
Proceedings of the

15th European Lisp Symposium
Porto, Portugal

April 21 — 22, 2022
In cooperation with ACM

ISBN-13: 978-2-9557474-6-9
ISSN: 2677-3465

ii ELS 2022

Preface

Message from the Program Chair

Welcome to the 15thth European Lisp Symposium!

It is my pleasure to off these proceedings to the community. Herein you will find descriptions
of keynote presentations by Sam Ritchie and Robert Strand, to both of whom I hold the utmost
appreciation for agreeing to present their work to this symposium. Additionally, you’ll find the
research papers and demo descriptions submitted by nine researchers. I would like to thank
everyone who made a submission to this year’s symposium.

A special thanks goes out to the chairing committee who had the task of reviewing the submis-
sions, and giving feedback to the authors. This work is mostly done in silence and may not be
appreciated by the symposium atendees. So again thank you for your work.

Thank you to the vitrualization team, Georgiy and Michał.

Thank you to the organizers of the <Programming> conference and to FEUP, Universidade do
Porto who are hosting the venue.

Finally, thank you to all the attendees. I hope you enjoy the symposium, and that you find
something helpful and inspiring.

ELS 2022 iii

Georgiy Tugai (left) and Michał Herda (right).

Post-Symposium Message from Virtualization Team

Let’s start with bad news: COVID is still a thing in 2022, and I (Michał) was struck by it not
even a week before the conference, which meant that I was stuck at home for the conference
itself. That meant a change of plans, since I was supposed to do some on-site help!
The good news: the conference has nonetheless happened, and, for the first time ever, it has
happened in a hybrid setting—with people participating both on-site in Porto and online via
Twitch and IRC! This is thanks to the titanic work done mostly by Georgiy and the on-site
technicians in Porto. I am greatly thankful to all of them and to all of the people who have made
ELS possible - online and offline participants, technicians, and organizers of <Programming>.
Huge thanks to everyone, glad to see that we were able to make the hybrid ELS happen despite
all the technical troubles—and, see you next year, hopefully in the flesh this time!

iv ELS 2022

Organization

Symposium Organizer

• Didier Verna, EPITA, France

Programme Chair

• Jim Newton, EPITA, France

Virtualization Team

• Georgiy Tugai

• Michał Herda

Programme Committee

Philipp Meier Nubank
Ioanna M. Dimitriou H. Igalia
Mikhail Raskin Technical University of Munich
Nick Levine RavenPack
Adrien Pommellet LRDE, EPITA
Marco Heisig Friedrich–Alexander–Universität Erlangen
Alberto Riva Bioinformatics Core, ICBR, University of Florida
Marco Antoniotti DISCo, Università degli Studi di Milano-Bicocca
Nicolas Neuss Friedrich–Alexander–Universität Erlangen
Christophe Rhodes Google UK
Irène Anne Durand LaBRI, University of Bordeaux
Ralf Moeller Universität zu Lübeck
Breanndán Ó Nualláino University of Amsterdam
Marc Battyani Fractal Concept
Pascal Costanza Intel
Sky Hester Private Consultant

ELS 2022 v

Sponsors

We gratefully acknowledge the support given to the 15thth European Lisp Symposium by the
following sponsors:

Franz, Inc.
2201 Broadway, Suite 715
Oakland, CA 94612
USA
www.franz.com

RavenPack
Urbanizaciń Villa Parra Palomeras,
29602
Marbella, Malaga Spain
www.ravenpack.com

SYSCOG
Campo Grande, 378 – 3
1700–097 Lisboa
Portugal

EPITA
14–16 rue Voltaire
FR–94276 Le Kremlin–Bicêtre CEDEX
France
www.epita.fr

vi ELS 2022

www.franz.com
www.ravenpack.com
www.epita.fr

Invited Contributions

Lisp as Renaissance Workshop:
A Lispy Tour through Mathematical Physics

Sam Ritchie, Mentat Collective, Bulder, Colorado, USA

Lisp is an exquisite medium for the communication of computational ideas. From our most
accurate observations of physical reality up through chemistry, biology, and cognition, the uni-
verse seems to be computing itself; modeling and simulating these systems in machines has led
to incredible technological wealth.
Deep principles and beautiful abstractions seem to drive these systems, but they have always
been hard to discover; and we are floundering at the computational frontiers of intelligence,
synthetic biology and control systems for our climate. The only way to push forward is to build
powerful tools that can communicate and teach.
This talk will take a tour through SICMUtils, a Lisp system designed as a workshop for con-
ducting serious work in mathematical physics and sharing those explorations in a deeply inter-
active, multiplayer way. The library’s growth parallels our human scientific history; hopefully
tools like this will help us write the next chapter.

Sam Ritchie is a researcher at the Mentat Collective, and currently
working on a series of interactive, multiplayer computational textbooks
for exploring mathematical physics and other forms of modeled reality.
He has lived past work-lives at (Google) X, Stripe, Twitter, founded
Paddleguru and Racehub; He is most well known in the software world
as the author of Summingbird, Algebird, and SICMUtils, and as the
maintainer of Cascalog. He even has a secret identity as a mountain
athlete and amateur aircraft mechanic, and live with wife Jenna and
daughter Juno in Boulder, Colorado.

Building SICMUtils, the Atelier of Abstractions

Sam Ritchie, Mentat Collective, Bulder, Colorado, USA

SICMUtils is a Clojure library designed for interactive exploration of mathematical physics. It
is simultaneously a work of persuasive writing, a collection of essays on functional pearls and
computational ideas, a stable of workhorse functional abstractions, and a practical place to work
and visualize algorithms and physical systems, on a server or in the browser.
How do you build a library like this? This talk will go through the architecture of SICMUtils,
based on many of the ideas of "additive programming" from Gerald Sussman and Chris Han-
son’s latest book, Software Design for Flexibility. We’ll look at surprising examples of the system
becoming easier to extend over time. Clojure’s embrace of its host platform lets us use the best
modern work in Javascript for visualization, while keeping the horsepower of our servers for
real work. Lisp’s particular elegance will shine throughout.

ELS 2022 1

Creating a Common Lisp Implementation

Robert Strandh, Bordeaux, France
Being dissatisfied with the way current Common Lisp implementations are written, and with
the duplication of system code between different implementations, we started the SICL project
in 2008. The initial idea was to create modules that the creators of Common Lisp implemen-
tations could use to create a complete system from an initial minimal core. But this idea was
unsatisfactory because it required each module to be written in a subset of Common Lisp. So
instead, we decided to use the full language to implement these modules, effectively making
them useless to an implementation using traditional bootstrapping techniques. We therefore
decided to also create a new Common Lisp implementation (also named SICL), that could use
those modules. A crucial element is a bootstrapping technique that can handle these modules.
In this spirit, we have developed several modules, including an implementation of CLOS which
is also an important element of bootstrapping. Lately, we have increased our level of ambition
in that we want to extract those modules as separate (and separately maintained) repositories,
which requires us to deal with code during bootstrapping that was not specifically written for
SICL. In our talk, we describe this evolution of ambition, and its consequences to bootstrap-
ping, in more detail. We also give an overview of several new techniques we created, some of
which have been published (at ILC and ELS) and some of which have not. Finally, we discuss
the future of the project, and other projects for which we imagine SICL to be a base.

Recently retired, Robert Strandh can look back at a lifelong experience
in computer science and software development both in academia and
industry, from 5 countries on 4 continents.
Currently, Strandh’s projects are focused on the implementation of dy-
namic programming languages, as well as on operating-system tech-
nology in view of progress in computer and software technology during
the past few decades.

2 ELS 2022

Program overview

Monday Morning 21 March 2022

08:30–09:00 Registration, Badges, Meet and Greet
09:00–09:15 Welcome Message
09:30–10:00 Research Miguel Marcelino and Antńio Leitõ

Paper Transpiling Python to Julia using PyJL
10:00–10:30 Coffee break

10:30–11:30 Keynote Sam Ritchie
Lisp as Renaissance Workshop:
A Lispy Tour through Mathematical Physics

11:30–12:00 Group Activity

12:00–13:30 Lunch

Monday Afternoon 21 March 2022

13:30–14:00 Research Michael Raskin
Paper QueryFS: compiling queries to define a filesystem

14:00–14:30 Research Robert Strandh and Irène Anne Durand
Paper A CLOS protocol for lexical environments

14:30–15:00 Demo Max-Gerd Retzlaff
IoT devices and embedded systems with uLisp

15:00–15:30 Coffee break

15:30–16:00 Remote Andrew Sengul
Demo April APL Compiler

16:00–16:30 Research Marco Heisig and Harald Koestler
Paper Closing the Performance Gap Between Lisp and C

16:30–17:00 Enlightening Lightning Talks

ELS 2022 3

Tuesday Morning 22 March 2022

08:30–09:00 Meet and Greet
09:00–09:30 Research Stephan Monnier

Paper Open Closures: Disclosing lambda’s inner monomaniac object!

