based node per-
formance prediction framework in the ICPADS paper, implemented the prediction using
the OpenCloud data. In this paper, C. Wang suggested the XGboost classifier, and ad-
vised on how to handle the timing attributes. R. Yang and G. Yang helped with the feature
selection. P. Townend and J. Xu helped in reviewing the content. The upcoming journal
paper is about adopting the result of the node execution performance prediction into the
blacklisting mechanism of the YARN platform. The candidate was the main person who
proposed the dynamic blacklisting design and implemented it for evaluation. C. Wang,
David McKee, P. Townend, and J. Xu helped with the algorithm revision and the paper
writing.

iii

The papers that provide the basis for Chapter 6, the data skew straggler mitigation, is:

• X. Ouyang, H. Zhou, P. Townend, J. Xu, “Mitigate Data Skew Caused Stragglers through

ImKP Partition in MapReduce”, in the proceedings of the 36th IEEE International Per-

formance Computing and Communications Conference (IPCCC), 2017.

By introducing a pre-processing layer in front of the normal Map phase, this IPCCC paper
proposes an even partition algorithm in order to deal with the data skew type of stragglers
for Reduce tasks, acting as a complement mechanism for the traditional speculative ex-
ecution technique. The candidate proposes the algorithm, implements it based on the
YARN system, and launches a series of experiments for evaluation. H. Zhou helped with
the literature review process for other Reduce skew mitigating methods and helped with
the workload implementation. P. Townend and J. Xu helped with the paper review.

Other papers that I have involved with are (the content of which are not included in the
thesis):

• P. Garraghan, S. Perks, X. Ouyang, D. McKee, I.S. Moreno, “Tolerating transient late-

timing faults in cloud-based real-time stream processing” in the proceedings of the

19th IEEE International Symposium on Real-Time Distributed Computing (ISORC),

pp. 108-115, 2016.

• D. McKee, S. Clement, X. Ouyang, J. Xu, R. Romanoy, J. Davies, “The internet of sim-

ulation, a specialization of the internet of things with simulation and workflow as a

service (sim/wfaas)” in the proceedings of the 11th IEEE Symposium on Service Ori-

ented System Engineering (SOSE), pp. 47-56, 2017.

• D. McKee, X. Ouyang, J. Xu, “Facilitating Dynamic RT-QoS for Massive-Scale Au-

tonomous Cyber-Physical Systems”, IEICE Transactions on Communications, 2018

• R. Yang, X. Ouyang, Y. Chen, P. Townend, J. Xu, “Intelligent Resource Scheduling at

Scale: a Machine Learning Perspective”, the 12th IEEE Symposium on Service Ori-

ented System Engineering (SOSE), 2018.

iv

Abstract

In order to satisfy increasing demands for Cloud services, modern computing systems are
often massive in scale, typically consisting of hundreds to thousands of heterogeneous
machine nodes. Parallel computing frameworks such as MapReduce are widely deployed
over such cluster infrastructure to provide reliable yet prompt services to customers. How-
ever, complex characteristics of Cloud workloads, including multi-dimensional resource
requirements and highly changeable system environments, e.g. dynamic node perfor-
mance, are introducing new challenges to service providers in terms of both customer ex-
perience and system efficiency. One primary challenge is the straggler problem, whereby
a small subset of the parallelized tasks take abnormally longer execution time in compar-
ison with the siblings, leading to extended job response and potential late-timing failure.

The state-of-the-art approach to straggler mitigation is speculative execution. Although
it has been deployed in several real-world systems with a variety of implementation op-
timizations, the analysis from this thesis has shown that speculative execution is often
inefficient. According to various production tracelogs of data centers, the failure rate of
speculative execution could be as high as 71%. Straggler mitigation is a complicated
problem in its own nature: 1) stragglers may lead to different consequences to parallel
job execution, possibly with different degrees of severity, 2) whether a task should be
regarded as a straggler is highly subjective, depending upon different application and sys-
tem conditions, 3) the efficiency of speculative execution would be improved if dynamic
node performance could be modelled and predicted appropriately, and 4) there are other
types of stragglers, e.g. those caused by data skews, that are beyond the capability of
speculative execution.

This thesis starts with a quantitative and rigorous analysis of issues with stragglers, in-
cluding their root-causes and impacts, the execution environment running them, and the
limitations to their mitigation. Scientific principles of straggler mitigation are investi-
gated and new algorithms are developed. An intelligent system for straggler mitigation is

v

then designed and developed, being compatible with the majority of current parallel com-
puting frameworks. Combined with historical data analysis and online adaptation, the
system is capable of mitigating stragglers intelligently, dynamically judging a task as a
straggler and handling it, avoiding current weak nodes, and dealing with data skew, a spe-
cial type of straggler, with a dedicated method. Comprehensive analysis and evaluation
of the system show that it is able to reduce job response time by up to 55%, as compared
with the speculator used in the default YARN system, while the optimal improvement a
speculative-based method may achieve is around 66% in theory. The system also achieves
a much higher success rate of speculation than other production systems, up to 89%.

vi

Declarations

Some parts of the work presented in this thesis have been published in the following
articles:

X. Ouyang, P. Garraghan, B. Primas, D. McKee, P. Townend, J. Xu, “Adaptive Speculation for
Efficient Internetware Application Execution in Clouds”, ACM Transactions on Internet
Technology, 18(2): 15, 2018.

R. Yang, X. Ouyang, Y. Chen, P. Townend, J. Xu, “Intelligent Resource Scheduling at Scale:
a Machine Learning Perspective”, in the proceedings of the 12th IEEE Symposium on
Service Oriented System Engineering (SOSE), 2018.

X. Ouyang, C. Wang, R. Yang, P. Townend, J. Xu, “ML-NA: A Machine Learning based Node
Performance Analyzer Utilizing Straggler Statistics” in the proceedings of the 24th IEEE
International Conference on Parallel and Distributed Systems (ICPADS), 2017.

X. Ouyang, H. Zhou, S. Clement, P. Townend, J. Xu, “Mitigate Data Skew Caused Stragglers
through ImKP Partition in MapReduce” in the proceedings of the 36th IEEE International
Conference on Performance, Computing and Communications (IPCCC), 2017.

X. Ouyang, P. Garraghan, C. Wang, P. Townend, J. Xu, “An Approach for Modeling and Rank-
ing Node-level Stragglers in Cloud Datacenters” in the proceedings of the 13th IEEE
International Conference on Service Computing (SCC), pp. 673-680, 2016.

P. Garraghan, X. Ouyang, R. Yang, D. McKee, J. Xu, “Straggler root-cause and impact analysis
for massive-scale virtualized cloud datacenters”, IEEE Transactions on Services Comput-
ing, 2016.

X. Ouyang, P. Garraghan, R. Yang, P. Townend, J. Xu, “Reducing late-timing failure at scale:
straggler root-cause analysis in cloud datacenters”, Fast Abstract in the 46th IEEE/IFIP

vii

International Conference on Dependable Systems and Networks (DSN), 2016.

X. Ouyang, P. Garraghan, D. McKee, P. Townend, J. Xu, “Straggler detection in parallel com-
puting systems through dynamic threshold calculation” in the proceedings of the 30th
IEEE International Conference on Advanced Information Networking and Applications
(AINA), pp. 414-421, 2016.

P. Garraghan, D. McKee, X. Ouyang, D. Webster, J. Xu, “Seed: A scalable approach for cyber-
physical system simulation”, IEEE Transactions on Services Computing, 9(2): 199-212,
2016.

P. Garraghan, X. Ouyang, P. Townend, J. Xu, “Timely long tail identification through agent
based monitoring and analytics” in the proceedings of the 18th IEEE International Sym-
posium on Real-Time Distributed Computing (ISORC), pp. 19-26, 2015.

viii

Acknowledgements

First and foremost, I would like to thank my supervisors: Professor Jie Xu and Dr. Paul
Townend, my colleagues: Dr. Peter Garragham, Dr. David Mckee, Dr. Stephen Clement,
Dr. Renyu Yang, Bernhard Primas, Yaofeng Chen, Jaber Almutairi; and those who of-
fered me help in the School: Professor. Karim Djemame, Dr. Lydia Lau, Dr. Brandon
Bennett, Judi Drew and Gaynor Butterwick. They are more like friends to me rather than
supervisor, tutor, or colleague. I once thought it would be a challenge to me pursuing
my dream alone in a country with different culture and language, however, out of my ex-
pectation, these people around are incredibly supportive and professional, generous and
patient, helped me hugely in all aspects of my Ph.D. life. It has been a great honor to be
part of the Distributed Systems and Services group, I will always remember the days we
shared together here in Leeds.

My sincere thanks need to go to Professor Huaiming Wang, Professor Yuxing Peng, Dr.
Bo Ding, Dr. Peichang Shi, Dr. Changjian Wang, Ms. Yuhua Hou, Pengfei Zhang, Yang
Zhang, Yiying Li, Xiang Fu, Bo Liu, and Xiaoli Sun from the National University of
Defense Technology as well. Thank you for sharing me with the data that facilitate our
joint research, thank you for helping me in administrative matters while I am away, and
thank you for inspiring me with productive discussions despite of the distance. Without
all these, my Ph.D. won’t be as smooth as it is.

I also want to thank the China Scholarship Council, without their scholarship program
with the University of Leeds, it is impossible for me to spend these past four years here,
the experience of which changed my life. In addition, I want to thank my friends and
room-mates, for the meals we had together, the hiking we went together, and the holidays
we spent together. Mengying Zhang, Mengrong Xu, Qian Yang, Yangmei Li, Zhongyang
Xing, Guangming Li, Yuqing Wu, Xiaolan Shu, Ying Wang, Chunhong Yin, Ziyi Li, and
so many other friends enriched my life here in UK which I really appreciated.

ix

Last but not least, I would like to express my deep sense of gratitude to my family: my
sweet mum, my dear dad, and my beloved husband. They are always encouraging, trust
me in every decision I made; they are always warm, comfort me every time I feel de-
pressed; and they are always wise, guide me to the right path every time I lost. They are
the source of power when I overcome obstacles in life and when I pursue my dreams, and
I hope they are proud of what I have achieved with their support. I love them, from the
deep of my heart.

x

List of Acronyms

AM Application Master . 80
ANOVA Analysis of Variance . 38
AI Artificial Intelligence . 158
CDF Cumulative Distribution Function . 103
CI Confidence Interval . 100
DoS-Index Degree of Straggler Index . 68
DAG Directed Acyclic Graph . 108
DNN Deep Neural Networks . 158
EC2 Elastic Compute Cloud . 36
ECT Estimated Completion Time . 80
FIFO First In First Out . 39
FPGA Field Pogrammable Gate Array . 1
GoF Goodness of Fit . 130
GPU Graphics Processing Unit . 1
HDFS Hadoop Distributed File System . 151
IoT Internet of Things . 150
IaaS Infrastructure as a Service . 14
SaaS Software as a Service . 14
PaaS Platform as a Service . 14
MPI Message Passing Interface . 21
ML Machine Learning . 157
NIST National Institute of Standards and Technology . 14
NM Node Manager . 125
OS Operating System . 39
PS Progress Score . 82
PR Progress Rate . 61
PDF Probability Density Function . 29
QoS Quality of Service . 150
REST REpresentational State Transfer . 13
RM Resource Manager . 125
RL Reinforcement Learning . 158
SaaS Software-as-a-Service . 14
SLA Service Level Agreement . 25

xi

SOA Service-Oriented Architecture . xvi
SOAP Simple Object Access Protocol . 13
TPU Tensor Processing Unit . 1
UDDI Universal Description Discovery and Integration . 13
VM Virtual Machine . 152
WSDL Web Service Definitions Language . 13
YARN Yet Another Resource Negotiator . 8

xii

Contents

IP and Publication Statements i

Abstract v

Declarations vii

Acknowledgements ix

List of Acronyms xi

1 Introduction 1
1.1 Research Motivation . 1

1.2 Aims and Objectives . 2

1.3 Methodology . 4

1.4 Major Contributions . 6

1.5 Thesis Organization . 7

2 Parallel Job Performance in Large-scale Computing Systems 9
2.1 Evolution of Computing Systems . 10

2.1.1 Tiered Software System Architecture 10

2.1.2 Service Computing . 11

2.1.3 Cloud Computing . 13

2.1.4 New Computing Models . 16

2.2 Parallel Computing and Execution Performance 17

2.2.1 Basic Concepts in Parallel Computing 17

2.2.2 MapReduce Framework . 19

2.2.3 Open-Source MapReduce Implementations 21

2.3 Performance Challenges in Parallel Execution 24

2.3.1 Basic Concepts in Performance Challenge 24

2.3.2 The Straggler Problem . 26

xiii

2.3.3 Straggler Related Formulation 29

2.4 Overview of Straggler Mitigation Techniques 30

2.4.1 Speculative Execution and Its Variations 31

2.4.2 Straggler Root Causes . 37

2.4.3 Skew Mitigation . 39

2.4.4 Gaps in the literature . 40

2.5 Summary . 42

3 Quantitative Analysis of the Stragglers 45
3.1 Data Set Introduction . 45

3.1.1 The Google Dataset . 46

3.1.2 The AliCloud Dataset . 47

3.1.3 The OpenCloud Dataset . 48

3.2 Straggler Related Statistics . 49

3.2.1 Task-Level Statistics . 49

3.2.2 Job-Level Statistics . 51

3.2.3 Node-Level Statistics . 52

3.3 Straggler Reason Analysis . 56

3.4 Speculation Limitation . 59

3.4.1 High Speculation Failure Rate 59

3.4.2 Improvement Potential . 61

3.5 Straggler Mitigation System Model . 63

3.6 Summary . 65

4 Task-level Detection: Adaptive Straggler Threshold 67
4.1 Algorithm Motivation . 67

4.2 Algorithm Design . 70

4.2.1 Quality of Service (QoS) Timing Constraint 72

4.2.2 Task Lifecycle Progress . 73

4.2.3 System Resource Usage . 75

4.3 Theoretical Examples . 76

4.4 Implementation and Experiments . 80

4.4.1 Default Speculator Component 80

4.4.2 Speculator Modification . 82

4.4.3 Experiment Setup . 83

4.4.4 Experiment Results . 84

4.4.5 Simulation Results . 91

xiv

4.5 Summary . 94

5 Server-level Prediction and Dynamic Blacklisting 97
5.1 A Google Case Study . 97

5.1.1 Normalized Task Execution . 100
5.1.2 Distribution Fit for Node Execution Performance 101
5.1.3 Target Indicator Choice . 104
5.1.4 Ranking and Weak Node Identification 107

5.2 Machine Learning based Prediction . 111
5.2.1 Feature Selection . 113
5.2.2 The Automatic Labeling Algorithm 115
5.2.3 Boosting Based Classifier . 119
5.2.4 The Node Performance Prediction 120

5.3 Dynamic Blacklisting . 124
5.3.1 Implementation . 124
5.3.2 Evaluation Results . 126

5.4 Summary . 130

6 Coping with Skew-caused Stragglers 133
6.1 Skews in MapReduce Framework . 134

6.1.1 Refined Notions . 134
6.1.2 Different Skew Types . 135

6.2 Mitigate Reduce Skews with ImKP . 138
6.2.1 The ImKP Framework . 138
6.2.2 Detailed Workflow and the Pre-processor 139

6.3 Performance Evaluation . 142
6.3.1 Experiment Setup . 142
6.3.2 Skew Mitigation Effectiveness 143
6.3.3 Skew Mitigation Overhead . 145
6.3.4 Job Execution Improvement . 147

6.4 Summary . 148

7 Conclusion and Future Work 149
7.1 Summary . 149
7.2 Research Contributions . 152
7.3 Overall Research Evaluation . 153
7.4 Future Work . 156

xv

List of Figures

2.1 The (a) 1-tier, (b) 2-tier, (c) 3-tier, and (d) N-tier software architecture,
among which, 1-tier architecture is the same with the conceptual layers of
software systems . 12

2.2 The Service-Oriented Architecture (SOA) architecture triangle 12

2.3 The Cloud service layer . 15

2.4 The Cloud, edge, and mobile edge ecosystem [99] 16

2.5 The task lifecycle . 18

2.6 Different architectures of the cluster scheduler [129] 19

2.7 The MapReduce workflow [46] . 20

2.8 Refinement of the Map and the Reduce phases for Hadoop 21

2.9 The Hadoop V1 architecture . 22

2.10 The Hadoop YARN architecture . 23

2.11 The events handled by YARN Application Master (AM) 23

2.12 Task duration pattern for jobs exhibiting stragglers in the Google cluster. . 27

2.13 Task duration pattern for normal jobs without stragglers in Google. 28

2.14 Task duration pattern for an example MapReduce job with a Reduce strag-
gler . 28

2.15 The (a) Probability Density Function (PDF) and (b) Cumulative Distribu-
tion Function (CDF) of the exponential and pareto distribution. 30

2.16 Schematic diagram of the speculative execution algorithm 31

3.1 Google task-job (a) median completion histogram; task-job (b) mean com-
pletion histogram . 50

3.2 AliCloud task-job (a) median completion histogram; task-job (b) mean
completion histogram . 50

3.3 OpenCloud task-job (a) median completion histogram; task-job (b) mean
completion histogram . 50

3.4 Google job tailing extent compared with job (a) median, (b) mean 51

3.5 AliCloud job tailing extent compared with job (a) median, (b) mean . . . 51

xvi

3.6 OpenCloud job tailing extent compared with (a) median, (b) mean 51

3.7 Straggler percentage per node in the (a) Google, and (b)AliCloud system . 53

3.8 Map tasks execution on different machine nodes from four example MapRe-
duce jobs within the OpenCloud cluster 53

3.9 OpenCloud (a) straggler number per node distribution, (b) total task num-
ber per node distribution over the 9-month period 55

3.10 An example of a killed speculation for a Hadoop job 60

3.11 Numbers of speculation failure rate in the OpenCloud cluster 60

3.12 Statistics of speculation failure rate in the OpenCloud cluster 61

3.13 Three examples of how a typical MR job can progress 62

3.14 Threshold sensitivity toward straggler identification, (a) normal detection
and (b) potential early detection . 62

3.15 The improvement potential of the speculation in the OpenCloud cluster
for jobs with duration less than an hour 63

3.16 The intelligent straggler mitigation system model 64

4.1 Relation between threshold setting and (a) straggler / tailing job propor-
tion in the OpenCloud cluster; (b) different straggler numbers in AliCloud
across the 20-day period using different threshold value 68

4.2 Dynamic threshold motivation dealing with (a) strict and (b) lax QoS tim-
ing constraint . 69

4.3 Class diagram of the speculator component. 81

4.4 Modification to the AppContext class to get the resource values from
Resource Manager (RM) . 83

4.5 Parameter configuration example. 83

4.6 Job response time improvement of the dynamic threshold and the static
threshold comparing to no speculation for jobs (a) WordCount, (b) Sort,
and (c) Hive. 86

4.7 WordCount task progress in (a) no fault injection, (b) I/O contention in-
jected cluster . 89

4.8 Threshold changing pattern for (a) Map and (b) Reduce tasks applying
different parameter configurations . 90

5.1 Top four best fitting distribution for example node M4820223869 102

5.2 The CDF fitting of M4820223869 using 3-Parameter Loglogistic distribution 103

5.3 Normalized value frequency for machine (a) M672206, (b) M554297904, (c)
M4820223869, and (d) M257336015 from the Google system 104

xvii

5.4 Ranking examples for the Google server using different indicator 106

5.5 Boxplot of (a) mean normalized value and (b) extreme value possibility
for each group in the Google cluster . 106

5.6 Proportions of (a) server population, and (b) task submission per server type107

5.7 An DAG edge example . 108

5.8 The node performance ranking within (a) the OpenNebula cluster; (b) the
OpenNebula 2 cluster; and (c) the ExoGeni cluster 110

5.9 Straggler rate per node (a) in a 20-day period; (b) per day changing trend;
and killed speculation rate per node (c) in a 20-day period; (d) per day
changing trend. Each line in (b) and (d) represents a node, the legend
only gives three examples due to the space 112

5.10 Node execution performance changing trend 112

5.11 Clustering results with three features (k = 5) 114

5.12 Different k-clustering results with two features as an example 116

5.13 Node classification prediction accuracy for each month, with (a) parame-
ters used in Table 5.5, and (b) a comparable parameter setting 122

5.14 Training / evaluation segment for the 6th month with NaN attributes . . . 123

5.15 The average job execution time (with standard deviation) with different
numbers of blacklisted nodes in the ExoGeni cluster 128

5.16 The successful speculation rate with different numbers of blacklisted nodes
in the the OpenNebula cluster . 129

6.1 Speculation failure rate with different input skews 134

6.2 The word distribution of (a) the Shakespeare collection, (b) the English
wiki dataset, and the edge number distribution of (c) the Google web
dataset, (d) the Facebook social circles dataset 136

6.3 Reduce skew and possible improvement the ImKP method can achieve . . 137

6.4 ImKP limitation illustration . 137

6.5 The system model for the ImKP framework 139

6.6 ImKP workflow VS normal MapReduce workflow 140

6.7 Number of inputs per Reducer for (a) Inverted Index on Shakespeare data;
for (b) PageRank on Freebase data; and for (c) WordCount on Zipf data . 143

6.8 The input size improvement for ImKP and hash partition on Zipf data . . 145

6.9 Complexity (a) before and (b) after the group based ranking optimization . 146

6.10 The pre-processing overhead . 146

xviii

6.11 The (a) execution time; the (b) execution coefficient of variation for ImKP
and hash partition on Zipf data . 147

7.1 Future work on root cause analysis . 156
7.2 The Reinforcement Learning (RL) system model with policy represented

via Deep Neural Networks (DNN) [88] 158

xix

List of Tables

2.1 Classification of typical Cloud workloads 26

2.2 Straggler reasons (external) and corresponding meanings 38

2.3 Representative straggler mitigation approaches 41

3.1 Server proportions and properties within the Google system 47

3.2 AliCloud data structure . 47

3.3 General data pattern summary . 48

3.4 Straggler occurrence and impact on production systems 52

3.5 Straggler detection with Degree of Straggler Index (DoS-Index) in Ali-
Cloud datacenter . 57

3.6 Classification for straggler root-cause . 58

4.1 Additional notations used in the adaptive threshold 71

4.2 Example 1: speculative execution with dynamic threshold 78

4.3 Example 1: speculative execution with static threshold. 78

4.4 Example 2: speculative execution with dynamic threshold 79

4.5 Example 2: speculative execution with static threshold 79

4.6 Experimental cluster configurations . 84

4.7 Results for different threshold performance 85

4.8 The T-test results for response time difference significance 87

4.9 Experiment results for speculation overhead comparison 88

4.10 Simulator comparison table . 92

4.11 Simulation results for different thresholds 93

5.1 Google node distribution Goodness of Fit (GoF) result 103

5.2 Node performance indicator candidates and corresponding meanings . . . 105

5.3 The k value choices . 117

5.4 Algorithm comparisons . 120

5.5 Prediction results with parameter sets of η = 0.1, max depth = 12, eval metric
= logloss . 121

xx

5.6 Cluster Virtual Machine (VM) configurations 126
5.7 Job execution time results with NEPAB and YARN speculator 127

6.1 Reduce input skew mitigation results for different skew degrees 144
6.2 Response time improvement for WordCount application on the Zipf data

when σ changes from 0.4 to 1.4. 144

7.1 Comparison of my research against other representitive approaches 155

xxi

List of Equations

2.1 . 29
2.2 . 29
2.3 . 29
2.4 . 30
2.5 . 30
2.6 . 32
2.7 . 32
2.8 . 33
3.1 . 56
4.1 . 70
4.2 . 72
4.3 . 74
4.4 . 75
4.5 . 81
4.6 . 85
4.7 . 88
4.8 . 93
5.1 . 100
5.2 . 120
5.3 . 122
6.1 . 143

xxii

Chapter 1

Introduction

1.1 Research Motivation

Modern day IT has grown at a substantial rate: with annual global IP traffic surpass-
ing the zettabyte (1,000 exabytes) threshold in 2016 and IP traffic per capita reaching
22GB by 2019 [43]; with datacenters typically equipped with thousands and/or tens of
thousands of machine nodes [13] and other heterogeneous hardware such as Graphics
Processing Unit (GPU)s, Field Pogrammable Gate Array (FPGA)s, and Tensor Process-
ing Unit (TPU)s [71][72]; with the emergence of new concepts such as the Internet of
Things (IoT) [63] and industry 4.0 [126] that amalgamates big data analytics, the Cloud,
and computing intelligence, etc. In order to meet the challenges brought by such un-
precedented growth, a significant number of large-scale distributed interconnected sys-
tems which are capable of providing computing as a service have been developed.

Cloud computing has emerged as a powerful paradigm to facilitate these large-scale com-
puting infrastructures, in which parallel and/or distributed computing techniques are ap-

1

Chapter 1 Introduction

plied to the solution of computationally intensive applications across networks of com-
puters. This concept has achieved huge success in recent years. However, these models
face significant performance challenges, especially with the rapid growth of cluster size.
For example, under the current parallel computing assumption, when one distributed sub-
task performs abnormally slowly, all sibling tasks belonging to the same job have to wait
for that straggler to complete. This straggler problem leads to significant performance
deterioration: for users, Quality of Service (QoS) violation may occur due to job com-
pletion delay, which may end up with decreased user satisfaction; for system managers,
committed resources wasted while waiting for stragglers result in poor utilization and fi-
nancial loss. Thus, it is necessary to conduct extensive in-depth research to characterize
and quantify straggler behavior, especially in large-scale and complex systems where this
problem has already caused severe performance degradation.

All relating research problems proposed in this thesis are real problems that exist in com-
mercial Cloud datacenters, such as Google (USA), Alibaba (China), and production clus-
ters such as the OpenCloud cluster at Carnegie Mellon University which provides MapRe-
duce services for students and faculties. Therefore, this research is of high practical value.

1.2 Aims and Objectives

The straggler problem refers to the situation when one or more parallel tasks perform
significantly slower than other sibling sub-tasks, despite supposedly having similar dura-
tions. This impacts the overall job execution time as the parallel job has to wait until the
last task has finished. The abnormally slower tasks are defined as straggler tasks. This
research has two objectives, one is to improve parallel job execution performance through
shortening the execution time by mitigating the stragglers, and the second objective is
to save unnecessarily resources that would be spent on mitigating straggler behaviors by
improving speculation efficiency.

These aims require an in-depth analysis of the straggler syndrome in current Cloud com-
puting environments, a smart straggler identification method that always chooses the most
urgent and suitable stragglers according to different operational environments and system
behaviors, and an intelligent mitigation mechanism that predicts straggler occurrence and
avoids assigning tasks to weakly performed machine nodes for execution. Stragglers can
occur for many reasons, some of which are quite intuitive (for example, data locality will

2

Chapter 1 Introduction

have a huge impact on task performance due to the significant larger latency for remote
reads compared to local reads) while some are not so obvious (for example, some OS level
background daemons such as garbage collection can temporarily affect machine perfor-
mance). When stragglers are detected within a system, it is necessary to locate the main
reason that leads to this performance degradation, so that appropriate method can then
be taken to mitigate the impact of the straggling tasks. Specifically, the objectives of this
research are as follows:

1. Analyzing straggler related statistics within Cloud computing systems. Par-
allel computing performance, especially job response time in this thesis, is very
important for Cloud systems, due to the fact that services that promptly respond to
requests will receive higher user satisfaction than those that take longer. One vi-
tal thing in maintaining high performance is to keep the tail of latency distribution
short for parallel applications. Quantifying straggler related problems such as strag-
gler impact and straggler reason is a key pre-condition to achieve that goal, and is
challenging when the size and complexity of the system scales up and overall user
volume increases. The first objective of this research is to measure the inefficien-
cies caused by stragglers within production Cloud computing systems, including
quantifying the affected job population, wasted time, wasted resources, root causes,
current mitigation efficiencies, etc.

2. Identifying the most appropriate stragglers for mitigation. The identification of
stragglers is the foundation of most mainstream straggler mitigation methods, such
as speculative execution [162], which follows the steps of (a) identifying stragglers,
(b) launching speculative copy of those stragglers, (c) and adopting whichever result
comes out first to generate the final response. From this perspective, it is good to
conduct the identification process in a quick and precise manner, always picking up
those tasks that are most likely to be caught up by the replicas to reduce possible
waste. How to achieve this goal forms the second objective of this research.

3. Avoiding straggler occurrence through modeling and predicting machine node
performance. Apart from mitigation, the other way of handling the straggler prob-
lem and relieving the long tail latency effect that deteriorates system performance,
is through avoidance. Machine execution performance changes dynamically, and
this is an important reason that leads to task response time variation. How to find
key indicators to represent and model node performance, how to predict the chang-
ing tendency of machine execution performance, and how to develop dynamic node

3

Chapter 1 Introduction

blacklisting methods to avoid straggler occurrence and improve overall job execu-
tion are the key components of the third objective.

4. Developing a dedicated algorithm to deal with situations when speculative ex-
ecution is not appropriate. Currently there are many straggler mitigation meth-
ods, but they are mainly based on the speculative execution scheme: copying badly
performing tasks and launching new identical ones. These methods alone are not
sufficient under certain circumstances, such as when dealing with degraded task
performance due to data skew, because of the fact that speculative copies would
experience the same delays when processing the identical data, leading to a specu-
lation failure. Therefore, developing a dedicated algorithm that targets skew miti-
gation is the fourth objective of this research.

1.3 Methodology

The main methodology of this research follows the pattern of “data-driven analytics”,
“simulation”, and “experimentation”.

For data-driven analytics, it is beneficial for the research to be inspired and enhanced
by findings from real-world systems. Production cluster tracelog data is used to gen-
erate useful observations about straggler influence, straggler causes, and other straggler
related issues such as current mitigation efficiencies, etc. Three production datasets have
been available for this research: one is a Cloud datacenter tracelog released by Google.
This dataset has been public since November 2011 and is available in [145]. The second
version of this trace spans 30 days with the normalized processor and Memory usage met-
rics collected every 5 minutes. The trace describes the resource consumption of 12,000+
servers in operation, providing information on 25 million tasks grouped in 650,000 jobs.
Additional information about the data structure, monitoring, and normalization process
of this data can be found in [120]. The second dataset is a Cloud datacenter tracelog
from Alibaba, an e-commerce platform in China. The size of this tracelog is relatively
small compared to the Google one: it contains over 1,200,000 tasks and 2,800 servers.
It should be noted that this is not a public dataset, and due to the confidentiality poli-
cies of the company, the raw data cannot be shared; only the final results concluded can
be shown. The third dataset is from a Hadoop MapReduce cluster at Carnegie Mellon
University [103]. Detailed information about each of the above datasets is introduced in

4

Chapter 1 Introduction

Section 3.1. Statistical analysis and data mining methods are used for the analysis. For
example, Analysis of Variance (ANOVA) or correlation analysis can be used to explore
straggler causes through building relationships between straggler occurrence and possible
cause candidates.

For simulation, the number of production tracelogs that are of sufficient observational
period and system size to perform in-depth analyses is very limited due to business and
confidentiality concerns of users and providers in commercial Clouds. It is impossible to
build a real production cluster just for research due to financial costs. This is why sim-
ulation methods have been used. CloudSim [35] is a representative simulator for Cloud
computing environments; however, it is hard to configure and to implement custom algo-
rithms into it. SEED [60] is a distributed environment simulator developed at the Uni-
versity of Leeds that allows for large-scale simulations to be created in a prompt manner.
Unlike other simulators, SEED is capable of enforcing event-based synchronous simu-
lation across loosely-coupled off-the-shelf distributed environments with no assumptions
concerning the underlying hardware. Meanwhile, it minimizes user interaction through
the use of XML-based protocols. All tasks simulated by SEED can be configured to
follow the real Cloud datacenter characteristics revealed in [98], and it has been empir-
ically demonstrated to effectively simulate Cloud operational behavior through experi-
ments conducted at different simulation sizes and infrastructure scale [60], making it a
good choice when simulating real massive-scale system behaviors; SEED is therefore
chosen as the simulator for this research.

Experimentation is always the most convincing research method, since simulation can
be inaccurate and may miss minor inconspicuous aspects which in the end lead to a to-
tally different result. In this research, the Univesity of Leeds School of Computing Cloud
testbed is used to build a MapReduce [46] cluster with the Hive system [141] running on
top. In addition, an ExoGeni VM [52; 53] based Hadoop cluster is built as well, with Am-
bri [9] deployed as the monitoring tool. By implementing current straggler identification
and mitigation methods as benchmarks, experimental comparisons are made as a supple-
ment to the simulation results. Detailed experiment environments used when evaluating
each algorithm can be found in each corresponding chapter.

5

Chapter 1 Introduction

1.4 Major Contributions

The major contributions of this thesis, corresponding to the four objectives, are:

1. Quantitatively analyzed straggler influences, root causes, occurrence patterns
and speculation inefficiency that provide new insights to straggler mitigation
research. The straggler problem is discussed in detail in a large volume of related
literature; however, not many previous works ever conducted quantitative analy-
sis, especially toward straggler influence and its root causes. Through leveraging
three real-world datasets, universal observations are made. For example, around 5%
stragglers at task level influence more than 50% of parallel jobs within large-scale
systems, and high resource utilization ranks as the main reason behind straggler
occurrence. Observations reveal that, on one hand, the straggler problem is severe
and calls for a solution, while on the other hand, the dominant straggler mitigation
scheme nowadays fails to do its job with good performance: the average specula-
tion failure rate reaches as high as 71% in production systems, and there is another
66% of potential improvement space in average job response time if the straggler
problem is solved.

2. Developed a method that can adaptively identify the most appropriate strag-
glers according to the changing environment, shortening job execution time
while saving resources used on speculation. It is not easy to define, to what ex-
tent a slow task should be classified as a straggler that triggers a mitigation scheme:
if too many tasks trigger speculation, the system will suffer from huge resource
overhead when launching replicate copies, especially as some copies will end up
being killed and wasted. However, if too few tasks are processed, severe stragglers
can still exist and deteriorate job performance. The adaptive threshold method de-
veloped in this thesis answers this question by taking into consideration three key
system parameters. Results show that the proposed method is capable of reducing
parallel job response time by up to 20% compared to the current static threshold
scheme (stragglers are defined as tasks with an estimated duration 50% longer than
the average value), as well as a higher speculation success rate, achieving up to
66.67% against 16.67% in comparison to the static method.

3. Designed a node performance analyzer that can be used in conjunction with
the dynamic node blacklisting method to improve job execution. Data analytics
result reveals that node execution performance is not purely dependent on physical

6

Chapter 1 Introduction

capacity nor utilization level, but a complicated combination of reasons. Therefore
in this thesis, a method is designed that leverages historical data of task executions
to measure and model node performance. The machine learning based classifier
proposed is capable of predicting node performance categories at an accuracy above
98%, and the dynamic node blacklisting scheme can improve job completion time
by up to 55.43% compared to the default Hadoop YARN speculator and is capable
of increasing the successful speculation rate by up to 89%.

4. Proposed a data skew mitigation scheme that managed to decrease data skew
caused stragglers for Reduce tasks. Speculative execution can easily lead to bot-
tlenecks when mitigating data skew caused stragglers due to its replicative nature:
identical unbalanced input data will simply lead to slow speculative tasks. In this
thesis, focusing on mitigating data skew caused Reduce stragglers, an intermediate
key pre-processing framework is proposed that enables an even distributed partition
for Reduce inputs. The proposed method can dramatically decrease Reduce skew,
achieving a 99.8% reduction in the coefficient of variation of input sizes on average,
and an improvement in job response performance of up to 29.37%.

1.5 Thesis Organization

The thesis is composed of seven chapters, of which this is the first:

Chapter 2 is the related work chapter that provides an introduction to the background
topics of computing systems and parallel job performance. Existing work in analyzing and
modeling parallel job performance, specifically within the area of the straggler problem is
introduced. Furthermore, the state-of-the-art research in straggler mitigation is discussed.
This chapter is presented in order to understand the challenges associated with studying,
quantifying, modeling, and mitigating straggler behavior within large-scale computing
environments such as Cloud datacenters.

Chapter 3 presents a quantitative analysis of straggler behavior, which details the moti-
vation and illustrates the importance of straggler research. Leveraging parallel job execu-
tion traces in real-world datacenters, this chapter demonstrates straggler statistics analy-
sis, straggler reason analysis, straggler occurrence pattern analysis, as well as a limitation
analysis toward the state-of-the-art straggler mitigation method. The overall system model
of the newly proposed intelligent straggler mitigation system is introduced in this section

7

Chapter 1 Introduction

as well.

Chapter 4 presents the adaptive straggler threshold algorithm, which is used to evalu-
ate tasks, deciding whether a specific task should be defined as a straggler for potential
mitigation under different system conditions. This algorithm is implemented into the cur-
rent YARN platform, which is short for Yet Another Resource Negotiator (YARN). This
chapter includes discussions of both experimental results and simulation evaluations.

Chapter 5 presents the node execution performance modeling and prediction algorithm
as well as the dynamic node blacklisting scheme, which can be used to evaluate machine
nodes, deciding whether a specific node is suitable for launching task attempts. By avoid-
ing assigning tasks to nodes that are about to experience performance degradation, strag-
gler occurrence can be avoided and job response can be improved. Case studies based on
the Google and the OpenCloud data are given, followed by experimental evaluations.

Chapter 6 presents the mitigation algorithm for data skew caused stragglers, a dedicated
method deals with the special type of stragglers. Skew mitigation is a special case that
should be differentiated from the general speculative execution scheme, and this chapter
discusses the skew mitigation, especially partition skews, under the MapReduce frame-
work. Both synthetic and real-world inputs exhibit the skewed distribution are tested
through experiments in this chapter.

Chapter 7 summarises the related findings, provides conclusions toward the overall re-
search, and outlines potential future directions for this work.

8

Chapter 2

Parallel Job Performance in Large-scale
Computing Systems

This chapter describes the basic background concepts of this research - i.e. improving
parallel job execution performance in large-scale computing environments with the pres-
ence of stragglers. The evolution of computing systems and relevant technologies are pre-
sented in order to better understand the emergence of Cloud computing and the prevalence
of MapReduce framework. As an important challenge towards parallel job performance,
the straggler problem is discussed, along with the concepts of Quality of Service (QoS),
system dependability and availability. Finally, the state-of-the-art straggler mitigation
methods are introduced, as well as the straggler root cause and skew mitigation methods.
This is then followed by a discussion of the gaps in the current literature, highlighting the
importance of the work within this thesis.

9

Chapter 2 Parallel Job Performance in Large-scale Computing Systems

2.1 Evolution of Computing Systems

In order to better understand how the Cloud computing system emerges and develops,
and why the MapReduce framework becomes popular in recent years, it is necessary to
present the evolution of modern computing models.

2.1.1 Tiered Software System Architecture

The conceptual architecture of most software systems are designed by separation into
three layers as presented in Figure 2.1 (a): the presentation layer, the application logic
layer and the resource layer. There are other names for these layers such as the business

layer, the network layer, or the communication layer defined in [42], [55], and [123],
however they are all similar in functionality. The presentation layer is responsible for pre-
senting information, interacting and communicating with components that exist outside
of the system, for example, with human users or other systems. A presentation layer can
be implemented in a number of ways including a graphical user interface or a component
that formats data into a given syntax. The application logic layer is responsible for data
processing, and it is the component that performs the actual operations requested by the
user through the presentation layer. The resource management layer is responsible for the
management of the data irrespective of the data source. This includes data residing within
databases, file systems, and other data repositories.

The three layers above are conceptual designs that logically separates the functionality
of the software system. From the implementation side, such layers can be combined
and distributed in a variety of ways, referred to as tiers. There are mainly four types
of software system architectures dependant on the organization of tiers: the 1-tier, the
2-tier, the 3-tier and the N-tier architectures [65].

The 1-tier architecture merged all the three layers including presentation, application
logic, and resource management into a single tier shown in Figure 2.1 (a). This type
of system is essentially a monolithic piece of code, which is difficult to use and expensive
to maintain. As a result, the 1-tier architecture is already viewed as legacy systems today.

The 2-tier architecture is an evolution of the 1-tier architecture, and it emerged due to
the development of the PC. Through merging the presentation layer with the client (i.e.
a user’s PC), the 2-tier architecture separates the presentation layer from the server as

10

Chapter 2 Parallel Job Performance in Large-scale Computing Systems

shown in Figure 2.1 (b), therefore it is commonly known as “Client-Server” architecture.
There are limitations with this architecture in terms of scalability when the number of
clients interacting with the system increases, resulting in increased server overhead.

The 3-tier architecture as shown in Figure 2.1(c) features a distinct separation between
the three layers. The presentation layer still resides on the client side, which is similar
to the 2-tier architecture, while the application logic layer now sits within a middle tier
which communicates between the client and the back-end resources. This middle tier, the
infrastructure that is used to support the application logic, is referred to as the Middleware

[23]. When integrating clients with multiple systems, the 3-tier architecture faces issues
due to the lack of standards in terms of interfaces and communication protocols.