09:30–10:00 Demo Didier Verna
ETAP: Experimental Typesetting Algorithms Platform

10:00–10:30 Coffee Break

10:30–11:30 Keynote Robert Strandh
Creating a Common Lisp Implementation

11:30–12:00 Demo SICL

12:00–13:30 Lunch

Tuesday Afternoon 22 March 2022

13:30–14:00 Demo Mermin Muñoz
CEDAR

14:00–15:00 Keynote Sam Ritchie:
Demo Building SICMUtils, the Atelier of Abstractions

15:00–15:30 Coffee Break

15:30–16:00 Research Michael Wessel
Paper An Ontology-Based Dialogue Managment Framework for Vir-

tual Personal Assistants in Common Lisp
16:00–16:30 Research Turgut Reis Kursun, Jens Van der Plas, Quentin Stiv́enart, and

Coen De Roover
Paper RacketLogger: Logging and Visualising Changes in DrRacket

16:30–17:00 Enlightening Lightning Talks
17:00–17:15 Closing Ceremony
17:15 Conference End

4 ELS 2022

Monday, 21 March 2022

ELS 2022 5

Open Closures
Disclosing lambda’s inner monomaniac object!

Stefan Monnier
monnier@iro.umontreal.ca
Université de Montréal

Département d’Informatique et Recherche Opérationnelle
Montréal, QC, Canada

ABSTRACT
While folklore teaches us that closures and objects are two sides of
the same coin, they remain quite different in practice, most notably
because closures are opaque, the only supported operation being
to call them.

In this article we discuss a few cases where we need functions
to be less opaque, and propose to satisfy this need by extending
our beloved 𝜆 so as to expose as sorts of record fields some of
the variables it captures. These open closures are close relatives
of CLOS’s funcallable objects as well as of the function objects of
traditional object-oriented languages like Java, except that they are
functions made to behave like objects rather than the reverse.

We present the design and implementation of such a feature in
the context of Emacs Lisp.

CCS CONCEPTS
• Software and its engineering→ Data types and structures;
Procedures, functions and subroutines; Functional languages;
Object oriented languages; Integrated and visual development envi-
ronments.

KEYWORDS
Functional programming, Function objects, Translucent functions,
Emacs Lisp
ACM Reference Format:
Stefan Monnier. 2022. Open Closures: Disclosing lambda’s inner monoma-
niac object!. In Proceedings of the 15th European Lisp Symposium (ELS’22).
ACM, New York, NY, USA, 8 pages. https://doi.org/10.5281/zenodo.6228797

1 INTRODUCTION
Undergraduate programming language courses will often point
out that one can implement objects (in the object-oriented meaning
of the term) as functions, e.g. by making them take a “method
name” as a first argument and dispatching to different behaviors
based on that argument. Yet if we try to take the idea seriously, one
quickly encounters significant drawbacks, whether it’s because of
efficiency concerns, or because of the difficulty to give static types
to the resulting code, or the inability to determine if a function

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ELS’22, March 21–22, 2022, Porto, Portugal
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM.
https://doi.org/10.5281/zenodo.6228797

obeys this convention before calling it, or any number of other
issues that may come up.

The reverse is a somewhat simpler story: an object can be used
to implement a function, by simply arranging for that object to
have just one method, variously called run, call, exec, or apply.
Depending on the language, this can be syntactically cumbersome
and verbose, and may sometimes require to explicitly specify the
captured variables, but in terms of efficiency at least not much is
lost by treating a function as an object limited to a single method
(often called a function object).

So while in the world of object-oriented languages, it is very
common to add support for functions by encoding them as function
objects, in the world of functional programming languages objects
are usually not encoded as functions but as tuples. Disregarding
issues of aesthetics, the result may appear to be just as good since
we get both functions and objects in either case. Yet, function objects
actually provide a bit more flexibility because they are simultane-
ously functions and objects, which has no equivalent in the world
of functional programming languages.

A notable difference between functions and objects in this respect
is that functions are opaque: the only non-trivial operation allowed
on a function is to call it, but calling a function is a very risky
business if we don’t know what kind of function we’re dealing
with. This is usually not a problem because the responsibility is
traditionally on the code that provides the function to provide one
that works adequately, not on the code that calls it. But function
objects can offer more flexibility since they may come with a type
and may also expose object attributes that can be read via accessors,
so while most attributes as well as the code of their sole method
may be just as opaque as that of a function, the object itself can
reveal extra information when desired.

In this article, we will discuss some situations where this kind
of information is needed, and based on those we show the design
of open closures which are an extension of the usual functions
with extra information exposed in the form of a type and a set of
slots that can be reached via accessors. Good old 𝜆 can then be
redefined as a bare-bones open closure whose type is trivial, with
an empty set of slots. Note that the types used to classify those
open closures fundamentally constrain the set of slots exposed.
These can be seen as a constraint on the captured environment of
closures, and should not be confused with the notion of type used
more traditionally to classify functions according to their signature,
i.e. the set of arguments that the function accepts and the values it
returns. Those two notions of type are orthogonal and in this article
we will not discuss the types in the sense of function signatures.

6 ELS 2022

ELS’22, March 21–22, 2022, Porto, Portugal Stefan Monnier

(defun compose-function (function where orig-fun)
(cond
((eq where :override) function)
((eq where :before)
(lambda (&rest args)

(apply function args)
(apply orig-fun args)))

((eq where :after)
(lambda (&rest args)

(apply orig-fun args)
(apply function args)))

((eq where :around)
(lambda (&rest args)

(apply function orig-fun args)))))

(defun add-function (function where var)
(set var (compose-function function where

(symbol-value var))))

Figure 1: Adding functions to a variable

2 MOTIVATING EXAMPLE
In this section we will see the main example that will help explain
the design of our open closures.

In Emacs, we have many variables holding functions that are
called in various circumstances, in order to be able to customize the
behavior of commands. We generally call them hooks, but you can
just as well think of them as callbacks. They take various forms, but
the form of interest here is when a global variable (or an object’s
slot) holds a single function.

When a package (the name we give to plugins, in Emacs) wants
to affect the corresponding behavior, it will want to modify the
function stored in this variable by composing the old and the new
function. We could provide that functionality as shown in Figure 1.

This would work fine but comes with an annoyance and a serious
problem. The annoyance is that when we try to debug this code,
the composed function will not show us what it is made of, even
if the provided function and the original orig-fun are named
functions. It requires trained eyes looking at the innards of the
closure to decipher what it is made of and reverse engineer where
it may come from.

But the more serious problem comes when the package decides
it does not want to modify that variable any more and hence wants
to undo its changes. The easy solution is to stash the old value
somewhere so we can restore it afterwards, but that only works if
all the packages add and remove their modifications in a properly
nested order, which is neither enforced nor desirable. For example,
after:

(defvar my-var #'A)
(add-function #'B :after 'my-var)
(add-function #'C :after 'my-var)

my-var will hold an anonymous function which first calls A, then
B, then C. And if the package that added B has buyer’s remorse, it
would like to be able to do:

(remove-function #'B 'my-var)

(index) 𝑖 ∈ N

(expressions) 𝑒 ::= 𝑐 | 𝑥 | (olam −−−→(𝑥 𝑒) (𝑥𝑎) 𝑒𝑏)
| (oapp 𝑒1 𝑒2) | (oref 𝑒 𝑖)

Figure 2: Syntax of the open lambda calculus

After this call, we would like my-var to hold a function which
calls A and then C, but there is no mechanism which would let
remove-function extract the necessary information from my-var
to construct this new function, because the function stored there is
opaque.

Ideally, we would like to be able to test whether a given function
is one of the wrappers built by add-function, and if so, we would
like to be able to extract the “function” and the “orig-fun” from
which they were built, as well as “where” they were composed.

In current functional programming language, this can only be
achieved with a significant amount of extra work, and often with
additional runtime costs when calling the function, such as an addi-
tional indirection if one uses a CLOS-style funcallable object [Kicza-
les et al. 1991]. This is particularly frustrating considering that the
most common internal representation of those closures makes the
corresponding information readily available, if only one were given
a way to access it.

3 OPEN CLOSURES
Wepropose to solve the previous problem by opening up our lambda
abstractions such that some of the captured variables can also
be accessed from outside, like the slots of a tuple. The result is
fundamentally a combination of a tuple and a function. It can be
seen as a function with slots, or as a tuple with code.

Figure 2 shows the syntax of an open lambda calculus which
exposes the core idea in a minimalist way. We use the convention
that −→𝑚 is a shorthand for (𝑚1 ...𝑚𝑛), and

−−−→(𝑎 𝑏) is a shorthand for
((𝑎1 𝑏1) ... (𝑎𝑛 𝑏𝑛)).

• 𝑐 stands for a builtin constant.
• 𝑥 is the usual variable reference.
• (oapp 𝑒1 𝑒2) is your usual function application, limited to a
single argument without loss of generality.

• (olam −−−→(𝑥 𝑒) (𝑥𝑎) 𝑒𝑏) constructs a function, where (𝑥𝑎) is the
list of arguments, again limited to a single argument, 𝑒𝑏 is
the body, and

−−−→(𝑥 𝑒) is the (ordered) list of slots. The slots are
accessible both internally and externally. For internal access,
𝑒𝑏 can refer to the value of those slots using the slot’s name
as a variable.

• (oref 𝑒 𝑖) fetches the value of the 𝑖th slot of the function 𝑒 .
The index is an immediate value rather than an expression
only for the purpose of simplifying the static semantics of
the language: in a dynamically typed language, 𝑖 can be gen-
eralized to an arbitrary expression evaluating to an integer.

This calculus is a superset of the standard 𝜆-calculus since we can
encode “𝜆𝑥.𝑒” as (olam () (𝑥) 𝑒) which are those functions that
expose no slots, and hence upon which we cannot apply any “oref”.

And while we can of course encode the usual tuples (𝑒1, ..., 𝑒𝑛)
using a Church-style encoding, we can also encode them more

ELS 2022 7

Open Closures ELS’22, March 21–22, 2022, Porto, Portugal

(values) 𝑣 ::= 𝑐 | 𝑥 | (olam −−−→(𝑥 𝑣) (𝑥𝑎) 𝑒)
(ctxts) 𝐸 ::= • | (oapp 𝐸 𝑒) | (oapp 𝑣 𝐸) | (oref 𝐸 𝑖)

| (olam ((𝑥1 𝑣1) ... (𝑥𝑖 𝐸) ... (𝑥𝑛 𝑒𝑛)) (𝑥𝑎) 𝑒𝑏)

𝑒 { 𝑒 ′ Small-step reduction of 𝑒 to 𝑒 ′

(oapp (olam −−−→(𝑥 𝑣) (𝑥𝑎) 𝑒) 𝑣𝑎) { 𝑒 [−→𝑣 , 𝑣𝑎/−→𝑥 , 𝑥𝑎]
(𝛽)

(oref (olam −−−→(𝑥 𝑣) (𝑥𝑎) 𝑒) 𝑖) { 𝑣𝑖
(𝜋) 𝑒 { 𝑒 ′

𝐸 [𝑒] { 𝐸 [𝑒 ′]

𝑥 ′ ∉ fv(𝑒)
(olam −−−→(𝑥 𝑒) (𝑥𝑎) 𝑒𝑏) { (olam −−−→(𝑥 𝑒) (𝑥 ′) 𝑒𝑏 [𝑥 ′/𝑥𝑎])

(𝛼1)

𝑥 ′ ∉ fv(𝑒) 𝑥 ′ ∉ −→𝑥 , 𝑥𝑎
(olam ((𝑥1 𝑒1) ... (𝑥𝑖 𝑒𝑖) ... (𝑥𝑛 𝑒𝑛)) (𝑥𝑎) 𝑒𝑏)

{ (olam ((𝑥1 𝑒1) ... (𝑥 ′ 𝑒𝑖) ... (𝑥𝑛 𝑒𝑛)) (𝑥𝑎) 𝑒𝑏 [𝑥 ′/𝑥𝑖])
(𝛼2)

Figure 3: Dynamic semantics of the open lambda calculus

directly as functions of the form (olam ((_ 𝑒1) ... (_ 𝑒𝑛)) (𝑥) 𝑥)
where the traditional projection operation “𝑒.𝑖” is just (oref 𝑒 𝑖).

3.1 Dynamic semantics
Figure 3 shows the corresponding dynamic semantics, with a call-
by-value reduction strategy. The top of the figure defines the syntax
of values 𝑣 , which are a subset of valid expressions, as well as the
syntax of evaluation contexts 𝐸 which define where evaluation
can take place in an expression. The semantics is defined as the
small step relation 𝑒 { 𝑒 ′. Rule 𝛽 shows hows the slot values
are substituted into the body of a function, making them available
internally, while rule 𝜋 shows how oref accesses a slot’s value from
outside. The contexts 𝐸 together with the congruence rule Cong
show where primitive reductions can take place and define a left-to-
right evaluation order. The two 𝛼 renaming rules, where fv returns
the free variables of a term, are only intended to give further details
about the intended semantics.

Notice that the access to slots is done by position rather than by
name. In other words, slot names are only meaningful internally
when accessing them from within the body of the function and
are not exposed outside of the function, so they obey the usual
𝛼-renaming of variable bindings as evidenced by the 𝛼2 rule. This
simplifies the metatheory and lets us rely on the usual conventions
to avoid issues linked to name capture [Urban et al. 2007].

Note also the absence of an 𝜂 rule (olam ? (𝑥) (oapp 𝑒 𝑥)) { 𝑒
because what to put into “?” depends on the slots exposed by 𝑒 . In
other words, while olam encodes the usual 𝜆, it does not enjoy the
same 𝜂-reduction rule.

3.2 Typing rules
While open closures were developed in the context of a dynamically
typed language, they would work just as well in a statically typed
context.

𝜏 ::= Int | ... | (oarw −→𝜏 𝜏𝑎 𝜏𝑟)
Γ ::= • | Γ, 𝑥 :𝜏

Γ ⊢ 𝑒 : 𝜏 𝑒 has type 𝜏 in environment Γ

Γ(𝑥) = 𝜏

Γ ⊢ 𝑥 : 𝜏
(Var)

Γ ⊢ 𝑒 : (oarw −→𝜏 𝜏𝑎 𝜏𝑟)
Γ ⊢ (oref 𝑒 𝑖) : 𝜏𝑖

(Ref)

Γ ⊢ 𝑒1 : (oarw −→𝜏 𝜏𝑎 𝜏𝑟) Γ ⊢ 𝑒2 : 𝜏1
Γ ⊢ (oapp 𝑒1 𝑒2) : 𝜏𝑟

(App)

Γ,−−→𝑥 :𝜏, 𝑥𝑎 :𝜏𝑎 ⊢ 𝑒𝑏 : 𝜏𝑟 ∀𝑖 . Γ ⊢ 𝑒𝑖 : 𝜏𝑖

Γ ⊢ (olam −−−→(𝑥 𝑒) (𝑥𝑎) 𝑒𝑏) : (oarw −→𝜏 𝜏𝑎 𝜏𝑟)
(Lam)

Figure 4: Static semantics of the open lambda calculus

To make that clear, Figure 4 shows a possible simple type system
for our calculus. Even without a need for static types, those rules
can be helpful to clarify the intended semantics. The top of the
figure defines the syntax of type environments Γ and of types 𝜏 ,
which can include any number of builtin types plus the new type
of open closures that we denote as (oarw −→𝜏 𝜏𝑎 𝜏𝑟) which is the
type of functions that take an argument of type 𝜏𝑎 , return a result
of type 𝜏𝑟 , and expose slots of type −→𝜏 . Just like open closures are a
fusion of a function and a tuple, these function types are a fusion
of the traditional function types and the traditional tuple types.

The typing judgment has the form Γ ⊢ 𝑒 : 𝜏 . The typing
rules reflect the dual nature of our open closures as both functions
and tuples: the App rule is the same as the corresponding rule in
the simply typed 𝜆-calculus, expect for the extra −→𝜏 annotation in
(oarw −→𝜏 𝜏𝑎 𝜏𝑟) which is simply ignored, and the Ref rule similarly
matches the classic rule for the operation that projects a specific
slot from a tuple, except for the extra 𝜏𝑎 and 𝜏𝑟 annotations on
(oarw −→𝜏 𝜏𝑎 𝜏𝑟) which are similarly ignored. The more interesting
rule is Lam: the right part of the premises corresponds to the usual
premise for the construction of tuples, but the left part does not quite
match the premise for the typing rule of the usual 𝜆 constructor
because the body 𝑒𝑏 is now typed in an environment that includes
not only the argument 𝑥𝑎 but also all the open closure’s slots −→𝑥 .

3.3 Compilation
Looking at the syntax and semantics of the open lambda calculus,
one may wonder why it makes sense to introduce these open clo-
sure objects with their dual tuple/function nature, since both the
dynamic and the static semantics suggest that the result is not much
simpler than if we had introduced tuples and functions separately.