The N-tier architecture is similar to the 3-tier systems; the main difference is that they
are more capable of linking to other systems, especially to the Internet as shown in
Figure 2.1(d). The N-tier architecture has the same problem as the 3-tier in terms of
lacking standards to enable interoperability between systems over the Internet, and con-
sequently increases complexity and the amount of middleware required for system inte-
gration [22]. This is particularly true when application logic is distributed across multiple
machines that each use heterogeneous middleware.

From the evolution of the tiered software systems, we observe several trends. For ex-
ample, software systems are becoming increasingly complex, and there is an increasing
requirement for software systems to be integrated together. SOA has emerged as a means
to address these challenges, through changing the development of software systems into a
dynamic and loosely coupled manner, it enables the integration of multiple systems across
the Internet in a standard way.

2.1.2 Service Computing

SOA is proposed to provide the architectural style, or template, for building service-
oriented systems, which “promotes the idea of assembling application components into a

network of services that can be loosely coupled to create flexible, dynamic business pro-

cesses and agile applications that span organizations and computing platforms” [114].
And the term service here is defined as “a software implemented business function that is

wrapped with a formally documented interface” [115].

11

Chapter 2 Parallel Job Performance in Large-scale Computing Systems

Figure 2.1: The (a) 1-tier, (b) 2-tier, (c) 3-tier, and (d) N-tier software architecture, among
which, 1-tier architecture is the same with the conceptual layers of software systems

Figure 2.2: The SOA architecture triangle

12

Chapter 2 Parallel Job Performance in Large-scale Computing Systems

Such architecture offers advantages over the N-tier architecture because the middleware
complexity can be reduced due to middleware decentralization, and modifications are
less likely to affect the existing services due to loose-coupling. The SOA system model
is shown in Figure 2.2: there must be a service provider, a consumer, and a registry

in order to complete the model. The provider publishes their services to the system,
while the registry stores the service in the form of its service description. The registry
also enables the discovery of new services using the Universal Description Discovery and
Integration (UDDI) framework [102], and in some cases, it may provide further assistance
to the consumer such as selecting the services, workload balancing and scheduling [93].
Then, the consumers are able to request particular functionality from the SOA system.

In addition, the development of cross-organization systems are well supported through the
use of Web Services, defined as a “self-contained, modular business applications that use

standard interfaces over the Internet” [150]. Actually, web service has now become the
de-facto standard for most SOA approaches. It uses Web Service Definitions Language
(WSDL) [136] when specifying interfaces, and the two popular service-based protocols
for communication are Simple Object Access Protocol (SOAP) [96] and REpresentational
State Transfer (REST) [124].

The maturity of service computing has enabled the resurgence of a long-sought concept:
systems providing services to consumers as computing utilities. The idea of computing
utility was proposed as early as 1961 [59], in a speech given by John McCarthy to cele-
brate MIT’s centennial, where it was envisioned that networks would be highly developed,
mature enough to make “computer utilities” a reality and worked in a similar principle to
electrical and telephone utilities [48]. Through breakthroughs in research and technology,
there appears a number of distributed systems within the past few decades, such as the
peer-to-peer computing [128] and the grid computing [57]. Each of them with distinct
characteristics to pursue specific consumer objective in order to realize the version of
computing utility. Among them, Cloud computing is the most representative example.

2.1.3 Cloud Computing

The development of two major technologies increases the feasibility of Cloud comput-
ing: communication protocols and virtualization [34]. The former enables the formation
of potentially distributed resource pools because computer systems are able to interact
across the globe via the Internet. The latter enables the abstraction of computing resource

13

Chapter 2 Parallel Job Performance in Large-scale Computing Systems

from the physical infrastructure, in other words, users can dynamically add and release
computing resource on demand through a virtual management system [19]. A typical use
of the virtualization technology is the creation of Virtual Machine (VM)s, which are self-

contained environments containing encapsulated state and virtual computing resources.

Cloud computing becomes increasingly popular after Google introduces its new business
model of providing utility computing to consumers, in which computing resources, de-
velopment platforms or applications are provided to consumers as a service. The two
actors related to the Cloud service delivery are users and providers. Within the context
of Cloud computing, providers are defined as “entities that own and maintain the under-

lying infrastructure to provision computing service” [34]. Users are entities that require
computing power in order to achieve business objectives, which is defined as “the actor

responsible for creating and configuring the volume of tasks to be computed” [34].

Although the concept of Cloud computing has emerged for many years, there is still no
standard definition for it. One popular definition for Cloud computing is taken from the
National Institute of Standards and Technology (NIST), which states that Cloud comput-
ing is “a model for enabling convenient, on-demand network access to a shared pool

of configurable computing resources (e.g., networks, servers, storage, applications, and

services) that can be rapidly provisioned and released with minimal management effort

or service provider interaction” [92]. Furthermore, from an implementation perspective,
Cloud computing is defined as “a parallel and distributed system consisting of inter-

connected and virtualized computers that are dynamically provisioned and presented as

one or more unified computing resources base on service-level agreements established

through negotiation between the service provider and consumers” [32].

According to the level of system control, there are mainly three types of deployment
models: public Cloud, hybrid Cloud, and private Cloud [85]. They are mainly differ-
ent in terms of user access, system configuration, and security, etc. And according to the
abstraction of the service provided, Cloud computing has three major forms: Software-as-
a-Service (SaaS), representative examples including Gmail and Google Docs; Platform as
a Service (PaaS), with Google App Engine to be the representative example of this kind;
and Infrastructure as a Service (IaaS), with services such as Amazon EC2 fall into this
category. The relations of these three forms are shown in Figure 2.3. In addition, there
exist a number sub-categories that blur the boundaries of the three service models, includ-
ing Failure-as-a-Service (FaaS) [64], Security-as-a-Service (SECaaS) [2], Workflow-as-
a-Service (WFaaS) [90], etc.

14

Chapter 2 Parallel Job Performance in Large-scale Computing Systems

Figure 2.3: The Cloud service layer

There are four most essential features that distinguish Cloud computing as a unique com-
puting model [146], they are: (1) Pay-as-you-go: users pay for the use of computing
resources (such as storage and software) in an on-demand fashion; (2) Scalability: Cloud
providers integrate large amounts of resources from thousands of servers. There is no
up-front investment for users, so they can scale up or down rapidly whenever they want;
(3) Virtualization: the key technology to create a pool of resources with different phys-
ical resources, and to assign these resources dynamically; and (4) Internet Centric: all
public Cloud services are delivered over the Internet, so that users can easily access their
resources with variety of devices. Due to these characteristics, Cloud computing provides
a distinct advantage over traditional computing system models.

Cloud computing systems are typically deployed within datacenters or large-scale clus-
ters. Datacenters are often colocated within the same physical location in order to satisfy
common environmental and physical security requirements, as well as ease system main-
tenance [20]. The users of the datacenter are provisioned with physical space to purchase,
install and configure their own IT equipment, while the datacenter providers are respon-
sible for the physical security and operational environmental conditions.

Cloud computing supports the deployment of different services across application do-
mains, with the promise of potentially unlimited power and scalability, and achieved a
great success over the past decade. At the same time, there are other recent technological

15

Chapter 2 Parallel Job Performance in Large-scale Computing Systems

advances continuously been proposed, from which we observe some trend in the devel-
opment of computing models, such as moving Cloud resources close to users.

2.1.4 New Computing Models

One of the future trends is the proposition of the Internet of Things (IoT). The term
IoT was first coined in 1999 in the context of supply chain management [14], while re-
cently this definition has been more inclusive covering a wide range of applications such
as healthcare, transport, etc [15]. In the IoT paradigm, the objects in the environment
surrounding us will be linked to a network in one form or another, in which information
and communication systems are invisibly embedded. Technologies such as the Radio Fre-
quency IDentification (RFID) [56], Wi-Fi [18], and sensor network [161] are supporting
this new design into reality.

The unprecedented scale of interconnected objects will result in the generation of enor-
mous amounts of data, which have to be stored, processed and presented in a seamless,
efficient, and easily interpretable form [63]. Cloud solutions can improve Quality of
Service (QoS) for applications in multiple domains, and available platform such as Ama-
zon IoT [70] demonstrates the success of Cloud-centric IoT programming models and
resource orchestration techniques. However, there are still some challenges to the pure
Cloud-centric solution. Some examples are: offloading huge data in the Cloud comes
with associated communication costs, latency issues, and privacy concerns, etc. The edge
computing [132] model, which calls for processing the data at the edge of the network,
has been proposed to solve these challenges. Figure 2.4 provides an overview of a typical
environment that comprises a Cloud, edge, and mobile edge ecosystem [99].

Figure 2.4: The Cloud, edge, and mobile edge ecosystem [99]

16

Chapter 2 Parallel Job Performance in Large-scale Computing Systems

Besides edge computing, other forms of computing models such as the fog computing

[86] and the osmotic computing [149], etc. are widely discussed within the community as
well. The former one is focusing on mobile users, and the latter one is aiming at highly
distributed and federated environments over both edge and Cloud infrastructures.

2.2 Parallel Computing and Execution Performance

Parallel computing has emerged as a means to leverage massive-scale computing infras-
tructure for data-intensive applications, in which parallel computation tasks are executed
on multiple machine nodes by systems that automatically provide locality-aware schedul-
ing, fault tolerance, and load balancing. The MapReduce framework [46] pioneered par-
allel computing model, and systems such as Hadoop [133], Spark [164] and YARN [147]
generalized its population. This section focuses on introducing the fundamental principles
of these parallel computing frameworks.

2.2.1 Basic Concepts in Parallel Computing

Basic concepts of parallel computing including cluster, job, and task, are first introduced
in order to better understand the further discussion. A cluster is defined as “a series of in-

dependent machines connected together by a network and through the use of middleware

creating the illusion of a single system by abstracting the underlying infrastructure from

users and reducing system complexity” [31]. Large clusters are typically used in solving
complex computing problems since they can deliver the capability at a reduced cost in
comparison to traditional supercomputing systems. Under most circumstances, a cluster
is composed of heterogeneous server nodes, varying in terms of the physical capacity of
memory and CPU.

The workload is defined as “the amount of work assigned to, or done by, a client, work-

group, server, or system in a given time period” [50]. Tasks are defined as “the basic

unit of computation assigned or performed in the Cloud”, and a parallel job is consists of
multiple related tasks working towards a common objective.

Figure 2.5 [120] shows the simplified model of the states through which a task progresses.
A task will be assigned to the “pending” state when it is waiting to be allocated after being

17

Chapter 2 Parallel Job Performance in Large-scale Computing Systems

Figure 2.5: The task lifecycle

initially submitted by the user or re-submitted by the task scheduler. Once the scheduler
finds a suitable server to allocate the task and the task is deployed, the status will be
changed to “running”. When a task successfully finishes execution, it will transit to
“complete” status and will subsequently be removed from the system. The task that is
de-scheduled without successful completion will be transited to “dead” status.

Tasks have properties that describe their behavior. These attributes include the execution
length and the amount of resource utilized as well as which job it belongs. Furthermore,
Tasks can be characterized by the constraints which limit where the task can be executed.
Such constraints include requiring a specific server hardware architecture, or geographical
location due to security and privacy constraints.

The cluster scheduler is in responsible for addressing such challenge of appropriately
scheduling tasks in the cluster, managing tasks and arbitrating resources between them
[118]. This entails tracking machine liveness; starting, monitoring, and terminating tasks;
and to decide task placements. Cluster schedulers are different from traditional OS/CPU
schedulers, which are invoked for brief periods of time during context switches, and block
a user-space process while making their decision. A cluster scheduler runs continuously
alongside the cluster workload; its scheduling decisions last for a longer time; and it has
more diverse and complex design goals than a single-machine CPU scheduler. Repre-
sentative cluster schedulers include Mesos (2011) [67], Omega (2013) [130], Fuxi (2014)
[166], Apollo (2014) [28], Borg (2015) [148], and gSched (2017) [37], etc.

Within the context of this dissertation, when referring to the term of scheduler, we are
talking about cluster schedulers. Existing schedulers are differed in their architecture: the
degree to which decisions are made in a centralized or distributed fashion. Figure 2.6
[129] details two different cluster scheduler architectures: the monolithic scheduling ar-

18

Chapter 2 Parallel Job Performance in Large-scale Computing Systems

Figure 2.6: Different architectures of the cluster scheduler [129]

chitecture and the two-level scheduling architecture, with circles representing tasks and
rectangles standing for machine nodes within the cluster. Figure 2.6 (a) represents the
monolithic scheduler, where all tasks run through the same scheduling logic with a single
scheduler process running on one machine. This design is simple and uniform, however
meets bottleneck handling mixed workloads. In addition, overloaded scheduler can easily
encounter single point failure, and there is an obvious limitation in large-scale resource
management due to complex states. This is why in the design of the two-level scheduler
shown in Figure 2.6 (b), resource allocation and task placement are separated. Represen-
tative implementations of each scheduler type is discussed in Section 2.2.3.

Based on these fundamental definitions of parallel jobs, tasks, and cluster schedulers, we
now introduce the popular parallel computing frameworks.

2.2.2 MapReduce Framework

The most popular parallel programming model over the past years is the MapReduce
framework. Defined by Google, MapReduce is “a programming model and associated

implementation for processing and generating large datasets” [46].

The MapReduce framework is commonly used for dividing work across large-scale com-
puting systems since it enables automatic parallelization and distribution of computations,
and it can simplify the complexity of running distributed data processing functions across
multiple nodes in a cluster. Figure 2.7 [46] illustrates the MapReduce procedure where
all actions are logically carried out following the sequence marked. The corresponding
meanings of each step are as follows:

19

Chapter 2 Parallel Job Performance in Large-scale Computing Systems

Figure 2.7: The MapReduce workflow [46]

1. Fork: The MapReduce library in the user program splits the input files intoM pieces,
the size of which can be controllable by the user via an optional parameter.

2. Assign Map / Reduce: Among the program copies there is a special one called the
master, while the rest are called the workers. The master picks idle workers and
assigns each one with a Map task (Mapper) or a Reduce task (Reducer).

3. Read: The worker who is assigned with a Map task reads the contents of the corre-
sponding input split. It parses key/value pairs out of the input data and passes each
pair to the user-defined Map function.

4. Local write: The intermediate key/value pairs produced by the Map function are
written to the local disk, partitioned into R regions by the partitioning function. The
locations are passed back to the master which is responsible for forwarding these
locations to the Reducers.

5. Remote read: When a Reducer is notified by the master about the locations, it uses
remote procedure calls to read the data from the Map local disks. When the Reducer
has read all intermediate data for its partition, it will sort them by the intermediate
keys so that all occurrences of the same key are grouped together. Sorting is needed
because typically multiple keys will be mapped to the same Reducer.

6. Write: The Reducer iterates over the sorted intermediate data. For each unique in-
termediate key encountered, the Reducer passes the key and the corresponding set of
intermediate values to the Reduce function. The outputs will be appended to a final
output file for each Reduce partition.

20

Chapter 2 Parallel Job Performance in Large-scale Computing Systems

These procedures and the related concepts are important when talking about problems
observed in such model. For example, according to the design, the Mappers should be
reading local input files, when the cluster scheduler fails to achieve this goal, the MapRe-
duce job performance would experiencing a sharp fall. More performance challenges will
be analyzed in the following sections.

Google MapReduce is an extraordinary innovation in parallel computing after the Message
Passing Interface (MPI) technique [62], and there are a lot of open-source implementa-
tions such as Hadoop, Spark, and YARN.

2.2.3 Open-Source MapReduce Implementations

Apache Hadoop [133] is the most popular open-source version of the MapReduce frame-
work, and achieves a huge success among past few years: Google, Yahoo!, Facebook,
Amazon use it to build their Cloud services [12], manage and process terabytes of data
per day. Web data-intensive applications, scientific data-intensive applications (e.g., natu-
ral language processing) prefer to employ the Hadoop system because it has been applied
with a high degree of reliability, extensibility, effectiveness and fault tolerance, and all of
those are transparent to programmers.

Figure 2.8: Refinement of the Map and the Reduce phases for Hadoop

A typical Hadoop job can be divided into a Map phase and a Reduce phase in coordinate
with the MapReduce framework. To be more specific, Map phase can be further refined to
the Map function execution (M1) and the sort/partition (M2) sub-phases. A Reduce task
can be divided into sub-phases of copy or shuffle (R1), sort (R2) and Reduce function

execution (R3). Figure 2.8 illustrates these sub-phases. Hadoop runs several Map and
Reduce tasks concurrently on each machine node, two of each by default, controlled by

21

Chapter 2 Parallel Job Performance in Large-scale Computing Systems

Figure 2.9: The Hadoop V1 architecture

the parameter called task slot, which is defined as “the maximum number of parallel Map

and Reduce tasks that can run on a slave node” [154].

The detailed Hadoop architecture is shown in Figure 2.9. The per-machine daemon Task-
Tracker informs the centralized JobTracker when there are empty task slots available for
tasks to be assigned. Users submit jobs directly to the JobTracker, the central arbiter of the
cluster responsible for admission control, tracking the liveness of TaskTrackers through
periodical heartbeat, re-execute tasks whose output becomes unavailable, launching tasks
speculatively, reporting job status to users, recording audit logs and aggregate statistics,
authenticating users, etc. Such design belongs to the monolithic scheduling architecture
discussed in Section 2.2.1.

The Hadoop system evolves into the second version, Hadoop V2 or Hadoop YARN, de-
coupling the JobTracker into Resource Manager (RM) and Application Master (AM)
in order to solve the aforementioned challenges that inspire the design of the two-level
scheduling architecture in Section 2.2.1. The system model of YARN is shown in Figure 2.10:
RM is the global resource manager that manages cluster resources; Node Manager (NM)
is the new per-node slave that responsible for launching containers, monitoring resource
usage (CPU, memory, disk, network, etc) and reporting back to the RM. The AM is in

22

Chapter 2 Parallel Job Performance in Large-scale Computing Systems

Figure 2.10: The Hadoop YARN architecture

charge of job scheduling and monitoring (one AM per application). Detailed responsibil-
ities of AM include job creation, resource requests from the RM, communications with
the NM to run containers, job running status report and speculation. All these functions
are implemented in an event trigger mechanism shown in Figure 2.11.

Figure 2.11: The events handled by YARN AM

There are other popular parallel computing systems focusing on specific type of applica-
tion optimization such as Spark [164]. The Hadoop or the YARN systems are built toward
an acyclic data flow, which is not suitable for some of the popular applications. Spark is
designed for such application that reuses a working set of data across multiple parallel
operations. One representative example is iterative machine learning algorithms, which
applies a function repeatedly to the same dataset to optimize a parameter, e.g., through

23

Chapter 2 Parallel Job Performance in Large-scale Computing Systems

gradient descent, while each iteration can be expressed as a MapReduce job.

There are other systems that also focus on iterative programs, which arise naturally in ap-
plications including data mining, web ranking, graph analysis, and model fitting, among
them are Twister [49] and HaLoop [29][30]. Twister is an enhanced MapReduce runtime
with an extended programming model that supports iterative MapReduce computations.
It uses a publish/subscribe messaging infrastructure for communication and data transfer,
and provides programming extensions to MapReduce with “broadcast” and “scatter” type
data transfers. For the latter, HaLoop allows iterative applications to be assembled from
existing Hadoop programs without modification, significantly improves job execution ef-
ficiency by creating an inter-iteration caching mechanism, and proposes a loop-aware
scheduler to exploit these caches. In addition, it retains the fault-tolerance properties of
MapReduce through automatic cache recovery and task re-execution.

Within this thesis, general performance challenge such as the straggler behavior in par-
allel job execution is discussed, instead of a specific optimization for a target type of
application, therefore in later sections, we simply use Hadoop YARN as a showcase for
proposed algorithms.

2.3 Performance Challenges in Parallel Execution

Parallel computing systems can be characterized by five fundamental properties: func-
tionality, performance, cost, security and dependability [17]. Services have functional
and non-functional requirements in terms of performance. Specifically, the functional re-
quirement is the intended purpose of the system, the business logic offered for end users.
The non-functional requirement denotes the features of the service, such as the execu-
tion time, etc. In this section, the fundamental concepts of performance are introduced,
followed by a detailed introduction to a specific performance challenge encountered by
parallel computing frameworks in time: the straggler problem.

2.3.1 Basic Concepts in Performance Challenge

The quality and performance of the service provided are important in Cloud computing
systems, while the level of service required by users can vary significantly depending on
their business objectives. As a result, it may not be possible to fulfill all expectations for

24

Chapter 2 Parallel Job Performance in Large-scale Computing Systems

all users from a service provider’s perspective, hence, a trade-off needs to be made via a
negotiation process.

Providers and users commit to a Service Level Agreement (SLA) as a result of the nego-
tiation between user requirements and provider’s ability to fulfill those expectations. The
SLA is defined as “a firm definition of the service agreement between service providers

and users, which includes service level guarantees, parameters and actions required in

the case of violation” [117], and it details the level of acceptable service [108]. Service
parameters are measurable representations of obligations in order to measure whether
service has been satisfactorily provisioned [87] among service parties.

Typical parameters of Cloud SLAs include availability, performance, monitoring, cost,
security and reliability [8]. One element provisioned and enforced by the SLA is the
Quality of Service (QoS), which comprise of a large number of parameters, ranging from
performance, real-time and security constraints of the service. Parameters of interest are
dependent on business objectives, for example, soft real-time applications typically em-
phasize a boundary on acceptable response time. A timing failure [16] occurs when this
time frame is violated. Service providers use the SLA to optimize their infrastructure to
meet the agreed terms of service, whilst service users use it to ensure that the agreed QoS
has been fulfilled. QoS deadline constraint is considered by a lot of research, focusing
on different aspects. Some work emphasize the resource management perspective [142],
while some explore how the data locality influences QoS, and etc. To fulfill the timing
requirement is a very important branch of the performance research.

Apart from above, there are many performance challenges parallel computing systems
could encounter. For example in MapReduce clusters, each node may serve as both com-
pute node and data node, therefore tasks could be scheduled on the node containing the
task’s input data. “Data locality” is used to describe whether a task is executed close to the
data. Research in [152] show that for their reference job, although 98% of the tasks run-
ning on the node containing the data and another 1% of the tasks running in the same rack
as the node containing the data, there is still 1% of the tasks encounter the data locality
challenge which may incur significant performance penalties.

User behavior impacts data locality as well, for example, the number of Map tasks config-
ured by the user. Work in [163] claims that, according to their observation, the same rack
locality reaches 90% at about 100 Maps per job, and goes up to about 98% as the num-
ber of Maps per jobs increases, and the same node locality reaches 90% at about 7,500
Maps per job and goes up to about 92% as the number of Maps per job increases. Besides

25

Chapter 2 Parallel Job Performance in Large-scale Computing Systems

this, user behavior can influence a wider variety of system performance. For example, the
task submission rate in Cloud computing impacts resource usage [97], hence influences
letency and energy efficiency [111]. Due to the importance of the user behavior towards
Cloud application efficiencies, there are a lot of work focusing on user behavior/demand
predictions such as [113] and [110].

Besides user behavior, different workload type leads to different performance challenge
as well. Some workloads have repetitive patterns, also named as periodic workload [112].
For example, the Wikipedia workload has a diurnal pattern where requests arrive at a
more intense rate during the daytime rather than at night [3]. Some workloads have weak
patterns or no patterns at all (also referred as random workload), while other workloads
have encounter uncorrelated spikes and bursts due to unusual events [91][26]. Workloads
can also be classified by their function. Example workloads such as batch processing are
normally used for computationally intensive scientific computing [24][105], and latency-

sensitive are typically seen in real-time applications [74]. Table 2.1 lists some common
examples of workloads within Cloud environments, identified by IBM [139].

Table 2.1: Classification of typical Cloud workloads

Workload Type Description / Examples
Analytics Business analytics, data mining, temporal and spatial patterns within

submitted datasets
Gaming Latency sensitive gaming applications

Web Applications eCommerce, Java application, web searching
Batch Processing CPU intensive render farms for 3D modelling, visualization of large

scale geo-data and performing large numerical calculations
MapReduce Large-scale data analytics applications

The machine and workload heterogeneity and variability, the highly dynamic yet poorly
predicted resource demands and availability, are the major issues faced by efficient job
execution in Clouds [121]. Among the many parallel job performance challenges, there is
a noticeable topic hindering service timing boundary fulfillment that attracts our attention:
the straggler problem. The details about this problem is discussed in the following section.

2.3.2 The Straggler Problem

The straggler behavior describes the phenomenon when a distributed job - composed of
multiple tasks executing in parallel - incurs a significant delay in completion time due to a

26

Chapter 2 Parallel Job Performance in Large-scale Computing Systems

Figure 2.12: Task duration pattern for jobs exhibiting stragglers in the Google cluster.

small subset of its parallelized tasks - known as stragglers - performing much slower than
the other sibling tasks. Under the parallel computing assumption, the final result of a job,
excepting the approximate ones, will not be generated unless all results from its sub-tasks
are being calculated, thus the straggler completion impedes overall job completion [162].

In order to better illustrate the straggler problem, we depict the execution pattern figures
for four completed parallel job within a Google cluster [145] [120] in Figure 2.12, the
detailed introduction of the Google dataset is given in Section 3.1. From the figure it is
observable that, although each job exhibits different task size and duration, they are all
characterized by a tailing shape, with the slowest task taking up to more than 10 times
longer compared to average duration. As a comparison, Figure 2.13 portraits another two
normal parallel jobs within the same cluster that do not contain stragglers, with approxi-
mately the same durations for all subtasks.

The straggler problem is intensively discussed under the MapReduce framework, an intu-
itive example is shown in Figure 2.14, running a MapReduce job (wordcount) in our own
Hadoop cluster deployed upon 10 Virtual Machine (VM), with the VM provided by the
University cloud testbed running OpenNebula service [144]. A very clear Reduce strag-
gler can be observed from this example, taking more than twice the duration compared
with other sibling Reducers. We define the jobs that suffer from the straggler problem as

27

Chapter 2 Parallel Job Performance in Large-scale Computing Systems

Figure 2.13: Task duration pattern for normal jobs without stragglers in Google.

the tailing jobs within this thesis, and there exist other terms representing similar meaning
in other literature, including the term “outlier problem” used in [5], and the term “long
tail problem” used in [45].

Figure 2.14: Task duration pattern for an example MapReduce job with a Reduce straggler

Stragglers directly lead to two consequences: service late-timing failure and resource
waste. For the former, extended response time increases the possibility of QoS timing
constraint violation, while for the latter, committed computing resources are wasted on
waiting because they cannot be assigned to other users with other tasks. In addition, user
satisfaction will be affected if the rapidness of service response time cannot be guaranteed.

Stragglers are not exceptional cases that tasks rarely encounter, on the contrast, they are a
common phenomenon that undermines parallel computing efficiencies, and becomes in-
creasingly severe in the face of increased system scale. Industry system such as Google
measures that, the slowest 5% of the requests to complete is responsible for half of the
total 99%-percentile latency in their production cluster, and in the face of system scale
growth, the probability of longer latency increases [45]. A research based on data col-
lected from Microsoft Bing’s production cluster claims that, 80% of the stragglers (the

28

Chapter 2 Parallel Job Performance in Large-scale Computing Systems

term outliers is used in their research, which is a synonym for stragglers) have a uniform
probability of being delayed by between 150% to 250% compared to the medium job
duration, while 10% take more than 1000% the median duration [5].

The straggler problem is a general challenge in the parallel computing field, and can be
observed in many environments rather than only limited within large-scale clusters. This
includes environments such as multi-core computers [82] or Internet-scale applications
[165]. Within this thesis, we mainly focused on stragglers observed in large-scale com-
puting systems that act as the infrastructure supporting Cloud services.

2.3.3 Straggler Related Formulation

As mentioned previously, some literature call straggler problem as the “long tail problem”
due to the fact that the job encounters the straggler behavior normally exhibits a tailing-
shaped task execution distribution. In mathematics, there is a concept named long tail

distribution. Let F be a Cumulative Distribution Function (CDF) and let the associated
complementary Probability Density Function (PDF) be F c(x) = 1− F (x). Then, a long
tail distribution (also known as fat tail or heavy tail) is defined as the distribution when its
F c decays slower than exponential [54], i.e., for all γ > 0

lim
x→∞

eγxF c(x) =∞ (2.1)

In contrast, a short tail distribution is defined as a distribution that with a F c decaying
exponentially, i.e., there exists some γ > 0 such that

lim
x→∞

eγxF c(x) = 0 (2.2)

These definitions given in Equation 2.1 and Equation 2.2 are intended for general clas-
sification, and do not describe the actual decay rates of F c well. In other more specific
definitions such as the one in [151], a typical long tail is described as a polynomially
decaying distribution that, for t > 0,limx→∞

F c(tx)
F c(x)

= t−ξ if ω(F) =∞

limx→0+
F c(ω(F)−tx)
F c(ω(F)−x) = tξ if ω(F) <∞

(2.3)

29

Chapter 2 Parallel Job Performance in Large-scale Computing Systems

where ω(F) represents the upper end point of FX(x)

ω(F) , sup{x : FX(x) < 1} (2.4)

The lower case in Equation 2.3 corresponds to the case that F c has a heavy tail with a
finite upper bound. Similarly, the short tail is described that, there exists η(x) > 0 for

lim
x→ω(F)−

F c(x+ tη(x))

F c(x)
= e−t (2.5)

To simplify the understanding, we illustrate these definitions with two graphs as shown in
Figure 2.15, the PDF and CDF of exponential distribution and Pareto distribution. Among
these two, exponential distribution is a short tail distribution in mathematical definition,
while Pareto distribution is a famous long-tail distribution.

Figure 2.15: The (a) PDF and (b) CDF of the exponential and pareto distribution.

From the figure, especially the PDF figure, it is shown that, compared to the exponential
distribution, it is better to use Pareto distribution when modeling task duration patterns of
a parallel job, because it can better describe the extreme slow stragglers when they occur
at a low possibility. Other long-tail distributions includes Weibull distribution, and etc.

2.4 Overview of Straggler Mitigation Techniques

Given the challenge of handling stragglers and their impact toward system performance,
this section introduces the existing prevalent techniques related to straggler mitigation.

30

Chapter 2 Parallel Job Performance in Large-scale Computing Systems

2.4.1 Speculative Execution and Its Variations

Speculative execution is the most popular method used in eliminating the straggler prob-
lem. It first identifies a straggler and launches a replica task of that straggler which typi-
cally performs identical work; then it will adopt the result of whichever copy that finishes
first to complete the job and abandon the other slower one. The main idea of the naive
speculative execution is shown in Figure 2.16. At time t0, the four parallel tasks TjA, TjB,
TjC and TjD are laughed, with initial estimated completion time computed. The system
monitors the progress of these four tasks, at time t1, the completion time of task TjA is
estimated to be much larger (exceeds a threshold) than the average completion and be
identified as a straggler. As a result, a speculative copy TjE is launched at time t2 to mit-
igate TjA. In the end, at time t3 when TjB, TjC , TjD and TjE are finished, the scheduler
will adopt the result from TjE and kill TjA.

Figure 2.16: Schematic diagram of the speculative execution algorithm

Based on the above analysis, it is known that, the identification of stragglers plays an im-
portant role in speculative-based approaches, and it is largely influenced by the straggler
threshold, which is defined as “a ratio number that calculates the difference between

an individual task and average task progression for a job, representing to what extent a

slower task should be defined as a straggler within the system”. Currently, there are three
popular types of threshold in state-of-the-art literature, they are:

• Progress Score (PS) based threshold

Hadoop’s default speculative mechanism uses the metrics of PS, ranging from 0 to 1,
to measure the execution progress of a task [155], the calculation of which is given in
Equation 2.6

31

Chapter 2 Parallel Job Performance in Large-scale Computing Systems

PStji =

L/N For Map tasks

1/3 ∗ (P + L/N) For Reduce tasks
(2.6)

where PStji represents the progress score of task Tji at time stamp t, the ith task of job Jj .
The value of PStji is bounded between 0 to 1, representing the start and the end point of
Tji, respectively. For a Map task, PS is the fraction of input data read. In Equation 2.6,
the number of key/value pairs need to be processed is denoted by N , while L stands for
the number of key/value pairs that have already been processed. For a Reduce task, the
execution is divided into the copy phase, the sort phase and the reduce phase. Detailed
functionalities of these three phases is introduced in section Section 2.2.3. Each phase
accounts for 1/3 of the final PS. This even weighting can be modified through changing
scheduler settings, for example the work of [40] assigns different weightings based on
historical data to calculate more accurate PS for straggler identification. The number of
finished phases is represented by P , and within each phase, the score is the fraction of
data processed. For example, 0.667 for a Map task means two thirds of key/value pairs
have been processed, while 0.667 for a Reduce task indicates it has finished the copy and
sort phases, and will shortly commence the reduce phase.

When adopting this type of threshold, the scheduler identifies a task Tji as a straggler only
if when PStji ≤ Thj ∗ PSj , where PSj is the average PS of all tasks belonging to job
Jj and Thj is the threshold. This type of threshold has an unavoidable limitation where
tasks that have completed more than the pre-defined progress can never be speculatively
executed. For example, according to the definition, if we define stragglers as the tasks
with a PS 20% less than average PS for a certain job, than the straggler phenomenon after
80% PS will never be tacked by the system. To avoid this problem, the progress rate based
threshold is proposed and adopted for straggler identification.

• Progress Rate (PR) based threshold

The calculation of PR is defined in Equation 2.7, dividing the PS with the corresponding
elapsed time, and is a metrics used to measure the task’s processing speed.

PRt
ik =

PStik

t− tTji0

(2.7)

In the equation, tTji0 represents the start time of Tji while t denotes the current time stamp.

32

Chapter 2 Parallel Job Performance in Large-scale Computing Systems

To note that, in reality, due to queueing reasons, tTjk0 and tTjp0 (k 6= p) can be different
time stamps. However in our model, we simplify the case with the assumption that tTjk0 =

t
Tjp
0 . We adopt this assumption in the following context of the thesis unless specifically

pointed out. Similarly with the previous threshold, a task will be identified as a straggler
if PRt

ji ≤ Thj ∗ PRj . Dolly [6] uses this type of threshold, identifying stragglers as the
tasks with PR less than 50% of the average PR compared to their siblings, in which case
Thj = 50%. Worth mentioning, Wrangler [159] uses the PR reciprocal as the threshold,

represented as nd(Tji) and calculated as t−t
Tji
0

PSt
ik

, identifying stragglers as the tasks that
fulfill the condition of nd(Tji) ≥ β ×median

∀Tji∈Jj
{nd(Tji)}.

This type of threshold comes with its own limitations as well: the PR can change during
different progress phases. Taking the following scenario as an example, if task T11 is
three times slower in PR than the average yet has a PS of 0.9, while task T12 is two times
slower but is only at 10% of its execution lifecycle, a PR based threshold would detect
T11 as a straggler due to its slower progress rate than T12. However in reality, it is T12 that
will significantly impede total job completion time. This shortcoming inspires the timing
based threshold.

• Estimated Completion Time (ECT) based threshold

ECT tji is calculated following Equation 2.8.

ECT tji = t+
1− PStji
PStji

(t− tTji0) (2.8)

This type of threshold focuses on the actual remaining time and performs better in im-
proving final response, and is the most commonly used threshold type. For example, the
LATE speculator [162] uses it and achieves an improvement by a factor of two compared
with Hadoop V1, and Mantri [5], another popular method adopts this type of threshold,
gets a further 32% improvement in completion time.

To note that, within the scope of this thesis, the notion ECT tj and DJj are different in
meaning. The former is the estimated completion of job Jj at time t, while the latter is
the actual duration of Jj when it finishes. Similarly, ECT tji and DTji are not the same as
well. Within the MapReduce model, DJj = max

Tji∈Jj
{DTji}, and the notion DJj used in the

thesis represents the average duration of all Tjis belong to Jj .

• Other thresholds

33

Chapter 2 Parallel Job Performance in Large-scale Computing Systems

There are some other types of threshold used in specific systems out there, for example,
the Fuxi scheduling system in AliCloud [166] adopts a threshold of Degree of Straggler
Index (DoS-Index) to measure the relative speed of data processing, defined in Equation 3.1;
Wrangler [159] uses nd (Tji) defined as the ratio of task execution time to the amount of
work done (bytes read/written) by task Tji, and etc.

There are some methods follow another way when identifying stragglers to avoid the time
wasted on waiting in the “wait, identify, react” methodology. Instead of setting a straggler
threshold, they try to set a proportion threshold for speculation, either from the beginning
along with other normal tasks or throughout the whole job execution period. For example,
the work in [6] adopts a full cloning methodology that launches two copies of each task
regardless of the execution status, which wasted a lot of resources on non-straggler tasks.
D. Wang, etc analyzed a resource performance tradeoff for setting this type of propor-
tion threshold in the work of [151]. Hadoop YARN speculator sets a speculator number
threshold, indicating a methodology that, as long as this number of upper bound limit is
not met, the system will always pick up a current task with the longest ECT to do the
speculation.

Besides the naive speculation policy, there are huge numbers of variation algorithms been
proposed over the past few years based on the speculative scheme [77]. Representa-
tive works include LATE [162], Mantri [5], MCP [38], Coworker [69], Bobtail [157],
CREST [81], eSplash [153], Wrangler [159], Hopper [122], Grass [7], and etc.

LATE [162] is the most popular speculation-based method that targets at heterogeneous
environments. It is the first literature that proposes the concept of the Longest Approx-

imate Time to End (LATE), and uses it as the metrics when measuring stragglers. In
addition, to handle the fact that speculative tasks cost resources, the authors augment the
algorithm with two heuristics: (1) a cap on the number of speculative tasks that can be
running at once, which is denoted as the SpeculativeCap, and (2) a SlowTaskThreshold

that determines whether a task is “slow enough” to be speculated upon, which prevents
needless speculation when only fast tasks are running.

Mantri [5] is another influential variation method based on the speculative scheme since
LATE, and it monitors tasks and culls outliers based on their causes. Mantri performs
intelligent restarting of outliers: a task that runs for long because of the imbalanced work
will not be restarted. And if a task lags due to reading data over a low-bandwidth path,
it will be restarted only if a more advantageous network location becomes available. In
addition, Mantri protects against data loss induced re-computation through a cost-benefit

34

Chapter 2 Parallel Job Performance in Large-scale Computing Systems

analysis: upon a task’s completion, Mantri replicates its output if the benefit of not having
to recompute outweighs the cost of replication. Following these three main strategies:
restarting outliers cognizant of work imbalances, network-aware placement of tasks and
protecting outputs of valuable tasks, Mantri runs live in all of Bing’s production clusters
and achieved a very good result.

The MCP algorithm [38] improves speculation through the usage of both PR and process
bandwidth within a phase (phase here refers to the sub-phases within Map and Reduce
procedures) to select slow tasks, based on the observation that the time duration ratio
of phases varies a lot in different types of jobs and environments. In addition, this smart
speculation strategy uses exponentially weighted moving average to predict process speed
and calculate a task’s remaining time, and determines which task to backup based on the
load of a cluster using a cost-benefit model, with the cost to be the computing resources
occupied by tasks, and the performance to be the shortening of job execution time and the
increase of the cluster throughput.

Similarly, the SAMR algorithm [40] also improves the progress prediction through fine-
grained phase level tunning. It adjusts the time weight of each stage of Map and Reduce
tasks according to the historical information, and updates the stored information on every
node after every execution. ESAMR [137] is the enhanced version of SAMR that takes
consideration of not only hardware heterogeneity, but also different job types and sizes,
which also affect stage weights.

Coworker [69] proposes an idea of using coworkers to help with stragglers. In tradi-
tional speculation, duplicate tasks are launched on other nodes to process the same data
as the stragglers. Any completion of these copies implies the finish of the task, and the
other duplicate attempt can then be aborted. However, aborting task misspends resources.
Coworker is proposed to solve this problem. Similar to speculation, a coworker executes
on another node, however, instead of processing identical data, the coworker parcels out
data between itself and the straggler. In other words, the coworker cooperates with the
straggler to finish the task rather than compete with it. The authors also design a heuristic
method to find out the most favorable data size for the coworker to achieve the shortest
completion time according to the PR of the straggler and the coworker. Through this way,
not only resource misspending is solved because no tasks are aborted, but also a shorter
completion time than the original speculation can be achieved because no work is wasted.

Bobtail [157] focuses on Cloud environments and cares about the characteristic of vir-
tualization. In the paper, the authors claim that virtualization used in platforms such as

35

Chapter 2 Parallel Job Performance in Large-scale Computing Systems

Amazon Elastic Compute Cloud (EC2) exacerbates the long tail problem by factors of
two to four compared to those observed in dedicated centers. And one big reason behind
this phenomenon is the co-scheduling of CPU-bound and latency-sensitive tasks. While
sharing is inevitable in multi-tenant Cloud computing, the Bobtail system is designed
to proactively detects and avoids these bad neighboring Virtual Machine (VM)s without
significantly penalizing node instantiation. Cloud customers can use Bobtail as a utility
library to decide on which instance to run their latency-sensitive workload.