The real motivation becomes apparent only once we consider the
usual implementation of closures via closure conversion. Closure
conversion turns closures into tuples which contains a reference
to the code of the function plus the values of all the variables
captured by the function. Our open closures take advantage of this
representation to store their extra slots alongside the values of the
captured variables. This way, a degenerate open closure with zero
slots ends up represented exactly as a normal 𝜆 would, and the only

8 ELS 2022

ELS’22, March 21–22, 2022, Porto, Portugal Stefan Monnier

C⟦𝑥⟧𝜎 = 𝜎 (𝑥)
C⟦𝑒1 𝑒2⟧𝜎 = (let 𝑥 C⟦𝑒1⟧𝜎 (call (ref 𝑥 0) 𝑥 C⟦𝑒2⟧𝜎))
C⟦𝜆𝑥𝑎 .𝑒𝑏⟧𝜎 = (tuple (code (𝑥𝑐 𝑥𝑎) C⟦𝑒𝑏⟧𝜎𝑒)

𝜎 (𝑦1) ... 𝜎 (𝑦𝑚))
where −→𝑦 = fv(𝑒𝑏) − {𝑥𝑎}

𝑥𝑐 is fresh
𝜎𝑒 = {𝑥𝑎 ↦→ 𝑥𝑎,

𝑦1 ↦→ (ref 𝑥𝑐 1), ..., 𝑦𝑚 ↦→ (ref 𝑥𝑐 𝑚)}

C⟦𝑥⟧𝜎 = 𝜎 (𝑥)
C⟦(oref 𝑒 𝑖)⟧𝜎 = (ref C⟦𝑒⟧𝜎 𝑖)
C⟦(oapp 𝑒1 𝑒2)⟧𝜎 = (let 𝑥 C⟦𝑒1⟧𝜎 (call (ref 𝑥 0) 𝑥 C⟦𝑒2⟧𝜎))
C
�

(olam −−−→(𝑥 𝑒) (𝑥𝑎) 𝑒𝑏)
�

𝜎
= (tuple (code (𝑥𝑐 𝑥𝑎) C⟦𝑒⟧𝜎𝑒)

𝑒1 ... 𝑒𝑛 𝜎 (𝑦1) ... 𝜎 (𝑦𝑚))
where −→𝑦 = fv(𝑒𝑏) − {𝑥𝑎, 𝑥1, ..., 𝑥𝑛}

𝑥𝑐 is fresh
𝜎𝑒 = {𝑥𝑎 ↦→ 𝑥𝑎,

𝑥1 ↦→ (ref 𝑥𝑐 1), ..., 𝑥𝑛 ↦→ (ref 𝑥𝑐 𝑛),
𝑦1 ↦→ (ref 𝑥𝑐 𝑛+1), ..., 𝑦𝑚 ↦→ (ref 𝑥𝑐 𝑛+𝑚)}

Figure 5: Example of closure conversion
On the left, the algorithm for a plain 𝜆-calculus and on the right the algorithm for our open lambda calculus.

cost of adding slots to an open closure is to increase the size of the
tuple. It does not introduce any extra indirection nor add any extra
cost when the function is called.

Let’s write C⟦𝑒⟧𝜎 the closure conversion of expression 𝑒 where
𝜎 is a substitution used to remember how to access the free variables
of 𝑒 . And let’s assume the following lower-level language for the
target of the closure conversion:

(exps) 𝑒 ::= 𝑐 | 𝑥 | (call 𝑒1 𝑒2 𝑒3) | (code (𝑥1 𝑥2) 𝑒)
| (let 𝑥 𝑒1 𝑒2) | (tuple −→𝑒) | (ref 𝑒 𝑖)

In this language (code (𝑥1 𝑥2) 𝑒) denotes a chunk of closed code
that could hence be represented as a pointer to piece of machine
code. Without loss of generality, we limited this language to have
only functions (and functions calls) of exactly two arguments.

Figure 5 shows what the closure conversion algorithm may look
like, first for the plain 𝜆 − 𝑐𝑎𝑙𝑐𝑢𝑙𝑢𝑠 , and then for open closures,
where we highlighted the parts that are affected by the slots of open
closures. As you can see, in both cases a function is converted to
something of the form (tuple (code ...) ...) and the only significant
change is the addition of one extra value per slot into the tuple.

We place the extra slots of the open closure at the beginning of
the tuple, which thus push the values of captured variables to later
slots of the tuple. This is done to make it easy to find the exposed
slots of the open closure since it is independent of the number of
captured variables. This choice is not the only one, of course, but it
is the simplest here and makes for an efficient implementation of
(oref 𝑒 𝑖). An alternative would be to place the captured variables
first and the extra slots later, in which case (oref 𝑒 𝑖) would need
to know the number of captured variables of the closure 𝑒 , which
could be stored for example just before the beginning of the code,
so as not to increase the size of the tuples.

More generally, there are many other ways to represent closures
than the flat closures used in this algorithm, and open closures do
not impose the use of flat closures. The only requirement is that
the extra slots’s values be stored somewhere and that (oref 𝑒 𝑖) be
able to find those values, potentially with the help of some extra
information stored somewhere in the closure 𝑒 , such as alongside
its code.

4 OCLOSURES IN EMACS LISP
The calculus in the previous section shows the core idea of open
closures in a minimalist setting, but we have designed and imple-
mented open closures in the context of the Emacs Lisp language, so
we discuss here what such a functionality can look like in a real-life
setting.

Emacs Lisp is a programming language that lacks any namespace
management features, so every globally-visible definition is instead
given a name which includes a “package prefix”. In the case of open
closures, we chose the prefix “oclosure-” for its definitions and
we call its (open) closures “OClosures”.

The most important difference between the previous calculus
and OClosures is that additionally to carrying values in slots, OClo-
sures come with a type. This can be thought of as forcing every
open closure to have an extra slot, placed first, which contains that
runtime type information. In practice it is implemented differently,
because for technical reasons we decided to store that type in a
different place than the first slot.

So the constructor of OClosures has the following form:

(oclosure-lambda (type . −−−→(𝑥 𝑒)) args 𝑒𝑏)

Where args follows the usual format of Emacs Lisp formal argu-
ments. The type can be retrieved with oclosure-type. We added
this type information so as to be able to perform type tests and
type-based dispatch, by integrating the feature with the rest of our
CLOS-inspired object system.

For example, in the case of the composed functions presented in
Section 2, we called the type of those OClosures advice. This is use-
ful in remove-functionwhere can now distinguish the case where
myvar contains an advice, so we know we can look at its slots to
find its component functions. It also lets us change the printer by
defining a new method which dispatches on the specializer advice
so as to print those functions in a more human-friendly way.

4.1 OClosure types
Of course, before using a new type, we need to define it. While the
types of open closures in Section 3.2 constrain both the set of slots
and the signature of the function, OClosure types leave the arity
and return types unconstrained, and only specify their slots. While
positional access to slots was convenient for our little calculus, it

ELS 2022 9

Open Closures ELS’22, March 21–22, 2022, Porto, Portugal

(defun uncompose-function (function listfunc)
(if (not (eql (oclosure-type listfunc) 'advice))

listfunc ;; Nothing to remove.
(let ((sva (slot-value listfunc 'car))

(svd (slot-value listfunc 'cdr))
(svw (slot-value listfunc 'where)))

(if (eql sva function)
svd ;; Found it!

(compose-function
sva svw
(uncompose-function function svd))))))

(defun remove-function (function var)
(set var (uncompose-function function

(symbol-value var))))

Figure 6: Removing a function from a variable

is more convenient in real life to be able to access slots by name.
Type definitions thus indicate the list of slots that are to be included
for OClosures of that type. They work very much like Common
Lisp’s defstruct and defclass. The syntax is loosely based on
defstruct:

(oclosure-define (name . props) . slots)
Where slots is the list of slots included in this type, where each slots
can come with some extra information, the only such extra infor-
mation currently used is whether it’s mutable or not, the default
being for slots to be immutable.

The type’s properties specified in props can include a list of
parents, which allows subtyping, including multi-inheritance.

4.2 OClosure copies
Going back to our motivating example from Section 2, the function
add-function can now create OClosures which work just as well
as the old functions, but with extra information easily available.
We can define the type advice of those OClosures as follows:

(oclosure-define (advice) car cdr where)

We chose cdr and car as the name of the slots holding resp. the
original function and the added function because the repeated
addition of functions creates a list structure.

The type information and the now exposed slots make it now
possible for remove-function to do its job, by finding out the new
set of functions to compose and reconstruct a new function after
removing some element, as shown in Figure 6.

While this does work, we can do better if we consider that the
last 4 lines of uncompose-function construct the same function
as listfunc, except with a different cdr. For such use-cases, we
have added the ability to perform functional updates of OClosures.
We call them copiers. For example the previous type definition can
be changed to:

(oclosure-define (advice
(:copier advice-with-cdr (cdr)))

car cdr)

This defines a new function advice-with-cdr which will take an
advice as first argument and any function as second argument and
will return a new advice identical to the first except that its cdr
slot will contain the function provided as second argument. With
this function, we can simplify uncompose-function to:

(defun uncompose-function (function listfunc)
(if (not (eql (oclosure-type listfunc) 'advice))

listfunc ;; Nothing to remove.
(let ((sva (slot-value listfunc 'car))

(svd (slot-value listfunc 'cdr)))
(if (eql sva function)

svd ;; Found it!
(advice-with-cdr
listfunc
(uncompose-function function svd))))))

Notice that we did not need the where slot any more nor did we
have to call compose-function any more. A side effect is that this
code is more efficient because it can blindly copy all the bits of
listfunc and then just change the cdr slot, although this was not
the motivation since speed of remove-function is not a concern.

OClosure copiers offer a second way to construct OClosures
(besides oclosure-lambda) and they offer a limited way in which
one can access the still opaque content of a closure, in the sense
that they read the slots of the tuple containing the reference to
the code and the values of captured variables that are not directly
exposed as OClosure slots.

It should be noted that they impose an additional constraint
on the system, in the sense that in order to be able to perform
such a functional update, it is imperative that we be able to find
all the places where the content of a slot are stored in the closure.
In most closure representations, this is not a problem since the
value of each captured variable is only stored in a single place, but
there are exceptions such as when using run-time code generation
to specialize the code of a closure to the particular values of the
variables it captures [Lee and Leone 1996], or when the compiler
notices that a captured variable always has the same value and
decides to apply constant propagation to it.

4.3 Mutability
As mentioned earlier, when defining a type, each slot can be speci-
fied as being either mutable or immutable and that the default is
for slots being immutable. Emacs Lisp is a language that is usually
not in the business of preventing users from shooting themselves
in the foot (preferring to merely try and make it easier for the users
not to shoot themselves in the foot), so the choice of immutability
deserves some explanation.

When a variable is both mutated and captured, the closure con-
version will apply a store conversion to turn the variable into an
immutable variable pointing to a “box” in which the real value is
kept. This extra indirection can be avoided in some cases, but in
the general case it is indispensable in order to handle a variable
captured by several closures that need to share its state.

For this reason, when accessing the content of a slot, we need to
know if that slot has been store-converted or not. One could store
this auxiliary information alongside the code, inside a closure, but
in order to make slot access more efficient, and to avoid having

10 ELS 2022

ELS’22, March 21–22, 2022, Porto, Portugal Stefan Monnier

to store that auxiliary information alongside the code, we decided
instead to make this choice ahead of time in oclosure-define: if
a slot is defined as mutable we simply force store-conversion on it.

Another, probably better option would be to never perform store-
conversion on OClosure slots. Instead, such mutable slots would
“live” in the OClosure object and any other closure that wants to
refer to it will just have to keep a reference to the whole OClosure.
This requires more changes in the closure conversion algorithm, so
we decided to put it in the wishlist for now.

Another important reason to declare beforehand when a slot is
mutable is that the evaluation of a 𝜆 usually does not guarantee
it returns a fresh new object. This is a problem for example with
Guile’s set-procedure-property! [Guile 2021] which may end
up affecting more functions than intended. But if one of the slots is
declaredmutable, then oclosure-lambdawill know that it needs to
return a fresh new object, avoiding these unpredictable semantics.

4.4 Implementation
OClosures are currently implemented as a set of functions and
macros that are loaded fairly early on during the bootstrap, but
they are not implemented as a core data-structure. Most impor-
tantly, Emacs Lisp’s lambda is not defined as a special case of
oclosure-lambda as it arguably should. It’s rather the reverse.

As far as we know, the only reliable way to implement something
like oclosure-lambda involves defining it as a new special form of
the language. Yet, introducing new special forms in Emacs Lisp is
tricky because it can break existing packages which rely on code-
walkers in their macros. So, instead we decided to implement it as a
macro, and make it rely on cooperation from the closure conversion
phase of the compiler.

At its simplest that macro looks like:
(defmacro oclosure--lambda

(type bindings args &rest body)
`(let ,(reverse bindings)

(lambda ,args
(:documentation ,type)
(if t nil ,@(mapcar #'car bindings))
,@body)))

The name has two hyphens, because this is an internal macro, used
by the real oclosure–lambda macro, among other things because
it takes its args in a slightly different form.

The way this macro works is as follows: it adds the desired slots
as “normal” variables in the context of a normal lambda and then
arranges two things: first it makes sure that those variables will
be captured into the closure, and then it controls the placement of
those variables into the closure.

For both of those, it relies on knowledge about the way the
code will be compiled, so the macro itself does not tell the whole
story, and it requires cooperation from the compiler. You can see
that it arranges for the variables to be captured by adding a piece
of dummy code (wrapped in an if test to make sure it’s never
executed). To control the placement of the slots, it relies on the
closure conversion which places the captured variables according
to their position in the environment (one could say they are ordered
by increasing de Bruijn index), which is why it uses reverse on the
bindings so that the first slot gets added last to the environment.

The type information is handled specially, stashed as if it were
the docstring of the function. A more obvious choice might have
been to store that information in the first slot of the closure, except
that we need to be able to distinguish reliably an OClosure from a
normal closure that happens to have captured a variable holding a
type information and placed it in its first slot.

The real macro is a bit more complex in order to handle the case
of mutable slots, on which we want to force store conversion. This
is obtained very simply by changing the dummy code that’s never
executed so that instead of only referring to the variable it performs
an update on it. This relies on the fact that the current closure
conversion naively performs store conversion on any variable that
is both captured and mutated.

Clearly, the current state of implementation is not ideal, but it
works well enough for now. It will likely be replaced by something
cleaner when (or if) OClosures are made into a core data structure
such that lambda is defined as a special case of oclosure-lambda,
but there are various backward compatibility hurdles along the way,
which will take some years to iron out.

5 EXPERIENCE
OClosures were developed in response to a growing set of use cases
collected over the years. Here are the highlights, showing cases
where the alternatives had significant shortcomings.

5.1 Advice
While there are various ways to solve the problem presented in Sec-
tion 2, we did not want to pay the corresponding run time price of
incurring an additional indirection or storing the extra information
in a separate eq-indexed hash table. So the preexisting implemen-
tation of those advice functions relied on manually constructed
closures. It worked well enough but made for rather obscure code.

The use of OClosures made the code much cleaner, removing
all the low-level implementation-dependent tricks from it. It also
made it possible to implement the pretty printing with a normal
defmethod rather than the previous ad-hoc test which intruded
into the more generic part of the pretty printer. Other than that,
the actual runtime representation of those objects ends up being
virtually identical.

5.2 next-method-p
CLOS defines next-method-p to return a non-nil if there is a next
method (which call-next-method will invoke when called) and
nil otherwise. These two functions can only be called from within
methods. Internally, the code of methods can be implemented in
various ways, but as far as I can tell, they are usually implemented
as in Figure 7 which shows the relevant code used in Closette. In
that code, form is the actual body of the method received by the
defmethod macro. As you can see, the method is compiled to a
function that takes the actual arguments args that were passed
to the generic function, of course, and it takes an additional ar-
gument next-emfun which holds the next method to call. This ar-
gument is nil when there is no next method, so next-method-p
is trivial and efficient, but in return for that call-next-method
has to test next-emfun with an if before it can call it. This is the

ELS 2022 11

Open Closures ELS’22, March 21–22, 2022, Porto, Portugal

`(lambda (args next-emfun)
(flet ((call-next-method (&rest cnm-args)

(if (null next-emfun)
(error "No next method for the~@

generic function ~S."
(method-generic-function ',method))

(funcall next-emfun (or cnm-args args))))
(next-method-p ()

(not (null next-emfun))))
(apply #'(lambda ,(kludge-arglist lambda-list)

,form)
args))))))

Figure 7: Implementation of a method in Closette

wrong trade-off since next-method-p is used much less often than
call-next-method.

Now, arguably, this if test is fairly minor: call-next-method
is not called very often and most of the performance issues have
to do instead with the cost of creating the various closures and the
layers of function calls. So more efficient implementations, such as
PCL spend a fair deal of efforts optimizing this code but they still
leave this if test untouched.

To remove this if we need to replace the nil representation of
the error case with a function which will signal the error when
called. This makes the call-next-method code simpler and more
efficient, but it introduces a problem in next-method-p: how can
we tell if next-emfun is one of those functions representing the “no
next method” case?