CREST [81] is also an algorithm that designed for Cloud environments rather than lo-
cal clusters which assume insufficient bandwidth. Most of the methods, such as LATE,
implicitly assume that the time cost for data movement on launching speculative task
is trivial, which does not always stand for the virtualized Hadoop clusters in campus
Clouds. In this paper, the authors propose a combination re-execution scheduling tech-
nology (CREST), which can achieve the optimal running time for speculative Map tasks
and decrease the response time of MapReduce jobs. The main idea is that, re-executing
a combination of tasks on a group of computing nodes may progress faster than directly
speculating the straggler task on a random target node due to data locality.

There are other works that also take the target node into consideration when doing spec-
ulation. For example, eSplash [153] focuses on the identification of straggler nodes and
effectively launch speculative tasks through avoiding such nodes. In the algorithm de-
sign, a performance vector is maintained by each node. The dimension of the vector is
the number of distinct type of tasks this node has ever finished, and each value in the vec-
tor is the execution time of each type of tasks. The scheduler clusters all the nodes into
multiple groups by using k-means. The system then detects the abnormally slow node by
comparing the task performance on the node with the statistic data for the group it belongs
to, and submit the speculative request with parameters that guide the future execution.

Wrangler [159] is a proactive method which avoids situations that cause stragglers. The
initial idea is first proposed in work [158], which performs regression using the node-level
statistics such as CPU/memory utilization to predict the task execution time, and using a
decision tree based approach to generate interpretable rules that the cluster scheduler can
easily use. These rules can guide the scheduler to a task assignment that avoids or min-
imizes the number of stragglers. Wrangler further improves itself in aspects of training
times, and automate the whole learning process. Furthermore in [160], the enhanced
Wrangler introduces a notion of a confidence measure to overcome the modeling error
problems. This confidence measure is then exploited to achieve a reliable task scheduling

36

Chapter 2 Parallel Job Performance in Large-scale Computing Systems

with all the predictions toward situations that may cause stragglers.

There are some algorithms that function through enhanced scheduling that bearing spec-
ulation in mind. For example, Hopper [122] is a method that design the cluster scheduler
through the coordination of scheduling and speculation, based on the fact that scheduling
a speculative copy of a task has a direct impact on the resources available for other jobs.
The key insight behind Hopper is that, a scheduler must anticipate the speculation require-
ments of jobs and dynamically allocate capacity depending on the marginal value of extra
slots in terms of performance, which are likely to be used for speculation. One advantage
of the Hopper scheduler is that it is compatible with all current speculation algorithms.

Grass [7] is an algorithm that targets at a special type of application: the approximation
jobs. In big data analytics, timely results, even if based on only part of the data, are often
important. For this reason, approximation jobs that require only a subset of their tasks to
complete, are projected to dominate big data workloads. This type of jobs normally have
either a deadline bound or an error bound, and the key idea of Grass is to dynamically
prioritize tasks based on the deadline/error-bound while choosing between speculative
copies for stragglers and unscheduled tasks, delicately balances immediacy of improv-
ing the approximation goal with the long-term implications of using extra resources for
speculation. Other research that also targets at approximate jobs include [68] and [76].

Each of the related work has its own characteristics in terms of suitable target environment
or straggler type. Stragglers can occur due to many reasons, not only from the application
itself (such as a badly designed program that easily leads to unbalanced workload), but
also from the execution environment perspective (for example, a disk fault, or a CPU
over-heating). The next section focuses on introducing the literature that explores those
reasons.

2.4.2 Straggler Root Causes

Considering the cause of straggling tasks, [38] categorizes them into internal and external
reasons under the MapReduce background. Internal causes are the ones that can be solved
by the MapReduce service provider, such as the block size configuration in the fork pro-
cedure, slot number parameter, and etc., while external reasons are the ones that cannot
and are more relied on user behavior and system environment.

For internal reasons, [73] refines MapReduce jobs into (i) Map-only jobs, (ii) Map-mostly

37

Chapter 2 Parallel Job Performance in Large-scale Computing Systems

Table 2.2: Straggler reasons (external) and corresponding meanings

Shared Resources
Machines might be shared by different applications contending
for shared resources, such as CPU cores, memory bandwidth,
and network bandwidth

Global Resource
Applications running on different machines might contend for
global resources such as network switches and shared file
systems

Daemons
Background daemons may also compete for resources and cause
hiccups

Maintenance Activities
Background activities such as data reconstruction in distributed
file systems, periodic log compactions in storage systems

Queuing
Multiple layers of queuing in intermediate servers and network
switches

Power Limits
Modern CPUs are designed to mitigating thermal effects by
throttling if it run above average standard for a long period

Garbage Collection
The need for solid-state storage devices to periodically collects
garbage data blocks

jobs, and (iii) Reduce-mostly jobs, and determines which Hadoop specific parameters
have the most influence on each kind of job’s completion time by using one-way Analysis
of Variance (ANOVA). The initial results from [73] are: for Map-only and Map-mostly
jobs, the number of Map tasks launched and the amount of data read to HDFS are the
key factors to final completion time, while for Reduce-mostly jobs, the completion time
are primarily influenced by the number of Reduce tasks launched. There are works that
pay particular attention to specific Hadoop parameters, for example, [154] finds out the
influence bought by the slot number parameter (also refined as Map slot and Reduce slot),
tests several slot assignment policies regarding different workload types. By default, the
slot numbers are static, configured manually before the system starts running. Normally,
the Map and Reduce slots are 1-2 and 2-4 times the number of the CPU cores respec-
tively [167]. The work in [156] resolves this problem caused by fixed slot number though
dynamically adjusting this number during task assignment based on CPU utilization of
each node.

For external reasons, or in other words, the reasons that apply not only to MapReduce
jobs, [45] lists seven possible candidates that could lead to the long tail problem, among
them are shared resources, global resource sharing, background daemons, maintenance
activity, queuing, power limits and garbage collection. Detailed meanings of those reasons
are explained in Table 2.2.

38

Chapter 2 Parallel Job Performance in Large-scale Computing Systems

There are works conduct the straggler cause analysis within other environments rather
than clusters. For example, [157] claims that, for Internet-scale applications deployed on
commercial Clouds such as Amazon EC2, in which virtualization is a key characteristic
when providing multi-tenancy with some degree of isolation, the straggler phenomenon
is more of a property of nodes rather than topology or network traffic. In addition, it also
emphasizes that, this property of node is both pervasive through EC2 and persistent over
time. Virtualization adds randomness to the general task execution, therefore in theory, it
would enlarge straggler occurrence and severity. DeTail [165] targets at web applications,
believing that packet drops, retransmission and the absence of flow prioritization are the
main contributors to the web site’s page creation time variation. As for the poor latency in
high throughput services executing on multi-core machines, [82] explores the hardware
sources such as the NUMA effect influence; the Operating System (OS) related sources
such as the First In First Out (FIFO) scheduling and the interrupted processing; as well as
the application level sources such as the task arrival distribution, and etc.

Except listing all possible reasons, there are a number of works focus on analyzing one
specific type of straggler reason, exploring how that reason affect system behavior. The
most representative branch is the research on skew caused stragglers. For example, in the
work of [125][78][84], skews are categorized as either Map phase skew or Reduce phase
skew. The factors that will contribute to each kind of skew type and how to avoid them are
concluded in the paper as well. The next section details these skew mitigation methods.

2.4.3 Skew Mitigation

While the speculation-based works are shown to be effective in mitigating stragglers
caused by reasons such as resource contention or hardware heterogeneity, they encounter
unavoidable bottleneck when dealing with data skew caused stragglers: due to the dupli-
cation nature, the replica task processes identical input file with the skew type of straggler
will still suffer from the uneven input distribution. It is shown that, a lot of stragglers in
MapReduce framework are caused by the curse of skew: the Zipf distribution of the input
or intermediate data [84]. In order to alleviate this bottleneck, MCP [38] and Mantri [5]
improve speculation by deliberately avoid creating task copies for skew caused strag-
glers. However, while resources are saved from needless speculation, these avoidance-
base methods do not mitigate the skew at all, and the job response time would still be
influenced by the skew stragglers.

39

Chapter 2 Parallel Job Performance in Large-scale Computing Systems

For skew handling approaches, coworker [69] functions in a way that as long as a strag-
gler is identified, the reserved co-worker task will help process the remaining data. Its
effectiveness is dependent on the choice of the reserved co-worker number, and intro-
duces resource overhead when there is no skew. SkewTune [80] is another popular skew
mitigation method that works through re-partition. As long as there is a free slot within
the system, the task with the greatest remaining time will be re-partitioned. However,
the Reduce outputs of both these two methods have to be reconstructed due to the fact
that the MapReduce requires all tuples sharing the same key to be dispatched to the same
Reducer, and this reconstruction introduces additional complexity.

There are methods rely on node performance when dealing with skews. For example, the
work detailed in [101] splits the cluster into two groups depending on machine processing
capacity. The intermediate data number per Reducer is counted by the system. As long
as the number for a certain Reducer surpasses a pre-defined threshold, this Reducer will
be assigned to the quick node group for execution. There are some shortcomings of this
approach, for example, the threshold to decide the skew level differs with workloads, and
the coarse grain node classification is insufficient for effective skew mitigation.

The mainstream method for Reduce skew mitigation focuses on optimized partition ap-
proaches to distribute the intermediate keys to Reducers. Hash and range are two of the
most popular partition methods. Hash partition is relatively straightforward, requires only
the Reducer number to generate the < intermediateKey,Reducer > mapping decision
through hash calculation, while range partition requires the developer to know the data
distribution, therefore needs sampling. LIBRA [39] is the representative work of this
type. It first launches selected sample Map tasks to estimate the intermediate data distri-
bution for partition decision making before the real execution. However, the efficiency of
this method is largely dependent on the estimation accuracy, which varies with different
sampling strategies and sample size selections.

2.4.4 Gaps in the literature

Despite the large number of related literatures in straggler mitigation, straggler reason
analysis, and skew mitigation, there still leave some space for improvement. For exam-
ple, for the straggler reason research, the stragglers caused by the MapReduce internal
reasons are relatively well explored from various angles, however, the analysis of the ex-
ternal causes are quite limited. Most literatures are simply introducing possible reason

40

Chapter 2 Parallel Job Performance in Large-scale Computing Systems

candidates, as for how exactly each one of them affects system behavior has never been
discussed. In addition, when stragglers are observed within a system, there is a lack of
work that explores the exact reason that causing those specific stragglers, and this limits
the choice of the most suitable methods to be undertaken. For straggler identification,
there are not many literatures that are resource-aware, and most of the current methods
imply static straggler threshold, which is not flexible in face of the changing environment.
A brief summary of the characteristics and shortcomings of the representative literature is
illustrated in Table 2.3.

Table 2.3: Representative straggler mitigation approaches

Methods Naive Spec [155]

LATE [162]

Mantri [5]

Dolly [6]
SkewTune [80]

CREST [81]

Grass [7]

Metrics PS ECT
trem,

tnew
Cloning

trem,

tpar
PR ECT

Target

Type
– – –

Small

Jobs
– –

Approx

Jobs

Node

Hetero
% " " " " " %

Dy- NP % % " % " % %

Dy-

Thresh
% % " % % % "

Extra

Reso-
% % " 5% " % "

Spec

Cap
% " % " " % %

Data

Skew
% % % % " " %

Bench

mark

WC,

Sort

WC,

Sort

WC,

Hive
–

II,

PageR
GSA

Hive,

Scope

Some abbreviations in the table are: “Hetero”, Heterogeneity; “Dy-”, Dynamic; “Thresh”,
Threshold; “NP”, Node Performance; “Selec”, Selection; “Spec”, Speculation; “Reso-”,
Resource; “Approx”, Approximate; “II”, Inverted Index; “WC”, WordCount; “PageR”,
PageRank and “GSA”, Genome Sequence Analysis. The “Metrics” represents the spec-
ulation meterics used when identifying stragglers. The “−” in the target row indicates
that, the corresponding method is designed for general type of applications, while in the

41

Chapter 2 Parallel Job Performance in Large-scale Computing Systems

benchmark row, this indicates that the exact benchmark used is not given (for Dolly, the
workload from Facebook and Microsoft Bing are used according to the paper, however,
details of the exact benchmark is not exposed).

2.5 Summary

Computing systems experienced an unprecedented evolution in the past decades, and
Cloud computing had now become an indispensable part of information technology to
satisfy the increasing demands for Internet services such as web search, social network-
ing, and machine learning applications. A Cloud datacenter typically consists of hundreds
/ thousands of heterogeneous machine nodes to provide reliable computing and storage
services to customers, in which tasks are executed on multiple server nodes by systems
that automatically provide scheduling, fault tolerance, and load balancing. The MapRe-
duce framework pioneered this computing model, and systems like Hadoop YARN and
Spark generalized its population. Through virtualization, multiple tenants are enabled to
share the cluster resources and services. The exhibited heterogeneity of workload char-
acteristics such as task scale, execution time and resource usage pattern has raised new
challenges in terms of performance interference, resource utilization, power consumption,
system resilience, etc.

Among the many challenges, the straggler problem is a representative issue that hinders
parallel job execution performance as well as system availability, leading to potential
Quality of Service (QoS) degradation and the late-timing failure. Various straggler de-
tection and mitigation approaches are discussed, such as simple cloning, blacklisting, and
speculation. Among them, speculative execution is the dominant method which functions
in a three-phase manner: it firstly identifies task stragglers, then launches redundant task
copy for an identified straggler, and finally adopts whichever result that comes out rst.
Each of the related work has its own characteristic in terms of suitable target environ-
ments or straggler types, and face its own shortcomings, all of which are summarised in
this chapter.

In the following research, stragglers are intensively discussed under the MapReduce frame-
work. There are mainly two reasons why this research focuses on MapReduce: firstly, it
is a representative parallel computing model, especially under the big data background;
secondly, most (more than 90%) of the related literature about the straggler research is

42

Chapter 2 Parallel Job Performance in Large-scale Computing Systems

focusing on this framework, therefore in order to compare with the state-of-the-art meth-
ods, the proposed algorithms are built based on this concept. There exists a dependency
in MapReduce jobs that the Reduce tasks have to wait for Map tasks to finish before
they can start. This is a very important difference between a MapReduce job and a non-
MapReduce job. The current assumption adopted by the following research does not
consider this dependency, which means that, the methodology of the proposed approach
can be applied to general systems. Hadoop YARN is a case study when implementing the
approach into practical platforms in this thesis. Although focusing on MapReduce, the
approach is a universal idea, and there are some general discussions when analyzing the
straggler behavior in real-world Cloud datacenters where mixed workload type co-exists.
Details are discussed in the next chapter.

43

Chapter 2 Parallel Job Performance in Large-scale Computing Systems

44

Chapter 3

Quantitative Analysis of the Stragglers

The severe consequences brought by stragglers toward efficient parallel job execution,
the complicated reasons for straggler occurrence, and the low effectiveness of state-of-
the-art straggler mitigation techniques are the main motivations of this research. This
section focuses on analyzing the straggler-related behaviors in a quantitative way using
real-world cluster tracelog data, including straggler influence analysis, straggler reason
analysis, and speculation limitation analysis, showing the importance and the urgency of
this research. The overall system model of the proposed intelligent straggler mitigation
system is outlined in the end.

3.1 Data Set Introduction

Three real-world cluster datasets have been used to conduct the analysis, including (1) the
Google cluster tracelog, (2) the AliCloud cluster tracelog, and (3) the OpenCloud Hadoop
cluster tracelog. As these operational trace data are semi-structured and voluminous -
composed of multiple files detailing information concerning task resource usage, event
logs, and server utilization - it is necessary to filter the trace data within each system

45

Chapter 3 Quantitative Analysis of the Stragglers

in order to identify different job types. Specifically, within each data source, we are
particularly interested in certain jobs which fulfill specific criteria, such as the batch jobs
(i.e. DAG, MPI) and the MapReduce jobs. The respective tasks of these job of interest
are filtered for the following analysis.

3.1.1 The Google Dataset

For the Google data, it comprises 29 days detailing job / task behaviors on 12,532 server
nodes that share a common cluster management system, and can be downloaded from [145].
Work arrives at this cluster in the form of jobs that comprise several tasks, and a task is
represented as a Linux program that executes on a single node. The cluster contains
numerous application types including batch, latency sensitive, system monitoring, and
MapReduce. However, due to commercial confidentiality, Google does not reveal the
precise information that directly points out what type of workload a specific job belongs
to. The whole dataset consists of mainly 6 tables covering server and workload (task and
user) attributes, among which, Job events table describes event records for job submis-
sions and completions, and Task events table records task submissions / completions.

The raw dataset is voluminous, approximately 400GB in size when unzipped, and con-
tains traces of 672,074 jobs composed of 25,228,174 tasks. Therefore it is important to
filter out noisy information and properly decide suitable target jobs in order to conduct
further analysis. In our analysis, we design a set of filters and extract a batch job subset.
Batch jobs are possible to derive given the characteristics of the job priority (in the Google
definition [120], this equals 4, which represents production jobs), job start and completion
time in relation to task submission and completion (information pertaining to ownership
of tasks is identified through the use of recorded jobID attached to all submitted tasks), as
well as resource characteristics of tasks (i.e. all tasks within a job have the same requested
resources and are submitted at the same timestamp with each other).

Stragglers in the following research refer to tasks that perform slowly, but not failed
tasks. Therefore, to further decrease the target data size, another important assumption
adopted is to ignore tasks that are been killed through the erroneous events recorded in
the Job events table. After filtering, we managed to identify 3,362 batch jobs comprising
of 282,950 tasks.

Servers in the Google cluster vary in terms of physical capacity (mainly memory RAM

46

Chapter 3 Quantitative Analysis of the Stragglers

Table 3.1: Server proportions and properties within the Google system

Platform ID Server Type CPU Capacity Memory Capacity Proportions (%)
A 1 0.25 0.25 0.99

B
2 1.00 1.00 6.34
3 1.00 0.50 0.018

C

4 0.50 0.25 30.76
5 0.50 0.75 7.93
6 0.50 0.50 53.46
7 0.50 0.97 0.04
8 0.50 0.12 0.43
9 0.50 0.03 0.024
10 0.50 0.06 0.008

size and CPU cores) and platform type - a combination of microarchitectures and memory
technologies that result in different clock rates and memory speeds. The combination of
unique CPU capacity, memory capacity, and platform for a server result in a unique server
architecture type. There are a total of 10 unique server architectures within the trace log,
however, 6 of them account less than 1% of the total server population. Therefore, we
postulate that these servers are only reserved for tasks which have specific constraints on
the hardware architecture, and we ignore them in our analysis. The detailed information
of each server type is shown in Table 3.1, with the shaded type representing the majority.

3.1.2 The AliCloud Dataset

Alibaba runs the biggest e-commerce website in China, and AliCloud is the large-scale
Cloud provider supports the e-commerce service and many other services [4]. The Al-
iCloud data we use in our analysis is a private dataset the company handed over to us
under a joint project, which is not publicly accessible due to commercial reasons.

The attributes provided in the data include JobID, TaskID, StartTimeOnWorker, EndTime-

OnWorker, PID, IP, and Port. The TaskID is named in a style that comprises JobID so that
the task-job relationship can be understood. Table 3.2 gives one record from the AliCloud
table as an example, revealing the execution detail of the 45th subtask from job 321.

Table 3.2: AliCloud data structure

JobID TaskID StartTimeOnWorker EndTimeOnWorker PID IP Port
321 321 45 1386696383 1386696399 70346 10.138.0.144 44346

47

Chapter 3 Quantitative Analysis of the Stragglers

The start and the end time are represented in Unix timestamp, in this example, the task
started on 17:26:23, 10th December 2013, Chinese time, and ended 16 seconds later. In
total, there are 875 jobs comprised of altogether 1,233,879 tasks in the provided trace. We
do not hold any machine node related information apart from the IP attribute, such as the
physical capacity or resource utilization.

3.1.3 The OpenCloud Dataset

OpenCloud is a research cluster at the Carnegie Mellon University [103] that consists of
116 machine nodes running the Hadoop platform. The cluster supports research activities
for different departments within the University. OpenCloud releases its task execution
tracelog for public research covering the first 9 months in 2012. There are 6 tables pro-
vided, from which the task attempt history table contains the information of interest such
as jobID, tasktype, taskID, start / shuffle / sort / finish time of the task attempt (represented
as UTC timestamp in milliseconds), status (success, failed or killed), and hostname.

After filtering, 18,935 successful parallel jobs consist of 8,734,974 tasks are analyzed.
The machine nodes within this cluster are homogeneous in physical configuration [103].
Each of them has a 2.8 GHz dual quad core CPU (8 cores), 16 GB RAM, 10 Gbps Ethernet
NIC, and four Seagate 7200 RPM SATA disk drives.

To briefly summarise, general information of each above dataset, including the cluster
size, server heterogeneity, and job patterns, are given in Table 3.3.

Table 3.3: General data pattern summary

System Google AliCloud OpenCloud
Cluster size 12,532 2,841 116
Time period 29 days 14 days 9 months
Server types Heterogeneous Not given Homogeneous
Job Number 3,362 875 18,935
Task Number 282,950 1,233,879 8,734,974

Maximum Job Size 9,999 9320 21,383
Average Job Size 84 1962 534
Medium Job Size 32 552 165

Maximum Job Duration 65,906 s 356 s 99,246 s
Minimum Job Duration 56s 1 s 1 s
Average Job Duration 1779 s 47 s 335 s
Medium Job Duration 583 s 32 s 16 s

48

Chapter 3 Quantitative Analysis of the Stragglers

3.2 Straggler Related Statistics

The above datasets make it possible for us to explore straggler related issues within the
context of real system operation through statistical analysis. This includes the research of
studying the frequency of task straggler occurrence and the impact stragglers impose on
parallel job performance within large-scale computing systems.

3.2.1 Task-Level Statistics

Here in the analysis, we define stragglers to those parallel tasks that have an execu-
tion time longer than 150% of job average/medium duration, which is consistent with
many popular straggler identification technique such as [162][6][80][125] introduced in
Section 2.4.1. From the data, the grouping of tasks to a specific job can be established ac-
cording to the jobID value attached. Their execution time is calculated through recorded
start and completion events within the trace, and once the duration for all tasks has been
determined, the difference between an individual task’s duration and the average/median
duration of all tasks within a job can be calculated.

Figure 3.1, Figure 3.2, and Figure 3.3 show the difference between an individual task’s
execution duration and the mean and median execution of all tasks within the same job in
the Google system, the AliCloud system, and the OpenCloud system, respectively. From
the figure it is observable that, calculating the difference using different central tendency
measurements of mean and median results in substantially different patterns for straggler
detection. This is particularly noticeable within AliCloud as shown in Figure 3.2 (a) and
(b), which exhibit different dispersion patterns for task execution. This is resultant of
extremely fast or slow tasks affecting the central tendency and the dispersion for task
completion when using the mean, while the median duration within a job is less affected
by extreme execution times of task stragglers.

Regardless of the comparison standard, it is observable that, within all three studied sys-
tems, the majority of tasks exhibit similar proportions for completion situated around
100%, a number indicating the fact that the duration of the individual task equals (or sim-
ilar) to the average/median job duration. Meanwhile, a trivial portion of straggler tasks
can also be observed within all three figures, characterized by a much longer duration
compared with job average/median, larger than 150%. Detailed task straggler proportions
for each cluster are listed in Table 3.4, all featuring a number less than 10% except the

49

Chapter 3 Quantitative Analysis of the Stragglers

Figure 3.1: Google task-job (a) median completion histogram; task-job (b)
mean completion histogram

Figure 3.2: AliCloud task-job (a) median completion histogram; task-job (b)
mean completion histogram

Figure 3.3: OpenCloud task-job (a) median completion histogram; task-job (b)
mean completion histogram

OpenCloud cluster when using median duration as the comparison standard.

Despite the small proportion, the additional time wasted by the stragglers are huge. The
figures only show partial of the entire distribution within 200% / 250% scale in x-axis in
order to make the histogram neat, however, the actual maximum value for the straggler
tasks take more than 100 times mean/median duration in all three systems. This observa-
tion corroborates to the findings revealed in [5], demonstrating the fact that jobs can be
delayed by up to more than 1000%.

50

Chapter 3 Quantitative Analysis of the Stragglers

3.2.2 Job-Level Statistics

Besides the very expensive stragglers, due to the large size of current parallelization, the
total number of affected jobs are huge as well.

Figure 3.4: Google job tailing extent compared with job (a) median, (b) mean

Figure 3.5: AliCloud job tailing extent compared with job (a) median, (b) mean

Figure 3.6: OpenCloud job tailing extent compared with (a) median, (b) mean

We define tailing jobs as the ones that contain task stragglers and exhibit a tailing execu-
tion shape. The tailing extent is calculated as the maximum duration within a job divided
by job median / average duration. Findings demonstrated in Figure 3.4, Figure 3.5, and
Figure 3.6 show the frequencies of tailing jobs in different extent. It is observable that,

51

Chapter 3 Quantitative Analysis of the Stragglers

Table 3.4: Straggler occurrence and impact on production systems

Google Datacenter AliCloud Datacenter OpenCloud Cluster
Mean Median Mean Median Mean Median

Total tasks 282,950 1,233,879 8,734,974
Task stragglers 11,210 16,543 33,322 42,925 603,973 1,067,103

Task stragglers % 3.96 5.85 2.70 3.48 6.91 12.22
Total jobs 3,362 875 18,935

Job stragglers 1,280 1,351 512 433 8,151 8,224
Job stragglers % 38.07 40.18 58.51 49.49 43.05 43.43

large amount of jobs within all three clusters are negatively affected, between 38.07% and
58.07% in number, accounting for approximately half of the total population.

The degraded performance is due to a job’s inability to complete unless its respective
tasks, including stragglers, have all completed execution. Such behavior resonates with
the theorized impact of stragglers in large-scale system discussed in [45]. The quantified
numbers in terms of tailing job within the three target systems are shown in Table 3.4.

We also explore the relationship between job sizes and straggler possibilities, and this
analysis has discovered a non-intuitive finding: the chance of jobs encountering straggler
does not directly link with their size. It is observed from all three datasets that, no matter
what size the job is, the possibility of the job containing stragglers is randomly distributed:
the straggler rate observed in small parallel jobs consist only less than 10 tasks ranges
between less than 1% to as high as almost 50%; and this is the same for large jobs with
more than 10,000 tasks, with some large job contains no stragglers while some encounter
more than 40%.

Besides the workload analysis, the environmental factor is another important perspective
that affects straggler behaviors. The next section focuses on node level statistics.

3.2.3 Node-Level Statistics

When exploring the manifestation of task stragglers on servers, the studied results of
straggler percent over different nodes observed in the Google and the AliCloud dataset
are depicted in Figure 3.7(a) and (b), respectively. To note that, the ranked machine ID

in the graph is not the actual ID marked in the system log, but a modified (or ranked)
identifier to make the graph neat. The straggler% is calculated as the identified straggler

52

Chapter 3 Quantitative Analysis of the Stragglers

number over the total number of tasks assigned on this specific node over the whole time
the data covered. This is to eliminate the effects of unbalanced workloads.

Figure 3.7: Straggler percentage per node in the (a) Google, and (b)AliCloud system

It is observable that, the straggler percentage over node distribution is slightly skewed.

Figure 3.8: Map tasks execution on different machine nodes from four example MapRe-
duce jobs within the OpenCloud cluster

53

Chapter 3 Quantitative Analysis of the Stragglers

For example, within the Google system, some machines encounter almost 70% straggler
rate while the others have less than 10%. For a specific job, once its subtasks assigned on
different nodes for execution, even with designed similar duration, the performance can
still vary. Figure 3.8 illustrates this with four examples from the OpenCloud system.

Each subfigure represents a boxplot of Map tasks’ durations of a single MapReduce job
that is assigned to different machines. While similar execution time is expected within
each job, the actual duration of each Map task varies, and this variation is related to the
node performance. For example, in Figure 3.8 (a), there are a few nodes that exhibit an
obvious longer average duration and a much larger variation in task completion. These
weakly performed nodes generate non-negligible impact on parallel job completion time.

This performance heterogeneity stems from the dynamic operational situation and dif-
ferent aging condition. The straggler behavior can be exaggerated by the heterogeneous
trend of clusters with different nodes consisting of CPU, GPU, TPU, FPGA, etc. There-
fore, it is important to model and to predict the node execution performance when mit-
igating the stragglers. In the thesis, node execution performance is defined as the mea-
surement of effective task execution within a node in the presence of stragglers. A server
exhibits poor execution performance indicating a high task straggler occurrence possibil-
ity. To periodically blacklist this kind of slow nodes can help increase straggler mitigation
efficiency and improve overall job execution.

Figure 3.9 (a) illustrates the straggler number per node distribution over the 9-month time
in the OpenCloud system, with machine IDs in each sub-figure remaining the same. The
blank machines in some sub-figures reflect the fact that not all nodes are in use for the
whole time, some are only turned on in certain months. For example, nodes with ID ∈
(80, 100] are used only in the 5th month. It is observable that, for each month, there are
some nodes experiencing much more stragglers than the others, labeled with circles in
Figure 3.9 (a). Considering the homogeneous physical configuration of the OpenCloud
cluster, this shows that, node performance is not purely dependent on their capacities.

Some related works such as [158] use resource utilization instead of physical capacity.
However, the node performance diversity is not solely dependent on contention or uti-
lization as well. Figure 3.9 (b) shows the total task number per node distribution. The
number of tasks assigned is used to partially represent contention level of the node due
to the lack of utilization data. It is observable that, during each month, the task number
for each node is relatively even. The 7th month is the only exception, with three obvious
busier nodes (again labeled with circles). For the rest months, different straggler numbers

54

Chapter 3 Quantitative Analysis of the Stragglers

are not due to contention. The node IDs in Figure 3.9 (b) are consistent through the 9
sub-graphs, same with Figure 3.9 (a).

Figure 3.9: OpenCloud (a) straggler number per node distribution, (b) total task number
per node distribution over the 9-month period

These straggler related statistic analysis within production datacenters attracts particular

55

Chapter 3 Quantitative Analysis of the Stragglers

interest and emphasizes the importance of the straggler research. Specifically, while strag-
glers occur in less than 10% of total tasks submitted, they impact a greater proportion of
jobs up to more than half of total number. In addition, stragglers are not restricted on a
limited machine set, nor exhibit regular pattern on the time of occurrence. By demonstrat-
ing these effects stragglers impose, researchers and industry can then be able to convey
the scale and importance of addressing straggler behavior to the wider community. In the
next section, we investigate the underlying causes that produce these identified stragglers.

3.3 Straggler Reason Analysis

It is advantageous to understand the precise operational scenarios and causes that result in
stragglers. This is important in order to focus technical and developmental efforts toward
reducing future straggler occurrence within the system. This section details the straggler
root-cause analysis we conducted based on the AliCloud data.

As presented in Section 2.4.2, stragglers stem from numerous reasons, and in order to
derive a deep insight into the most important root cause, an investigation of correlation
is conducted after straggler filtration. A periodic execution of a health checker process
using Tsar [143] and Nagios [100] to monitor system metrics at a specific time interval is
performed within the AliCloud system, with recorded key performance indicators such as
CPU and memory utilization, network package loss rate, hardware faults, and etc. As our
project partner, such monitoring data covering 20 days period is provided to us, and this
forms the foundation for us to conduct the correlation analytics.

The AliCloud production system adopts a criterion for straggler detection termed as
Degree of Straggler Index (DoS-Index) [166] instead of the Progress Score (PS) based or
Estimated Completion Time (ECT) based threshold discussed in Section 2.4.1. DoS-Index
is a system metric comprising task execution time and input size for an individual task Tji
in job Jj as shown in Equation 3.1 to eliminate the influence of imbalanced input size.

DoSIndex =

(
Dt
Tji

Inp(Tji)

)
÷

(
1
n

∑n
i=1DT t

ji

1
n

∑n
i=1 Inp(Tji)

)
(3.1)

Within the equation, Dt
Tji

= t − t
Tji
0 is the current execution duration of Tji at time t

(tTji0 is the start timestamp of Tji), and Inp(Tji) is the data volume that Tji is required

56

Chapter 3 Quantitative Analysis of the Stragglers

to process. The DoS-Index indicates a relative speed of data processing, i.e., the time
consumed when processing one unit of input data, for an individual task contrasted against
the other tasks within the same job. Based on this definition, it is possible to control the
strictness for straggler detection. The straggler threshold is configured as DoS-Index ≥ 10

in our analysis to focus on the extreme stragglers due to their noticeable impact to user
perception of application performance.

Table 3.5: Straggler detection with DoS-Index in AliCloud datacenter

Day DoS-Index≥ 10
System Condition at Detection

UtilCPU ≥ 80% UtilDisk ≥ 80% Slow Req Handling
1 127 46 61 29
2 213 114 14 23
3 161 161 84 35
4 147 147 23 43
5 453 158 149 69
6 215 129 184 71
7 352 352 128 82
8 363 348 129 75
9 253 121 94 98
10 267 116 77 233
11 241 100 150 132
12 254 179 239 168
13 247 126 247 161
14 267 117 41 125
15 259 104 259 85
16 699 131 66 138
17 510 236 92 67
18 227 163 63 142
19 326 172 83 58
20 279 154 101 27

Total 5,860 3,174(54.2%) 2,284(39.0%) 1,861(31.8%)

Table 3.5 presents statistics of stragglers within the 20-day period. The profiling data we
adopt in the analysis includes server CPU utilization ≥ 80%, Disk usage≥ 80%, and
slow read-write request handling (latency from file system ≥ 400ms). It is observable
that, approximately 54.2% and 39.0% of stragglers with DoS-Index ≥ 10 occur under the
presence of high server CPU and disk overloading, respectively, and it is also observed
that 31.8% of stragglers experience slow request handling. This result indicates that high
server resource utilization is an important cause for straggler occurrence. This is con-
sistent with the insights provided in [159], stating that disk utilization (I/O) and memory

57

Chapter 3 Quantitative Analysis of the Stragglers

contention are the primary bottlenecks contributing to the creation of stragglers on a node.

To note that, condition overlapping is not considered in this analysis, explaining the reason
why the sum of these three reasons sometimes exceeds 100% in Table 3.5: it is possible
for CPU utilization and disk utilization to be correlated. In addition, there are some cases
such as day 16 and 17 where the number of detected stragglers is larger than the sum of
stragglers that caused by these three listed reasons. This reveals other more complicated
situation when stragglers can occur, including network package loss, hardware faults,
application errors, etc. Table 3.6 shows the categorization of the dominant factors that
cause stragglers and their corresponding frequency.

Table 3.6: Classification for straggler root-cause

Category Specified Description Freq

High CPU utilization
Low time-slice sharing and process scheduling due to certain
bad user-defined worker logic, unbalanced workload
aggregation etc.

30%

High disk utilization
Local disk read and write conflicts, unbalanced tasks
aggregation, disk faults etc.

23%

Unhandled request
Distributed file system request surging(usually read request)
and overpass the capability of request handling.

23%

Network package loss
Network traffic package loss, resulting in repeating
intermediate file and data transmission.

13%

Hardware faults Server timing-out, hang etc. 7%
Data skew Uneven file block input resulting in data skew. 4%

It is observable that high CPU utilization is the dominant type of cause. In production sys-
tems, this is often caused by two reasons: unbalanced workload aggregation and poor user
code. Unbalanced aggregation is the result of excessive workload co-allocation within a
server caused by inefficient scheduling. Poor user code refers to the inefficiently designed
executable logic (e.g. orphan processes, looping conditions) compiled and executed by
the user. Both of these reasons result in CPU bursting within a short time period; leading
to inefficient time-slice sharing within the server kernel.

Another important straggler cause is the faults within a server node, specifically, this in-
cludes transient disk faults which result in slow disk I/O and file operations; and resource
interference generated by co-locating tasks with the same resource characteristic (e.g. IO
intensive) within the same machine. It is discovered within the AliCloud system that, it
is possible for tasks to read and write to the same disk block simultaneously, resulting in
large amounts of disk resource competition which requires conflict resolving.

58

Chapter 3 Quantitative Analysis of the Stragglers

The request handling inefficiency due to overloaded and surging file requests is another
reason observed. Specifically, a typical MapReduce job generates a large number of op-
erational requests including reads and writes to the distributed file system such as HDFS.
Once the surging request number surpasses the handling capability of the file system mas-
ter, it becomes a bottleneck. Even when the master has multiple replicas. Therefore, many
requests ended up being queued, waiting to be allocated. Based on our analysis, it is ob-
servable that, in some cases, the unreasonable configuration of Map / Reduce number
or block size can lead to unexpected request increase, thereby increases the load of file
system master and causes slow request handling.

Furthermore, the network condition is also a variable that will affect reliable task execu-
tion, due to remote operations after the copy / shuffle phase in MapReduce are all being
sent through the network. From our analysis after running “tsar retran” [143], 13% of
stragglers were caused due to network package loss. Higher package re-transmission re-
sults in not only extended job end-to-end time-span, but also aggravates the network con-
gestion. Finally, other common factors include time-out faults and data skew, comprising
around 10% of straggler root-cause. This result could be used as inspirable instructions
to handle with different stragglers, and can cover multiple scenarios and fault-injection
practices to simulate the straggler behavior.

3.4 Speculation Limitation

As the dominant straggler mitigation scheme, speculative execution [46] is commonly
deployed in industrial clusters such as Facebook, Google, Bing, and Yahoo!, and is inte-
grated into the default Hadoop versions. It observes the progress of each individual task
and creates replicas for stragglers. The original straggler will not be killed upon specu-
lation: the system will let the two copies compete with each other, adopting the quicker
result to shorten the overall job completion. Although widely used in production systems,
current speculation is low in its efficiency, characterized by a high failed speculation rate.

3.4.1 High Speculation Failure Rate

A failed speculation is defined as the redundant copy that does not surpass the straggler
task in progress and ended up being killed by the speculator. Figure 3.10 shows an exam-

59

Chapter 3 Quantitative Analysis of the Stragglers

ple of a failed speculation. In the Hadoop naming system, the original tasks are attempts
marked with suffix 0 while the speculative copies are represented with suffix 1. From the
example it is observable that, the created speculation got abandoned in the end due to the
straggler succeeded first (refer to the “Note” column in Figure 3.10).

Figure 3.10: An example of a killed speculation for a Hadoop job

We use the OpenCloud trace as a case study, trying to find out that whether it is a common
case for speculations to be killed in vain in production systems. Since the OpenCloud
system provides Hadoop platform to its users, we get to know the information of whether
a task is a speculative attempt or an original task through differentiating its suffix, either
0 or 1 as introduced above.

Figure 3.11 depicts the distribution of total task number versus speculation number versus
killed speculation number for jobs within the OpenCloud system, from which we get a
clear observation that a large proportion of speculations are actually been killed in the
end. Figure 3.12 further demonstrates the statistical result of this proportion within the
system. The speculation efficiency turns out to be surprisingly low, with average failure
rate reach as high as more than 70%.

Figure 3.11: Numbers of speculation failure rate in the OpenCloud cluster

Similar findings are reported within other literature such as [27], which claims that in
Yahoo!’s system, as many as 90% speculations are actually ended up being killed, with

60

Chapter 3 Quantitative Analysis of the Stragglers

Figure 3.12: Statistics of speculation failure rate in the OpenCloud cluster

no benefits achieved in execution performance improvement. The high speculation failure
rate observed in different clusters revealing a fact that current speculation method still has
a long way to go in solving the straggler problem.

3.4.2 Improvement Potential

There are several reasons that can lead to the high speculation failure rate. For example,
the stragglers are not identified in time, as a result, the corresponding replication is created
too late to catch up; or the Estimated Completion Time (ECT) is not accurately estimated
because the progress speed changes over time, etc. Figure 3.13 details three examples of
how a MapReduce job can progress.

The progress completion score on the y-axis was derived from the Hadoop log. The
Application Master in the YARN system records this information for all its task attempts,
in the form of a fraction. Filtering out the corresponding progress report with event time
generates Figure 3.13. And from the figure, the visible different gradient indicates Map
and Reduce phases with different Progress Rate (PR) exhibited.

From the task progress pattern it is observable that, some stragglers exhibit their slowness
at the very early stage. Improvement can be done in response to this situation, for exam-
ple, to encourage speculation at this time point. Figure 3.14 explains this idea with high-
level figures, showing the sensitivity of the straggler threshold towards the Map tasks.
The shaded part covering stragglers calculated after applying a certain threshold. For
Figure 3.14 (a), there is only one task being classified as the straggler until 00:00:10;

61

Chapter 3 Quantitative Analysis of the Stragglers

Figure 3.13: Three examples of how a typical MR job can progress

while (b) has already identified four of them at this time point.