In Emacs Lisp, we used to do just that with a really gross and
brittle hack which dug into the innards of the closures to compare
them against a sample. With OClosures we now simply defined
a trivial type with no slot, (oclosure-define cl–generic-nnm),
then use oclosure-lambda when building those functions, and
finally replaced the 20 line monster of magic incantations with just:

(eq (oclosure-type cnm) 'cl--generic-nnm)

5.3 Keyboard macros
Emacs’s keyboard macros are not macros in Lisp’s sense but are
simply a sequence of key presses recorded by the user so they can
replay them later at will. Originally, they were represented as a
simple vector of key presses and still several parts of Emacs support
this form, but then the kmacro package extended that functionality
and needed more info for that, making it unable to use the built in
support to treat a mere vector as a kind of executable object. Instead
it represented keyboard macros as a sort of object implemented
as a list holding a vector of key presses, plus 2 other pieces of
information, and in order to make it executable, it then wrapped it
into a function.

The nasty part was when kmacro needed to look at such a func-
tion, in order to extract the 3-element list from it, either to print it
in a human-friendly way, or even to let the user edit it. Contrary to
the previous two examples, those functions constructed by kmacro
did not need to run fast and could use more or less any calling con-
vention they wanted, so where able to implement in a less hideous
way, by arrange for the function to return its contents when called

with a special argument, and simply using a special docstring to
recognize those functions (which was needed simply to know that
it’s safe to call it with that special argument).

The new code uses an OClosure to replace both the list of 3
elements and the wrapper function, making most of the code sig-
nificantly cleaner. Contrary to the previous two cases, this is a use
case where something like funcallable objects would have worked
almost as well since the extra indirection it would have imposed
would be of no consequence.

5.4 Commands
Emacs Lisp functions are actually not quite as opaque as the 𝜆-
calculus wants them to be. We can not only get to know a func-
tion’s arity but we can also query a bit more information about it:
Emacs Lisp functions can carry and expose a docstring as well as
an interactive form. The first is used for documentation purposes
only (except for exceptional cases as in kmacro), while the second
makes it possible to use function names as interactive commands:
an interactive form is a chunk of code which constructs the list
of arguments to pass to the function when the user invokes the
command.

These are basically ad-hoc forms of OClosure slots. Emacs also
defines a subtype of functions, called commands which corresponds
to those functions which have an interactive form.

The current OClosure code makes these ad-hoc forms of func-
tion slots and function subtypes obsolete, by defining the type
of oclosure-command containing an interactive-form slot, and
making it possible to use OClosure slots to carry a function’s doc-
string and interactive form. Nevertheless, the obsolete support is
still in very heavy use because of the subtle incompatibilities that
are introduced when using the new code.

5.5 Threesomes
Another circumstance where we have found a need to look inside a
function is when trying to avoid accumulating function wrappers.
These accumulations can typically occur for wrappers implement-
ing coercions, as in type-directed unboxing [Leroy 1992] or in
gradual typing [Siek and Taha 2006]. A solution to those accumu-
lations consists in collapsing those wrappers by recognizing that
some of them inevitably cancel others [Minamide and Garrigue
1998]. Siek and Wadler [2010] provide such a solution for the case
of gradual typing. In the calculus they use to solve the problem,
they introduce threesomes which are coercions written ⟨𝑇 𝑅⇐ 𝑆⟩𝑠 ,
where a the term 𝑠 of type 𝑆 is coerced to type 𝑇 via type 𝑅. The
way they avoid accumulating coercions is by having a rule which
reduces ⟨𝑇 𝑅1⇐ 𝑈 ⟩⟨𝑈 𝑅2⇐ 𝑆⟩𝑠 to ⟨𝑇 𝑅1&𝑅2⇐ 𝑆⟩𝑠 , so coercions can never
accumulate.

In their calculus, those ⟨𝑇 𝑅⇐ 𝑆⟩𝑠 don’t reduce to functions when
𝑠 itself is a function, instead they are part of the possible runtime
values, which means that function calls have to handle the case of
a 𝜆 differently than the case of a coercion. The other option when
implementing such a system is to make those coercions (when ap-
plied to functions) reduce to functions implemented using wrappers.
This can simplify and speed up the all important functions calls.
But it is only an option if there is still a way to recognize those

12 ELS 2022

ELS’22, March 21–22, 2022, Porto, Portugal Stefan Monnier

wrapper functions so we can combine them when we try to apply
a wrapper on top of another. If all you have is a plain 𝜆, there is
no other option than to get your hands dirty and look under the
abstraction barrier. With OClosures instead, you can have your
cake and eat it: simple and efficient function calls, with efficient
wrappers, while still able to quickly recognize those wrappers and
extract whichever information is needed in order to collapse them.

6 RELATEDWORK
The idea of treating functions as objects is quite old.

As mentioned, the AMOP [Kiczales et al. 1991] uses funcallable
objects which are somewhat like OClosures with a single slot which
do nothing more than pass their arguments to that slot’s value,
which should be another function. They suffer from the fact that
they tend to introduce an indirection between the funcallable object
and the actual underlying function, and the fact that the code of
the function cannot directly access the funcallable object’s slots.
In return for that, the contained function can be changed by side-
effect, whereas it would be difficult to allow changing the code of
an OClosure.

MIT Scheme [MIT-Scheme 2020] provides similar functionality
under the name application hooks. The more interesting of them
are called entities which contain a function and another object.
When called, an entity calls its contained function, passing it the
arguments it received plus itself. This somewhat reduces the prob-
lem mentioned above that the function cannot directly access the
funcallable object’s slots.

GNU Kawa [Kawa 2020] and GNU Guile [Guile 2021] allow
functions to carry extra properties, called procedure properties that
can be added via side effect and queried. Again, the function itself
does not have any direct access to those properties, limiting their
applicability.

The Lisp Machine Lisp [Stallman et al. 1984] did not really sup-
port lexical scoping like we now have in Scheme and Common
Lisp, but it had a closure operator that took a list of (dynamically
scoped) variables and a function and returned a new function which
called its argument function with the vars temporarily re-bound to
the value they had when you created that “closure”. The relevant
part here is that you could access the list of closed-over variables
and extract their values, just as we do in OClosures. Going even
further, Lisp Machine Lisp had the entity operator which worked
almost identically, except that it made it possible to assign a type to
the returned function, which was typically used to allow specialized
pretty printing output for those entities.

More recently, Scheme’s SRFI 229 suggests the notion of tagged
procedure, which is a procedure that comes with one extra im-
mutable slot (called its tag) holding an arbitrary value. Beside the
fact that it is limited to a single slot, it is also more limited than
open closures in the sense that the tagged procedure’s body cannot
directly refer to the tag, so when that is needed, the tag value will
probably end up duplicated in the object: one copy in the tag slot
and another among the captured variables.

Of course, OClosures correspond to objects limited to a single
method, used quite widely in OO-style languages that do not have
a separate notion of function. They differ a bit in the sense that
they conflate oclosure-define and oclosure-lambda and force

every function with a different body to have a different type (since
the method is associated with the class).

The function objects of Python are also similar: one can get the
list of captured variables of a Python function as well as query (and
modify) their values. But this is mostly a result of its introspection
facilities, offering no way for the programmer to control which
captured variables are exposed and which aren’t.

Siskind and Pearlmutter [2007] propose to make closures more
transparent by providing a map-closure function which is like
mapcar but for closures, applying a given function to each of the
values captured within the closure. The name of the captured vari-
ables is not made available, so this cannot be used to extract targeted
information such as the value of a particular slot, and in this sense
their functions remain quite opaque (in a sense analogous to secu-
rity through obscurity, maybe).

7 CONCLUSION
We have presented the idea of making functions a bit less opaque in
the form of open closures, then shown a design and implementation
of this feature in Emacs Lisp under the name of OClosures, and
given a sense of how they can be applied in a variety of circum-
stances where using either tuples or functions or a combination of
both is not quite satisfactory.

ACKNOWLEDGMENTS
The author would like to thank the readers of emacs-devel for
their naming suggestions and in particular Qiantan Hong who
proposed the name of “open closures”.

This work was supported by the Natural Sciences and Engi-
neering Research Council of Canada grants № 298311/2012 and
RGPIN-2018-06225. Any opinions, findings, and conclusions or rec-
ommendations expressed in this material are those of the author
and do not necessarily reflect the views of the NSERC.

REFERENCES
Guile 2021. GNU Guile Reference Manual (3.0.7 ed.). https://www.gnu.org/software/

guile/manual/
Kawa 2020. The Kawa Scheme Language – Reference Documentation (3.1.1 ed.). https:

//www.gnu.org/software/kawa/pt01.html
Gregor Kiczales, Jim Des Rivières, and Daniel G. Bobrow. 1991. The Art of the Metaobject

Protocol. MIT Press.
Peter Lee and Mark Leone. 1996. Optimizing ML with Run-Time Code Generation. In

Programming Languages Design and Implementation. ACM Press, Philadelphia, PA,
137–148.