There are many efforts can be done in order to improve current straggler mitigation effi-
ciency besides the above example. Concrete achievements made in this thesis are detailed
in the following sections. In addition, if we assume the theoretical best case performance
a speculative-based method can achieve is to eliminate all stragglers and replace their
duration with the average job execution time, we then get the speculation performance
improvement potential.

Figure 3.14: Threshold sensitivity toward straggler identification, (a) normal detection
and (b) potential early detection

62

Chapter 3 Quantitative Analysis of the Stragglers

Figure 3.15: The improvement potential of the speculation in the OpenCloud cluster for
jobs with duration less than an hour

Figure 3.15 illustrates this theoretical potential for OpenCloud jobs with a duration less
than one hour. The huge gap between the actual execution time and the theoretical optimal
duration indicates another 65.7% performance improvement in average for current spec-
ulation mechanism. Our research is trying to fill in this gap, and next section introduces
the overall system model of our design.

3.5 Straggler Mitigation System Model

In order to solve the aforementioned challenge caused by the straggler problem and im-
prove parallel computing performance, an intelligent straggler mitigation system is de-
signed which works in conjunction with current parallel computing models. The overall
system model is shown in Figure 3.16, and it can be embedded into popular platforms
such as the Hadoop YARN implementation.

The main components of the system include a History Statistic Calculator that collects
tasks execution tracelogs and does initial calculations; an enhanced Adaptive Specula-

tor that adaptively calculates the most suitable threshold for straggler identification, a
Node Performance Analyzer that models and predicts machine execution performance for
a more efficient straggler mitigation; and a Skew Pre-processor to mitigate special strag-
glers caused by unbalanced input size.

63

Chapter 3 Quantitative Analysis of the Stragglers

Figure 3.16: The intelligent straggler mitigation system model

For the History Statistic Calculator, its main obligation is data collection and initial calcu-
lation. For example, to collect Progress Score (PS) for each task, to classify them into jobs
and machines for potential per job / per node analytics, to calculate the Estimated Com-
pletion Time (ECT) for all tasks for potential straggler identification, and to collect system
environment statistics such as the resource utilization, etc. Besides the pre-calculations
of the information needed in other components, the History Statistic Calculator is also
responsible for data analytics that produces insights of the system. For example, the
straggler influence analytics and the straggler reason correlation analytics discussed in
this chapter are all categorized under the duty of this component.

For the Adaptive Speculator, its responsibility is to generate the adaptive straggler thresh-
old according to the most up-to-date environmental factors, so that the suitable task strag-
glers can be picked up for speculation. This is important especially for those tasks that
sit around the original static threshold. For example, for the tasks with an ECT at 45%
or 55% larger than average when the threshold is pre-set to be 50%, whether or not to
deal with them should depend upon the changing system conditions. Once the most ap-
propriate stragglers are identified, the corresponding speculators will be submitted to the
cluster scheduler and be assigned for execution following the default scheduling policy.
The detailed design of this component is introduced in chapter 4.

64

Chapter 3 Quantitative Analysis of the Stragglers

For the Node Performance Analyzer, due to the fact that most straggler is caused by node-
level reasons such as resource contention or disk faults, it is believed that, through avoid-
ing assigning tasks onto slow performed nodes, or nodes that are about to experience a
performance drop, can effectively reduce straggler occurrence. In addition, if speculative
copies are launched on the fast nodes, it is predictable that the chances of speculation
overtaking the straggler would be highly increased. To model and predict machine node
performance is key to achieve those goals, and is the responsibility of the Node Perfor-
mance Analyzer, which is discussed in chapter 5. In this design, the cluster scheduler
remains untouched, but the available resources revealed to the scheduler.

And for the Skew Pre-processor, its goal is to eliminate data skew caused stragglers so
that speculative-based method can play its due role. Skews are quite common in the
MapReduce framework, especially for the Reduce phase because the distribution of the
intermediate data is not pre-known. The Skew Pre-processor in our design works as a sup-
plement component for the enhanced speculator that particularly deals with the Reduce
skews. The detailed algorithm is given in chapter 6.

There are some general notation representations used throughout the whole thesis, some
of them already appear in previous sections when discussed the straggler problem. They
are briefly summarized as follows:

Jj: The jth job submitted into the system

Tji: The ith task in job Jj; the total number of tasks for each job is n (0 < i ≤ n)

Mk: The kth machine in the cluster; it is assumed that there are m nodes within clus-
ter in total (0 < k ≤ m)

ECT tji: The estimated completion time of Tji at time t, ECT tj = max(ECT tji)

ECT tj : The average estimated completion of Jj at time t

Dji: The duration of Tji from historical data

3.6 Summary

Increased complexity and scale of distributed systems has resulted in the manifestation of
emergent phenomena substantially affecting overall system performance. There is limited

65

Chapter 3 Quantitative Analysis of the Stragglers

work that empirically studies straggler root-cause and quantifies its impact upon system
operation. Such analysis is critical to ascertain in-depth knowledge of straggler occur-
rence for focusing developmental and research efforts towards the long tail challenge.

This chapter provides an empirical analysis of straggler root-cause within Cloud data-
centers; we analyze three large-scale production systems to quantify the frequency and
impact stragglers impose. The contributions of this chapter are highlighted as follows:

• As the minority, stragglers non-intuitively impact a huge proportion of jobs within

large-scale systems. It has been demonstrated that stragglers impose a substantive
challenge towards rapid and predictable service execution for parallelizable appli-
cations, and is further aggravated by increased occurrence at growing system scale
and complexity. Results demonstrate approximately 5 percent of task stragglers
impact 50 percent of total jobs for batch processes

• Straggler stems from numerous root-causes, among which, server-related issues

predominantly influences straggler occurrence. While root-cause analysis is a uni-
versal challenge across all fault-diagnosis research, there is a lack of in-depth anal-
ysis within datacenters which quantifies the underpinning root-cause and its fre-
quency for stragglers. Such work is urgently needed for researchers to ascertain an
intrinsic understanding of stragglers within real systems. In order to achieve this ob-
jective, the correlation analysis conducted within this chapter come from real-world
systems discovers scientific understanding of straggler behavior that its occurence
is predominantly influenced by server resource utilization. 53 percent of stragglers
occur due to high server resource utilization.

• Current straggler mitigation technique is far from effective in production systems

with noticeable improvement potential. Data analytics result based on OpenCloud
cluster show that the failed speculation rate reaches as high as 71.22% in average,
leads to a dramatic resource waste, and there is still another 65.7% improvement
potential for job response times under current speculation scheme.

Refer to the system model described in Section 3.5, the results of the analysis contribute
to the History Statistic Calculator component. Detailed descriptions of how other compo-
nents are realized are presented in the following sections.

66

Chapter 4

Task-level Detection: Adaptive
Straggler Threshold

A straggler is identified when applying a threshold once the Progress Score (PS) is col-
lected and the related Estimated Completion Time (ECT) is calculated: if the ECT of a
certain task is estimated to be longer than a certain percentage compared to the average
value of all tasks within the same job, it will be marked as a straggler. For example, if
the average task completion of a parallel job is estimated to be 100s, a threshold of 200%
would result in any tasks that take more than 200s to complete being identified as strag-
glers. Therefore, the straggler threshold plays an important role in straggler identification
and mitigation. This chapter proposes an adaptive straggler threshold calculation method
that evaluates the most suitable tasks for speculation.

4.1 Algorithm Motivation

One of the biggest impacts the threshold value generates is the corresponding number
of stragglers identified. Figure 4.1 (a) shows how the proportion of stragglers and the

67

Chapter 4 Task-level Detection: Adaptive Straggler Threshold

Figure 4.1: Relation between threshold setting and (a) straggler / tailing job proportion
in the OpenCloud cluster; (b) different straggler numbers in AliCloud across the 20-day
period using different threshold value

corresponding tailing jobs within the OpenCloud cluster are affected by different thresh-
old values (Estimated Completion Time (ECT) based threshold) ranging from 120% to
260%. Tailing jobs are the jobs that containing stragglers. It is observable that, a larger
(stricter) threshold can reduce the identified straggler number. A similar trend is seen in
other systems as well. Figure 4.1 (b) illustrates the relationship between threshold setting
and different straggler numbers in AliCloud system across the 20-day period when using
DegreeofStragglerIndex(DoS-Index) as the threshold. Changing the threshold value
from 2.5 to 10 results in the number of filtered stragglers down from 186,434 to 5,560
(from 9,322 to 293 a day on average).

Since speculative execution results in the creation of task replicas upon straggler detec-
tion, different straggler number will directly impact the availability of the system and
further influence resource allocation. In addition, different types of application often have
different requirements toward timely response, and should correspond to different levels
of effort when improving their performance. Therefore, it is important to choose the most
suitable number of straggler tasks for speculation at certain time point for a certain type of

68

Chapter 4 Task-level Detection: Adaptive Straggler Threshold

Figure 4.2: Dynamic threshold motivation dealing with (a) strict and (b) lax QoS timing
constraint

application. Figure 4.2 illustrates the goal that motivates our design and the need for the
adaptive threshold. As a comparison, the static threshold in the graph is set to the value
of 1.5. This is the most common value used in related literature, and can be changed if
needed. Actually, the exact value of the threshold is not the key issue here, it is the static
nature that debilitates speculation effectiveness.

The timing requirement of a certain application is normally given in its Quality of Service
(QoS) specifications. When a job exhibits a strict QoS timing constraint (i.e. where
QoS deadline is smaller than 1.5 average completion as shown in Figure 4.2 (a)), a static
threshold will only detect Task A as a straggler to be speculated. However, it is possible
for Task C to break QoS constraint, leading to a late timing failure. Therefore, we believe
that it would be more effective for the threshold to capture this QoS characteristic in order
to create replicas not only for Task A but also for Task C. Furthermore, if the system load
is light, it is possible to also launch additional replicas for Task E due to idle resources
available to improve overall application performance.

On the other hand, in cases when an application has a lax QoS timing constraint as shown
in Figure 4.2 (b) (with QoS larger than 1.5 average completion), since predicted task
completion does not violate the QoS constraint, it is not necessary to create replicas for
Task A and Task C so that the saved resources can be used for other applications. This
is an important consideration when there is already high resource contention within the
system. We believe that there is an opportunity to enhance the current threshold approach
capable of adaptively capturing these scenarios.

In conclusion, a static threshold can debilitate speculation effectiveness as it fails to cap-
ture the intrinsic diversity of timing constraints of applications, as well as the dynamic
environmental factors such as resource utilization. By considering such characteristics,
different levels of strictness for replica creation can be imposed to adaptively achieve

69

Chapter 4 Task-level Detection: Adaptive Straggler Threshold

specified levels of QoS for different applications. And this motivates the design of the
adaptive threshold calculation algorithm.

4.2 Algorithm Design

An algorithm that adaptively calculates a dynamic threshold which can automatically ad-
just its value according to different operation situations is proposed in order to improve
speculation efficiency. This algorithm leverages three key factors: job QoS timing con-
straint, task lifecycle progress, and system resource utilization to judge whether a task
replica should be created to tolerate task stragglers.

The dynamic threshold is periodically updated at a certain time interval t in order to allow
the algorithm to adapt to the up-to-date system environment. The scheduler will label
task Tji as straggler if condition ECT tji > Thtj,dyn ∗ ECT tj is fulfilled. Upon straggler
detection, within current Hadoop YARN implementation [147], the duplicate task will be
created and assigned for running using the addSpeculativeAttempt(taskID) function.
Equation 4.1 depicts the calculation of the adaptive threshold value per job at a high level:

Thtj,dyn = Qt
j + α ∗ P t

j + β ∗Rt (4.1)

where Qt
j denotes the threshold baseline determined by job Quality of Service (QoS) tim-

ing constraint. P t
j is the progress adjustor, altering the value for optimal replica creation

based on task lifecycle, and Rt represents the resource adjustor according to the current
cluster resource utilization level. Weight parameters α and β can be specified by the sys-
tem administrator to demonstrate a particular emphasis on resource utilization or progress.
The additional notations used within this chapter has been summarized in Table 4.1.

The weighted sum of Qt
j , P

t
j and Rt produce the threshold value for detecting strag-

glers, and the pseudo code for this dynamic straggler threshold calculation is given in
algorithm 1. At every timestamp t, stragglers are identified according to the calculated
threshold and their Estimated Completion Time (ECT), the calculation of which varies. In
this work, the most commonly applied estimating approach illustrated in Equation 2.8 is
adopted. Other sophisticated method can be used to replace current calculation if needed.

A higher value for Thtj,dyn indicates a stricter straggler threshold enforced at that particu-

70

Chapter 4 Task-level Detection: Adaptive Straggler Threshold

ALGORITHM 1: DynamicStragglerThreshold
Inputs:

Jobs: the list of all jobs within the cluster, each “job” element has attributes such as
Tasks list and PS list, etc.
Nodes: the machine node list within the cluster
Interval: the time interval of the threshold calculation
alpha, beta: α, β, the adjustor weightings
mu: µ, the progress standard parameter
phi, omega: φ, ω, the CPU and the memory utilization standard parameter

1 while Jobs.size > 0 do
2 for each Jobs[j] in Jobs do
3 Tasks = Jobs[j].Tasks, PS = Jobs[j].PS;
4 Q[j] = TimingConstraintBaseline(Jobs[j], Tasks, PS, Jobs[j].QoS);
5 P[j] = TaskLifeCycleAdjustor(Jobs[j], Tasks, PS,mu);
6 R[j] = UtilizationAjustor(Nodes, phi, omega);
7 Th[j] = Q[j] + alpha*P[j] + beta*R[j];
8 for each Tasks[i] in Jobs[j].Tasks do
9 Jobs[j].PR[i] = Jobs[j].PS[i] / (CurrentT ime − Jobs[j].startTime);

10 Jobs[j].ECT[i] = CurrentT ime + (1 − Jobs[j].PS[i]) / Jobs[j].PR[i];
11 if (Jobs[j].ECT[i] > (Th[j] * average (Jobs[j].ECT))) then
12 if (Tasks[i].AlreadySpeculated == False) then
13 AddSpecAttempt(Tasks[i]);
14 Tasks[i].AlreadySpeculated = True;
15 Jobs[j].size += 1;

16 sleep(Interval);

Table 4.1: Additional notations used in the adaptive threshold

PStji The progress score at time t for Tji
PRtji The progress rate at time t for Tji
Thtj,dyn The dynamic threshold at time t for Jj
Thtj,stat The static threshold at time t for Jj
Qtj The QoS adjustor at time t for Ji
P tj The progress adjustor at time t for Jj
Rt The cluster average resource utilization adjustor at time t
α The progress weight parameter
β The resource utilization weight parameter
µ The progress standard parameter
φ The CPU utilization standard parameter
ω The memory utilization standard parameter
Ωt
k The memory utilization of machine Mk at time t

Φt
k The CPU utilization of machine Mk at time t

71

Chapter 4 Task-level Detection: Adaptive Straggler Threshold

lar time, in which case, fewer task would meet the standard to be classified as stragglers
and trigger the speculation, while a lower Thtj,dyn value allows a more relaxed condition
when generating speculated replicas. The values for Qt

j , P
t
j and Rt are derived by lower

levels of calculation.

4.2.1 QoS Timing Constraint

The QoS timing constraint is an important factor to be considered when deciding how
rigorous the straggler threshold should be based on the nature of the application. For
example, a real-time service might emphasize a compulsory response time in their QoS.
Jobs which fail to complete prior to the specified deadline result in late timing failures
and degraded application performance, therefore guaranteeing the rapidness of task exe-
cution for such job is more important than saving resources on speculation. In our design,
the QoS Timing Constraint parameter is used to set the threshold baseline. This allows
for different degrees of strictness for generating replicas when tolerating the impact of
stragglers. The calculation of the QoS baseline at time t is given in Equation 4.2 where
Stj = {x|x = ECT tji > QoS}.

Qt
j =

QoS/ECT tj if QoS ≥ max(ECT tji)

{ min
∀ECT t

ji∈St
j

ECT tji}/ECT tj if QoS < max(ECT tji)

1.5 if no QoS

(4.2)

In addition, QoS stands for the time requirement defined in the QoS parameter. For cases
when the maximum ECT tji is estimated to be within the deadline constraint, the threshold
is set to be the quotient of QoS and the average ECT tji. This relatively large threshold
guarantees that, while no QoS breakdown happens, there is no need to create a lot of
replicas because no threats from severe performance consequences would occur. And for
cases when there exists an i that ECT tji > QoS stands, the threshold is then calculated to
be the minimal ECT that is larger than QoS divided by the average ECT tji, because such
a value can capture all such i.

Two examples of how this is calculated are given as follows: assume that a job with QoS
timing constraint of 300ms has five tasks with ECTs at time t to be 290ms, 290ms, 300ms,
380ms, and 400ms, respectively. In this scenario, the minimal ECT tji greater than QoS is

72

Chapter 4 Task-level Detection: Adaptive Straggler Threshold

380ms, and the average ECT is 300ms. Therefore the value for Qt
j to be used calculating

the final threshold Thtj,dyn is 127% (380 ÷ 300). If all tasks are estimated to complete
prior to the specified QoS (change QoS in above example from 300ms to 450ms, then all
ECT tji values will be smaller than QoS), the value for Qt

j according to Equation 4.2 will
then change to 150% (450 ÷ 300). This results in no tasks detected as stragglers (if P t

j

and Rt are zero as in this example).

ALGORITHM 2: TimingConstraintBaseline
Inputs:

Job: the parallel job
Tasks: the list of tasks within this job
PS: The progress score list of every task within this job
QoS: QoS timing constraint

Output:
Q: the timing constraint baseline

1 for each Tasks[i] in Tasks do
2 PR[i] = PS[i] / (CurrentT ime − Job.startTime);
3 ECT[i] = CurrentT ime + (1 − PS[i]) / PR[i];

4 if (QoS 6= null) then
5 Sort(ECT);
6 Q = (ECT > QoS).first;
7 if (Q 6= null) then
8 Q = Q / average(ECT);
9 else

10 Q = QoS / average(ECT);

11 else
12 Q = 1.5;

It is worth highlighting that, the adaptive straggler threshold algorithm also functions well
for applications that do not specify an explicit QoS timing request. In such an event, a
static time proportion value of 150% used in current literatures [162] [125] [80] can be
applied to set the threshold baseline, and the dynamic change for Thtj,dyn will then depend
on P t

j and Rt. The algorithm 2 details the calculation process of Qt
j .

4.2.2 Task Lifecycle Progress

It is also important to consider the current completed progress for effective replica gen-
eration. Specifically, a replica should ideally be spawned at an early phase of the task
lifecycle when it is likely to complete prior to the task straggler, otherwise the replica will

73

Chapter 4 Task-level Detection: Adaptive Straggler Threshold

likely result in unnecessary resource consumption with no improvement towards final job
completion time. For example, when a task experiences slowdown in its later phase, the
created replica has less probability to complete prior to the straggler as it is already too
late to catch up. As a result, it is reasonable to increase the threshold value in response to
late progress to avoid ineffective speculation, and lower the threshold value at early phase
within task lifecycle to encourage replica generation, because the replica should have a
higher probability to outpace the original task in that case.

Adhering to this reasoning, it is important to consider current task execution progress
when launching speculative replicas. The calculation of the progress adjustor at time t is
given in Equation 4.3

P t
j = PStj − µ (4.3)

where PStj is the average Progress Score (PS) for job Jj at time t, representing the current
phase in the entire job lifecycle. For example, for a job consistis of 3 tasks, at time t = 1,
if PS1

11 = PS1
12 = PS1

13 = 0.1, we say PS1
1 = 0.1. With task progress, at time t = 2 if

PS2
11 = PS2

12 = 0.5 while PS2
13 = 0.2, then we say the overall job is at its progress of

0.4 (PS2
1 = 0.4).

Progress standard parameter µ is used to denote the specified maximum point within the
lifecycle suitable for generating a replica. For example, µ = 0.5 represents that any job
with a PS smaller or equal to 0.5 is still considered as in its early stage, leading to a smaller
Thtj,dyn by generating a negative P t

j value, increasing the likelihood of replica generation.
And any job that progresses past half of the entire lifecycle will be treated as in its late
stage, resulting in a positive P t

j to enlarge the threshold to limit replica generation. This
procedure is detailed in algorithm 3.

ALGORITHM 3: TaskLifeCycleAdjustor
Inputs:

Job: the parallel job
Tasks: the list of tasks within this job
PS: The progress score list of every task within this job
mu: µ, the progress threshold

Output:
P: the task lifecycle adjustor

1 sumPS = 0;
2 for each Tasks[i] in Tasks do
3 sumPS += PS[i];

4 P = sumPS / Job.size − mu;

74

Chapter 4 Task-level Detection: Adaptive Straggler Threshold

4.2.3 System Resource Usage

One of the most important considerations for straggler mitigation systems is the overhead
incurred by speculations, especially toward different system conditions. Creating repli-
cas in a high resource utilization situation poses a greater threat to system stability and
can further increase the likelihood of straggler occurrence due to severe contention [107],
while low system utilization allows for additional speculation to improve job comple-
tion such as the full cloning algorithm [6]. Furthermore, replicas themselves could have
the chance to become stragglers. Observations proposed in [5] state that 3% of replica
executions still take ten times longer than normal tasks in Bing’s production cluster. Con-
sidering the fact that replicas will execute with data identical to the original straggler and
will be configured with the same resource requests, the expense of tasks should also be
considered when deciding whether to perform speculation. If the resource requirement of
the original task is large, then generating a corresponding replica can result in a higher
resource cost with no substantial improvement towards overall job completion.

Based on this reasoning, the dynamic straggler threshold calculation should consider cur-
rent system utilization levels. The resource adjustor is represented as parameter Rt in the
algorithm to tune the value of Thtj,dyn dependent on system utilization at time t. This
calculation is given as

Rt = max

(∑n
k=1 Ωt

k

n
− ω,

∑n
k=1 Φt

k

n
− φ
)

(4.4)

where n denotes the total number of server nodes within the cluster, while Ωt
k and Φt

k

ALGORITHM 4: UtilizationAdjustor
Inputs:

phi, omega: φ, ω, the CPU and the memory threshold
Nodes: the machine nodes list within the cluster

Output:
R: the utilization adjustor

1 sumCPU = 0, sumMem = 0;
2 for each Nodes[n] in Nodes do
3 sumCPU += Nodes[n].getCpuUti();
4 sumMem += Nodes[n].getMemUti();

5 C Adjustor = sumCPU / Nodes.size − phi;
6 M Adjustor = sumMem / Nodes.seze − omega;
7 R = max(CPUadjustor, MEMadjustor);

75

Chapter 4 Task-level Detection: Adaptive Straggler Threshold

represent the memory and CPU utilization of machine Mk, respectively. If either one of
these two parameters surpasses the optimal utilization specified by the user (the memory
standard ω and the CPU standard φ), the equation will increase the threshold by generating
a positive Rt, resulting in a stricter requirement for replica generation. For now, only
CPU and memory utilization are considered, and the calculation catches the influence of
whichever that is higher in its utilization. Additional resources can be included to generate
a complete computation in the future. The detailed process is summarized in algorithm 4.

4.3 Theoretical Examples

In this section, the key idea of the proposed algorithm is explained by giving two theo-
retical examples, illustrating how the dynamic threshold value will change according to
different parameters, and what impact this change would exhibit upon final job comple-
tion. The series of Progress Score (PS) is given one timestamp at a time. Among the two
examples, one summarizes the case when the job starts in a low system utilization state
while the other is for high utilization.

The static and dynamic thresholds are applied to both examples and the results are pre-
sented in four tables. In both examples, a single job J1 consisting of ten tasks T1,1, . . . , T1,10
is considered for illustration simplicity. The progress standard parameter, the memory and
CPU standard parameter are set to be µ = 0.5, ω = 0.6, φ = 0.6, respectively, and the
values for weighting parameters are α = 0.5 and β = 0.5. This setting represents a
common configuration and can be changed according to different interests.

• Example 1: Job starts in low utilization environment

Table 4.2 shows the job PS and the Estimated Completion Time (ECT) at each time inter-
val for the adaptive threshold while Table 4.3 indicates static threshold. The initial system
utilization starts from 15% to represent the idle condition of the cluster. It is assumed that
the job does not have an Quality of Service (QoS) deadline request in this example, and
the values for T1,1, . . . , T1,10 in the table are ECTs of the initial tasks, while R-Tji stands
for corresponding speculative replicas. ECTcompare in both tables represent the result of
Tht1,dyn × ECT t1 .

Observed from Table 4.3, the static threshold identifies two stragglers and the job com-
pletes at timestamp t = 12. Task T1,7 is the first straggler identified, being detected at

76

Chapter 4 Task-level Detection: Adaptive Straggler Threshold

timestamp t = 2 when its ECT is first found to be larger than 1.5 ∗ECT 2
1 . Replica R-T1,7

is created upon detection, and its ECT is calculated at time t = 3 when PS is first gen-
erated. The other straggler identified is task T1,3 with R-T1,3 created at timestamp t = 7.
Among the two replicas, R-T1,7 completes at time t = 8 prior to task T1,7, however for
T1,3, due to the late detection, R-T1,3 does not have sufficient time to catch up. From this
demonstration it is observable that, the static threshold cannot capture slow tasks such as
T1,3 promptly; even in its early stage, it already shown slow progress (at timestamp t = 3

when its ECT is 13, however this number does not pass the 1.5 threshold because it is
slightly smaller than 13.5).

On the contrary, for the dynamic threshold demonstrated in Table 4.2, this gap of late de-
tection is reduced. Altogether four stragglers are identified to shorten the job execution
from timestamp 2 to 4. Although the larger replica number imposes a greater overhead
compared with the static threshold, due to the idle system state, it will not cause severe
burden towards the system. This is why tasks T3, T5, T7 and T10 are identified in com-
parison to only T3 and T7 when using the static approach. The dynamic approach makes
use of the low system utilization to create more replicas in a prompt way so that a better
response time is obtained.

It is also observable that, the threshold value gets larger through job execution. This is due
to the fact that, the dynamic approach limits replica creation in late stages of the lifecycle
by generating greater threshold values according to Equation 4.3. Increasing the straggler
threshold indicates a stricter condition for a slow task to be classified as a straggler and to
trigger speculation. In late phases of a job, due to the fact that speculations are not likely
to over-pace the original task unless it is a really severe straggler, increasing threshold
won’t undermine the makespan, but would save resources on unnecessary speculation.
And as time goes by, the threshold stops increasing and stays at a relatively stable value.
This is because that, when tasks start finishing, the usage of the resource adjustor defined
in Equation 4.4 yields a decreasing effect that neutralizes the increasing effect brought by
the late progress phase.

• Example 2: Job starts in high utilization environment

For the second example, Table 4.4 and Table 4.5 show an application that adopts the dy-
namic and the static straggler thresholds, respectively, in which, job starts at a high utiliza-
tion state. This time, the job with a QoS constraintQoS = 12 is considered to demonstrate
the algorithm methodology. Other attributes including the task number and the algorithm
parameter settings are identical to the previous example.

77

C
hapter4

Task-levelD
etection:A

daptive
StragglerT

hreshold
Table 4.2: Example 1: speculative execution with dynamic threshold

Time Uti Tht1,dyn ECTcompare PS T1,1 T1,2 T1,3 T1,4 T1,5 T1,6 T1,7 T1,8 T1,9 T1,10 R-T1,3 R-T1,5 R-T1,7 R-T1,10
1 0.15 1.09 8.20 0.14 7 7 8 7 8 5 8 8 7 10
2 0.15 1.15 9.31 0.25 7 6 9 6 10 6 13 7 7 10 8
3 0.20 1.21 10.58 0.31 7 8 13 8 10 7 15 7 7 9 8 8 7
4 0.50 1.42 11.77 0.44 7 7 12 8 10 6 16 7 5 9 6 8 7 8
5 0.55 1.51 12.39 0.57 8 7 12 8 9 6 14 6 6 10 7 7 7 8
6 0.55 1.58 12.74 0.71 7 6 11 7 10 6 14 7 7 9 7 8 6 8
7 0.55 1.63 13.19 0.82 7 13 7 10 13 7 7 10 7 7 6 7
8 0.25 1.54 12.45 0.93 12 11 14 10 6 7 6 7
9 0.20 1.54 12.40 0.97 12 10 7 7

10 0.20 1.55 12.40 1.00 11 7

Table 4.3: Example 1: speculative execution with static threshold.

Time Uti Tht1,sta ECTcompare PS T1,1 T1,2 T1,3 T1,4 T1,5 T1,6 T1,7 T1,8 T1,9 T1,10 R-T1,3 R-T1,7
1 0.15 1.50 11.25 0.14 7 7 8 7 8 5 8 8 7 10
2 0.15 1.50 12.15 0.26 7 6 9 6 10 6 13 7 7 10
3 0.30 1.50 13.50 0.33 7 8 13 8 10 7 15 7 7 9 8
4 0.30 1.50 12.82 0.49 7 7 12 8 10 6 16 7 5 9 7
5 0.35 1.50 12.68 0.61 8 7 12 8 9 6 14 6 6 10 7
6 0.40 1.50 12.27 0.76 7 6 11 7 10 6 14 7 7 9 6
7 0.35 1.50 12.55 0.85 7 13 7 10 13 7 7 10 6
8 0.25 1.50 12.38 0.86 12 11 14 10 6
9 0.20 1.50 12.38 0.90 12 10 10 7

10 0.20 1.50 12.13 0.95 11 10 10 6
11 0.20 1.50 12.38 0.96 12 7
12 0.20 1.50 12.38 0.98 12 7

78

C
hapter4

Task-levelD
etection:A

daptive
StragglerT

hreshold

Table 4.4: Example 2: speculative execution with dynamic threshold

Time Uti Tht1,dyn ECTcompare PS T1,1 T1,2 T1,3 T1,4 T1,5 T1,6 T1,7 T1,8 T1,9 T1,10 R-T1,8
1 0.80 1.52 11.39 0.14 8 7 7 8 7 5 8 8 7 10
2 0.80 1.59 12.85 0.26 9 6 7 10 6 6 7 13 7 10
3 0.95 1.68 13.91 0.37 13 7 6 10 7 6 6 13 6 9 8
4 0.90 1.84 13.41 0.59 11 6 5 11 5 6 5 12 5 7 7
5 0.85 1.96 15.65 0.66 11 6 6 12 6 6 6 14 6 8 7
6 0.80 1.88 15.88 0.75 11 6 7 13 7 6 7 14 7 9 6
7 0.80 1.79 15.29 0.84 13 7 12 7 7 13 7 10 6
8 0.50 1.82 15.38 0.93 12 11 14 10 6
9 0.30 1.48 12.62 0.95 12 12 10

10 0.35 1.43 11.98 0.98 11 11 10
11 0.20 1.46 12.36 0.98 12 12

QoS = 12 0.15 1.43 12.21 1.00 12 12

Table 4.5: Example 2: speculative execution with static threshold

Time Uti Tht1,sta ECTcompare PS T1,1 T1,2 T1,3 T1,4 T1,5 T1,6 T1,7 T1,8 T1,9 T1,10 R-T1,1 R-T1,4 R-T1,8
1 0.80 1.50 11.25 0.14 8 7 7 8 7 5 8 8 7 10
2 0.80 1.50 12.15 0.26 9 6 7 10 6 6 7 13 7 10
3 0.95 1.50 12.41 0.37 13 7 6 10 7 6 6 13 6 9 7
4 0.90 1.50 10.75 0.55 11 6 5 11 5 6 5 12 5 7 7 7
5 0.95 1.50 11.77 0.59 11 6 6 12 6 6 6 14 6 8 7 7 6
6 0.90 1.50 12.35 0.69 11 6 7 13 7 6 7 14 7 9 7 6 6
7 0.85 1.50 12.35 0.79 13 7 12 7 7 13 7 10 6 5 6
8 0.70 1.50 12.00 0.91 12 11 14 10 7 6 6
9 0.65 1.50 12.35 0.93 12 12 10 7 7
10 0.50 1.50 12.23 0.98 11 11 10 7 7
11 0.50 1.50 12.35 1.00 12 7

QoS = 12

79

Chapter 4 Task-level Detection: Adaptive Straggler Threshold

As presented in Table 4.5, due to the slow progress, the static approach identifies three
tasks T1,1, T1,4 and T1,8 as stragglers regardless of the utilization level, followed by the
creation of replicas R-T1,1, R-T1,4 and R-T1,8 at times 3, 4 and 2, respectively. These ad-
ditional replicas further increase utilization as well as the probability of straggler occur-
rence. In addition, some of them do not generate obvious improvement toward execution
performance, for example, R-T1,1, R-T1,4 are both only one step earlier than the original
task. For the dynamic method demonstrated in Table 4.4, due to the awareness of the envi-
ronmental conditions through using the resource adjustor defined in Equation 4.4, it only
identifies the most noticeable straggler T1,8. As a result of taking QoS into consideration
(QoS = 12), the slower ECT of T1,1 and T1,4 (ECT = 12) are ignored as a trade-off for
better resource efficiency while still guarantees acceptable response time. To summarize,
the dynamic threshold creates fewer replicas in the case of high system utilization to avoid
overloaded system, while guaranteeing the fulfillment of the QoS requirement.

4.4 Implementation and Experiments

The proposed method is implemented into the real system for experimental evaluation.
This section first introduces the default speculator design in current YARN system, fol-
lowed by the introduction of how the modification is made in order to integrate the dy-
namic threshold in. Experiment setups and results are discussed at the end.

4.4.1 Default Speculator Component

The default speculator component in current YARN 2.5.2 [66] implementation mainly
consists of three key classes: the TaskRuntimeEstimator class which is responsible for
estimating task Estimated Completion Time (ECT)s; the AppContext in charge of sharing
information between different objects; and the Speculator class itself. Key methods and
parameters are detailed in Figure 4.3.

Every time when the “speculation” event is triggered (refer to Figure 2.11 for the detailed
events handled by YARN Application Master (AM)), the Speculator will check whether
a speculation action should be launched according to conditions given by the parameters.
By defualt, this time interval is set to be 1 second after no speculation, and 15 seconds after
speculation, and the parameters mainly include the minimum allowed speculative tasks

80

Chapter 4 Task-level Detection: Adaptive Straggler Threshold

Figure 4.3: Class diagram of the speculator component.

parameter (default value is 10), the proportion total tasks speculatable parameter (de-
fault value is 0.01), and the proportion running tasks speculatable parameter (default
value is 0.1). The meaning of each parameter is relatively straight forward, for exam-
ple, the latter two indicate the maximum number of new tasks the Speculator can create
(max #speculation = min{(proportion total tasks speculatable×#total tasks), (pr

oportion running tasks speculatable×#running tasks)}).

If conditions are fulfilled for speculation, for example, the number of current specula-
tive copy is smaller than the maximum speculatable value, the Speculator will call the
TaskRuntimeEstimator class to get the estimated task durations. The speculationValue

function then calculates the speculation value (SV) as:

SV = ECT − ERCT (4.5)

81

Chapter 4 Task-level Detection: Adaptive Straggler Threshold

where ERCT is short for Estimated Replacement Completion Time. Similar with ECT,
ERCT is also generated by the TaskRuntimeEstimator class, but with normal task progress
rather than the straggler behavior. SV is the time difference between the original slow task
and the replacement task, representing the total time that can be saved from launching a
replica for a specific task. The YARN scheduler calculates SV for each task, at each
time when the speculator event is triggered, it then creates a replica for the task with the
largest SV, by adding an attempt for this specific task into a waiting queue utilizing the
addSpeculativeAttempt function.

4.4.2 Speculator Modification

Based on the above analysis of the default speculator in the YARN architecture, it is
known that Hadoop already includes several reporting counters such as the progress info
for each task attempt in TaskAttemptStatus class, and provides functions to calculate sev-
eral key intermediate results such as the estimatedRuntime. The TaskRuntimeEstimator

class provides an interface that can be inherited by different ECT calculating method,
among which the LegacyTaskRuntimeEstimator is now been used by version 2.5.1.

Theoretically, the straightforward way of implementing our own algorithm is to add an-
other “AdaptiveSpeculator” class similar with the current DefaultSpeculator that also
inherit from the general Speculator interface, as shown in Figure 4.3 with the red dot-
ted square. In reality, in order to minimize the changes made into this complex system,
instead of creating a new class, we simply add a new function calculating Thti,dyn accord-
ing to Equation 4.1 to replace the “SpeculationValue” function in the DefaultSpeculator.
This way of implementation avoids potential disruption to other event handling compo-
nents that rely on DefaultSpeculator internally. In other words, our algorithm does not
introduce additional monitoring and computation overheads to the system. The only “ex-
tra work” performed is at O(1) cost (function replacement), and all external APIs for the
Speculator class remain unchanged.

For the Thtj,dyn calculation, P t
j is straight forward since all Progress Score (PS) values are

already recorded, and it is simple to get the average. As for the resource utilization adjus-
tor Rt, we manage to get this information through the AppContext class. In the original
system, the RMContainerAllocator is responsible for communicating with the Resource
Manager (RM) to get the cluster information for the AM. In our implementation, two
additional attributes are added in the AppContext class (namely “cluster capacity” and

82

Chapter 4 Task-level Detection: Adaptive Straggler Threshold

Figure 4.4: Modification to the AppContext
class to get the resource values from RM

Figure 4.5: Parameter configuration exam-
ple.

“cluster available” as shown in Figure 4.4) to record the available CPU and memory from
RMContainerAllocator.

In addition, the parameters used in the calculation can be passed in through modifying the
mapred-site.xml file just like the other YARN related parameters. An example is given
in Figure 4.5. In this way, the algorithm can easily be customized without recompiling
the whole YARN platform each time new configurations are added. An automatic log
extract tool is developed to locate the precise log position within the cluster as well, so
that we can visualize key information including threshold value, replica number and job
execution time, etc., for later evaluation purpose.

4.4.3 Experiment Setup

Our experiments are run on the OpenNebula platform [104], with a typical Virtual Ma-
chine (VM) configuration of 1GB memory, 1 virtual core with 2.34 GHz capacity and
10GB disk space on the potentially shared hard drive. The VM uses KVM virtualiza-
tion software and runs an Ubuntu 12.04 x86 64 operating system. In all experiments, we
configure the HDFS to maintain two data replicas for each chunk. The job types we run
include Sort, WordCount, and Hive query (mainly Group By). The Apache Hive [141] is
a data warehouse software residing in distributed storage using SQL. It is an open-source
implementation [11] that can be deployed on top of the Hadoop cluster, and Hive queries
(similar with SQL queries that reads, writes and manages datasets) will automatically be
transferred into a Hadoop job. These three benchmarks were selected as they are fre-
quently used for straggler evaluation, such as in the Google paper [46], in LATE [162],
in Mantri [5] as well as in MCP [38]. In addition, a number of features of Sort make it a
desirable benchmark [25]. For the Sort and the WordCount jobs, the input size is 10GB

83

Chapter 4 Task-level Detection: Adaptive Straggler Threshold

Table 4.6: Experimental cluster configurations

Number of VMs 5 10 30
Default VM 3 15 22

I/O injected VM 0 1 1
CPU injected VM 0 1 2
Mem injected VM 1 1 2

Combined VM 1 2 3

and 5GB, respectively; while for the Hive query, the Group By is conducted on a table
with more than 10 million rows.

For the cluster environment, we evaluate the modified system in three sizes: with 5 data
nodes (VMs), 10 data nodes (VMs), and 30 data nodes (VMs). We injected faults and
extreme resource contentions into the cluster to create a complex environment for experi-
ments. An I/O intensive program, a memory intensive tool, and a CPU intensive program
are deployed on specific VMs. The first program consists of mainly the “dd” and the “rm”
command to create and delete files which take up most I/O throughput of the machine; the
second tool intensively creates new array data to occupy memory; the last program con-
tinuously calculates the π value until a certain accuracy (actually it can be programmed
as an infinite loop to consume the CPU computation power).

The VM number settings are listed in Table 4.6, with “Default VM” representing VMs
without injected faults. “I/O injected”, “CPU injected” and “Mem injected” VM refer to
VMs with a certain interference program running on it, while “Combined VM” indicates
VMs with all three (I/O intensive, CPU intensive and memory intensive) applications
deployed.

4.4.4 Experiment Results

We analyze the experiment results mainly from four aspects: the performance improve-
ment which focuses on job response time; the speculation overhead which measures the
replica number generated; the speculation effectiveness which calculates replica number
that actually outpace the straggler; and the parameter sensitivity which observes how the
threshold value will change along with time and utilization.

84

Chapter 4 Task-level Detection: Adaptive Straggler Threshold

Execution Time Performance Improvement

Three versions of Hadoop platform are deployed in order to compare their efficiencies
in job completion time with straggler presence: Hadoop YARN with 1) the static and 2)
the dynamic straggler threshold, and 3) Hadoop YARN without speculation. For any two
platforms PA and PB, we calculate the improvement of job response time IAB for PA
versus PB by

IAB =
PB(DJj)− PA(DJj)

PB(DJj)
, (4.6)

where PA(DJj) and PB(DJj) denote the duration of benchmark jobs running on platform
PA and PB, respectively. To note that, throughout the whole thesis, when referring to
execution time improvements under two different platforms, we all follow this calculation.

Table 4.7 shows the results for all three workload types. Each experiment case is executed
three times in order to get the average and standard deviation value. We keep the total
input size constant throughout different cluster sizes. For example, for Sort, the files of
10GB in size have been sorted, which means that, in the 5 VM cluster, each node holds a
2GB file while for the 10 VM cluster, each node only holds 1GB.

Table 4.7: Results for different threshold performance

Job
Type

Cluster
Size

Response Time (seconds)
Dynamic Static No Speculation

Avg Stdev Avg Stdev Avg Stdev

Word
Count

5 103 1.69 110 4.03 107 2.49
10 96 3.09 96 1.69 98 4.32
30 63 4.19 75 5.25 88 4.92

Sort
5 1089 2.16 1164 1.89 1201 3.27

10 571 1.25 626 2.49 712 4.19
30 400 3.09 500 2.49 580 4.78

Hive
Groupby

5 67 9.09 82 0.73 80 0.59
10 61 2.21 73 0.23 77 1.48
30 56 1.89 61 1.02 64 0.44

It is shown that, the average job response time for WordCount using the dynamic straggler
threshold is 87.34s, while the static threshold and no speculation is 93.67s and 97.67s,
indicating an improvement of 6.76% and 10.58%, respectively. For Sort and Groupby, the

85

Chapter 4 Task-level Detection: Adaptive Straggler Threshold

average durations on corresponding platforms are Pdyn(DJsort) = 686.67s, Psta(DJsort) =

763.34s, Pno spec(DJsort) = 831s, and Pdyn(DJhive) = 61.33s, Psta(DJhive) = 72s,
Pno spec(DJhive) = 73.67s. Figure 4.6 summarizes the improvement for the dynamic and
static thresholds versus no speculation in different cluster sizes for different jobs.

Figure 4.6: Job response time improvement of the dynamic threshold and the static thresh-
old comparing to no speculation for jobs (a) WordCount, (b) Sort, and (c) Hive.

It is observable that, in the five node cluster, static speculation performs worse than no
speculation with WordCount and Hive Groupby, leading to a negative improvement value.
This is a result of the system experiencing an extremely high utilization state. Additional
replication under this case further burdens the system instead of making performance im-
provements. The dynamic threshold, on the contrary, captures this contention information
and makes appropriate adjustments, therefore obtaining a better performance.

In addition, we observe that the execution time performance improvement varies not only
with cluster size, but also with different workload types. The improvement is more ap-
parent for Sort in comparison to Wordcount and Hive, achieving 10.04% and 17.37% on
average when compared with the static threshold and no speculation framework. The

86

Chapter 4 Task-level Detection: Adaptive Straggler Threshold

most noticeable improvement is achieved when the system is in an idle state: under clus-
ter size 30, the achievement versus no speculation is 31.03% while 20% compared with
the static threshold. This is consistent with the algorithm design of creating more replicas
to reduce job execution time when utilization is low. While in busy states, such as cluster
sizes of 5 or 10, although the dynamic threshold identifies fewer replicas, it reduces the
chance of a task to become a straggler due to contention, therefore still performs better
than the static method.

To validate that the dynamic threshold really does make an improvement toward job com-
pletion time, independent t-tests between different methods are conducted. Table 4.8 de-
tails the significance value p. In the table, wd5 (ws5, and wn5) represents the Wordcount
workload with the Dynamic straggler threshold (Static threshold, and No speculation)
running in a 5 node cluster, while sd5 and hd5 represents workload Sort and Hive under
the same condition (dynamic threshold, and 5 node cluster). The null hypothesis of the
tests are mean(dyn) = mean(sta) and mean(dyn) = mean(no spec), while the al-
ternative hypothesis are mean(dyn) < mean(sta) and mean(dyn) < mean(no spec),
representing dynamic threshold performs better than static threshold and no speculation
as it gives a shorter response time.

Table 4.8: The T-test results for response time difference significance

wd5 wd10 wd30
ws5 p = 0.089 ws10 p = 0.5000 ws30 p = 0.038

wn5 p = 0.079 wn10 p = 0.289 wn30 p = 0.006

sd5 sd10 sd30
ss5 p = 0.000 ss10 p = 0.001 ss30 p = 0.000

sn5 p = 0.000 sn10 p = 0.000 sn30 p = 0.000

hd5 hd10 hd30
hs5 p = 0.069 hs10 p = 0.008 hs30 p = 0.026

hn5 p = 0.089 hn10 p = 0.002 hn30 p = 0.013

From the T-test results it is observable that, for Sort jobs, the difference in job execution
performance is quite significant, all tests reject the null hypothesis and admit the fact (with
95% confidence) that the dynamic threshold provides a quicker job response. While for
WordCount and Hive jobs, some of the p values are larger than 0.05, indicating a vague
improvement. This is due to a limitation of all speculation-based techniques, which is
further analyzed in the next subsection.

87

Chapter 4 Task-level Detection: Adaptive Straggler Threshold

Table 4.9: Experiment results for speculation overhead comparison

Workload
Type

Cluster
Size

Task
Number

Replica
Number

Successful
Speculation

Speculation
Effectiveness

Dynamic Static Dynamic Static Dynamic Static

Word
Count

5 8 3 6 2 1 66.67% 16.67%
10 14 5 6 3 2 60% 33.33%
30 36 12 5 5 1 41.67% 20%

Sort
5 89 4 8 2 2 50% 25%
10 110 16 10 5 2 31.25% 20%
30 153 23 11 12 3 52.17% 27.27%

Hive
Group
By

5 8 2 1 1 0 50% 0%
10 13 3 2 2 1 66.67% 50%
30 33 5 3 3 1 60% 33.33%

Speculation Overhead and Effectiveness

Besides the execution time performance, a further comparison regarding the speculation
overhead is conducted between static and dynamic threshold methods as well, primarily
measuring the number of replicas generated under each algorithm. The detailed results
are listed in Table 4.9, from which we see that, when the cluster size is small, the dy-
namic threshold can save resources through creating fewer replicas compared to the static
method. In contrast, the dynamic threshold in a larger cluster size generates more replicas
as a result of trading resources for time to achieve better response performance.

In other words, in some cases, the dynamic threshold seems generated extra overhead,
for example, when WordCount was running on the 30 VM environment, the proposed
algorithm cost 58.3% more resources on creating replicas ((12 − 5)/12). However, be-
cause this overhead is incurred when the system is in its idle state, the influence it brought
toward improving job response time is positive. This auto adjustment is important, espe-
cially for jobs with QoS timing constraints. In addition, the extra resources on replication
number also help in improving the speculation effectiveness indicator.

We measure speculation effectiveness Espec by comparing the number of successful spec-
ulations, replicas that successfully over-pace the straggler and contribute to the response
time improvement, with the total number of speculations launched, as shown in Equation 4.7.

Espec =
#Specsuccess
#Spectotal

(4.7)

88

Chapter 4 Task-level Detection: Adaptive Straggler Threshold

From the result listed in Table 4.9, the speculation success rate is much higher for Sort
jobs compared to WordCount and Hive, which indicates that more replicas outpace the
identified stragglers for Sort, and contribute towards improving the final job execution
time. The reason behind this phenomenon is a limitation of speculative-based mechanism:
when stragglers are caused by uneven input data sizes, the speculative copy will still suffer
from the imbalanced workloads and ended up being killed, and this type of stragglers
appears more often under WordCount and Hive compared with Sort.

Figure 4.7: WordCount task progress in (a) no fault injection, (b) I/O contention injected
cluster

The successful speculations for WordCount are mainly found when the testbed has been
injected with resource interference, where stragglers are caused by contention reasons.
Figure 4.7 shows a comparison example when running the WordCount job both using dy-
namic threshold in different testbed settings. Figure 4.7 (a) contains only default VMs
and Figure 4.7 (b) has three VMs injected with I/O contention. Each color in the figure
represents a task: the ones with suffix zero indicate original task attempts and suffix one
means it is a speculative attempt for this specific task. In Figure 4.7 (a), all speculative
replicas are killed because the stragglers in this case are caused by data skew, therefore
they still finish before the “also lagged” speculation that process identical input. While
in Figure 4.7 (b), two out of three speculations manage to over-pace the stragglers and
succeed in the end, only task m03 has a failed speculation m03 1. This limitation faced
by speculative-based methods can be improved by complementary techniques that specif-
ically target at skew-caused stragglers, such as the work detailed in chapter 6.

Parameter Setting Sensitivity

The efficiency of the proposed algorithm is dependent on selecting the appropriate value
for the configurable system parameters. This section studies how the threshold value

89

Chapter 4 Task-level Detection: Adaptive Straggler Threshold

Figure 4.8: Threshold changing pattern for (a) Map and (b) Reduce tasks applying differ-
ent parameter configurations

changes to reflect different system conditions, and describes how different parameter set-
tings influence algorithm performance.

Systems have different standards to judge their own “idle” or “busy” state, and different
values lead to different strictness of speculative replica creation. The system administra-
tor can also impose different emphasis toward progress adjustor and resource adjustor.
Figure 4.8 plots the changing pattern of two thresholds for Map and Reduce tasks of the
Sort job as an example, with different parameter settings. The α and β for threshold 1
are both 0.5, representing an equal weighting towards task progress phase and resource
utilization level. µ is set with value 0.5, indicating the halfway progress point, and ω is
set to be 0.7, indicating that any utilization below 70% will be treated as “idle”. φ is
not used in the experiments as the RM in YARN 2.5.2 only focuses on memory for now.
According to the official website [66], CPU will be considered in later versions.

For threshold 2, α and β are set to values of 0.4 and 0.6, respectively. This reveals that
more emphasis has been put on the influence of resource utilization rather than progress.
We decrease the value of ω from 0.7 to 0.6 for threshold 2 as a comparison, indicating a
stricter utilization standard for additional speculation compared with threshold 1.

From the figure we notice that both curves exhibit a similar trend: the threshold value
increases in the beginning due to the raising utilization caused by newly started tasks, then
followed by a relatively flat period as a result of the neutral effect brought by the progress
adjustor. Afterwards, a decreasing trend is observed because tasks begin to complete and
subsequently release resources. When the job is approaching its completion, at which
time the probability of a replica outperforming the straggler is low, the threshold value

90

Chapter 4 Task-level Detection: Adaptive Straggler Threshold

increases again to avoid needless speculation.

Despite the similarity in general changing trend, some differences are witnessed between
the two. For example, the turning point of the threshold value from increase to decrease
for threshold 2 is slightly earlier than threshold 1. This is due to the utilization fall
caused by task completion generates a larger effect than late phase increase for thresh-
old 2 (βthreshold 1 = αthreshold 1 while βthreshold 2 > αthreshold 2). And the highest thresh-
old value for threshold 2 is greater than threshold 1 due to it being more sensitive to
utilization (ωthrehold2 < ωthrehold1).

4.4.5 Simulation Results

We conducted a simulation in order to evaluate the advantages of the dynamic threshold
algorithm within a larger-scale system. We use SEED - an event-based simulator [60]
that can simulate Cloud datacenter operations such as the creation of jobs (comprising
multiple tasks) onto a set of machines for execution.

SEED is implemented using the C#.Net 4.0 language (and compiled using the Mono
framework for platform portability). The simulation is composed of several SEED in-
stances, each providing the facility of simulating a system partition consisting of nodes,

links, and tasks. The most basic instance can be compiled from two XML and text-based
configuration files, with examples shown below:

Example Network Specification
<xml version = “1.0” encoding = “utf-16”>
<Network Clock Port = “0”>
<Nodes>
<Node ID = “VN0 0.0.0.1” IP Address = “0.0.0.1” />
<Node ID = “VN0 0.0.0.2” IP Address = “0.0.0.2” />
<SwitchNode ID = “SW0 0.0.0.0” IP Address = “0.0.0.0” />

</Nodes>
<Links>
<Link ID = “Link 1” NodeA = “SW0 0.0.0.0” NodeB = “VN0 0.0.0.1” />
<Link ID = “Link 2” NodeA = “SW0 0.0.0.0” NodeB = “VN0 0.0.0.2” />

</Links>
</Network>

Example Task Specification
#Task Specification#
$ Task duration, Number of Tasks
150, 500
200, 10000

91

Chapter 4 Task-level Detection: Adaptive Straggler Threshold

Different from other simulators, SEED provides an automated service-oriented process
for simulation configuration and deployment, and supports execution across a heteroge-
neous distributed environment with no assumptions concerning the underlying hardware,
as well as minimal user configuration. Importantly, SEED is also capable of managing
event synchronization. A detailed comparison between SEED and some representative
simulators is summarised in Table 4.10.

Table 4.10: Simulator comparison table

Feature Environment
Target
domain

Distributed Slowdown Synchro
Task
Types

SST+
HPC HPC YES N/A N/A Real

gem5

Emulab HPC Generic YES
Vary with Config Config
time slice dependent dependent

Graphite Cluster
Multi

YES 41× Lax Real
core

YANS Desktop
Network

NO
Thread model Event-

based
Models

only dependent
Network

Desktop Generic NO
Scalability config

Models
CloudSim issues dependent

SEED
Desktop,

Generic YES
Between 6× Event-

based
Models

Cluster and 15× Real

Besides the general SEED configuration, the design of our simulation adopts the follow-
ing assumptions:

(1) All speculative replicas created are allocated with identical CPU and memory re-
quirements with the straggler task [162];

(2) The speculative replicas need to re-execute the same work from the beginning, in-
stead of continuing the unfinished work of the straggler from the detected point;

(3) The scheduler creates the replica immediately after a task has been defined as a
straggler, and will schedule the replica as a normal task;

(4) The maximum resource capacity of the cluster remains the same, i.e. no addition /
removal of server nodes during threshold calculation;

(5) Replicas can potentially become stragglers as well [5];

(6) Once a certain level is exceeded, higher resource utilization within a system leads
to a higher probability of straggler occurrence [107].

For the second assumption, it is adopted because this “from the beginning” policy is used

92

Chapter 4 Task-level Detection: Adaptive Straggler Threshold

by almost every related literature out there. The reason for not check-pointing the original
task may be that it requires additional status and complexity. So far, only one paper is
observed within which the replica is starting from where the straggler is identified, and
this Coworker paper [69] is discussed in Section 2.4.1.

When simulating the task progress, a simple model of a probabilistic function is adopted:
tasks follow a linear progress with straggler probability defined in Equation 4.8. We as-
sume the straggler probability is dependent on system utilization.

P (Straggler) =

0.1 if utilization ∈ (0,0.6]

0.2 if utilization ∈ (0.6,0.8]

0.3 if utilization ∈ (0.8,0.9]

0.4 if utilization ∈ (0.9,1)

(4.8)

For stragglers, the duration will be slowed stochastically by a factor between 120% to
250% compared to the average task duration. This is consistent with the statistics discov-
ered in [5] and in chapter 3. Other sophisticated progress functions (namely the straggler
probability function and the straggler tailing duration function) such as the Pareto and
the Zipf distributions [36] can easily be implemented to replace current linear progress if
needed.

We construct a simulated cluster with 100 servers and 500 tasks, and another environment
with 800 servers and 10,000 tasks. The server nodes in the simulations are configured with
4096MB memory capacity, and tasks for the former cluster are configured with 512MB
memory requirement while 256MB is set for the latter environment. For the dynamic
threshold calculation algorithm, an equal weighting to progress and resource adjustor is
adopted, and the value of 0.5 is assigned to both standard parameters. The detailed results
are shown in Table 4.11.

Table 4.11: Simulation results for different thresholds

Threshold
Method

#Nodes #Tasks
Response
(time step)

Replica
Number

Successful
Speculation

Straggler
Percentage

Speculation
Effectiveness

Dynamic 100 500 130 72 48 14.4% 66.67%
Static (1.5) 100 500 163 59 18 11.8% 30.5%
Dynamic 800 10,000 162 1,861 1,443 18.61% 77.54%
Static (1.5) 800 10,000 213 1,486 702 14.86% 47.24%

93

Chapter 4 Task-level Detection: Adaptive Straggler Threshold

From the results it is observable that, in the cluster with 100 node, at the cost of an
additional 2.6% ((72 − 59)/500) replica numbers , the dynamic threshold can reduce
job execution time by a factor of 20.25% ((163 − 130)/163). And among all replicas
launched, 66.67% managed to catch up with the corresponding stragglers using the dy-
namic threshold, while only 30.5% replicas are effective using the static threshold. In the
case of 10,000 tasks, the statistics follow the same trend with the results from the previ-
ous environment: job execution time has been reduced by 23.94% ((213−162)/213) with
3.75% ((1861− 1486)/10000) more replicas when adopting dynamic straggler threshold,
with a 30.3% (77.54%− 47.24%) improvement in speculation effectiveness.

4.5 Summary

The straggler threshold is a key concept used in current speculative methods, defining to
what extent shall a slow task be identified as a straggler in the detection process. This sec-
tion details an adaptive straggler threshold calculation method that dynamically adapts to
different job types and system conditions to improve the efficiency of straggler mitigation.
A brief summary that remarks the contribution of this chapter is given as follows.

• The dynamic threshold proposed is effective in improving job completion time.
While some methods identify stragglers using a pre-defined static threshold for
straggler identification, such as 50% greater than average execution, our approach
allows for an adaptive threshold calculation that automatically captures job Quality
of Service (QoS) timing requirement, task progress, and system resource utilization
level. Experiment results demonstrate that, the dynamic technique can improve job
completion by a factor up to 20% compared to the static method, while simulation
results indicate the same trend, achieving an improvement up to 23.94% in a large
scale environment.

• Replica number trade-offs under different levels of resource utilization are made

to cope with the dynamic operational environments. Improving job execution by
speculation and saving resources can be a conflict of interest and require trade-off
balancing. Experiments are conducted to compare the dynamic approach against
the current static approach under different operational conditions; results demon-
strate that our approach creates fewer replicas under high utilization. While under
low resource utilization, the dynamic threshold method proactively generates more

94

Chapter 4 Task-level Detection: Adaptive Straggler Threshold

replicas to achieve a quicker response time.

• An enhanced speculation success rate and effective quality assurance is achieved.
Not all replicas generated can successfully outpace the identified stragglers; to in-
crease this percentage is important in improving speculation efficiency. The dy-
namic threshold is capable of choosing the right timing and suitable environment to
launch replicas, therefore achieving a higher speculation success rate compared to
the static method. Results from experiments and simulations show the largest im-
provement of 50% (from 16.67% to 66.67%) and 36.17% (from 30.5% to 66.67%),
respectively.

Refer back to the system model outlined in Section 3.5, this method provides the task-
level detection for the Adaptive Speculator component.

95

Chapter 4 Task-level Detection: Adaptive Straggler Threshold

96

Chapter 5

Server-level Prediction and Dynamic
Blacklisting

Current datacenter environments often consist of thousands of server nodes with differ-
ent physical capacities (including CPU, memory, disk, etc.), operational age, architec-
ture, and performance [33]. These physical heterogeneities, as well as the dynamic re-
source utilization and multi-tenancy, result in diverse task execution performance for each
node [106], which forms an important reason for the straggler occurrence. In this chapter,
node execution performance modeling, ranking, and prediction are discussed, followed
by a performance-aware dynamic blacklisting technique in order to avoid stragglers and
improve speculation efficiency.

5.1 A Google Case Study

One straightforward idea of analyzing a node’s ability in terms of parallel job completion
is through the measurement of history data, specifically, the execution trace of the tasks
that used to run on this machine. Therefore, the first attempt I try is to build a statistical

97

Chapter 5 Server-level Prediction and Dynamic Blacklisting

model leveraging historical trace data when modeling node execution performance. A
case study is conducted using the Google trace to demonstrate this statistical-based node
performance modeling.

A filter is designed to get the target historical data out of the massive traces. Namely,
in this analysis, I focus on MapReduce jobs - a representative job type that containing
subtasks which exhibit similar completion time. For example in the Hadoop system, the
Map tasks are automatically generated based on the input data determined by the Hadoop
Distributed File System (HDFS) block size, running the same piece of Map function code.
Therefore they normally have similar designed completion time. This equal designed
duration is an important assumption supports the following analysis.

Details of the data semantics, formats, and schema are introduced in [120]. Among
the trace there are four tables that directly relate to our research objective. The Ma-
chine events table details server status (i.e. whether it has been added, removed, or modi-
fied within the cluster); the Job events and Task events tables record information pertain-
ing to job/task status (un-submitted, pending, running, dead) expressed through recorded
events (submit, schedule, kill, evict) at specific timestamps; the Task usage table gives
information of the start/end time of each individual task as well as the specific placement
to servers. Three filtering conditions are applied in order to extract the MapReduce job:

(1) Identify parallel jobs: The first filtering condition is to identify parallel jobs accord-
ing to its task numbers. A SQL query is constructed to select the jobIDs with more
than two taskIDs submitted at the same time after studying the timestamps of job
and task submissions.

(2) Determine production jobs: Tasks within the cluster are assigned with priorities
ranging between 0 and 11 for lowest and highest scheduling priority indicated in
the Job events table. Production tasks including latency sensitive tasks are with
priority from 2 to 9, monitoring is 10 to 11, and gratis tasks are 0 to 1. The latter
two priority scales are excluded after this filter.

(3) Extract MapReduce jobs: Unlike the above two conditions that have explicit relat-
ing attributes, filtering out jobs that exhibit MapReduce characteristics requires two
additional hypotheses. Firstly, the attributes “job name” and “logical job name” in
the Job events table are used, both of which are opaque base 64-encoded strings that
have been hashed to hide sensitive information, shall be used. Unique job names
are generated by automated tools to avoid conflicts, however, the job names gener-
ated by different executions of the same program will usually have the same logical

98

Chapter 5 Server-level Prediction and Dynamic Blacklisting

name. MapReduce is an example of this kind of application that frequently gener-
ates unique job names with identical logical names. Secondly, the “username” can
assist towards identifying MapReduce jobs as well. Usernames in this trace repre-
sent services run on top of the Google cluster, and jobs executing under the same
username are likely to be part of the same service. When a single program runs
multiple jobs, such as master job and worker job spawned by the same MapReduce,
those jobs will almost always run as the same user. Corresponding jobs are selected
after running a SQL query that captures these two characteristics.

The filtered target MapReduce dataset is consisting of 92,848 jobs with 10,894,461 tasks.
Importantly, since no biased selection towards node type is conducted, theoretically, the
influence brought by eliminating additional tasks applies equally to all machine nodes.
In other words, no imbalanced interference would be introduced after the task data fil-
tering that could lead to unreliable node-related results. The statistical-based framework
utilizing this target data to evaluate node performance is detailed in algorithm 5.

ALGORITHM 5: Workflow of the Statistical Based Node Analyzer
Inputs:

{tasks}: A task set with “Task” elements
{machines}: A machine set with “String” elements

1 while True do
2 set Ω = ∅, set Ψ = ∅, set Γ = ∅;
3 for each task ∈ {tasks} do
4 µ = NormalizedExecutionValue(task, {tasks});
5 ω = 〈 task.tID, task.jID, task.mID, µ 〉;
6 Ω = Ω ∪ {ω};
7 for each ω ∈ Ω do
8 for each mID ∈ {machines} do
9 if (mID == ω.mID) then

10 ψ = 〈 mID, ω.µ〉;

11 Ψ = Ψ ∪ {ψ};
12 for each mID ∈ {machines} do
13 init CI = 〈 Low, High 〉;
14 CI = MachineExecutionPerformance(mID, Ψ);
15 γ = 〈 mID, CI 〉;
16 Γ = Γ ∪ {γ};
17 set ∆ = IntervalBasedRank(Γ);
18 Sleep(TimeWindow);

99

Chapter 5 Server-level Prediction and Dynamic Blacklisting

For algorithm inputs, the “Task” element is a user defined data structure that contains
attributes of tID, jID, mID, and duration. The notion of tID is short for taskID, and is
a unique identification string. Similary, jID is short for jobID, indicating which job this
task belongs to, and mID is short for machineID, showing the machine this task runs on.
The notion of duration represents the execution time of the task.

Key phases of the statistical-based method include following procedures: calculating nor-
malized execution value for tasks, building up machine execution performance model,
calculate target indicators, and interval based ranking. The first step captures key features
to represent node execution performance while the second and the third steps build up
the distribution model and generate statistical attributes such as Confidence Interval (CI).
The last procedure ranks the nodes according to the attributes. The following subsections
introduce the algorithms developed for each step.

5.1.1 Normalized Task Execution

When leveraging historical job execution behavior to analysis node performance, raw
task durations cannot be used directly to generate comparable results because there are
multiple workloads with different designed length co-exist in the Cloud environments.
For example, TA1 with designed duration of 10 seconds is assigned to M1 while TB1 with
the designed length of 100 seconds is assigned to M2, and both tasks finish after 100
seconds. If the raw duration is used to do the analysis, then the conclusion of equal node
performance would be generated because the tasks exhibit equal duration after running
on these two nodes. However, M1 actually performs much worse than M2, extended TA1
10 times compared with its normal execution.

In order to solve this problem, normalized execution values of tasks are used to construct
the probabilistic model of nodes in order to ascertain the likelihood of straggler occur-
rence. The value is calculated following Equation 5.1 using Z-score normalization

D̃Tji =
DTji −DJj

σJj
(5.1)

where DJj = avg{DTji}, Tji ∈ Jj . Through this normalization, the duration variation
brought by job types can be eliminated. And because of the assumption that tasks from
the same job have similar designed duration, D̃Tji reveals the relative speed of Tji com-

100

Chapter 5 Server-level Prediction and Dynamic Blacklisting

pared to its sibling tasks. A positive D̃Tji value represents a slower execution because
the duration of Tji is larger than the job average, and the increment of the positive D̃Tji

indicates an aggravated straggler behavior Tji exhibits. Vice versa, a negative D̃Tji indi-
cates a shorter response, and the smaller the negative value, the quicker Tji performs. The
detailed calculation procedure is given in algorithm 6, with targetT representing the task
that needs the normalized value calculation.

ALGORITHM 6: Normalized Execution Value
Inputs:

targetT: The target task for normalized value calculation
{tasks}: A task set with “Task” elements

Output:
NormalizedValue: The calculated normalized value

1 double AvgJobD = 0, int tNum = 0, double StDevD = 0;
2 for each task ∈ {tasks} do
3 if (targetT.jID == task.jID) then
4 tNum++;
5 AvgJobD += task.duration;

6 AvgJobD /= tNum;
7 for each task ∈ {tasks} do
8 if (targetT.jID == task.jID) then
9 StDevD += math.pow((task.duration - AvgJobD),2);

10 StDevD = math.sqrt(StDevD / tNum);
11 NormalizedValue = (targetT.duration - AvgJobD) / StDevD;
12 return NormalizedValue;

The key idea supporting the statistical analysis is that, for each machine Mk within the
cluster, the collected normalized execution values of all tasks that are assigned to it within
a certain time period can be used to analyze its execution ability. If the majority of tasks
assigned to Mk are with positive D̃Tjis, which indicate slower execution compared with
their own average job duration, we say that Mk encounters a poor execution performance.
In contrast, intensive negative D̃Tji values observed from Mk demonstrate a good execu-
tion performance, because tasks assigned to it always tend to finish quicker than the other
sibling tasks from the same job.

5.1.2 Distribution Fit for Node Execution Performance

It may be a coincidence if one task performs slowly on a certain node, or we can infer task-
related reasons instead of node-related causes for this slowness. However, the statistical

101

Chapter 5 Server-level Prediction and Dynamic Blacklisting

distribution of all tasks’ behavior observed on this node tells a different story. Therefore,
in order to conduct the node performance analysis, the distribution fit is first conducted.

There exist numerous Goodness of Fit (GoF) tests designed for different data charac-
teristics, including chi-square, Anderson-Darling (AD) and Kolmogorov-Smirnov (KS)
[89][119]. Normally a GoF test generates a p-value, representing the probability that, it is
false to reject the assumption that the sample data is from a certain distribution. In other
words, assume the null hypothesis is that the sample data indeed coming from a certain
target distribution, then any GoF with a p-value lower than a certain significance level
(usually 0.05) can be rejected. In our analysis, AD test is adopted as it places greater
emphasis towards tailing data distribution through a weight function [44]. Under the AD
test, we focus on the AD-value returned rather than the general p-value.

Minitab [95], a statistical software similar to SPSS, is used in this case study. In Minitab,
a smaller AD-value indicates a larger chance that the sample data is coming from a target
distribution. Figure 5.1 shows an example result of distribution fit for the node with ID
4820223869 in the Google data. In this case, altogether seven different distributions are
tested, including 3-Parameter Lognormal (3P-LN), Normal (N), 2-Parameter Exponential
(2P-E), 3-Parameter Weibull (3P-W), 3-Parameter Gamma (3P-G), Loglogistic (L) and

Figure 5.1: Top four best fitting distribution for example node M4820223869

102

Chapter 5 Server-level Prediction and Dynamic Blacklisting

Figure 5.2: The CDF fitting of M4820223869 using 3-Parameter Loglogistic distribution

3-parameter Loglogistic (3P-LL). The top four best fits are listed in the figure, among
which the 3P-LL distribution represents the best accuracy due to a lower AD-value. The
detailed Cumulative Distribution Function (CDF) fitting is given in Figure 5.2.

As there are over 12,500 server nodes within the Google cluster, it is beneficial to perform
sampling first in order to conduct the in-depth analysis of nodes that accurately reflects the
general characteristics of the whole cluster. A subset containing 132 nodes is generated
after sampling. The number of 132 is chosen because it is the minimal number that can
retain a 5% margin of error to the whole population calculated by the Minitab tool through
its sample size calculation function.

In addition, due to the fact that there are mainly four types of servers within the Google
system (refer to the shaded types in Table 3.1), with each type reflecting different physical
capacities in the dimension of CPU and RAM. A random selection is made within each

Table 5.1: Google node distribution GoF result

Distribution Number Percentage

Best Fit

3P-LL 112 84.85%
3P-LN 11 8.33%
3P-G 6 4.54%

L 2 1.52%
3P-W 1 0.76%

Second
Fit

L 86 65.15%
3P-LL 18 13.64%
3P-LN 17 12.88%
3P-G 11 8.33%

103

Chapter 5 Server-level Prediction and Dynamic Blacklisting

server type in the sampling process to generate the corresponding number of nodes. This
is to make sure that the final sample set consists of nodes that remain the same server type
proportion (53.46%, 30.76%, 7.93%, and 6.34%) with the whole population.

Table 5.1 summaries the distribution fitting result for the sampled machines. From the
table it is observable that, most of the distributions fit into the 3P-LL model, with 84.85%
ranks 3P-LL first and 98.29% include 3P-LL as top two best fits. This finding helps in the
following up process of calculating statistical attributes of the node.

5.1.3 Target Indicator Choice

The statistical properties derived from the distribution can be used to infer the suscep-
tibility of nodes to the straggler behavior. For example, Figure 5.3 lists the distribu-
tions of four nodes from the 132-node sample set. The two nodes with ID (a) 672206
and (b) 554297904 experiences approximately equal positive and negative values, indi-
cating a balanced node performance regarding its ability of executing tasks; node (c)

Figure 5.3: Normalized value frequency for machine (a) M672206, (b) M554297904, (c)
M4820223869, and (d) M257336015 from the Google system

104

Chapter 5 Server-level Prediction and Dynamic Blacklisting

4820223869 has more positive values, indicating a slightly weak performance, while node
(d) 257336015 has more negative values, representing a better performance.

Besides the number of positive/negative values as described in the above example, the
other indicators that can be used to capture the node performance behavior include the
mean value, the standard deviation, the CI, the quantile points, and the extreme value
possibility, and etc., each reflects different evaluation objective. For example, if the av-
erage D̃Tji of all the historical tasks assigned to node M1 is 2, we can infer that M1 is a
weak performance node because most tasks assigned on M1 are stragglers in their own
job, characterized by 2 ∗ σJj times slower than their own average duration DJj . And it is
reasonable to assume that, later tasks which are about to be assigned on M1 in the near
future will have a possible relative speed around 2 ∗ σj times slower as well. Table 5.2
lists representative attributes and their corresponding meanings for reference.

For example, under cases when CI is chosen as the indicator of interest, it provides an
insight that, for all tasks assigned to this node, there is a confidence (e.g. 95%) to believe
their normalized duration will fall within a specified interval. For other examples, stan-
dard deviation describes the stability of the node execution performance, while extreme
value possibility represents the task straggler occurrence probability.

To be more specific, after we get the most suited distribution fit, normally 3P-LL, we can
then calculate the statistical attributes such as the 95% quartile value and the percentage
for stragglers (normalized value exceeds a pre-defined threshold). Figure 5.4 details the
number distribution of (a) 95% quantile value and of (b) probability for normalized value
larger than 1 using the 132-node sample set, from which a rough knowledge about node
execution performance can be obtained: for Figure 5.4 (a), the four nodes with 95% quan-
tile larger than 2.3 indicate weak performance while for Figure 5.4 (b), the three machines
with straggler rate larger than 25% are the weakest ones. This insight is necessary when
determining the optimal placement of tasks onto nodes under the presence of stragglers.

Table 5.2: Node performance indicator candidates and corresponding meanings

Indicator Meaning
Mean The possible normalized execution value for tasks assigned onto this node

StdDev The normalized task execution value on this specific machine is stable or random
CI The possible normalized execution value assigned will between a certain interval

Extreme % The task straggler possibility for this machine
Quantile Describes the normalized value for most tasks been assigned onto that specific node

105

Chapter 5 Server-level Prediction and Dynamic Blacklisting

Figure 5.4: Ranking examples for the Google server using different indicator

An interesting finding we observe is that, higher node capacity does not always result in
better execution performance, and this contradicts with the assumption adopted by some
of the current literature. For example, when exploring the node performance of the afore-
mentioned machine sample set, the node execution performance results are grouped in
accordance with the four major server types in Google. Surprisingly, the server type with
a stronger capacity tends to exhibit worse execution performance as shown in Figure 5.5.

Figure 5.5: Boxplot of (a) mean normalized value and (b) extreme value possibility for
each group in the Google cluster

Figure 5.5(a) and Figure 5.5(b) are the boxplots of node performance when mean value
and extreme value possibility are chosen as the target indicator, respectively. It is observ-
able that, nodes belong to server type Arch2 tend to exhibit larger normalized execution
values, while values for Arch4 nodes fall below zero, signifying most tasks run on this
server category execute quicker than their average. That is to say, while the server node
capacities are CArch4 < CArch6 < CArch5 < CArch2 (detailed capacity of each server
type is listed in Table 3.1), the overall nodes execution performance actually exhibit an
opposite ranking, with Arch4 > Arch6 > Arch5 > Arch2.

106

Chapter 5 Server-level Prediction and Dynamic Blacklisting

There are many possible reasons behind this phenomenon, for example, it may because of
that, servers with larger capacity tend to receive more task submissions, hence the larger
chance of straggler occurrence. However, a strong correlation between server popula-
tion and the number of tasks submitted to a specific server type is observed as shown in
Figure 5.6 (a) and (b), and this strong correlation is also statistically proved by a high
pearson correlation coefficient value (0.994). In other words, the scheduling algorithm
deployed within the Google datacenter appears to be load balanced, equally assigns tasks
across all servers. Therefore, the reason behind the weaker node performance of the
“stronger nodes” is not the higher contention/utilization as guessed.

Figure 5.6: Proportions of (a) server population, and (b) task submission per server type

Due to the lack of information from the data provided, we cannot come up with further
explanations of why this behavior is observed in the Google system. However, this does
prove that node execution performance is not purely dependent on its physical capacity,
and this conclusion is consistent with the findings discussed in Section 3.2.3. Therefore,
when ranking the nodes with their performance, it is important to use the real historical
data to do the modeling first.

5.1.4 Ranking and Weak Node Identification

In respect of dealing with the straggler problem, it is important to identify the weak per-
formance nodes and to avoid scheduling tasks to such nodes. A ranking process is needed
in order to achieve this goal. Based on above modeling, if value-type indicators are chosen
to represent the node execution performance such as the mean and the quantile value, the
ranking is relatively straightforward. However, the system administrator has to pre-define
the number of k in order to get the top k worst nodes, in which case subjective factors

107

Chapter 5 Server-level Prediction and Dynamic Blacklisting

ALGORITHM 7: Interval Based Ranking
Inputs:

{machines}: A machine set of “Machine” elements
Output:

{mID}: The machine ID set indicating weakest n machines
1 for each machine ∈ {machines} do
2 init machine.outEdge = ∅, machine.inEdge = ∅;
3 for each m1 ∈ {machines} do
4 for each m2 ∈ {machines} do
5 if (m1.mID != m2.mID) then
6 if (m1.CI.High 6 m2.CI.Low) then
7 m1.outEdge = m1.outEdge ∪ {m2.mID };
8 m2.inEdge = m2.inEdge ∪ {m1.mID };

9 {mID } = ∅; for each m ∈ {machines} do
10 if (m.outEdge == ∅) then
11 {mID } = {mID } ∪ {m.mID };

12 return {mID};

may be brought in and undermine scheduling / speculation performance. One option that
can automatically generate the suitable number of weakest nodes is through a graph-based
ranking algorithm utilizing interval-type indicators such as the CI.

The graph-based ranking is detailed in algorithm 7, modified based on P-Cores [21] after
constructing a Directed Acyclic Graph (DAG). The dots in the DAG represent servers
within the cluster. [LM1 , HM1] represents the CI of the execution performance of node
M1, with L and H represent the lower boundary and the higher boundary, respectiverly.
A sequence edge is constructed from M1 to M2 only when the condition of LM2 ≥ HM1

stands. CI overlaps will not lead to an edge under this rule. Figure 5.7 shows an example
of such DAG following above edge construction principle.

From this design it can be inferred that, if a machine is with no outward edge, it is the

Figure 5.7: An DAG edge example

108

Chapter 5 Server-level Prediction and Dynamic Blacklisting

current weakest node because its CI is larger than the others, indicating a frequent strag-
gler behavior. The input “Machine” element in algorithm 7 is a user-defined structure that
contains attributes of mID and its performance CI.

The algorithm functions in a way that, dots with no outward edge repeatedly being re-
moved from the DAG along with all the related inward edges, until there are no remaining
dots. The iteration time on which the node is been deleted is recorded, and subscribed as
the level this machine should be classified to. In other words, the level zero nodes repre-
sent the ones that are removed at the first iteration, and are the weakest ones among all
because they have the largest CI value according to the rule described in Figure 5.7.

In algorithm 7, the default ranking policy which returning all level zero nodes is demon-
strated, termed as the P-Cores without number policy. After feeding the filtered MapRe-
duce data into the algorithm, the statistical-based modeling classifies Google nodes into
five levels depending on their performance of executing tasks. In total, there are 105
nodes identified as the level zero ones (0.83% of total population) in this case study. The
numbers for other levels are: 1,772 (14.08%) for level 1; 7,265 (57.74%) for level 2;
3,386(26.91%) for level 3; and 55(0.44%) for level 4.

To note that, the P-Cores without number policy works well for large-scale clusters. How-
ever, when the cluster size is small, this policy has a risk of hindering system capacity due
to no control of the exact machine number classified as unsuitable for launching task. For
example, under extreme cases when all performance CIs calculated are overlapped with
each other, making the DAG contains no edges but only scattered dots, the P-Cores with-

out number policy will rank all nodes as level zero ones, leaving all available machines
classified as weak ones.

In order to solve this problem, the P-Cores with number policy is introduced as an alter-
native complement, which generates the top k weakest nodes. It uses standard deviation
as the vice indicator to help with the ranking procedure. When the number of level zero
nodes surpasses a certain threshold, we further rank them in descending order of the
StDev. The heuristic here is that, nodes with weaker performance will result in a more
random task execution behavior, characterized by a larger D̃Tji StDev. Through this alter-
native policy, the user can control the desired number of weak nodes returned.

To evaluate the generality of this statistical analysis scheme, another example of using it
in an experimental environment consists of three Virtual Machine (VM) clusters is given.
The detailed introduction of the involved clusters are given in Section 5.3.2. Within each

109

Chapter 5 Server-level Prediction and Dynamic Blacklisting

Figure 5.8: The node performance ranking within (a) the OpenNebula cluster; (b) the
OpenNebula 2 cluster; and (c) the ExoGeni cluster

cluster, the nodes are heterogeneous in performance due to injected interferences de-
scribed in Table 5.6. The log data is generated running WordCount and Sort jobs, and
the box plot of all tasks’ normalized execution value per node for the corresponding clus-
ters after an hour run is shown in Figure 5.8, from which insights of the node performance
ranking can be observed.