Xavier Leroy. 1992. Unboxed Objects and Polymorphic Typing. In Symposium on
Principles of Programming Languages. 177–188.

Yasuhiko Minamide and Jacques Garrigue. 1998. On the runtime complexity of type-
directed unboxing. In International Conference on Functional Programming. ACM
Press, 1–12.

MIT-Scheme 2020. MIT/GNU Scheme Reference (11.2 ed.). https://www.gnu.org/
software/mit-scheme/documentation/stable/mit-scheme-ref/index.html

Jeremy G. Siek and Walid Taha. 2006. Gradual Typing for Functional Languages. In
Scheme Workshop. 81–92.

Jeremy G. Siek and Philip Wadler. 2010. Threesomes, with and without blame. In
Symposium on Principles of Programming Languages. 365–376. https://doi.org/10.
1145/1707801.1706342

Jeffrey Mark Siskind and Barak A. Pearlmutter. 2007. First-class Nonstandard Interpre-
tations by Opening Closures. In Symposium on Principles of Programming Languages.
71–76. https://doi.org/10.1145/1190216.1190230

Richard Stallman, Daniel Weinreb, and David Moon. 1984. Lisp Machine Manual (6th
ed.). MIT. https://hanshuebner.github.io/lmman/frontpage.html

Christian Urban, Stefan Berghofer, and Michael Norrish. 2007. Barendregt’s Variable
Convention in Rule Inductions. In International Conference on Automated Deduction.
35–50. https://doi.org/10.1007/978-3-540-73595-3_4

ELS 2022 13

QueryFS: compiling queries to define a filesystem
Michael Raskin∗
raskin@mccme.ru
raskin@in.tum.de

Technical University of Munich
Garching bei München, Germany

ABSTRACT
Personal computing devices store more and more loosely arranged
data. Each new method of keeping track of the data supposes that
the user stops using the old methods on this data. One of the more
stable interfaces for data access is the filesystem API. However, the
standard filesystem semantic provides a fixed and limited set of
ways to search for data.

QueryFS is a virtual filesystem for POSIX-like systems that com-
piles user-supplied queries in various DSLs via translation to Com-
mon Lisp code and represents the results as directories. The main
current use-case is using it to navigate and process data stored or
indexed in PostgreSQL with traditional tools (grep, find, vim etc.)

This paper describes what practical usage of QueryFS looks like
and what lies behind this.

CCS CONCEPTS
• Software and its engineering → Domain specific languages;
• Information systems → Query languages; Middleware for
databases.

KEYWORDS
filesystems, search, virtual directories, domain-specific languages
ACM Reference Format:
Michael Raskin. 2022. QueryFS: compiling queries to define a filesystem. In
Proceedings of the 15th European Lisp Symposium (ELS’22). ACM, New York,
NY, USA, 6 pages. https://doi.org/10.5281/zenodo.6308532

1 INTRODUCTION
Modern filesystems solve the problem of storing large volumes of
data. When the data has some special structure, an SQL database
may better suited for the task. In both cases there are many compat-
ible implementations. Applications use the same interface to access
multiple storage backends; and many applications developed before
some technology improvement still benefit from it. For example,
SBCL has no need to know about RAID0 to get improved write
speed. Neither does it need to use its network code to access files
over NFS.

There are also many tools to find data in the storage. Some of
them traverse all the storage to find the needed piece of information,
∗The author is supported by an ERC Advanced Grant (787367: PaVeS)

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ELS’22, March 21–22, 2022, Porto, Portugal
© 2022 Copyright held by the owner/author(s).
https://doi.org/10.5281/zenodo.6308532

some create and maintain indices, some expect user to explicitly
add the data into indexed area.

Unfortunately, making these tools interact with unsuspecting
applications is often hard and the query language may have limited
expressive power.

This paper describes how QueryFS project tries to solve the
problems of using query results in applications unaware of any spe-
cial API, saving queries for future use and expressing complicated
conditions with queries. Moreover, the interface for providing a vir-
tual filesystem also remains stable (like other userspace interfaces
provided by the Linux kernel), significantly reducing the typical for-
eign interface problem of regular breaking changes in the argument
formats. The basic architecture of QueryFS is based on plugins that
translate domain-specific query languages into Common Lisp.

The example queries are only intended as examples. The use
cases are either contrived or specific to personal preferences. How-
ever, the intent of QueryFS is not to support specific workflows but
to provide a foundation for writing queries supporting arbitrary
workflows.

The rest of the paper is structured as follows. First there is a
survey of the previous work in the area of augmenting the filesys-
tem storage of data with additional metadata usable for search
and filtering. Then the design goals are stated and an overview of
the chosen structure of the filesystem implementation is provided.
Some examples of plugins and queries follow. In the next sections
the level of the filesystem API support, security considerations, and
the impact of implementation language are described. Afterwards
the experience of using QueryFS for daily tasks is summarised. The
paper ends with a conclusion and some possible future directions.

2 RELATEDWORK
The existing software that helps finding the files uses many dif-
ferent approaches. Often some parts of the interfaces intended for
browsing directory structure are reused. Due to the fact that none
of the previous work has achieved widespread popularity, we apol-
ogise in advance in case there are some projects that have been
erroneously omitted.

An old example is feeding of search results to the UI element
intended for directory view in many file managers. In current ver-
sions of Gnome Nautilus, Windows Explorer or MacOS X Finder
user can save such a search query and interact with it as if it was
a folder. The main problem is that applications unaware of this
feature cannot use such directories. Even WinFS project by Mi-
crosoft (now long forgotten) was going to require applications to
use special API to access such search folders.

1

14 ELS 2022

ELS’22, March 21–22, 2022, Porto, Portugal M. Raskin

Inability of some applications to access virtual directories and
use plain text file lists can be mitigated by using FUSE [16]. It al-
lows mounting special filesystems and processing of the filesystem
operation in the userspace.

Naturally, the idea of using the universal filesystem interface for
information search is older than FUSE. For instance, MIT Semantic
File System [6] used Network File System protocol to allow queries
by attribute; a path inside the virtual filesystem could include mul-
tiple conditions and provide files satisfying all of them. The system
indexed the publicly visible files in advance to support e.g. search
by file contents.

A more modern approach based on indexing the storage is repre-
sented by e.g. RecollFs [3], providing virtual directories correspond-
ing to the results of Recoll desktop search engine [4] queries. This
approach bears some similarity to feeding search results to a virtual
folder in a file manager, but has the benefit of using a universal
interface for result access.

Some of the filesystems emphasize user-entered metadata. For
example, SemFS (previously TagFS) [1] and Tagsistant [17] support
marking each file with tags (arbitrary strings) instead of building file
hierarchies. User can then go into a virtual directory which contains
only the files having all the tags from some list. The full path of the
directory can easily be saved as a symbolic link (Tagsistant also has
its own alias support essentially similar to symlinks). Unfortunately,
file attributes such as the file size cannot be taken into account in
such queries, at least in the available versions of the software.

Some tagging filesystems, like TMSU [15], support key-value
tags and combining the conditions via «or» and «not» in addition
to «and». Also of note is STUFFS [10], supporting WordNet-based
fuzzy matching to help with the drift in the choice of words in tags,
in addition to logical combinations (but not key-value tagging).

There are also some overviews of tagging filesystems [5, 7].
The libferris project [11] (which includes ferris-fuse) provides

means to access many different types of metadata found inside
common file types. Using libferris on its own requires use of
special API or utilities to access the data, but allows complicated
queries in query languages like XPath and SQL. The FUSE filesys-
tem, ferris-fuse only allows browsing the data. Another project,
BaseX [9], uses XQuery language and has GUI and command-line
tools for browsing indexed data. BaseX lacks FUSE support and
probably won’t have it in foreseeable future.

The latter two projects can be of course compared with many
available desktop file indexing and search engines, but differ from
most in the supported level of query complexity.

The RelFS project [2] has its focus on representing SQL queries
as directories. A RelFS filesystem can store files and symbolic links
like an ordinary filesystem. It also allows going into a directory
with name starting with # symbol, which is interpreted as an SQL
query. Running find on such a directory returns approximately
the same result as running the SQL query put into directory name.
RelFS uses SQL query language, allows queries to return compli-
cated directory trees, and allows saving queries as symbolic links.
Unfortunately, RelFS queries process only files and symbolic links
stored on the RelFS filesystem itself, and storing large files on RelFS
causes performance problems.

Two projects with the most radical goals, DBFS[12] and Hyp-
pocampus [8], store all the files inside the DB and have no hierar-
chical structure. All available ways to access files search data by
attributes via special SQL queries. Unfortunately, the implementa-
tions also require the use of a special API.