From the results we see that, in the first OpenNebula cluster, node 10.1.5.62, 10.1.5.63,
10.1.5.64, 10.1.5.65, 10.1.5.66 are with obvious higher performance CI (observed from
the normalized value distribution, the average and the standard deviation are both larger
than the other nodes). This result precisely flagged out all the nodes with memory inter-
ference program running on top. The results in the ExoGENI cluster and the OpenNebula
2 cluster exhibit similar trend: for the former, node4, node5, and node6 are identified
as weak performance nodes, while for the latter, the node of 10.1.5.62 and 10.1.5.63 are
flagged out. This result is consistent with the real node ranking in the cluster setup (refer
to Section 5.3.2), that all the nodes with injected memory fault are successfully ranked as
the worst performed ones.

In addition, in Figure 5.8 (b), the nodes with injected CPU fault (namely node1, node2,
and node3) are exhibiting the second largest performance CI, ranked weaker than the rest

110

Chapter 5 Server-level Prediction and Dynamic Blacklisting

within the cluster. However in Figure 5.8 (a) and (c), this observation is not as clear:
for example, in Figure 5.8 (a), node 10.1.0.28, which is injected with CPU contention,
performs better than node 10.1.5.71, which is a normally configured node, during the
one-hour experiment period. This reveals a fact that, for the YARN system with Word-
Count and Sort workloads, the contention for memory is the major cause of the straggler
behavior rather than the contention for CPU.

To conclude, the node ranking results demonstrated from this example again shows the
ability of the proposed analysis in detecting weakly performed nodes. This result, com-
bined with the Google case study, proved that it is reasonable to model node execution
performance through the statistical analysis based on historical behavior of tasks running
on the node, especially through the distribution of the normalized tasks’ durations. When
the analysis is conducted in Cloud-hosted environments, the performance ranking would
be VM’s execution performance ranking, in which case, VM is mapped to the so-called
server node in this type of virtualized system, because the tasks are assigned to VMs and
the VM resource is what the cluster scheduler cares about. If the majority of weakly
performing VMs are located on the same physical machine, that would generate useful
hint for physical node analysis, which is another interesting topic that falls outside the
boundary of this research.

5.2 Machine Learning based Prediction

Despite the feasibility, one challenge encountered by the statistical modeling is its ability
in capturing the most up-to-date node performance when this attribute changes dynami-
cally, and making predictions based on historical patterns. Figure 5.9 (a) shows the data
analytics result of the OpenCloud machine behaviors within a 20 day period. The strag-
gler rate for each node is quite balanced: every one of them faces a 3% to 4% straggler
rate. However, if the performance is split into daily basis as shown in Figure 5.9 (b), a
quite different trend is observed. Each line in the graph represents a machine node in
the cluster, on several days such as the 3rd to the 7th day, the straggler rate across dif-
ferent machines is relatively similar; while for other days such as the 8th to the 11th day,
the performance of each machine varies a lot. The weakest performance reaches almost
30% straggler rate while others remain less than 5%. Similar behavior is also seen in the
attribute of speculation failure rate as shown in Figure 5.9 (c) and (d), which reflect the
dynamic nature of speculation efficiency.

111

Chapter 5 Server-level Prediction and Dynamic Blacklisting

Figure 5.9: Straggler rate per node (a) in a 20-day period; (b) per day changing trend; and
killed speculation rate per node (c) in a 20-day period; (d) per day changing trend. Each
line in (b) and (d) represents a node, the legend only gives three examples due to the space

Figure 5.10: Node execution performance changing trend

112

Chapter 5 Server-level Prediction and Dynamic Blacklisting

Figure 5.10 illustrates a clearer example with five nodes from the OpenCloud system,
using D̃Tji to reflect the quickness or slowness of tasks derived from different nodes,
adopting average value as the performance indicator. The D̃Tjis from tasks assigned to
each node within each month is summarized, and the results cover 10 months in total.
Again, each line in the graph represents a machine node, with y-axis being the D̃Tji aver-
age for the specific month. It is observable that nodes tend to exhibit diverse performance
in different months. For instance, machine M67 outperforms the others in the 9th month
(though exhibiting a smaller negative average D̃Tji) after it suffers in the 4th month. This
is consistent with previous observations shown in Figure 3.9: the weakest nodes (with a
significantly larger number of stragglers) change over time, revealing a dynamic nature of
straggler occurrence.

It is important to model the evolutionary pattern of node performance and predict possible
behavior in the near future due to this dynamic attribute. Machine Learning (ML) tech-
niques can be used to address such challenge. In this thesis, a Machine Learning based
Node Analyzer (ML-NA) is proposed accordingly. The following sections introduce the
ML-NA design in respects of feature selection, labeling, classification, and prediction.

5.2.1 Feature Selection

The first challenge of the ML based analyzer is to select the proper features to describe
a machine in the aspect of its execution performance, considering the fact that node per-
formance is typically influenced by multiple factors. There are mainly three key feature
groups that are taken into consideration in the ML-NA design: the statistical attributes of
the normalized task durations per node, task number per node, and timing attributes.

• Statistical attributes: As discussed in Section 5.1, node execution performance can
be reflected by the statistical attributes of all tasks running on it within a certain
time period. In the following analysis, two statistical attributes are used when fea-
turing a node: the average and the standard deviation of all D̃Tjis pertaining to each
node. The former one sets a rough performance standard while the latter reflects the
fluctuation range of the node performance, showing a stable or random possibility
of D̃Tji in the certain node.

• Task number: Apart from the statistical attributes derived from the D̃Tji distribution,
task number per node is the other important feature that we use to describe the node

113

Chapter 5 Server-level Prediction and Dynamic Blacklisting

performance. It implies the node’s contention state and reflects the impact of such
contention toward job execution rapidness. In addition, the normalized task number
compared with all the other machine nodes in the cluster is used rather than the raw
task number. This is because we intend to constrain the selected features into a
similar range, which lays the foundation for further operations such as clustering.

• Timing attributes: Considering the fact that sometimes performance degradation
is caused by time-cumulative impacts, ML-NA adopts another feature dimension,
timing attributes, into its design. To be specific, the historical data is divided into
groups according to the job submission time. Then, the three basic meta-features
proposed above, namely the average and the standard deviation of all D̃Tjis from
tasks per node, as well as the normalized task number, are calculated within each
time group to generate new feature sets.

The OpenCloud trace is used to give a concrete example of the features used in ML-NA.
For the three meta-features, Figure 5.11 depicts the result of leveraging them to cluster
nodes into different categories using k-means [94]. In the graph, machine nodes within the
same clusterization group have similar execution performance. The meta-feature values in
Figure 5.11 is calculated once within the whole period of time, hence the three dimension.
This is for visualization purpose: high dimensional image is not straightforward. The real
features are more sophisticated after bringing in the timing attributes.

Figure 5.11: Clustering results with three features (k = 5)

One way to introduce the timing attribute is to split the trace according to days. For
example, if all the OpenCloud traces within the first month is in hand, containing 30
days’ data, the input can be constructed into a dataset consists of following 91-tuples,

114

Chapter 5 Server-level Prediction and Dynamic Blacklisting

with each of them representing a node characterized by corresponding features.

<Mid, avg{D̃Tjiday1
}, σ{D̃Tjiday1

}, norm{N taskday1},

avg{D̃Tjiday2
}, σ{D̃Tjiday2

}, norm{N taskday2}, · · · ,

avg{D̃Tjiday30
}, σ{D̃Tjiday30

}, norm{N taskday30} >

Within this 91-tuple, avg{D̃Tjiday1
} and σ{D̃Tjiday1

} represent the average and the stan-
dard deviation of all tasks’ normalized value assigned onto the machine Mid in the 1st

day; norm{N taskday1} stands for the normalized task number on machine Mid com-
pared with all other nodes within the cluster in the 1st day. To note that, avg{D̃Tjiday2

},
σ{D̃Tjiday2

}, and norm{N taskday2} are calculated based on all tasks submitted in both
first and second day together, rather than the 2nd day itself. In other words, this timing
attribute calculation is performed in a cumulative manner. Similarly for the 30th day, the
results are derived from the whole month’s data rather than a single day.

We process the whole OpenCloud trace into 9 subsets according to months to do the
feature extraction, each contains 30 days data ignoring the fact that natural months are
slightly different in day numbers. This makes it easier to construct training and test sets
for later prediction.

5.2.2 The Automatic Labeling Algorithm

Labeling is required due to the lack of direct performance indicator of nodes in the
tracelog data, while the labeled information is needed in order to train a classifier. Pre-
viously, to label a weak node is more of a manual process that depends on the system
administrator, which is prone to errors. In ML-NA, we propose an automatic labeling al-
gorithm that utilizes the generated features to objectively discriminate weak performance
nodes from the normal ones within the cluster.

• Clustering

To label a node, we first thing we do is to put the nodes with similar performance into
the same group. In this scenario, clustering is the most well-known technique that can be
used, and k-means is one of the simplest whilst very effective algorithm [94].

115

Chapter 5 Server-level Prediction and Dynamic Blacklisting

Figure 5.12: Different k-clustering results with two features as an example

The key parameter for launching k-means is to find the optimal k value: it should be
sufficiently large to constrain the number of nodes within each group, so that the mi-
nority (weak performance nodes) can be separated from the majority (the normal ones),
yet maintaining the best clustering result characterised by a high calinski-harabaz score.
The calinski-harabaz score measures the covariance within each cluster and among dif-
ferent clusters. Higher calinski-harabaz score signifies a superior clustering result [131].
Figure 5.12 demonstrates the score variation when k is changing from 2 to 10 using only
two features to represent node performance as an example. The reason why only two
features are included in Figure 5.12 is simply for the clarity of figure description, while in
real ML-NA, 90 features (except Mid in the 91-tuple) are used to conduct the clustering.

116

C
hapter5

Server-levelPrediction
and

D
ynam

ic
B

lacklisting

Table 5.3: The k value choices

The 1st Month The 2nd Month The 3rd Month The 4th Month The 5th Month

Calinski
Harabasz
Score

2:252.05; 3:219.60; 2:1449.31; 3:968.79; 2:128.80; 3:107.89; 2:428.35; 3:452.37; 2:345.36; 3:257.99;
4:212.24; 5:241.34; 4:778.84; 5:767.33; 4:110.40; 5:153.44; 4:446.41; 5:373.91; 4:280.71; 5:296.65;
6:267.97; 7:357.94; 6:762.84; 7:762.31; 6:200.49; 7:275.37; 6:333.96; 7:302.50 6:297.33; 7:333.09;
8:389.98; 9:447.72 8:761.51; 9:741.02 8:357.01; 9:393.83 8:288.48; 9:285.85 8:324.92; 9:316.74

Optimal K 9 2 9 3 7
Sample(-)% 18.46% 13.70% 3.23% 8.45% 17.53%

The 6th Month The 7th Month The 8th Month The 9th Month

Calinski
Harabasz
Score

2:124.19; 3:121.24; 2:68.39; 3:154.48; 2:90.36; 3:92.16; 2:107.25; 3:123.62;
4:121.23; 5:124.35; 4:124.28; 5:113.03; 4:84.52; 5:77.26; 4:107.18; 5:97.08;
6:133.90; 7:131.06; 6:105.02; 7:98.69; 6:67.87; 7:69.39; 6:95.62; 7:86.36;
8:124.73; 9:119.51 8:97.83; 9:94.52 8:64.08; 9:64.63 8:83.89; 9:81.18

Optimal K 6 4 4 4
Sample(-)% 21.43% 13.21% 12.50% 10.34%

117

Chapter 5 Server-level Prediction and Dynamic Blacklisting

Table 5.3 details the calinski-harabaz scores when k is ranging from 2 to 10 for each
month. In this thesis we specify the maximum clustering number to be 10 when exploring
the optimal k, based on the observation that desirable proportion of weak performance
nodes can be sorted out. The maximum k number can be easily customized according to
different purposes. The optimal k in the table represents the final k used when labeling
the data within each month. Most optimal k is the one with the highest score. However,
for the 7th, 8th and 9th month, the optimal k used is slightly different. This is due to
the fact that, in these months, the k with the best score is not big enough to differentiate
a proper proportion of “weak” node set, leading to a negative sample percentage above
25%. Under this circumstance, the second largest score with a greater k is chosen.

• Labeling

After putting the nodes with similar performance into k groups, we then need to deter-
mine which cluster represents the weakest performance group. Conventional labeling
is typically conducted manually by the system administrator, which suffers from opera-
tional inefficiency, and the subjective may lead to misidentification. To cope with it, an
automatic labeling algorithm is proposed adopting two heuristic ranking criteria:

C1 : The nodes with weakest performance should have the most number of N (N ∈
[1, 30]) where avg{D̃TjidayN

} is positive .

The number of positive avg{D̃TjidayN
} is the primary indicator when judging whether

a specific group contains weak performance nodes. According to Equation 5.1, a
positive D̃Tji signifies a straggler. Therefore, for nodeMid, a positive avg{D̃TjidayN

}
indicates a high likelihood of straggler occurance on the N th day. As a result, the
number of positive avg{D̃TjidayN

} can be used to imply the frequency of such slow
tendency the node exhibits in a month time.

C2 : If multiple nodes have the same number of N , then the one with the smallest

average σ{D̃TjidayN
} suggests the worst performance.

The σ{D̃TjidayN
} value implies the confidence when predicting node performance,

because it represents a stable or random status. A small σ{D̃TjidayN
} indicates

a concentrated D̃Tji distribution for node Mid. Therefore, for nodes that already
shown a slow tendency, e.g. with maximum N where avg{D̃TjidayN

} is positive

according to [C1], smaller average σ{D̃TjidayN
} evidence a higher chance of weak-

ness for this node group.

118

Chapter 5 Server-level Prediction and Dynamic Blacklisting

The center point of each clustering group is compared and all the nodes from the same
group will be given the same label. The detailed algorithm is presented in algorithm 8
following the above two heuristics, with label “1” represents the negative sample (weak
nodes), and “0” indicates the positive sample of nodes that exhibit normal performance.
To note that, the primary purpose of this algorithm is to predict the weakest performed
nodes to avoid the straggler behavior, therefore binary labels are adopted in align with this
goal. According to different usage, a set of labels corresponds to multiple performance
levels can be adopted with only a minor modification.

ALGORITHM 8: Labeling Algorithm
Inputs:

Training sets data = {〈Mid, Avgday1 ,..., Numday30〉}
Optimal K from K-means process

Output:
Labelled sets{〈 Label, Mid, Avgday1 ,..., Numday30〉}

1 Categories = kmeans(n clusters = K, data = data);
2 for each center in Categories do
3 for Avgdayj , StDevdayj in center.AttributeList do
4 pos counts = count the number of j, Avgdayj > 0

5 stdev avg = calculate the average of StDevdayj

6 WeakIndexList = Categories.indexof
(
max(pos counts)

)
;

7 WeakIndex = WeakIndexList.indexof
(
min(stdev avg)

)
;

8 for each node in data do
9 if Category(node) == Categories.indexof(WeakIndex) then

10 Label = 1;
11 else
12 Label = 0;

13 node = node.insert(Label);

14 return data

5.2.3 Boosting Based Classifier

ML-NA is a multi-stage learning procedure that predicts node performance based on clas-
sification while labeled data is fed into the classifier as input. There are a lot of mature
classification algorithms [94] such as SVM, Boosting, Decision Tree, Random Forest,
and Naive Bayes, etc. Each algorithm emphasizes specific attributes from the training
data to get the optimal performance. For example, the Bayesian classifier requires all the
attributes to be independent of each other: the attributes xk should fulfill Equation 5.2,
where Ci represents a given condition.

119

Chapter 5 Server-level Prediction and Dynamic Blacklisting

P (X|Ci) =
n∏
k=1

P (xk|Ci) = P (x1|Ci)× ...× P (xn|Ci) (5.2)

Table 5.4 illustrates the precision, recall and accuracy when adopting different prevailing
classification algorithms to the OpenCloud datasets with automatic labeling to predict
performance category. Parameters used to generate these results are the default values in
the Python scikit-learn library [131], and the cross-validation portion is 1/3.

Table 5.4: Algorithm comparisons

Precision Recall Accuracy
Random Forest 89.47% 58.62% 92.86%

SVM 100% 6.9% 86.22%
Ada Boosting 78.95% 51.72% 90.82%
Decision Tree 62.96% 58.62% 88.78%
Naive Bayes 16.67% 27.59% 68.88%

XGBoost 82.61% 65.52% 92.86%

It is observable that, the Naive Bayes classifier performs significantly worse than the oth-
ers. This is because, in our training set, the features (elements in the 91-tuple except Mid)
are correlated, i.e., they are generated in an incremental manner according to time. This is
consistent with the aforementioned limitation of the Bayesian classifier. On the contrary,
boosting based methods outperform the others from the table. In ML-NA, XGBoost [41]
is adopted in the classification process before prediction.

5.2.4 The Node Performance Prediction

Different parameter settings are tested when training the XGBoost model, and the main
parameters tuned are learning rate η, evaluation metrics, and gbtree depth. Table 5.5
details the optimal prediction result from all testing cases, with η being 0.1 and the max-
imum depth of the gbtree booster being 12. The logloss value calculates the negative
log-likelihood is adopted as the evaluation metrics.

120

C
hapter5

Server-levelPrediction
and

D
ynam

ic
B

lacklisting

Table 5.5: Prediction results with parameter sets of η = 0.1, max depth = 12, eval metric = logloss

(1,2) (2,3) (3,4) (4,5) (5,6) (6,7) (7,8) (8,9) Average StDev
Accuracy 68.49% 93.55% 91.55% 79.38% 78.57% 45.28% 87.50% 86.21% 78.82% 0.15

- (1+2,3) (2+3,4) (3+4,5) (4+5,6) (5+6,7) (6+7,8) (7+8,9) Average StDev
Accuracy - 64.52% 91.55% 82.47% 78.57% 41.51% 83.93% 87.93% 75.78% 0.16

- - (1+2+3,4) (2+3+4,5) (3+4+5,6) (4+5+6,7) (5+6+7,8) (6+7+8,9) Average StDev
Accuracy - - 69.01% 81.44% 75.00% 50.94% 73.21% 91.38% 73.50% 0.12

- - - (1+...+4,5) (2+...+5,6) (3+...+6,7) (4+...+7,8) (5+...+8,9) Average StDev
Accuracy - - - 94.37% 100% 100% 92.45% 98.21% 97.01% 0.03

- - - - (1+...+5,6) (2+...+6,7) (3+...+7,8) (4+...+8,9) Average StDev
Accuracy - - - - 98.59% 100% 98.21% 94.33% 97.78% 0.02

- - - - - (1+...+6,7) (2+...+7,8) (3+...+8,9) Average StDev
Accuracy - - - - - 77.36% 82.14% 94.83% 84.78% 0.07

- - - - - - (1+...+7,8) (2+...+8,9) Average StDev
Accuracy - - - - - - 85.71% 89.66% 87.69% 0.02

- - - - - - - (1+...+8,9) Average StDev
Accuracy - - - - - - - 92.86% 92.86% 0

121

Chapter 5 Server-level Prediction and Dynamic Blacklisting

The numbers in Table 5.5 are prediction accuracies calculated following Equation 5.3,
where TP stands for true positive, TN is short for true negative. Similarly, FP and FN are
abbreviations of false positive and false negative, respectively.

Accuracy =
TP + TN

TP + FN + FP + TN
(5.3)

The results of different data sizes are compared in the form of a sliding window to test the
sensitiveness towards training size. In Table 5.5, (1,2) represents the prediction result of
node performance category in the 2nd month through using training data in the 1st month,
and (1+...+8,9) represents the prediction result for the 9th month by using a combined
training data from the 1st to the 8th month, indicating a much larger training size.

In addition, the average and the standard deviation of accuracies for each training size are
recorded in the table. Besides the horizontal comparison of training size, the vertical com-
parison of node performance category within each month is summarised in Figure 5.13.
Figure 5.13 (a) concludes the minimal, the average and the maximum accuracies with
the optimal parameter setting, i.e. the parameters used in Table 5.5, while Figure 5.13(b)
shows a comparison result from another parameter setting, with η = 0.3, gbtree depth = 9,
and evaluation metrics = error, which represent the classification error rate.

Figure 5.13: Node classification prediction accuracy for each month, with (a) parameters
used in Table 5.5, and (b) a comparable parameter setting

The numbers listed in the figure are the average values across different training sizes for
each month. It is observable that, the parameter settings in Table 5.5 surpasses the other
testing case with much higher prediction accuracy. With proper parameter tuning, the
prediction results for most months exceed 85%, and with proper training size, the highest

122

Chapter 5 Server-level Prediction and Dynamic Blacklisting

prediction results for most months are above 90%. The highest accuracy when predicting
next month’s node performance category even reaches 100% in some cases.

Despite the peak accuracy ML-NA can achieve, there are still some low accuracy results
under extreme cases. The worst cases occur when predicting node classification for the
2nd and the 7th month in the result table. The reason behind the low accuracy for the 2nd

month is relatively straightforward - the insufficient training data. When predicting the
node categories for the 2nd month, we can merely collect data from the 1st month. In fact,
the prediction accuracy based on only one month’s training data tends to be limited for
most months. The numbers are shown in the first row in Table 5.5. Most accuracies are
below 80% such as the prediction pair of (1,2), (4,5), (5,6), and (6,7).

For the low accuracy occur in the 7th month, it is due to the special characteristic of the
data in the 6th month. Figure 5.14 shows the first ten lines of the data collected from
month six, in which, features of avg{D̃Tjiday1

}, σ{D̃Tjiday1
}, and norm{N taskday1} to

avg{D̃Tjiday3
}, σ{D̃Tjiday3

}, and norm{N taskday3} from the 91-tuple are NaN. This is
due to the fact that, there are no tasks been submitted to the syste on the first three days
of the 6th month, leading to a blank value for those feature columns. These unexpected
NaNs form a noticeable different pattern, leading to a low prediction accuracy.

Figure 5.14: Training / evaluation segment for the 6th month with NaN attributes

This result reveals a limitation of the proposed ML-NA algorithm: it can only predict
node performance with high accuracy when there are jobs running in the system. Sudden
reduce in task numbers may influence the algorithm performance. However, we believe
this is a loose assumption that most production cluster can achieve.

The node performance classification based on the developed features reveals non-trivial
correlations between task execution duration and node-level attributes along with time,
and the prediction gives insights into the performance changing trend of a node in the
near future, which can be utilized in designing and implementing efficient scheduling al-
gorithm to mitigate stragglers. One of such attempts, the straggler-aware dynamic black-
listing method is developed.

123

Chapter 5 Server-level Prediction and Dynamic Blacklisting

5.3 Dynamic Blacklisting

Besides the naive speculative execution, another popular straggler mitigate technique is
through avoidance. Blacklisting [166] is the representative method of this kind, avoid
scheduling tasks onto known faulty nodes. However, blacklisting may be insufficient
when stragglers are not restricted to a small set of machines [6], and when this node per-
formance changes dynamically. In addition, current blacklisting is often through manual
configuration, for example, to configure the mapred-site.xml file in Hadoop, which re-
quires input from the system administrator. This practice is inflexible especially when
the system scale increases. NEPAB, a Node Execution Performance Aware Blacklisting
method, is proposed to cope with these challenges and to improve speculation efficiency
through the straggler aware placement.

5.3.1 Implementation

In the NEPAB design, the nodes are ranked according to their susceptibility of straggler
occurrence at each timestamp, and the set of machines that are with the weakest perfor-
mance will be temporarily isolated from the available resource pool to improve parallel
job execution time. The whole process is automated, administrators do not need to pre-
define parameters such as the blacklist size if they prefer not to, the algorithm can still
prohibit all weak nodes to decrease straggler possibility.

We implement NEPAB based on the YARN platform, and to minimize overhead, existing
interfaces provided are leveraged. Two key components of the NEPAB system are the
Node Performance Analyzer and the Node Health Checker. For the former, the History

Server Rest API is used to collect job execution log details in order to generate the task
normalized value within a certain time frame. Attributes of interest that can be returned
from the API call include JobID, TaskID, AttemptsID (indicating whether this attempt is
a speculation or an original task), SubmitTime, EndTime, Status (success or been killed),
MachineID, etc. The relevant syntax of the History Server Rest API can be found in [10].
In the current implementation, a file consisting of following 6-tuples is held by every node
after the calculation:

< Jj, Tji,Mk, (Tji)s, (Tji)e, D̃Tji >

where (Tji)s, (Tji)e and D̃Tji represent the start time, the end time, and the calculated

124

Chapter 5 Server-level Prediction and Dynamic Blacklisting

normalized execution value of task Tji that runs on machine Mk. This file provides input
that enables the node performance prediction.

For the latter component, we utilize the Node Healthy Checker mechanism YARN pro-
vided, which functions through specifying a user-defined script. When the given condi-
tion is fulfilled, the script generates a message with an “ERROR” heading to report the
unhealthy status of the node to the Node Manager (NM). One example script is as follows.

The weak node report script
#!/bin/bash
if [-f machineID.txt] then
echo “ERROR, this node is a weak performance one!”
end if

In this example, when the script detects the existence of the flag file, the reported “ERROR”-
heading message can then be detected by the YARN NM and Resource Manager (RM),
triggering the built-in mechanism that adds this specific node into a blacklist. In other
words, no new tasks will be assigned to this node with machineID until the next iteration
when the script is called again.

Through this implementation, we make sure that additional modifications to the default
YARN system are minimized. The major overhead comes from the algorithm complexity
itself rather than data processing or operational costs such as restart a node. The time
window, between the start time parameter in the REST API and the current timestamp,
can be adjusted to control the number of history tasks as inputs to inhibit computational
overhead. Besides, the prediction component can be deployed in other nodes rather than
the name node to further reduce the computing burden.

To further explore the NEPAB overhead, we run a set of Sort jobs in a Virtual Ma-
chine (VM) cluster with two settings: (1) the default YARN, and (2) the YARN with
NEPAB configured as no node to be blacklisted. The other configurations such as the
VM capacities, the Hadoop Distributed File System (HDFS) settings, the job inputs, etc.
all remain the same across the whole experiment. The job execution time result for the
default YARN is 299.67 seconds in average, with a StDev of 13.9 (301s, 316s, and 282s),
while for the NEPAB system, duration results are 307s, 283s, and 294s (Avg: 294.67s;
StDev: 9.8). These two sets of result have no difference from a statistical perspective,
which indicates minimal overhead generated by the NEPAB modification.

125

Chapter 5 Server-level Prediction and Dynamic Blacklisting

5.3.2 Evaluation Results

The effectiveness of the NEPAB framework is evaluated through measuring two key per-
formance indicators: the execution time results to demonstrate the performance in im-
proving job response time, and the successful speculation rate results to illustrate how it
benefits straggler mitigation.

• Experiment Setup

Two testbeds are set up in order to evaluate the NEPAB performance: the first one is a
30-VM cluster built on top of the OpenNebula platform [104], with typical VM config-
urations to be 1GB of memory, 1 virtual core with 2.34 GHz capacity, and 10GB disk
space on potentially shared hard drive. The VMs use KVM virtualization software and
run the Ubuntu 12.04 x86 64 operating system. Another environment is a 20-VM cluster
build on top of the ExoGENI infrastructure [52] with 2 XOLarge VM and 18 XOMedium
VM, both running the CentOS 6.7 operating system. Detailed configurations of each VM
type can be found in [53].

In all experiments, the HDFS is configured to maintain two replicas for each data chunk.
The job types mainly include WordCount and Sort, with the same reasons as given in
Section 4.4. In addition, we configured the container size for both Map and Reduce tasks
to be 1GB of memory, and the node capacity to be 2GB. In the ExoGENI cluster, we
configured an Ambari [9] system to monitor and to manage the cluster utilization.

Table 5.6: Cluster VM configurations

OpenNebula ExoGENI OpenNebula 2

VM Number 30 20 30
Injected
CPU Fault

10.1.0.27, 10.1.0.28, 10.1.0.29 node1, node2 10.1.0.27
10.1.0.30, 10.1.0.31 node3 10.1.0.28

Injected
Mem Fault

10.1.5.62, 10.1.5.63, 10.1.5.64 node4, node5 10.1.5.62
10.1.5.65, 10.1.5.66 node6 10.1.5.63

Contention “faults” are injected into the system to simulate a complex environment with
node performance heterogeneity. We test three cases with different numbers of weak
nodes through creating extreme resource contention situations on certain VMs. The
CPU/memory intensive tools are the same as the ones used in Section 4.4. The de-
tailed deployment configuration for these three environments is shown in Table 5.6. In
the OpenNebula cluster, VMs are referred with their private IP address while in the Exo-

126

Chapter 5 Server-level Prediction and Dynamic Blacklisting

Table 5.7: Job execution time results with NEPAB and YARN speculator

Without Injected Faults
NEPAB YARNspeculator Improvement

Sort
183 s Avg StDev 151s Avg StDev

-7.09%160s
166s 12

154s
155s 4

155s 160s

WordCount
74s Avg StDev 75s Avg StDev

4%72s
72s 1

73s
75s 1

71s 76s

With Faults Injected
NEPAB YARNspeculator Improvement

Sort
468s Avg StDev 529s Avg StDev

15.46%451s
443s 25

531s
524s 9

409s 511s

WordCount
89s Avg StDev 141s Avg StDev

22.66%100s
99s 8

137s
128s 16

109s 106s

GENI cluster, VMs are referred with their hostname.

• Execution Time Performance

The final job execution time is dependent on the duration of its last parallelized task.
When a subset of parallelized tasks is assigned to nodes with poor execution performance,
they have a larger chance to become stragglers, which lead to an extended job response.
For applications that emphasize timing constraints, this response extension may result in
a Quality of Service (QoS) breakdown and cause late timing failures. After applying the
NEPAB technique in the OpenNebula cluster, we get an improved job response time result
as shown in Table 5.7.

The improvement value is calculated following the same general principle introduced in
Equation 4.6. In this case, it is represented as (DY arn speculator−DNEPAB)/DY arn speculator,
with DNEPAB and DY arn speculator stand for the average job duration under the NEPAB
framework and in the original YARN system with the default speculator, respectively. The
execution averages and standard deviations are calculated based on three experiment runs
for each test case listed in Table 5.7.

From the results it is observable that, for system configuration consists of only homoge-
neous default VMs without any injected faults, the response time improvement is limited:
only 4% on average for the WordCount job. And for the Sort job, the NEPAB system

127

Chapter 5 Server-level Prediction and Dynamic Blacklisting

sometimes even results in deteriorated execution: -7.07% on average. This is because
when nodes are exhibiting similar execution performance, such as the example of the 3rd

to the 5th day as shown in Figure 5.9, and when cluster size is limited, 30 VM in this
case, to blacklist node may hinder system capacity. Under these circumstances, capacity
is more important for job execution performance compared with the negative impact of
stragglers caused by weakly performed nodes.

On the contrary, NEPAB functions well for the cluster with heterogeneous node perfor-
mance: 15.46% and 22.66% improvement for Sort and WordCount, respectively. These
results in Table 5.7 are generated under the blacklisting policy that all weak nodes iden-
tified by the automatic ranking are blacklisted. During the experiments, this number is
ranging from 2 to 5 in the 30 node OpenNebula cluster, indicating a 7% to 20% weak
node percentage.

We have tested the additional top-k policy through controlling the parameter of the pro-
hibited node number as well. The job response time in the ExoGENI cluster is evaluated,
with the number of blacklisted nodes ranging from 0 to 5. Zero blacklisted node repre-
sents the comparison standard performance of the original YARN. The results are detailed
in Figure 5.15, from which it is observable that, 3 is the optimal number of k (15% in pro-
portion) when determining the number of weak nodes to be blacklisted in this system
configuration, with an average improvement for job response time being 55.43%.

Figure 5.15: The average job execution time (with standard deviation) with different num-
bers of blacklisted nodes in the ExoGeni cluster

However, if 5 nodes (20% in proportion) are blacklisted from this 20-node cluster, the
execution time will be increased by 35.75%. This is observed due to the fact that, if the
number of the blacklisted nodes is too small, such as 1 (5% in proportion) in Figure 5.15,
there is still a possibility that some of the machines with high straggler occurrence con-

128

Chapter 5 Server-level Prediction and Dynamic Blacklisting

tinue to hinder the job execution, while on the other hand, if this number is too large, it
will make the system suffer from the capacity loss. And in this experiment case, the num-
ber of three covers all VMs with injected memory fault (weak nodes), which is consistent
with the node performance configuration.

• Speculation Efficiency Performance

Another important improvement of the NEPAB framework is its effectiveness in reducing
the speculation failure rate. Bearing the principle of assigning speculative replicas to fast
nodes to enlarge their chance of surpassing the stragglers, NEPAB is effective in improv-
ing the performance of successful speculation. Detailed results are listed in Figure 5.16:
the average successful speculation rate is 63.8%, 65.33%, and 62.83% for 1 (3%), 2 (7%),
and 3 (10%) blacklisted nodes, respectively. The efficiency performance is doubled com-
pared to the current successful speculation rate in real-world systems, which is less than
30% as analyzed in Section 3.4.1.

Figure 5.16: The successful speculation rate with different numbers of blacklisted nodes
in the the OpenNebula cluster

We also notice that, the successful speculation rate in the NEPAB system increases to
almost 90% after we further blacklist 4 to 5 nodes. This is because that, for situations
when only a part of weak nodes are prohibited, there is still a chance for the speculations
to be assigned to servers with poor execution performance. And this problem is eliminated
after the number of blacklisted nodes covers the majority of the weak ones.

All the average and the standard deviation values listed in Figure 5.16 are calculated based
on three execution runs for each case to eliminate randomness. In addition, the evaluation
of situation with more than 6 nodes to be blacklisted is not included in the figure, due to
the fact that the maximum number of weak nodes identified by the NEPAB method is 5,
and there is no need to blacklist nodes that behave normally.

129

Chapter 5 Server-level Prediction and Dynamic Blacklisting

5.4 Summary

Parallelized tasks with similar designed duration may end up with varied execution time
after assigning on different machine nodes. Weakly performing nodes influence parallel
job execution by enlarging the possibility of the straggler behavior, and can limit specula-
tion efficiency by hindering successful replications. This chapter targets at the influence
of node performance when conducting straggler mitigation, and the main contributions
are summarised as below:

• Proposed a node execution performance modeling and ranking algorithm, which an-
alyze node ability in terms of job execution through the statistical pattern draw from
historical task behaviors on the node. The Goodness of Fit (GoF) result demon-
strates that, most machine nodes follow the same distribution when measuring the
normalized task durations, and the normalization process made this approach can
be applied to the general workload types. Leveraging the Google trace as a case
study, this algorithm manages to identify 0.83% weakest nodes out of the whole
cluster, and reveals a fact that node execution performance is a dynamic attribute of
node changes over time, and it does not depend solely on physical capacity.

• Developed a Machine Learning (ML) based prediction scheme that accurately cap-
tures the performance changing trend of a node. A series of features are explored
to describe node performance, including normalized task execution times and task
number per node values, statistical characteristics and timing attributes. An au-
tomatic labeling algorithm to generate objective labels for machines according to
their performance category is developed, and the nodes are classified and predicted.
Results show that, the ML based method is capable of predicting node performance
categories with an average accuracy up to 92.86%.

• Implemented a node execution performance aware blacklisting (NEPAB) frame-
work on top of YARN that improves both job execution performance and specu-
lation efficiency. The periodically updated straggler possibility per node analysis
accurately reflect the newest system state, and the speculation can be enhanced via
blacklisting, in which nodes with the weakest performance in the next scheduling
window will be temporarily prohibited. The overhead is minimized by leveraging
information that already collected by the default YARN system and the built-in node
healthy checker mechanism. Results show that, NEPAB can improve job comple-
tion time up to 55.43% compared to the default YARN speculator, and is capable of

130

Chapter 5 Server-level Prediction and Dynamic Blacklisting

increasing successful speculation rate up to 89%.

Refer back to the system model outlined in Section 3.5, this chapter provides the server-
level prediction for the Node Performance Analyzer component.

131

Chapter 5 Server-level Prediction and Dynamic Blacklisting

132

Chapter 6

Coping with Skew-caused Stragglers

Current speculative execution scheme has an unavoidable limitation when dealing with
data skew caused stragglers. One biggest hypothesis assumed by the speculative execution
is that, the redundant copy will behave as a quick task like other normal ones that do not
fall behind. Therefore, even it is launched after the straggler, it still has a chance to catch
up. However, when mitigating skew caused stragglers, because the speculative copy needs
to process identical input with the original task, itself will again become a straggler caused
by the uneven input distribution. Figure 6.1 illustrates this scenario with a WordCount
example. A job Jj processes 50 documents with 50 Map tasks TjM1 to TjM50 , the default
documents are 10MB in size, with 0, 1, 3, 5, and 7 expensive files that are 50MB in size
to mimic the uneven input distribution. Number 0 on the x-axis indicates no skew inputs,
while number 1 to 7 represent lightly skewed data towards more severe skewed inputs. It
is observable from the example that, the speculation failure rate increases with the number
of skewed inputs.

In order to prevent such speculation breakdown, it is necessary to develop a skew mitiga-
tion method as a complementary component for the designed straggler mitigation system.

133

Chapter 6 Coping with Skew-caused Stragglers

Figure 6.1: Speculation failure rate with different input skews

6.1 Skews in MapReduce Framework

Skews are often witnessed under the MapReduce framework. Before further analysis, we
first extend our notion expressions to further differentiate Map tasks and Reduce tasks
with the general parallel tasks we formulated in the previous discussions.

6.1.1 Refined Notions

For a MapReduce job JMRj
, TjMi

and TjRi
represent the ith Map and Reduce task, re-

spectively. < Ki, Vi > stands for the key/value pair processed and generated, whereKImi

is the intermediate key. The MapReduce workload can then be represented as: (input)
< Ki, Vi >→ Map → [< KImi

, VImi
>] → combine →< KImi

, [VImi
] >→ partition

→< KImi
, [VImi

], TjRi
>→ shuffle→< KImi

, [VImi
] >→ Reduce→ [< KImi

, VImk
>]

(output). The Map tasks transfer the input file into key value pairs with the customized
keys defined by the application developer.

For example, in the WordCount job that counts the frequency of each word in a docu-
ment, the keys are defined as the independent words, with the value of “1” indicating one
appearance of the key. Refresh our memory from Section 2.2.2, the combine phase is an
optional optimization that combines the value of the same key within each TjMi

to reduce
the network traffic for later shuffle phase. Still use WordCount as an example, the com-

bine process will generate one record of < word, 5 > out of 5 < word, 1 > pairs. The

134

Chapter 6 Coping with Skew-caused Stragglers

partition phase is responsible for marking the keys with Reducers, which determines the
Reduce input distribution.

Once the partition is done, TjRi
will copy the output marked with its own ID from each

TjMi
using HTTP across the network (the copy/shuffle operation), and then the sort oper-

ation merges and sorts the intermediate keys for TjRi
. This is necessary because different

TjMi
s may output the same intermediate key. The shuffle and sort operations often occur

simultaneously, i.e. while the Map outputs are being fetched, they are merged and sort.

6.1.2 Different Skew Types

The skews in MapReduce stem from various reasons. For Map, the most common skew is
caused by uneven input file size [79]. For example, if a 150MB size input is processed by
the application running on a Hadoop cluster with 128MB HDFS block size configuration,
the input will be divided into two files with 128MB and 22MB in size. The Map skews can
be addressed by splitting the expensive file or adjusting the HDFS parameters, which is
relatively straightforward. In contrast, skews in the Reduce phase are more complicated.

There are mainly two types of skew Reduce tasks can encounter: the expensive key group

skews and the partition skews. For the former, the MapReduce framework requires that
all tuples sharing the same key should be dispatched to the same Reducer. Key groups
refer to the sequence of < KImi

, [VImi
] > pairs. Many real-world datasets exhibit skews

in nature. Figure 6.2 shows some examples, among which, (a) is the word frequency from
the Shakespeare collection [140] and (b) is from the wiki English dataset [116].

Reduce task can easily encounter the expensive key group skew if WordCount is run on
such data: for Figure 6.2 (a), there are altogether 67,056 words with the most frequently
used one appears 23,197 times, while the average word count is 13; for Figure 6.2 (b),
there are 21,433,355 words with the most frequently used one appears 46,134,908 times,
while the average word count is 43. Another example would be the PageRank application,
a link analysis algorithm that assigns a weight to each node in a graph by iteratively
aggregating the weight of its inbound neighbors. If a graph contains nodes with a large
degree of incoming edges such as Figure 6.2 (c) and Figure 6.2 (d), PageRank will suffer
from Reduce skew. Figure 6.2 (c) is the Google web dataset and Figure 6.2 (d) is the
Facebook social circles dataset [135]. The x-axis refers to the web pages (represented as
nodes in the PageRank graph) and the y-axis is the number of hyperlinks in each page

135

Chapter 6 Coping with Skew-caused Stragglers

Figure 6.2: The word distribution of (a) the Shakespeare collection, (b) the English wiki
dataset, and the edge number distribution of (c) the Google web dataset, (d) the Facebook
social circles dataset

(represented as edges in the PageRank algorithm). In Figure 6.2 (c), there are 739,454
pages, and the biggest graph node contains 456 linked edges, however the average number
of edges per node is only 7; in Figure 6.2 (d), there are 3,363 pages included in the figure,
the largest page contains 1,043 edges while the average edge number per node is 24.

The other type of skew is exclusive to Reduce tasks. It is called the partition skew be-
cause it is caused by unreasonable partition decisions, such as the example job given in
Figure 6.3 with two Reducers. If the hash function categorizes the intermediate key of
“A”,“B”, and “F” into a group and “C”, “D”, and “E” to another, the Reducer1 will have
to process 1.9 times of key-value pairs compared to Reducer2, where a partition skew
occurs. On the contrary, a smart partition algorithm in this example can actually achieve
possible “no-skew” solution also shown in Figure 6.3.

The severity of the intermediate data skew varies with different Reducer numbers. When
processing the same data in the above example but with three Reducers instead of only

136

Chapter 6 Coping with Skew-caused Stragglers

Figure 6.3: Reduce skew and possible improvement the ImKP method can achieve

Figure 6.4: ImKP limitation illustration

two, the hash partition can result in a different skew situation, which is slightly better as il-
lustrated in Figure 6.4. The degree of skew can sometimes be alleviated by enlarging the
Reducer number, however, such practice introduces new challenges include overloaded
network traffic due to the increased communication, etc. There are some general princi-
ples of choosing the reasonable Reducer number, which is not the focus of this research.
We care about the partition policy, and any potential achievement accordingly. In the fol-
lowing discussions, improvements are discussed under the same Reducer configuration.

137

Chapter 6 Coping with Skew-caused Stragglers

For an arbitrary application, the distribution of the intermediate data cannot be determined
ahead of time. This is the main reason why partition skew happens, and to estimate this
distribution is the key thing for most partition-skew mitigation schemes.

6.2 Mitigate Reduce Skews with ImKP

In order to minimize the input skew in MapReduce framework, especially the Reduce
skews caused by the bad partitioner, an Intermediate Key Pre-processing framework (ImKP)
is proposed to improve the overall straggler mitigation efficiency.

6.2.1 The ImKP Framework

There are some general design requirements / goals that a good skew mitigation system
should accomplish. Examples among them include minimal developer burden, mitigation
transparency, flexibility, and minimal overhead.

For minimal developer burden, the MapReduce application developers should be able to
migrate their code into the proposed skew mitigation platform with no requirement of
learning new techniques. That is to say, the new system should adopt uniform APIs with
existing MapReduce platforms such as Hadoop to minimize development complexity.

For skew mitigation transparency and flexibility, the former requires the proposed tech-
nique to be transparent to the end users. For normal users, when they launch MapReduce
applications on the new platform, there should be no need for them to manually conduct
additional configurations regarding skew mitigation if they prefer not to, and they do not
need to get into the algorithm details such as the parameter tuning for the partition policy,
etc. The latter principle, on the other hand, is for expert users who emphasize certain per-
formance or some level of control to the system. The new framework should provide the
possibility for them to insert alternative information to generate flexible partition results.

The requirement of minimal overhead asks for the additional overhead spent on mitigating
the skew phenomenon, including extra computation and resources, to be trivial enough
that generates no negative impact toward final application level performance indicators
such as job execution time.

138

Chapter 6 Coping with Skew-caused Stragglers

Figure 6.5: The system model for the ImKP framework

The proposed ImKP framework fulfills above requirements while enables the even dis-
tribution for Reduce inputs. The overall architecture of the ImKP system is presented in
Figure 6.5, with the shaded parts to be the components added that exclusively belong to
ImKP and the rest are compatible with current Hadoop YARN implementation. Texts in
green represent the workflow that both original YARN application and the ImKP job need
to go through. The blue texts are exclusive to original YARN, while the red texts solely
belong to the ImKP logic. The procedures with the same sequential number indicate the
fact that they are executing in parallel. For example, ImKP utilizes the multithreading
implementation to parallelize the pre-processing with file uploading to mitigate timing
overhead. This is reflected with two 1.1 steps in red and green texts simultaneously.

6.2.2 Detailed Workflow and the Pre-processor

Figure 6.6 outlines the workflow comparison for the original MapReduce job and the
ImKP framework. The procedures represented in rectangles are the same with current
YARN implementation, while the rounded rectangle indicating the changed parts. The
major difference between the default hash partitioner and the proposed ImKP even par-
titioner is that, the later inserts a pre-processing layer before the Map phase to get the

139

Chapter 6 Coping with Skew-caused Stragglers

Figure 6.6: ImKP workflow VS normal MapReduce workflow

accurate intermediate key distribution and to generate a balanced dispatch solution de-
pending on the number of Reducers. In other words, under the ImKP framework, the
input data is first sent to the pre-processing component before Map. This additional layer
is responsible for generating the K-R mapping file that enables the later even partitioner.

We managed to control the pre-processing overhead to a limited level through a group
based ranking technique, so that the time spend on pre-processing is constrained to be
less than file uploading time. In this way, ImKP guarantees trivial timing overhead toward
job execution for applications whose input is stored on local file system. For applications
whose input is already stored on HDFS, since the K-R mapping file is stored in memory
ready for reuse once the pre-processing is done, the overhead is not an expensive price to
pay, especially for those jobs that have to go through multiple iterations such as PageRank.

Consistent with the original MapReduce framework, Map tasks are generated to handle
the input data chunks after the pre-processing and file uploading process. However, once
the Map function finishes, unlike the default partitioner which does the hash calculation in
order to label the intermediate key generated by Map with Reducer ID, the even partitioner
in ImKP directly look up to the K-R mapping table. The table is stored on every machine
node within the YARN cluster to ensure the local access for the even partitioner, regardless
of the Mapper position.

In addition, the K-R mapping mapping table is extremely small in size because of the
group based ranking optimization, containing only #Reducer×scale rows. The notion of

140

Chapter 6 Coping with Skew-caused Stragglers

scale is a user-defined parameter implying the degree of evenness in ImKP pre-processor,
with default value to be 50. For example, for applications with 10 Reducers, there will
only be 500 bi-tuples in the mapping table. This small size guarantees the promptness of
the local read operation. The timing overhead of reading the mapping file from memory
and of doing the hash calculation are tested, the average time for the former operation is
10,000ns while the latter is 9,000ns, which is only 1,000ns in difference. In other words,
the default hash partitioner and the ImKP even partitioner take approximately same time
when conducting the partition operation.

The pre-processor mainly consists of following steps:

• Define customized keys: In order to calculate the intermediate key statistics from
the input, the definition of the keys must be given. For example, keys are defined as
separate terms in a document in WordCount, or as each page node in the PageRank
graph. Because the keys required by the ImKP initializer is identical to the keys
defined in the Map phase, this step does not require additional developer intervene,
the ImKP system can automatically copy the key-define function from the user
program given in the original MapReduce framework.

• Rank the intermediate keys: The frequencies of the intermediate key occurrence
are counted and ranked in this step. The biggest challenge encountered here comes
from the fact that the MapReduce framework is designed for big data applications
that process a large number of intermediate keys. If the frequency for each key
is recorded separately for ranking, it will come at huge computational (O(n log n)

complexity) and storage costs. A group based ranking scheme is proposed in order
to solve this problem. The assumption supports this optimization is that, we believe
the number of keys is way beyond the number of Reducers, therefore, one Reducer
would have to process multiple keys. Instead of directly rank all the intermediate
data, we first map the keys into groups using a hash to decrease the number of
items that need to be ranked. A parameter of scale is adopted in this procedure to
imply the total number of grouped keys one Reducer will later receive. Altogether
#Reducer×scale number of key groups are created, and the occurrence frequency
of keys will be counted per group for ranking.

• Even distribute the key groups based on frequency ranking: This step generates the
< KImi

, Reduer > mapping result for the ImKP even partitioner to assign inter-
mediate keys to Reducers. The best fit policy is adopted in our implementation for
this bin-packing problem: the key group with the maximum occurrence frequency

141

Chapter 6 Coping with Skew-caused Stragglers

in the remaining queue will be mapped to the Reducer with the minimum sum of
frequencies. The intermediate keys in the same group will be mapped to the same
Reducer. For advanced users, an API is provided so that this default best-fit method
can be replaced with more dedicated algorithms. For example, if additional in-
formation on the performance diversity among machine nodes is known, this even
distribute scheme can be adjusted accordingly. The result mapping file is stored
on every worker node within the cluster so that the local access for the ImKP even
partitioner can be guaranteed.

6.3 Performance Evaluation

The ImKP evaluation focuses on answering following three questions: (1) can it mitigate
the Reduce skews by generating a more balanced input size distribution for Reducers; (2)
whether the skew mitigation overhead is small enough to be ignored; and (3) whether the
overall job response time can be improved.

For each question, either multiple workload types or multiple MapReduce configurations
are tested to verify whether the performance improvement remains consistent through
different operational situations.

6.3.1 Experiment Setup

To evaluate the effectiveness of the ImKP framework, various experiments are run in a 15
Virtual Machine (VM) cluster build on top of the ExoGENI infrastructure [52]. Each VM
contains 1 CPU core, 3GB RAM, and 25GB disk, running CentOS 6.7. In all experiments,
the container for both Map and Reduce tasks are 1GB in size.

Popular applications including WordCount, PageRank, and Inverted Index provided in
the Bespin toolkit [83] are tested, on both synthetic and real-world datasets. We generate
1.6GB synthetic data files following the Zipf distribution with varying σ parameters from
0.4 to 1.4 to control the degree of the skew. The larger σ value represents a heavier skew.
Zipf distribution is commonly observed in real-world datasets, e.g., the word occurrences
in natural language, features of the Internet, etc [84]. For real-world data, the Shakespeare
collection [140], the English Wiki dataset [116], and the Freebase dataset [58] are used to
run the experiments.

142

Chapter 6 Coping with Skew-caused Stragglers

6.3.2 Skew Mitigation Effectiveness

The number of < KImi
, VImi

> pairs processed by each Reducer using the original hash
partition and the ImKP even partition algorithm is shown in Figure 6.7. Results are gen-
erated after running (a) Inverted Index on the Shakespeare dataset; (b) PageRank on the
Freebase dataset; and (c) WordCount on Zipf data set.

Figure 6.7: Number of inputs per Reducer for (a) Inverted Index on Shakespeare data; for
(b) PageRank on Freebase data; and for (c) WordCount on Zipf data

From Figure 6.7 (a) and (b) it is observable that, ImKP achieves an extremely good skew
mitigation result: the number of inputs for ImKP Reducers is close to the ideal even dis-
tribution, refer to the horizontal line. The coefficient of variation defined in Equation 6.1
is used to measure the skewness of the Reduce inputs, where # < KIm, VIm > represents
the number of intermediate key-value pairs processed by each Reducer.

In addition, Table 6.1 details theCv improvement ((Cv(Hash)−Cv(ImKP))/Cv(ImKP))
and the Cv times (Cv(Hash)/Cv(ImKP)) results with varies degree of skews to show
the effectiveness of the ImKP in mitigating Reduce skews.

Cv =
σ

µ
=
std(# < KIm, VIm >)

avg(# < KIm, VIm >)
(6.1)

143

C
hapter6

C
oping

w
ith

Skew
-caused

Stragglers

Table 6.1: Reduce input skew mitigation results for different skew degrees

Reduce Input Size σ=0.4 σ=0.5 σ=0.6 σ=0.7 σ=0.8 σ=0.9 σ=1.0 σ=1.1 σ=1.2 σ=1.3 σ=1.4

5 reducer Cv Improvement 99.76% 94.94% 97.52% 98.92% 99.98% 99.75% 99.87% 99.94% 80.09% 56.28% 40.68%
Cv Times 416.27 19.75 40.33 92.25 4187.47 406.16 775.18 1665.17 5.02 2.29 1.69

10 reducer Cv Improvement 90.40% 93.68% 97.35% 98.68% 99.25% 99.72% 69.28% 46.62% 32.06% 21.94% 15.14%
Cv Times 10.42 15.83 37.71 75.54 133.67 354.84 3.25 1.87 1.47 1.28 1.18

Table 6.2: Response time improvement for WordCount application on the Zipf data when σ changes from 0.4 to 1.4.

σ = 0.4 σ = 0.5 σ = 0.6 σ = 0.7 σ = 0.8 σ = 0.9 σ = 1.0 σ = 1.1 σ = 1.2 σ = 1.3 σ = 1.4

5 reducer
Improvement 19.01% 8.18% 6.63% 6.87% 23.71% 19.10% 23.86% 23.51% 8.08% 6.40% 15.15%
Cv(Hash) 0.04 0.01 0.01 0.12 0.01 0.03 0.01 0.05 0.01 0.17 0.20
Cv(ImKP) 0.21 0.02 0.06 0.13 0.04 0.07 0.17 0.13 0.04 0.15 0.05

10 reducer
Improvement 12.19% 0.96% 15.47% 26.34% 11.71% 14.80% 12.75% 4.96% 13.80% 29.37% 15.67%
Cv(Hash) 0.03 0.04 0.01 0.17 0.04 0.02 0.14 0.10 0.05 0.12 0.07
Cv(ImKP) 0.07 0.05 0.01 0.12 0.02 0.12 0.24 0.07 0.13 0.06 0.02

144

Chapter 6 Coping with Skew-caused Stragglers

Meanwhile, it is observed from Figure 6.7 (c) and from the σ = 1.3, σ = 1.3 columns
in Table 6.1 that, the ImKP algorithm has a limitation dealing with extreme skews. The
σ value of the Zipf distribution is 1.4 in the Figure 6.7 (c) input, which indicates a severe
skew and the existence of extreme expensive keys. ImKP is mainly designed for solving
the partition skews, for situations of expensive key skews where the number of intermedi-
ate data belongs to a certain key surpasses the sum of the others, ImKP can only achieve a
more balanced result, yet still exhibit slightly skew. This is also shown in Figure 6.4 with
a straightforward example.

Figure 6.8: The input size improvement for ImKP and hash partition on Zipf data

This limitation explains the Cv improvement changing tendency of the Reducer inputs,
which is summarised in Figure 6.8. When there is only a slight skew in the intermediated
data, reflected by a small σ, the original hash partition can generate a fairly reasonable
mapping decision that leaves less room for improvement. This improvement gradually
increases along with the increase in the skew severity. However, when passing a certain
point after the skew becomes extremely heavy, the partition based method cannot solve
but only relieve the problem.

6.3.3 Skew Mitigation Overhead

The mitigation overhead is one of the biggest concerns for the ImKP system design be-
cause it inserts an extra pre-processing layer before the normal Map phase. Different
with the literature that estimates the complete intermediate key distribution, ImKP pre-
processor adopts a group based ranking scheme that dramatically decreases the number

145

Chapter 6 Coping with Skew-caused Stragglers

Figure 6.9: Complexity (a) before and (b) after the group based ranking optimization

of elements in the ranking process, based on the fact that one Reducer has to process mul-
tiple intermediate keys anyway. The comparison of the algorithm complexity is shown in
Figure 6.9, where m� k.

Besides the complexity analysis, experiments are conducted to test the exact timing over-
head of the pre-processing operation. Figure 6.10 illustrates the comparison result of the
pre-processing time and the file uploading time for the WordCount application run on var-
ious input sizes. From the figure it is observable that, the pre-processing overhead is stable
at a low level that remains much smaller than the file uploading time. This overhead is

Figure 6.10: The pre-processing overhead

146

Chapter 6 Coping with Skew-caused Stragglers

trivial enough even for large inputs such as the 6GB input from the English Wiki dataset.
And because of the multithreading parallelization, for applications that store their inputs
on local file systems, there will be no extra timing overhead on pre-processing at all. In
addition, the pre-processing is only required once for every application, and the mapping
file result is stored in memory on every datanode ready for possible reuse. This benefits
applications that have to go through multiple MapReduce iterations such as PageRank
(the PageRank score updates at each iteration before it convergences). Through this im-
plementation, the overhead of the initial timing overhead is further reduced in ImKP.

6.3.4 Job Execution Improvement

According to above analysis, the two modifications made by the ImKP framework com-
pared to the original Hadoop YARN, namely the pre-processor and the different parti-
tioner, both generate no obvious timing difference for overall job completion. Therefore,
the execution time is expected to be mainly influenced by the different number of key-
value pairs processed by each Reducer. Table 6.2 lists the detailed job execution times
under different skew conditions. The improvement is again calculated following the same
principle in previous chapters (refer to Equation 4.6).

Figure 6.11: The (a) execution time; the (b) execution coefficient of variation for ImKP
and hash partition on Zipf data

Figure 6.11 (a) summaries the job execution time improvement for inputs with different
level of skews. The results are average values out of three running tests, and the coefficient
of variation is used to represent the response time variance for each test case, as shown

147

Chapter 6 Coping with Skew-caused Stragglers

in Figure 6.11 (b). From the result it is observable that, the ImKP framework is capable
of improving average job response time by a factor up to 29.37%. For the number of
Reducers, as previously discussed, different configurations result in different levels of
skew severance, therefore the improvements discussed in this evaluation are conducted
under the same Reduce number configurations.

6.4 Summary

An intermediated key pre-processing (ImKP) framework that enables the even partition
for Reduce inputs is proposed and discussed in this chapter. ImKP is used to avoid data-
skew caused stragglers for Reduce tasks, a special straggler case which cannot be handled
by normal speculation-based methods. Main contributions of this chapter are summarised
as follows:

• Analyzed the skew behavior with various datasets and illustrated the type of skews
within MapReduce framework. The influence of data-skew caused stragglers, espe-
cially the Reduce skews, toward efficient speculative execution is discussed, which
highlights the necessity of developing a dedicated algorithm targets at skew han-
dling in the straggler mitigation system.

• Proposed ImKP, the Intermediate Key Pre-processing framework that plugged an
intermediate key ranking layer before the original Map phase to enable the even
partition for Reduce inputs. Results show that, the skewness of input sizes for
Reducers can be decreased by 99.8% on average. And overall job response time
can be improved by up to 29.37%.

• Developed a group based ranking technique that dramatically reduces pre-processing
overhead for the ImKP system. In addition, through parallelizing the pre-processing
with the file uploading process, we even managed to eliminate the overhead for
workloads that take inputs from local file systems.

Refer back to the system model outlined in Section 3.5, this chapter deals with a special
case of stragglers that caused by skewed input data, provides support for the Skew Pre-
processor component and functions in a complementary manner.

148

Chapter 7

Conclusion and Future Work

This chapter summarises the work presented in this thesis. The major contributions of the
research are outlined and an evaluation of the research is presented. Future directions that
this work can be taken are then discussed.

7.1 Summary

The work in this thesis proposes an intelligent straggler mitigation framework that can
fit into current distributed computing systems and Cloud environments. Specifically, an
in-depth data analysis is conducted using multiple real-world system tracelogs to analyze
how the straggler problem affects large-scale parallel computing performance. The re-
sults of this analysis are leveraged for practical usage in straggler mitigation, and every
algorithm proposed is implemented so that experimental comparison can be made against
the existing state of the art approaches. The tradeoffs between speculation overhead and
execution time improvement are also explored.

Chapter 2 describes the basic background that underpins this research - i.e. the evolution

149

Chapter 7 Conclusion and Future Work

of computing systems from tiered standalone systems to Cloud computing, and onwards
to future Edge and Internet of Things (IoT); the concept of parallel computing frameworks
and job execution performance; the performance challenge of the straggler problem; and
an overview of current straggler mitigation techniques. For the first part, the taxonomy
of Cloud computing is illustrated in detail, including identified characteristics, deploy-
ment models, and service models. For the second part, the MapReduce architecture and
its popular open-source implementations, such as Hadoop and YARN, are presented in
detail, including an introduction to its workflow and refined subphases. It is shown that
while parallel computing is an active research area, there are challenges in guaranteeing
prompt and predictable performance. As a representative example of such challenges,
straggler definition and corresponding formulation are presented as the main content of
the third part. Finally, state-of-the-art straggler mitigation methods, straggler cause ana-
lytics methods, and skew mitigation methods, are introduced in the fourth part, followed
by a discussion of the gaps, highlighting the importance of this work.

Given the background concepts of parallel job performance in large-scale computing sys-
tems, Chapter 3 presents the quantitative results of how such performance can be influ-
enced by the straggler problem. The three production datasets used for analysis - the
Google trace, the AliCloud trace, and the OpenCloud trace - are introduced, with basic
scales (machine node, job number, task number, etc) and statistical attributes given in de-
tail. This is then followed by straggler related analysis, which is quantified in terms of
straggler pattern statistics, straggler reason analysis, and speculation limitation analysis.
Based on the observations made, it is found that current straggler mitigation is far from
solving the straggler problem, and requires further in-depth study. This chapter is con-
cluded by presenting and discussing the overall system model of the proposed straggler
mitigation system, with responsibilities of each respective components.

Chapter 4 focuses on evaluating the most suitable task stragglers for mitigation through
an adaptive threshold. This corresponds to the responsibility of the Adaptive Speculator

component. Most current speculative-based methods detect stragglers by specifying a
predefined threshold to calculate the difference between individual tasks and average task
progression within a job. However, such a static threshold limits speculation effectiveness
as it fails to capture the intrinsic diversity of timing constraints in Cloud applications, as
well as dynamic environmental factors such as resource utilization. By considering such
characteristics, different levels of strictness for replica creation can be imposed to adap-
tively achieve specified levels of Quality of Service (QoS) for different applications. The
presented algorithm improves the execution efficiency of parallel applications by dynam-

150

Chapter 7 Conclusion and Future Work

ically calculating the straggler threshold, considering key parameters including job QoS
timing constraints, task execution progress, and optimal system resource utilization. This
dynamic straggler threshold is implemented into the YARN architecture, enables experi-
mental evaluation of its effectiveness against existing state-of-the-art solutions. A simu-
lation is conducted using SEED [60] in order to evaluate the advantages of the proposed
algorithm in a larger-scale system.

Chapter 5 focuses on evaluating the most suitable machine nodes for launching tasks to
avoid stragglers. This corresponds to the responsibility of the Node Performance Analyzer

component. The key innovation here is that, instead of simply using physical capacity or
contention level to represent node performance, it is believed to be reasonable to use the
execution history of a node to represent its ability in fulfilling tasks. The normalized exe-
cution time is defined in the chapter, and a detailed probability distribution analysis is pre-
sented using the Google trace as a case study. A set of statistical attributes extracted from
the distribution is listed to represent the node performance. Besides this statistical-based
analysis, this chapter also proposes a Machine Learning (ML) based straggler analyzer
which classifies and predicts the performance changing tendency of nodes to avoid strag-
gler occurrence. The feature extraction process and subsequent clustering are introduced
in detail, followed by a proposed labeling mechanism that adopts two heuristic rules. In
addition, a straggler aware scheduling framework is proposed, combining the node per-
formance analysis result with a blacklisting technique and a node healthy checker mecha-
nism. This dynamic node blacklisting scheme is implemented in YARN to experimentally
validate its performance.

Chapter 6 focuses on dealing with a special straggler type: stragglers caused by data
skew. This is dealt by the Skew Pre-processor component. The reason why this com-
plementary method is needed is given in the chapter: although shown to be effective for
contention caused stragglers, speculative execution can easily meet a bottleneck when
mitigating data skew caused stragglers due to its replicative nature. Identical unbalanced
inputs will lead to a slow speculative task, irrespective of what node it is on. The skew
types in the MapReduce framework are analyzed, as well as the popular methods used
for mitigating each type. In this chapter, we focus on partition skews and propose an
Intermediate Key Pre-processing framework that enables an even partitioner for Reduce
inputs. A group based ranking technique is introduced in detail, which can dramatically
decrease pre-processing time. In addition, the proposed algorithm manages to eliminate
the timing overhead through parallelizing the pre-processing with the file uploading pro-
cedure (from the local file system to Hadoop Distributed File System (HDFS)). The

151

Chapter 7 Conclusion and Future Work

timing overhead for jobs that take input directly from HDFS is minimized through stor-
ing the < GroupedKey,Reducer > mapping file on every cluster node for reuse. This
algorithm is also implemented into the YARN system, and experiments are conducted on
different datasets with various workloads to evaluate its performance.

The proposed intelligent straggler mitigation system can be easily merged into current
parallel computing platforms such as Hadoop YARN or Spark, where speculation scheme
is already adopted. In other words, in systems where task progress is already monitored
and recorded. The framework can be applied to more general production systems as
long as corresponding task monitoring component is added. And for Cloud environments
where the cluster scheduler focuses on virtualized resources, the speculator only focuses
on Virtual Machine (VM) in the current design, which is consistent with the cluster sched-
uler. Further exploration about VM placement and how that placement would influence
stragglers would be further work.

7.2 Research Contributions

This research is centered on providing a framework to capture straggler patterns in large-
scale systems, to mitigate the negative impact brought by the stragglers and to improve
parallel job execution performance. The main contributions are summarised as follows:

i. The study and quantification of performance inefficiencies within large-scale com-

puting environments caused by the straggler problem. An in-depth analysis across
three different Cloud environments reveals that less than 5% of task stragglers can
influence the completion time of more than half of total parallel jobs. To make
things worse, current speculation schemes normally come with an extremely high
failure rate, typically exceeding 70%. There are many reasons that lead to straggler
occurrence, among which resource contention is the dominant one, accounts for fre-
quencies around 80%. This is the first time that there has been literature focusing
on quantitative analysis towards straggler related research.

ii. An adaptive threshold calculation algorithm for enhanced straggler identification

and efficient speculation in large-scale computing systems. This algorithm dynami-
cally adapts to different job types and system conditions. Therefore, it is effective in
improving job completion time and reducing late timing failures. The replica num-
ber trade-offs for different levels of resource utilization is capable of reducing the

152

Chapter 7 Conclusion and Future Work

speculation failure rate and is beneficial toward effective quality assurance. Results
demonstrate that the adaptive approach is capable of reducing job response time by
up to 20% compared to a static threshold, as well as a higher speculation success
rate, achieving up to 66.67% against 16.67% in comparison to the static method.

iii. A machine node execution performance modeling and prediction scheme that en-

ables dynamic node blacklisting to avoid straggler occurrence. The ability for
servers to effectively execute tasks varies due to heterogeneous CPU and memory
capacities, resource contention situations, network configurations and operational
age. Unexpectedly slow server nodes result in assigned tasks becoming stragglers.
However, it is currently unknown how slow nodes directly correlate to straggler
manifestation. To solve this problem, this research first proposes a method for node
performance modeling and ranking in Cloud systems based on analyzing paral-
lel job execution tracelog data, then designs a machine learning based prediction
algorithm that classifies cluster nodes into different categories and predicts their
performance category in the near future with a high accuracy of up to 92.86%. This
information is used as a scheduling guide to support dynamic node blacklisting,
which improves speculation effectiveness and minimizes task straggler generation.

iv. An intermediate key pre-processing partition algorithm dealing with stragglers caused

by data skew in the MapReduce framework to act as a complementary part for the

straggler mitigation system. This research analyzes the data skew behavior with
various datasets and illustrates the type of skews within the MapReduce framework.
The proposed algorithm inserts an intermediate key ranking layer before the orig-
inal Map phase to enable an even partitioner for Reduce inputs. The group based
ranking optimization and the parallelization technique used effectively controls the
overhead brought by the pre-processing operation. Results show that compared to
the popular hash partition, the proposed algorithm can dramatically decrease Re-
duce skew, achieving a 99.8% reduction in the coefficient of variation of input sizes
in average, and improve performance up to 29.37% in job response time.

7.3 Overall Research Evaluation

The success criteria of this research is to see whether the objectives discussed in chapter 1
have been achieved. The overall evaluation is listed as follows:

153

Chapter 7 Conclusion and Future Work

Analyzing straggler related statistics within Cloud computing systems. This thesis has ex-
plored three real-world Cloud system tracelogs, with some common principles observed
related to the straggler behavior detailed in chapter 3. Besides the general straggler influ-
ence analysis, chapter 3 also conducted a straggler root-cause analysis and a speculation
limitation analysis, leveraging the AliCloud dataset and the OpenCloud dataset respec-
tively. In addition, how straggler occurrence rate can be influenced by machine nodes is
explored in chapter 5, with some new conclusions made - for example, nodes with larger
capacity can behave slower than the ones with smaller physical capacity, etc. These ob-
servations serve as the solid foundation that motivates the rest of the research.

Identifying the most appropriate stragglers for mitigation. Through the usage of the dy-
namic straggler threshold, chapter 4 details the design of adaptive speculation, which is
capable of picking out the target stragglers according to different system conditions and
application types. This algorithm is explained theoretically with two numeric examples,
and is evaluated both experimentally and through simulation. The simulation set up in re-
spect of straggler rates and straggler length are regular patterns found in chapter 3, which
reveals real behaviors from production systems.

Avoiding straggler occurrence through modeling and predicting machine node perfor-

mance. In chapter 5, a comprehensive analysis of how node execution performance can
influence straggler behavior on the machine is presented, as well as two node performance
analyzer utilizing historical information of stragglers. The first node analyzer is statistical
based while the second one is a machine learning based method. These prediction results
of the node performance changing tendency have been applied to the straggler aware dy-
namic node blacklisting approach, which is also proposed in chapter 5. The precision of
weak node identification is vital in blacklisting approaches: false positives result in un-
necessary capacity loss while false negatives reduce straggler avoidance effectiveness. To
further enhance the algorithm, besides the graph-based ranking method which automati-
cally generates the weakest node set, a customized API is also provided that can enables
a certain top k worst nodes to be isolated.

Developing a dedicated algorithm to deal with situations when speculative execution is

not appropriate. This is handled by the research presented in chapter 6. Data skew caused
stragglers are the most representative type of straggler that speculation cannot deal with.
The pre-processing algorithm proposed learns the distribution of intermediate data before
the Reduce phase, and hence makes it possible to build an even partitioner that eliminates
Reduce skews. This is very important for mitigating stragglers under the MapReduce

154

Chapter 7 Conclusion and Future Work

framework.

The evaluation of this research is summarised through the comparison against other strag-
gler mitigation approaches listed in Table 2.3. Detailed results are demonstrated in Table 7.1.
In the table, Intelligent represents the intelligent straggler mitigation scheme proposed in
this thesis, compromising the adaptive straggler threshold algorithm, the dynamic server
blacklisting algorithm, and the Reduce skew mitigation algorithm. It is observable that,
the gaps listed in chapter 2 are improved. In summary, all the four major research objec-
tives have been successfully completed.

Table 7.1: Comparison of my research against other representitive approaches

Methods Naive Spec [155]

LATE [162]

Mantri [5]

Dolly [6]
SkewTune [80]

CREST [81]

Grass [7]
Intelligent

Metrics PS ECT
trem,

tnew
Cloning

trem,

tpar
PR ECT

ECT,

tnew

Target

Type
General General General

Small

Jobs
General General

Approx

Jobs
General

Node

Hetero
% " " " " " % "

Dy- NP % % " % " % % "

Dy-

Thresh
% % " % % % " "

Extra

Reso-
% % " 5% " % " "

Spec

Cap
% " % " " % % –

Data

Skew
% % % % " " % "

Bench

mark

WC,

Sort

WC,

Sort

WC,

Hive
–

II,

PageR
GSA

Hive,

Scope

WC,

Sort,

Hive, II

155

Chapter 7 Conclusion and Future Work

7.4 Future Work

There are a number of future directions through which this work can be enhanced. Some
of these opportunities are highlighted below:

• Online Root Cause Analytics and Enhanced Straggler Filter

Root cause analysis of stragglers is challenging in real-world systems because of the
stochastic nature of task execution. Current “cause-effect” analysis is often a “backward”
one: possible system behaviors that can lead to stragglers are listed and analyzed based on
probability. However, the “forward” ones: upon straggler detection, how to determine the
major reason that has lead to this specific straggler, are merely seen. If we map stragglers
to a special system failure, such as late-timing failure, straggler root cause analysis can
refer to the research of fault tolerance as shown in Figure 7.1. The part in the solid square
is the root cause analysis of faults [127], while the dotted square is the logical extension
of straggler research.

Figure 7.1: Future work on root cause analysis

In addition, read from the timeline within the graph, online failure prediction incorpo-
rates measurements of actual system observations during runtime in order to assess the
probability of failure occurrence in the near future in terms of seconds or minutes [127].
Mapped to the straggler research, most current literature focuses on analyzing histori-
cal data when doing the root cause identification, while practical speculator has to make
online decisions. to pick up the suitable method corresponds to the straggler cause and
system characteristics during runtime, and to predict whether a straggler will occur in the
near future based on an assessment of the monitored system state, require future work on
online root cause analytics.

156

Chapter 7 Conclusion and Future Work

Another aspect when developing enhanced speculation in the future is to further opti-
mize the straggler filters used when detecting slow tasks. Combining different straggler
thresholds used in current literature and locating the overlapped common straggler set
may help identify the most urgent stragglers, which is worth exploring as the next step of
this research.

• Straggler Mitigation in Approximate Jobs

Current research is carried under the assumption that the parallel job needs to wait for
all its sub-tasks to produce results before generating the final outcome. However, it is
possible that some type of job only requires partical results from its sub-tasks. This ap-
proximation processing becomes more and more important in the big data era. The rapid
growth of data volumes, along with the limitation of cluster capacities and the concur-
rency of multiple running jobs, has made it inevitable that deadline-bound jobs tend to
operate on only a subset of their data in order to meet strict deadline constraints [1].

Due to the fact that the accuracy of these jobs is somehow proportional to the fraction of
data processed, the goal of scheduling such jobs and the speculations is to satisfy dead-
line requirements while trying to process as much data as possible to improve accuracy.
Doing some exploration to achieve this goal forms another interesting orientation of this
research.

• Intelligent Scheduling with Machine Learning

Resource management problems are a natural expansion of straggler research due to the
fact that task execution is highly dependent on workload and environments [47]. For
instance, the running time of a task varies with data locality, server characteristics, in-
teractions with other tasks, and interference on shared resources such as CPU caches,
network bandwidth, etc [61]. While these two factors, workload and environments, are
the intuitive focus of resource management systems as well.

Resource management in the real world is challenging: underlying systems nowadays are
often complex and hard to model accurately, and practical schedulers have to make online
decisions with a huge amount of input data, which is sometimes noisy. In addition, some
performance metrics such as the tailing performance we focused in this thesis, are hard to
optimize. Most related works target resource management challenges with meticulously
designed heuristics using a simplified model of the problem. However, inspired by recent
advances in Machine Learning (ML) techniques especially in powerful models such as

157

Chapter 7 Conclusion and Future Work

deep learning, it can be conjectured that, systems which automatically learn to manage
resource from experience using Artificial Intelligence (AI) will be the future trend.

There are already quite a few explorations toward utilizing AI-based methods in the re-
source management domain, translating the problem of packing tasks with multiple re-
source demands into a learning problem. For example, [75] employs ideas from transfer
learning [109] to cope with the problem of generalizing the profiling results from one spe-
cific machine to a mathematical model that other machines can use to characterize their
sensitivity curve when modeling the task co-locating interference.

Among the many explorations, Reinforcement Learning (RL) is the most popular. RL
learns to make decisions directly from the rewards generated through interaction with
the environment, and has a long history [138]. However, it becomes extremely pop-
ular only until recently when combined with Deep Learning techniques such as Deep
Neural Networks (DNN), in applications including playing Go games [134], cooling
datacenters [51], and etc. The system model that combines RL with DNN is shown in
Figure 7.2 [88].

Figure 7.2: The RL system model with policy represented via DNN [88]

From the system model it is observable that RL approaches are especially well-suited
to resource management systems. The agent that observes state s and performs action

a can be naturally mapped to the cluster scheduler. The state transitions and rewards are
stochastic, and the goal of the learning is to maximize the expected cumulative discounted
reward E[

∑∞
t=0 γ

trt], where γ ∈ (0, 1] is a factor discounting future rewards.

In [88], average job slowdown is the training objective, with rewards at each timestep
set to be

∑
j∈
−1
Tj

, where is the set of jobs currently in the system and Tj represents
the duration of the job. In this design, the cumulative reward over time coincides with
the sum (negative) of job slowdowns, the completion duration divided by job duration.
Therefore, maximize this reward mimics minimizing the average slowdown. Other ob-

158

Chapter 7 Conclusion and Future Work

jectives such as to minimize average completion time can be achieved through changing
the reward function into −||. With a properly designed reward function, the RL methods
can be adopted to build an intelligent system that mitigates stragglers. This ML-based
optimization forms another important future direction of this research.

159

Conclusion and Future Work

160

Bibliography

[1] Sameer Agarwal, Barzan Mozafari, Aurojit Panda, Henry Milner, Samuel Mad-
den, and Ion Stoica. Blinkdb: queries with bounded errors and bounded response
times on very large data. In Proceedings of the 8th ACM European Conference on

Computer Systems, pages 29–42. ACM, 2013. Cited on page 157.

[2] Hussain Al-Aqrabi, Lu Liu, Jie Xu, Richard Hill, Nick Antonopoulos, and
Yongzhao Zhan. Investigation of it security and compliance challenges in security-
as-a-service for cloud computing. In Object/Component/Service-Oriented Real-

Time Distributed Computing Workshops (ISORCW), 2012 15th IEEE International

Symposium on, pages 124–129. IEEE, 2012. Cited on page 14.

[3] Ahmed Ali-Eldin, Johan Tordsson, Erik Elmroth, and Maria Kihl. Workload clas-
sification for efficient auto-scaling of cloud resources. Tech. Rep., 2013. Cited on

page 26.

[4] AliCloud, 2017. URL https://www.alibabacloud.com/. Cited on

page 47.

[5] Ganesh Ananthanarayanan, Srikanth Kandula, Albert G Greenberg, Ion Stoica,
Yi Lu, Bikas Saha, and Edward Harris. Reining in the outliers in map-reduce
clusters using mantri. In OSDI, volume 10, page 24, 2010. Cited on pages 28, 29,

33, 34, 39, 41, 50, 75, 83, 92, 93, and 155.

[6] Ganesh Ananthanarayanan, Ali Ghodsi, Scott Shenker, and Ion Stoica. Effective
straggler mitigation: Attack of the clones. In NSDI, volume 13, pages 185–198,
2013. Cited on pages 33, 34, 41, 49, 75, 124, and 155.

[7] Ganesh Ananthanarayanan, Michael Chien-Chun Hung, Xiaoqi Ren, Ion Stoica,
Adam Wierman, and Minlan Yu. Grass: Trimming stragglers in approximation
analytics. 2014. Cited on pages 34, 37, 41, and 155.

161

https://www.alibabacloud.com/

BIBLIOGRAPHY

[8] Alain Andrieux, Karl Czajkowski, Asit Dan, Kate Keahey, Heiko Ludwig,
Toshiyuki Nakata, Jim Pruyne, John Rofrano, Steve Tuecke, and Ming Xu. Web
services agreement specification (ws-agreement). In Open grid forum, volume 128,
page 216, 2007. Cited on page 25.

[9] Apache-Ambari, 2016. URL https://ambari.apache.org/. Cited on

pages 5 and 126.

[10] Apache-Hadoop-YARN-History-Server-Rest-APIs, 2016. URL
http://hadoop.apache.org/docs/r2.4.1/hadoop-yarn/

hadoop-yarn-site/HistoryServerRest.html. Cited on page 124.

[11] Apache-Hive, 2016. URL https://hive.apache.org/. Cited on page 83.

[12] Wiki Applications powered by Hadoop, 2017. URL https://wiki.apache.

org/hadoop/PoweredBy. Cited on page 21.

[13] Michael Armbrust, Armando Fox, Rean Griffith, Anthony D Joseph, Randy H
Katz, Andrew Konwinski, Gunho Lee, David A Patterson, Ariel Rabkin, Ion Sto-
ica, et al. Above the clouds: A berkeley view of cloud computing. Technical
report, Technical Report UCB/EECS-2009-28, EECS Department, University of
California, Berkeley, 2009. Cited on page 1.

[14] Kevin Ashton. That internet of things thing. RFiD Journal, 22(7), 2011. Cited on

page 16.

[15] Luigi Atzori, Antonio Iera, and Giacomo Morabito. The internet of things: A
survey. Computer networks, 54(15):2787–2805, 2010. Cited on page 16.

[16] Algirdas Avizienis, Jean-Claude Laprie, Brian Randell, et al. Fundamental con-

cepts of dependability. University of Newcastle upon Tyne, Computing Science,
2001. Cited on page 25.

[17] Algirdas Avizienis, J-C Laprie, Brian Randell, and Carl Landwehr. Basic con-
cepts and taxonomy of dependable and secure computing. IEEE transactions on

dependable and secure computing, 1(1):11–33, 2004. Cited on page 24.

[18] Moussa Ayyash, Hany Elgala, Abdallah Khreishah, Volker Jungnickel, Thomas
Little, Sihua Shao, Michael Rahaim, Dominic Schulz, Jonas Hilt, and Ronald Fre-
und. Coexistence of wifi and lifi toward 5g: Concepts, opportunities, and chal-
lenges. IEEE Communications Magazine, 54(2):64–71, 2016. Cited on page 16.

162

https://ambari.apache.org/
http://hadoop.apache.org/docs/r2.4.1/hadoop-yarn/hadoop-yarn-site/HistoryServerRest.html
http://hadoop.apache.org/docs/r2.4.1/hadoop-yarn/hadoop-yarn-site/HistoryServerRest.html
https://hive.apache.org/
https://wiki.apache.org/hadoop/PoweredBy
https://wiki.apache.org/hadoop/PoweredBy

BIBLIOGRAPHY

[19] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex Ho, Rolf
Neugebauer, Ian Pratt, and Andrew Warfield. Xen and the art of virtualization. In
ACM SIGOPS operating systems review, volume 37, pages 164–177. ACM, 2003.
Cited on page 14.

[20] Luiz André Barroso, Jimmy Clidaras, and Urs Hölzle. The datacenter as a com-
puter: An introduction to the design of warehouse-scale machines. Synthesis lec-

tures on computer architecture, 8(3):1–154, 2013. Cited on page 15.

[21] Vladimir Batagelj and Matjaž Zaveršnik. Generalized cores. arXiv preprint

cs/0202039, 2002. Cited on page 108.

[22] Keith Bennett, Paul Layzell, David Budgen, Pearl Brereton, Linda Macaulay, and
Malcolm Munro. Service-based software: the future for flexible software. In
Software Engineering Conference, 2000. APSEC 2000. Proceedings. Seventh Asia-

Pacific, pages 214–221. IEEE, 2000. Cited on page 11.

[23] Philip A Bernstein. Middleware: a model for distributed system services. Commu-

nications of the ACM, 39(2):86–98, 1996. Cited on page 11.

[24] G Bruce Berriman, Ewa Deelman, Gideon Juve, Mats Rynge, and Jens-S Vöckler.
The application of cloud computing to scientific workflows: a study of cost and
performance. Phil. Trans. R. Soc. A, 371(1983):20120066, 2013. Cited on page 26.

[25] GE Blelloch, L Dagum, SJ Smith, K Thearling, and M Zagha. An evaluation
of sorting as a supercomputer benchmark. International Journal of High Speed

Computing, 1993. Cited on page 83.

[26] Peter Bodik, Armando Fox, Michael J Franklin, Michael I Jordan, and David A
Patterson. Characterizing, modeling, and generating workload spikes for stateful
services. In Proceedings of the 1st ACM symposium on Cloud computing, pages
241–252. ACM, 2010. Cited on page 26.

[27] Edward Bortnikov, Ari Frank, Eshcar Hillel, and Sriram Rao. Predicting execution
bottlenecks in map-reduce clusters. In Proceedings of the 4th USENIX conference

on Hot Topics in Cloud Ccomputing, pages 18–18. USENIX Association, 2012.
Cited on page 60.

[28] Eric Boutin, Jaliya Ekanayake, Wei Lin, Bing Shi, Jingren Zhou, Zhengping Qian,
Ming Wu, and Lidong Zhou. Apollo: Scalable and coordinated scheduling for

163

BIBLIOGRAPHY

cloud-scale computing. In OSDI, volume 14, pages 285–300, 2014. Cited on

page 18.

[29] Yingyi Bu, Bill Howe, Magdalena Balazinska, and Michael D Ernst. Haloop:
Efficient iterative data processing on large clusters. Proceedings of the VLDB En-

dowment, 3(1-2):285–296, 2010. Cited on page 24.

[30] Yingyi Bu, Bill Howe, Magdalena Balazinska, and Michael D Ernst. The haloop
approach to large-scale iterative data analysis. The VLDB JournalThe International

Journal on Very Large Data Bases, 21(2):169–190, 2012. Cited on page 24.

[31] Rajkumar Buyya. High performance cluster computing: Architectures and sys-
tems, volume i. Prentice Hall, Upper SaddleRiver, NJ, USA, 1:999, 1999. Cited on

page 17.

[32] Rajkumar Buyya, Chee Shin Yeo, and Srikumar Venugopal. Market-oriented cloud
computing: Vision, hype, and reality for delivering it services as computing utili-
ties. In High Performance Computing and Communications, 2008. HPCC’08. 10th

IEEE International Conference on, pages 5–13. Ieee, 2008. Cited on page 14.

[33] Rajkumar Buyya, Chee Shin Yeo, Srikumar Venugopal, James Broberg, and Ivona
Brandic. Cloud computing and emerging it platforms: Vision, hype, and reality for
delivering computing as the 5th utility. Future Generation computer systems, 25
(6):599–616, 2009. Cited on page 97.

[34] Rajkumar Buyya, Rajiv Ranjan, and Rodrigo N Calheiros. Intercloud: Utility-
oriented federation of cloud computing environments for scaling of application
services. In International Conference on Algorithms and Architectures for Parallel

Processing, pages 13–31. Springer, 2010. Cited on pages 13 and 14.

[35] Rodrigo N Calheiros, Rajiv Ranjan, Anton Beloglazov, César AF De Rose, and
Rajkumar Buyya. Cloudsim: a toolkit for modeling and simulation of cloud com-
puting environments and evaluation of resource provisioning algorithms. Software:

Practice and experience, 41(1):23–50, 2011. Cited on page 5.

[36] Maria Carla Calzarossa, Luisa Massari, and Daniele Tessera. Workload characteri-
zation: a survey revisited. ACM Computing Surveys (CSUR), 48(3):48, 2016. Cited

on page 93.

164

BIBLIOGRAPHY

[37] Godwin Caruana, Maozhen Li, Man Qi, Mukhtaj Khan, and Omer Rana. gsched:
a resource aware hadoop scheduler for heterogeneous cloud computing environ-
ments. Concurrency and Computation: Practice and Experience, 29(20), 2017.
Cited on page 18.

[38] Qi Chen, Cheng Liu, and Zhen Xiao. Improving mapreduce performance using
smart speculative execution strategy. IEEE Transactions on Computers, 63(4):
954–967, 2014. Cited on pages 34, 35, 37, 39, and 83.

[39] Qi Chen, Jinyu Yao, and Zhen Xiao. Libra: Lightweight data skew mitigation in
mapreduce. IEEE Transactions on parallel and distributed systems, 26(9):2520–
2533, 2015. Cited on page 40.

[40] Quan Chen, Daqiang Zhang, Minyi Guo, Qianni Deng, and Song Guo. Samr:
A self-adaptive mapreduce scheduling algorithm in heterogeneous environment.
In Computer and Information Technology (CIT), 2010 IEEE 10th International

Conference on, pages 2736–2743. IEEE, 2010. Cited on pages 32 and 35.

[41] Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In
Proceedings of the 22Nd ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining, pages 785–794. ACM, 2016. Cited on page 120.

[42] Dickson KW Chiu, Shing-Chi Cheung, and Sven Till. A three-layer architecture
for e-contract enforcement in an e-service environment. In System Sciences, 2003.

Proceedings of the 36th Annual Hawaii International Conference on, pages 10–pp.
IEEE, 2003. Cited on page 10.

[43] VNI Cisco. Cisco visual networking index: Forecast and methodology 2014–2019
white paper. Cisco, Tech. Rep, 2015. Cited on page 1.

[44] Thomas A De Ruiter. A workload model for mapreduce. Master Thesis, Delft

University of Technology, 2012. Cited on page 102.

[45] Jeffrey Dean and Luiz André Barroso. The tail at scale. Communications of the

ACM, 56(2):74–80, 2013. Cited on pages 28, 38, and 52.

[46] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified data processing on
large clusters. Communications of the ACM, 51(1):107–113, 2008. Cited on pages

xvi, 5, 17, 19, 20, 59, and 83.

165

BIBLIOGRAPHY

[47] Christina Delimitrou and Christos Kozyrakis. Quasar: resource-efficient and qos-
aware cluster management. ACM SIGPLAN Notices, 49(4):127–144, 2014. Cited

on page 157.

[48] Parkhil F Douglas. The challenge of the computer utility, 1966. Cited on page 13.

[49] Jaliya Ekanayake, Hui Li, Bingjing Zhang, Thilina Gunarathne, Seung-Hee Bae,
Judy Qiu, and Geoffrey Fox. Twister: a runtime for iterative mapreduce. In
Proceedings of the 19th ACM international symposium on high performance dis-

tributed computing, pages 810–818. ACM, 2010. Cited on page 24.

[50] Mohamed A El-Refaey and Mohamed Abu Rizkaa. Virtual systems workload char-
acterization: An overview. In Enabling Technologies: Infrastructures for Collab-

orative Enterprises, 2009. WETICE’09. 18th IEEE International Workshops on,
pages 72–77. IEEE, 2009. Cited on page 17.

[51] Richard Evans and Jim Gao. Deepmind ai reduces google data centre cooling bill
by 40%. DeepMind blog, 20, 2016. Cited on page 158.

[52] ExoGENI, 2017. URL http://www.exogeni.net/. Cited on pages 5, 126,

and 142.

[53] ExoGENI-Wiki, 2016. URL https://wiki.exogeni.net/doku.php?

id=public:experimenters:resource_types:start. Cited on pages

5 and 126.

[54] Anja Feldmann and Ward Whitt. Fitting mixtures of exponentials to long-tail dis-
tributions to analyze network performance models. Performance evaluation, 31
(3-4):245–279, 1998. Cited on page 29.

[55] Roy T Fielding and Richard N Taylor. Architectural styles and the design of

network-based software architectures, volume 7. University of California, Irvine
Doctoral dissertation, 2000. Cited on page 10.

[56] Klaus Finkenzeller. RFID handbook: fundamentals and applications in contactless

smart cards, radio frequency identification and near-field communication. John
Wiley & Sons, 2010. Cited on page 16.

[57] Ian Foster, Carl Kesselman, and Steven Tuecke. The anatomy of the grid: En-
abling scalable virtual organizations. The International Journal of High Perfor-

mance Computing Applications, 15(3):200–222, 2001. Cited on page 13.

166

http://www.exogeni.net/
https://wiki.exogeni.net/doku.php?id=public:experimenters:resource_types:start
https://wiki.exogeni.net/doku.php?id=public:experimenters:resource_types:start

BIBLIOGRAPHY

[58] John Giannandrea Freebase data dumps, 2013. URL https://developers.

google.com/freebase/. Cited on page 142.

[59] Simson Garfinkel. Architects of the information society: 35 years of the Laboratory

for Computer Science at MIT. MIT press, 1999. Cited on page 13.

[60] Peter Garraghan, David McKee, Xue Ouyang, David Webster, and Jie Xu. Seed:
A scalable approach for cyber-physical system simulation. IEEE Transactions on

Services Computing, 9(2):199–212, 2016. Cited on pages 5, 91, and 151.

[61] Robert Grandl, Ganesh Ananthanarayanan, Srikanth Kandula, Sriram Rao, and
Aditya Akella. Multi-resource packing for cluster schedulers. ACM SIGCOMM

Computer Communication Review, 44(4):455–466, 2015. Cited on page 157.

[62] William Gropp, Ewing Lusk, Nathan Doss, and Anthony Skjellum. A high-
performance, portable implementation of the mpi message passing interface stan-
dard. Parallel computing, 22(6):789–828, 1996. Cited on page 21.

[63] Jayavardhana Gubbi, Rajkumar Buyya, Slaven Marusic, and Marimuthu
Palaniswami. Internet of things (iot): A vision, architectural elements, and future
directions. Future generation computer systems, 29(7):1645–1660, 2013. Cited on

pages 1 and 16.

[64] Haryadi S Gunawi, Thanh Do, Joseph M Hellerstein, Ion Stoica, Dhruba
Borthakur, and Jesse Robbins. Failure as a service (faas): A cloud service for
large-scale, online failure drills. University of California, Berkeley, Berkeley, 3,
2011. Cited on page 14.

[65] Alonso Gustavo, F Casati, H Kuno, and V Machiraju. Web services: concepts,
architectures and applications, 2004. Cited on page 10.

[66] Hadoop, 2016. URL http://hadoop.apache.org/. Cited on pages 80

and 90.

[67] Benjamin Hindman, Andy Konwinski, Matei Zaharia, Ali Ghodsi, Anthony D
Joseph, Randy H Katz, Scott Shenker, and Ion Stoica. Mesos: A platform for
fine-grained resource sharing in the data center. In NSDI, volume 11, pages 22–22,
2011. Cited on page 18.

[68] Ming-hao Hu, Chang-jian Wang, and Yu-xing Peng. Meeting deadlines for approx-
imation processing in mapreduce environments. Frontiers of Information Technol-

ogy & Electronic Engineering, 18(11):1754–1772, 2017. Cited on page 37.

167

https://developers.google.com/freebase/
https://developers.google.com/freebase/
http://hadoop.apache.org/

BIBLIOGRAPHY

[69] Sheng-Wei Huang, Tzu-Chi Huang, Syue-Ru Lyu, Ce-Kuen Shieh, and Yi-Sheng
Chou. Improving speculative execution performance with coworker for cloud com-
puting. In Parallel and Distributed Systems (ICPADS), 2011 IEEE 17th Interna-

tional Conference on, pages 1004–1009. IEEE, 2011. Cited on pages 34, 35, 40,

and 93.

[70] Amazon IoT, 2017. URL aws.amazon.com/iot. Cited on page 16.

[71] Norm Jouppi. Google supercharges machine learning tasks with tpu custom chip.
Google Blog, May, 18, 2016. Cited on page 1.

[72] Norman P Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav Agrawal,
Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden, Al Borchers, et al. In-
datacenter performance analysis of a tensor processing unit. In Proceedings of

the 44th Annual International Symposium on Computer Architecture, pages 1–12.
ACM, 2017. Cited on page 1.

[73] Soila Kavulya, Jiaqi Tan, Rajeev Gandhi, and Priya Narasimhan. An analysis of
traces from a production mapreduce cluster. In Cluster, Cloud and Grid Comput-

ing (CCGrid), 2010 10th IEEE/ACM International Conference on, pages 94–103.
IEEE, 2010. Cited on pages 37 and 38.

[74] Kyong Hoon Kim, Anton Beloglazov, and Rajkumar Buyya. Power-aware provi-
sioning of cloud resources for real-time services. In Proceedings of the 7th Inter-

national Workshop on Middleware for Grids, Clouds and e-Science, page 1. ACM,
2009. Cited on page 26.

[75] Wei Kuang, Laura E Brown, and Zhenlin Wang. Transfer learning-based co-run
scheduling for heterogeneous datacenters. In AAAI, pages 4247–4248, 2015. Cited

on page 158.

[76] Gautam Kumar, Ganesh Ananthanarayanan, Sylvia Ratnasamy, and Ion Stoica.
Hold’em or fold’em?: aggregation queries under performance variations. In Pro-

ceedings of the Eleventh European Conference on Computer Systems, page 7.
ACM, 2016. Cited on page 37.

[77] Umesh Kumar and Jitendar Kumar. A comprehensive review of straggler han-
dling algorithms for mapreduce framework. International Journal of Grid and

Distributed Computing, 7(4):139–148, 2014. Cited on page 34.

168

aws.amazon.com/iot

BIBLIOGRAPHY

[78] YongChul Kwon, Magdalena Balazinska, Bill Howe, and Jerome Rolia. Skew-
resistant parallel processing of feature-extracting scientific user-defined functions.
In Proceedings of the 1st ACM symposium on Cloud computing, pages 75–86.
ACM, 2010. Cited on page 39.

[79] YongChul Kwon, Magdalena Balazinska, Bill Howe, and Jerome Rolia. A study of
skew in mapreduce applications. Open Cirrus Summit, 11, 2011. Cited on page 135.

[80] YongChul Kwon, Magdalena Balazinska, Bill Howe, and Jerome Rolia. Skew-
tune: mitigating skew in mapreduce applications. In Proceedings of the 2012 ACM

SIGMOD International Conference on Management of Data, pages 25–36. ACM,
2012. Cited on pages 40, 41, 49, 73, and 155.

[81] Lei Lei, Tianyu Wo, and Chunming Hu. Crest: Towards fast speculation of strag-
gler tasks in mapreduce. In e-Business Engineering (ICEBE), 2011 IEEE 8th In-

ternational Conference on, pages 311–316. IEEE, 2011. Cited on pages 34, 36, 41,

and 155.

[82] Jialin Li, Naveen Kr Sharma, Dan RK Ports, and Steven D Gribble. Tales of the
tail: Hardware, os, and application-level sources of tail latency. In Proceedings

of the ACM Symposium on Cloud Computing, pages 1–14. ACM, 2014. Cited on

pages 29 and 39.

[83] Jimmy Lin. Bespin: a library that contains implementations of big data algorithms
in mapreduce and spark. https://github.com/lintool/bespin, 2017. Cited on page 142.

[84] Jimmy Lin et al. The curse of zipf and limits to parallelization: A look at the
stragglers problem in mapreduce. In 7th Workshop on Large-Scale Distributed

Systems for Information Retrieval, volume 1, pages 57–62. ACM Boston, MA,
USA, 2009. Cited on pages 39 and 142.

[85] Fang Liu, Jin Tong, Jian Mao, Robert Bohn, John Messina, Lee Badger, and Dawn
Leaf. Nist cloud computing reference architecture. NIST special publication, 500
(2011):292, 2011. Cited on page 14.

[86] Tom H Luan, Longxiang Gao, Zhi Li, Yang Xiang, Guiyi Wei, and Limin
Sun. Fog computing: Focusing on mobile users at the edge. arXiv preprint

arXiv:1502.01815, 2015. Cited on page 17.

169

BIBLIOGRAPHY

[87] Heiko Ludwig, Alexander Keller, Asit Dan, Richard P King, and Richard Franck.
Web service level agreement (wsla) language specification. IBM Corporation,
pages 815–824, 2003. Cited on page 25.

[88] Hongzi Mao, Mohammad Alizadeh, Ishai Menache, and Srikanth Kandula. Re-
source management with deep reinforcement learning. In Proceedings of the 15th

ACM Workshop on Hot Topics in Networks, pages 50–56. ACM, 2016. Cited on

pages xix and 158.

[89] Frank J Massey Jr. The kolmogorov-smirnov test for goodness of fit. Journal of

the American statistical Association, 46(253):68–78, 1951. Cited on page 102.

[90] DW McKee, SJ Clement, Xue Ouyang, Jie Xu, Richard Romanoy, and John
Davies. The internet of simulation, a specialisation of the internet of things with
simulation and workflow as a service (sim/wfaas). In Service-Oriented System En-

gineering (SOSE), 2017 IEEE Symposium on, pages 47–56. IEEE, 2017. Cited on

page 14.

[91] Amardeep Mehta, Jonas Dürango, Johan Tordsson, and Erik Elmroth. Online spike
detection in cloud workloads. In Cloud Engineering (IC2E), 2015 IEEE Interna-

tional Conference on, pages 446–451. IEEE, 2015. Cited on page 26.

[92] Peter Mell, Tim Grance, et al. The nist definition of cloud computing. 2011. Cited

on page 14.

[93] Haithem Mezni, Walid Chainbi, and Khaled Ghedira. An autonomic registry-based
soa model. In Service-Oriented Computing and Applications (SOCA), 2011 IEEE

International Conference on, pages 1–4. IEEE, 2011. Cited on page 13.

[94] Ryszard S Michalski, Jaime G Carbonell, and Tom M Mitchell. Machine learning:

An artificial intelligence approach. Science & Business Media, 2013. Cited on

pages 114, 115, and 119.

[95] Minitab, 2018. URL http://www.minitab.com/en-us/. Cited on

page 102.

[96] Nilo Mitra, Yves Lafon, et al. Soap version 1.2 part 0: Primer. W3C recommenda-

tion, 24:12, 2003. Cited on page 13.

[97] Ismael Solis Moreno, Renyu Yang, Jie Xu, and Tianyu Wo. Improved energy-
efficiency in cloud datacenters with interference-aware virtual machine placement.

170

http://www.minitab.com/en-us/

BIBLIOGRAPHY

In Autonomous Decentralized Systems (ISADS), 2013 IEEE Eleventh International

Symposium on, pages 1–8. IEEE, 2013. Cited on page 26.

[98] Ismael Solis Moreno, Peter Garraghan, Paul Townend, and Jie Xu. Analysis, mod-
eling and simulation of workload patterns in a large-scale utility cloud. IEEE

Transactions on Cloud Computing, 2(2):208–221, 2014. Cited on page 5.

[99] Ahsan Morshed, Prem Prakash Jayaraman, Timos Sellis, Dimitrios Georgakopou-
los, Massimo Villari, and Rajiv Ranjan. Deep osmosis: Holistic distributed deep
learning in osmotic computing. IEEE Cloud Computing, 4(6):22–32, 2018. Cited

on pages xvi and 16.

[100] Nagios, 2017. URL https://www.nagios.org/. Cited on page 56.

[101] Vishal Ankush Nawale and Priya Deshpande. Minimizing skew in mapreduce ap-
plications using node clustering in heterogeneous environment. In Computational

Intelligence and Communication Networks (CICN), 2015 International Conference

on, pages 136–139. IEEE, 2015. Cited on page 40.

[102] UDDI Oasis. Version 3.0. 2. UDDI Spec Technical Committee Draft, 2004. Cited

on page 13.

[103] OpenCloud, 2016. URL http://ftp.pdl.cmu.edu/pub/datasets/

hla/dataset.html. Cited on pages 4 and 48.

[104] OpenNebula, 2016. URL http://opennebula.org/. Cited on pages 83

and 126.

[105] Simon Ostermann, Alexandria Iosup, Nezih Yigitbasi, Radu Prodan, Thomas
Fahringer, and Dick Epema. A performance analysis of ec2 cloud computing ser-
vices for scientific computing. In International Conference on Cloud Computing,
pages 115–131. Springer, 2009. Cited on page 26.

[106] Xue Ouyang, Peter Garraghan, Changjian Wang, Paul Townend, and Jie Xu. An
approach for modeling and ranking node-level stragglers in cloud datacenters. In
Services Computing (SCC), 2016 IEEE International Conference on, pages 673–
680. IEEE, 2016. Cited on page 97.

[107] Xue Ouyang, Peter Garraghan, Renyu Yang, Paul Townend, and Jie Xu. Reducing
late-timing failure at scale: Straggler root-cause analysis in cloud datacenters. In

171

https://www.nagios.org/
http://ftp.pdl.cmu.edu/pub/datasets/hla/dataset.html
http://ftp.pdl.cmu.edu/pub/datasets/hla/dataset.html
http://opennebula.org/

BIBLIOGRAPHY

Fast Abstracts in the 46th Annual IEEE/IFIP International Conference on Depend-

able Systems and Networks. DSN, 2016. Cited on pages 75 and 92.

[108] James Padgett, Karim Djemame, and Peter Dew. Grid-based sla management. In
European Grid Conference, pages 1076–1085. Springer, 2005. Cited on page 25.

[109] Sinno Jialin Pan and Qiang Yang. A survey on transfer learning. IEEE Transactions

on knowledge and data engineering, 22(10):1345–1359, 2010. Cited on page 158.

[110] John Panneerselvam, Lu Liu, Nick Antonopoulos, and Yuan Bo. Workload analysis
for the scope of user demand prediction model evaluations in cloud environments.
In Proceedings of the 2014 IEEE/ACM 7th International Conference on Utility

and Cloud Computing, pages 883–889. IEEE Computer Society, 2014. Cited on

page 26.

[111] John Panneerselvam, Lu Liu, Nick Antonopoulos, and Marcello Trovati. Latency-
aware empirical analysis of the workloads for reducing excess energy consump-
tions at cloud datacentres. In Service-Oriented System Engineering (SOSE), 2016

IEEE Symposium on, pages 44–52. IEEE, 2016. Cited on page 26.

[112] John Panneerselvam, Lu Liu, and Nick Antonopoulos. Characterisation of hidden
periodicity in large-scale cloud datacentre environments. In Internet of Things

(iThings) and IEEE Green Computing and Communications (GreenCom) and

IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data

(SmartData), 2017 IEEE International Conference on, pages 496–503. IEEE,
2017. Cited on page 26.

[113] John Panneerselvam, Lu Liu, and Nick Antonopoulos. Inot-repcon: Forecasting
user behavioural trend in large-scale cloud environments. Future Generation Com-

puter Systems, 80:322–341, 2018. Cited on page 26.

[114] Michael P Papazoglou, Paolo Traverso, Schahram Dustdar, and Frank Leymann.
Service-oriented computing: State of the art and research challenges. Computer,
40(11), 2007. Cited on page 11.

[115] Mike P Papazoglou. Service-oriented computing: Concepts, characteristics and
directions. In Web Information Systems Engineering, 2003. WISE 2003. Proceed-

ings of the Fourth International Conference on, pages 3–12. IEEE, 2003. Cited on

page 11.

172

BIBLIOGRAPHY

[116] M Pataki, M Vajna, and A Marosi. Wikipedia as text. Ercim News - Special

theme: Big Data. http://kopiwiki.dsd.sztaki.hu/, 89:48–49, 2012. Cited on pages

135 and 142.

[117] Pankesh Patel, Ajith H Ranabahu, and Amit P Sheth. Service level agreement in
cloud computing. 2009. Cited on page 25.

[118] B Thirumala Rao and LSS Reddy. Survey on improved scheduling in hadoop
mapreduce in cloud environments. arXiv preprint arXiv:1207.0780, 2012. Cited

on page 18.

[119] Nornadiah Mohd Razali, Yap Bee Wah, et al. Power comparisons of shapiro-wilk,
kolmogorov-smirnov, lilliefors and anderson-darling tests. Journal of statistical

modeling and analytics, 2(1):21–33, 2011. Cited on page 102.

[120] Charles Reiss, John Wilkes, and Joseph L Hellerstein. Google cluster-usage traces:
format+ schema. Google Inc., White Paper, pages 1–14, 2011. Cited on pages 4,

17, 27, 46, and 98.

[121] Charles Reiss, Alexey Tumanov, Gregory R Ganger, Randy H Katz, and Michael A
Kozuch. Heterogeneity and dynamicity of clouds at scale: Google trace analysis.
In Proceedings of the Third ACM Symposium on Cloud Computing, page 7. ACM,
2012. Cited on page 26.

[122] Xiaoqi Ren, Ganesh Ananthanarayanan, Adam Wierman, and Minlan Yu. Hop-
per: Decentralized speculation-aware cluster scheduling at scale. ACM SIGCOMM

Computer Communication Review, 45(4):379–392, 2015. Cited on pages 34 and 37.

[123] Klaus Renzel and Wolfgang Keller. Three layer architecture. Software Architec-

tures and Design Patterns in Business Applications, 1997. Cited on page 10.

[124] Leonard Richardson and Sam Ruby. RESTful web services. ” O’Reilly Media,
Inc.”, 2008. Cited on page 13.

[125] Josh Rosen and Bill Zhao. Fine-grained micro-tasks for mapreduce skew-handling.
White Paper, University of Berkeley, 2012. Cited on pages 39, 49, and 73.

[126] Michael Rüßmann, Markus Lorenz, Philipp Gerbert, Manuela Waldner, Jan Justus,
Pascal Engel, and Michael Harnisch. Industry 4.0: The future of productivity and
growth in manufacturing industries. Boston Consulting Group, 9, 2015. Cited on

page 1.

173

BIBLIOGRAPHY

[127] Felix Salfner, Maren Lenk, and Miroslaw Malek. A survey of online failure pre-
diction methods. ACM Computing Surveys (CSUR), 42(3):10, 2010. Cited on

page 156.

[128] Rüdiger Schollmeier. A definition of peer-to-peer networking for the classification
of peer-to-peer architectures and applications. In Peer-to-Peer Computing, 2001.

Proceedings. First International Conference on, pages 101–102. IEEE, 2001. Cited

on page 13.

[129] Malte Schwarzkopf. Operating system support for warehouse-scale computing.
PhD. University of Cambridge, 2015. Cited on pages xvi, 18, and 19.

[130] Malte Schwarzkopf, Andy Konwinski, Michael Abd-El-Malek, and John Wilkes.
Omega: flexible, scalable schedulers for large compute clusters. In Proceedings of

the 8th ACM European Conference on Computer Systems, pages 351–364. ACM,
2013. Cited on page 18.

[131] scikit learn, 2016. URL http://scikit-learn.org/stable/. Cited on

pages 116 and 120.

[132] Weisong Shi, Jie Cao, Quan Zhang, Youhuizi Li, and Lanyu Xu. Edge computing:
Vision and challenges. IEEE Internet of Things Journal, 3(5):637–646, 2016. Cited

on page 16.

[133] Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and Robert Chansler. The
hadoop distributed file system. In Mass storage systems and technologies (MSST),

2010 IEEE 26th symposium on, pages 1–10. IEEE, 2010. Cited on pages 17 and 21.

[134] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George
Van Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershel-
vam, Marc Lanctot, et al. Mastering the game of go with deep neural networks and
tree search. nature, 529(7587):484–489, 2016. Cited on page 158.

[135] Jure Leskovec Stanford large network dataset collection, 2017. URL http://

snap.stanford.edu/data/. Cited on page 135.

[136] Le Sun, Hai Dong, and Jamshaid Ashraf. Survey of service description languages
and their issues in cloud computing. In Semantics, Knowledge and Grids (SKG),

2012 Eighth International Conference on, pages 128–135. IEEE, 2012. Cited on

page 13.

174

http://scikit-learn.org/stable/
http://snap.stanford.edu/data/
http://snap.stanford.edu/data/

BIBLIOGRAPHY

[137] Xiaoyu Sun, Chen He, and Ying Lu. Esamr: An enhanced self-adaptive mapreduce
scheduling algorithm. In Parallel and Distributed Systems (ICPADS), 2012 IEEE

18th International Conference on, pages 148–155. IEEE, 2012. Cited on page 35.

[138] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction,
volume 1. MIT press Cambridge, 1998. Cited on page 158.

[139] M Sylvia and B Peterson. Success in the cloud: Why workload matters. IBM

Global Services, Somers, NY, USA, Mar, 2012. Cited on page 26.

[140] William Shakespeare The Complete Works of William Shakespeare, 2017. URL
http://www.gutenberg.org/ebooks/100. Cited on pages 135 and 142.

[141] Ashish Thusoo, Joydeep Sen Sarma, Namit Jain, Zheng Shao, Prasad Chakka,
Suresh Anthony, Hao Liu, Pete Wyckoff, and Raghotham Murthy. Hive: a ware-
housing solution over a map-reduce framework. Proceedings of the VLDB Endow-

ment, 2(2):1626–1629, 2009. Cited on pages 5 and 83.

[142] Rafael Tolosana-Calasanz, Javier Diaz-Montes, Omer F Rana, Manish Parashar,
Erotokritos Xydas, Charalampos Marmaras, Panagiotis Papadopoulos, and Liana
Cipcigan. Computational resource management for data-driven applications with
deadline constraints. Concurrency and Computation: Practice and Experience, 29
(8), 2017. Cited on page 25.

[143] Tsar tools, 2017. URL https://github.com/alibaba/tsar. Cited on

pages 56 and 59.

[144] Cloud Computing Testbed School of Computing University of Leeds,
2018. URL https://engineering.leeds.ac.uk/info/201325/

research_and_innovation/133/research_facilities. Cited on

page 27.

[145] Google Cluster Data V2, 2016. URL https://github.com/google/

cluster-data. Cited on pages 4, 27, and 46.

[146] Luis M Vaquero, Luis Rodero-Merino, Juan Caceres, and Maik Lindner. A break
in the clouds: towards a cloud definition. ACM SIGCOMM Computer Communi-

cation Review, 39(1):50–55, 2008. Cited on page 15.

[147] Vinod Kumar Vavilapalli, Arun C Murthy, Chris Douglas, Sharad Agarwal, Ma-
hadev Konar, Robert Evans, Thomas Graves, Jason Lowe, Hitesh Shah, Siddharth

175

http://www.gutenberg.org/ebooks/100
https://github.com/alibaba/tsar
https://engineering.leeds.ac.uk/info/201325/research_and_innovation/133/research_facilities
https://engineering.leeds.ac.uk/info/201325/research_and_innovation/133/research_facilities
https://github.com/google/cluster-data
https://github.com/google/cluster-data

BIBLIOGRAPHY

Seth, et al. Apache hadoop yarn: Yet another resource negotiator. In Proceedings

of the 4th annual Symposium on Cloud Computing, page 5. ACM, 2013. Cited on

pages 17 and 70.

[148] Abhishek Verma, Luis Pedrosa, Madhukar Korupolu, David Oppenheimer, Eric
Tune, and John Wilkes. Large-scale cluster management at google with borg. In
Proceedings of the Tenth European Conference on Computer Systems, page 18.
ACM, 2015. Cited on page 18.

[149] Massimo Villari, Maria Fazio, Schahram Dustdar, Omer Rana, and Rajiv Ranjan.
Osmotic computing: A new paradigm for edge/cloud integration. IEEE Cloud

Computing, 3(6):76–83, 2016. Cited on page 17.

[150] Aaron E Walsh. Uddi, Soap, and WSDL: the web services specification reference

book. Prentice Hall Professional Technical Reference, 2002. Cited on page 13.

[151] Da Wang, Gauri Joshi, and Gregory Wornell. Using straggler replication to re-
duce latency in large-scale parallel computing. ACM SIGMETRICS Performance

Evaluation Review, 43(3):7–11, 2015. Cited on pages 29 and 34.

[152] Guanying Wang, Ali R Butt, Prashant Pandey, and Karan Gupta. Using realistic
simulation for performance analysis of mapreduce setups. In Proceedings of the 1st

ACM workshop on Large-Scale system and application performance, pages 19–26.
ACM, 2009. Cited on page 25.

[153] Jiayin Wang, Teng Wang, Zhengyu Yang, Ningfang Mi, and Bo Sheng. esplash:
Efficient speculation in large scale heterogeneous computing systems. In Perfor-

mance Computing and Communications Conference (IPCCC), 2016 IEEE 35th

International, pages 1–8. IEEE, 2016. Cited on pages 34 and 36.

[154] Kun Wang, Ben Tan, Juwei Shi, and Bo Yang. Automatic task slots assignment
in hadoop mapreduce. In Proceedings of the 1st Workshop on Architectures and

Systems for Big Data, pages 24–29. ACM, 2011. Cited on pages 22 and 38.

[155] Tom White. Hadoop: The definitive guide. ” O’Reilly Media, Inc.”, 2012. Cited

on pages 31, 41, and 155.

[156] Jiong Xie, Shu Yin, Xiaojun Ruan, Zhiyang Ding, Yun Tian, James Majors, Adam
Manzanares, and Xiao Qin. Improving mapreduce performance through data place-
ment in heterogeneous hadoop clusters. In Parallel & Distributed Processing,

176

BIBLIOGRAPHY

Workshops and Phd Forum (IPDPSW), 2010 IEEE International Symposium on,
pages 1–9. IEEE, 2010. Cited on page 38.

[157] Yunjing Xu, Zachary Musgrave, Brian Noble, and Michael Bailey. Bobtail: Avoid-
ing long tails in the cloud. In NSDI, volume 13, pages 329–342, 2013. Cited on

pages 34, 35, and 39.

[158] Yadwadkar and Wontae. Proactive straggler avoidance using machine learning.
White paper, University of Berkeley, 2012. Cited on pages 36 and 54.

[159] Neeraja J Yadwadkar, Ganesh Ananthanarayanan, and Randy Katz. Wrangler:
Predictable and faster jobs using fewer resources. In Proceedings of the ACM

Symposium on Cloud Computing, pages 1–14. ACM, 2014. Cited on pages 33, 34,

36, and 57.

[160] Neeraja J Yadwadkar, Bharath Hariharan, Joseph E Gonzalez, and Randy Katz.
Multi-task learning for straggler avoiding predictive job scheduling. The Journal

of Machine Learning Research, 17(1):3692–3728, 2016. Cited on page 36.

[161] Jennifer Yick, Biswanath Mukherjee, and Dipak Ghosal. Wireless sensor network
survey. Computer networks, 52(12):2292–2330, 2008. Cited on page 16.

[162] Matei Zaharia, Andy Konwinski, Anthony D Joseph, Randy H Katz, and Ion Sto-
ica. Improving mapreduce performance in heterogeneous environments. In Osdi,
volume 8, page 7, 2008. Cited on pages 3, 27, 33, 34, 41, 49, 73, 83, 92, and 155.

[163] Matei Zaharia, Dhruba Borthakur, Joydeep Sen Sarma, Khaled Elmeleegy, Scott
Shenker, and Ion Stoica. Delay scheduling: a simple technique for achieving lo-
cality and fairness in cluster scheduling. In Proceedings of the 5th European con-

ference on Computer systems, pages 265–278. ACM, 2010. Cited on page 25.

[164] Matei Zaharia, Mosharaf Chowdhury, Michael J Franklin, Scott Shenker, and Ion
Stoica. Spark: Cluster computing with working sets. HotCloud, 10(10-10):95,
2010. Cited on pages 17 and 23.

[165] David Zats, Tathagata Das, Prashanth Mohan, Dhruba Borthakur, and Randy Katz.
Detail: reducing the flow completion time tail in datacenter networks. ACM SIG-

COMM Computer Communication Review, 42(4):139–150, 2012. Cited on pages

29 and 39.

177

BIBLIOGRAPHY

[166] Zhuo Zhang, Chao Li, Yangyu Tao, Renyu Yang, Hong Tang, and Jie Xu. Fuxi:
a fault-tolerant resource management and job scheduling system at internet scale.
Proceedings of the VLDB Endowment, 7(13):1393–1404, 2014. Cited on pages 18,

34, 56, and 124.

[167] Xia Zhao, Kai Kang, YuZhong Sun, Yin Song, Minhao Xu, and Tao Pan. Insight
and reduction of mapreduce stragglers in heterogeneous environment. In Clus-

ter Computing (CLUSTER), 2013 IEEE International Conference on, pages 1–8.
IEEE, 2013. Cited on page 38.

178

	IP and Publication Statements
	Abstract
	Declarations
	Acknowledgements
	List of Acronyms
	Introduction
	Research Motivation
	Aims and Objectives
	Methodology
	Major Contributions
	Thesis Organization

	Parallel Job Performance in Large-scale Computing Systems
	Evolution of Computing Systems
	Tiered Software System Architecture
	Service Computing
	Cloud Computing
	New Computing Models

	Parallel Computing and Execution Performance
	Basic Concepts in Parallel Computing
	MapReduce Framework
	Open-Source MapReduce Implementations

	Performance Challenges in Parallel Execution
	Basic Concepts in Performance Challenge
	The Straggler Problem
	Straggler Related Formulation

	Overview of Straggler Mitigation Techniques
	Speculative Execution and Its Variations
	Straggler Root Causes
	Skew Mitigation
	Gaps in the literature

	Summary

	Quantitative Analysis of the Stragglers
	Data Set Introduction
	The Google Dataset
	The AliCloud Dataset
	The OpenCloud Dataset

	Straggler Related Statistics
	Task-Level Statistics
	Job-Level Statistics
	Node-Level Statistics

	Straggler Reason Analysis
	Speculation Limitation
	High Speculation Failure Rate
	Improvement Potential

	Straggler Mitigation System Model
	Summary

	Task-level Detection: Adaptive Straggler Threshold
	Algorithm Motivation
	Algorithm Design
	QoS Timing Constraint
	Task Lifecycle Progress
	System Resource Usage

	Theoretical Examples
	Implementation and Experiments
	Default Speculator Component
	Speculator Modification
	Experiment Setup
	Experiment Results
	Simulation Results

	Summary

	Server-level Prediction and Dynamic Blacklisting
	A Google Case Study
	Normalized Task Execution
	Distribution Fit for Node Execution Performance
	Target Indicator Choice
	Ranking and Weak Node Identification

	Machine Learning based Prediction
	Feature Selection
	The Automatic Labeling Algorithm
	Boosting Based Classifier
	The Node Performance Prediction

	Dynamic Blacklisting
	Implementation
	Evaluation Results

	Summary

	Coping with Skew-caused Stragglers
	Skews in MapReduce Framework
	Refined Notions
	Different Skew Types

	Mitigate Reduce Skews with ImKP
	The ImKP Framework
	Detailed Workflow and the Pre-processor

	Performance Evaluation
	Experiment Setup
	Skew Mitigation Effectiveness
	Skew Mitigation Overhead
	Job Execution Improvement

	Summary

	Conclusion and Future Work
	Summary
	Research Contributions
	Overall Research Evaluation
	Future Work