3 DESIGN GOALS OF QUERYFS
QueryFS aims to take a middle ground on the storage structure.
The goal is being able to store some data as files on traditional
filesystems, some data inside databases, and some data might be
stored in some other way supported by some plugin, for example as
data structures inside a Common Lisp image. Queries should be able
both to generate plain files and symbolic links, in order to be able
to combine data from the databases and other structured storage
with efficient references to large files stored on some traditional
filesystem.

Queries should be allowed to produce writeable files and direc-
tories. To provide a variety of query languages, QueryFS needs to
support plugins defining the query languages.

QueryFS needs to be able to support experiments with idiosyn-
cratic workflows and query structures and formats.

4 DEPENDENCIES AND ARCHITECTURE
OVERVIEW

The main development platform for QueryFS is SBCL on Linux;
however, any Common Lisp implementation with CFFI support for
callbacks from C code into Lisp and 64-bit foreign structure fields
should work. The OS needs to be supported by FUSE. To run any
SQL-based queries using the current plugins one needs a database
supported by CLSQL.

On the low level, QueryFS relies on CL-Fuse and CL-Meta-FS.
CL-Fuse is a CFFI-based wrapper around libfuse. CL-Meta-FS is a
Lisp-flavoured abstraction layer for a more declarative definition
of virtual directory layouts. It includes both a set of functions to
describe a layout and a set of macros for writing more succinct
definitions.

QueryFS itself handles the interaction of a FUSE mount, plugins,
and queries. In order to allow a wide range of queries to be used
with good performance, QueryFS translates all queries to Common
Lisp code. Of course for queries accessing e.g. an SQL database
the performance of the query code is not the defining factor. To
allow query languages suitable for different workflows, this trans-
lation is handled via plugins. The plugins define the query DSL
parsing (using PEG definitions or the Common Lisp reader, but
other parser libraries can trivially be added), and then they trans-
late the S-expressions obtained as ASTs into Common Lisp code
defining the virtual filesystem structure. The traslated code usually
uses the macros from CL-Meta-FS.

QueryFS core finds the specified plugins directory and starts
by loading each of the plugins there. A plugin registers its parser
functions in the hash-table of query loaders. Then each query is
processed using the loader corresponding to its file extension. The
loader is expected to return a Common Lisp form defining a virtual
directory. This form is then evaluated by QueryFS. Each query
defines a single virtual directory, and each defined directory gets
the name of the query defining it.

2

ELS 2022 15

QueryFS: compiling queries to define a filesystem ELS’22, March 21–22, 2022, Porto, Portugal

In the following subsections the lifecycle of a QueryFS instance
is described in more detail.

4.1 Plugin loading
First, the QueryFS process finds and loads the plugins in the speci-
fied plugin path. By default, QueryFS expects that a single directory
contains the subdirectories for the filesystem mountpoint (attach-
ment point), the plugin directory, and the query directory. It is ex-
pected that plugins use their corresponding supported query types
as keys to set the values in the query-fs:*query-loaders* and
query-fs:*query-loader-types* hashtables. The former value
should be a function accepting an input stream; depending on the
latter, it is expected either to parse and return a single top-level
entry (:token-by-token) or a list of entries (:whole-file). The
entries are supposed to be in the format expected by CL-FUSE direc-
tory listing functions. They are normally defined using the macros
provided by CL-Meta-FS. The entries are pieces of code defining
the filesystem objects, with directories, files, and symbolic links
supported. Each entry can define one file, symlink, or directory at
the top level of the query answer, or a generator returning zero or
more filesystem objects. An example is provided in the following
listing.
(progn

(defparameter *sum-numbers-range* 10)

(mk-splice
(mk-file "README" "A POSIX interface to #'CL:+")
(mk-pair-generator x

(loop for k from 1 to *sum-numbers-range*
collect (list (format nil "~a" k) k))

(mk-dir (first x) :just
(mk-pair-generator y
(loop for k from 1 to *sum-numbers-range*

collect (list (format nil "~a" k)
(+ k (second x))))

(mk-file (first y)
(format nil "~a" (second y))))))))

Here mk-splice is used to provide a fixed set of entries within a
single one. The first one is a plain file with constant contents defined
using mk-file. The second one is again producing multiple entries.
However, this time the entries are not given as compile time param-
eters but are generated in runtime using mk-pair-generator. The
parameters are the formal variable for enumeration, the generating
code for the list of entry data, and the code that converts a datum
from the list into an entry description (which is expected to be a
single simple entry). Each element in the list of data should be a
list, with the first element being used as the file or directory name.
Here a directory is defined using mk-dirwhere the content is again
generated. In this example, a file like 2/3 contains the sum of the
two components of its name, 5.

Note that sometimes the filesystem knows what file the user
cares about (e.g. in the case of with-open-file as opposed to
directory). The generators may reference the formal variable in
the data-generating form. This is useful both for performance (if the
user only cares about one file, the filesystem can skip generating
data for some of the others) and for providing some functionality

on a range where enumeration is infeasible. The following example
computes the next integer for any file name that parse-integer
accepts.
(mk-pair-generator x
(let ((xn (ignore-errors (parse-integer (first x)))))

(if xn `((,(first x) ,(1+ xn)))
(loop for k from 1 to 10

collect `(,(format nil "~a" k) ,(1+ k)))))
(mk-file (first x) (format nil "~a" (second x))))

There is also support for generating symlinks, as well as for
handling creation, removal, and modification of files.

For parsing there are currently two options in use. The plugins
either use the standard Common Lisp reader (e.g. the above example
is a valid query for the literal-lisp plugin), or use Esrap-PEG
to read a PEG definition and build a Esrap-based packrat parser.

For example, the following PEG definition parses clauses like
on-write x "select 1".
WhiteSpace <- " " / "\r" / "\n" / "\t"
S <- WhiteSpace +
OnWrite <- "on-write" S Identifier S SQLCommand

And the following pattern-matching snippet is used for process-
ing the ASTs.
. . .

(OnWrite
((_ _ ?var _ ?body)
`(:on-write

(,(! ?var)
,(! ?body)))))

. . .

4.2 Query loading
After loading the plugins, the Query-FS process finds the query files
in the specified place. The filename extension is used for determin-
ing which of the parsers registered by plugins need to be used. Each
query is passed to the corresponding parser, which generates the
Common Lisp code for handling the query. For instance, a query file
with the name email.sql2 will be parsed by the parser registered
under the name sql2. In principle any plugin could register such a
parser. In practice it makes sense to call such a plugin sql2.lisp.

A query fragment such as the following code
mkdir "fresh-no-deferred" do

for msg in "select
account || '-' || file_basename || '-' || id::text,
file_path, account, id

from emails
where fresh and

(${msg[0]} is null
or

id = regexp_replace(${msg[0]},'.*-','')::int)"
symlink $msg[0] $msg[1]

on-remove "update emails
set fresh = null, read_timestamp=now()
where id = ${msg[3]};"

done

will get converted into a long piece of code starting with
3

16 ELS 2022

ELS’22, March 21–22, 2022, Porto, Portugal M. Raskin

(mk-dir (concatenate 'string "fresh-no-deferred")
:just
(mk-pair-generator msg
. . .

defining a subdirectory based on the SQL request provided in the
query fragment.

This code is wrapped so that a directory is defined for each query
file. For instance, there will be a top-level email directory in the
virtual filesystem. The entries provided by the code corresponding
to the query describe the content of the directory. In particular, the
email directory will contain a fresh-no-deferred subdirectory
with the symlinks generated using SQL inside.

The combination of these directory definitions provides the code
of the full definition of the content of the virtual filesystem. This
code is evaluated.

4.3 Mounting and handling the filesystem
After the filesystem content definition is computed, the filesystem is
mounted. FUSE callbacks are assigned so that filesystem operations
traverse the content definition and use the corresponding value or
handler for the specified filesystem path.

Whenever a client process attempts to access a path within the
QueryFS mountpoint, QueryFS receives requests for all the compo-
nents of the path. Parsing the queries and evaluating the definitions
provides the toplevel definition of the filesystem contents; for each
component of the path QueryFS takes the parent definition (starting
at the top level) and uses it to compute the definition for the path
up to the current component. Finally, it might use the definition
corresponding to the entire path to compute the entry content (file
content, symlink target, directory listing).

The definitions corresponding to intermediate paths are cached
for some time.

Note that the handlers for some operations canmodify the filesys-
tem definition. In particular, QueryFS can be asked to reload some
query without restarting the filesystem. Once the filesystem is
unmounted, QueryFS instance exits.

5 PLUGIN AND QUERY EXAMPLE
The plugin most used in the author’s workflows is the second
version of an SQL-based DSL. Its syntax is described using a Parsing
Expression Grammar (PEG) definition. The language includes the
SQL queries almost verbatim, as well as additional instructions for
arranging the layout of the virtual directory resulting from the
query.

For example, the following query produces the list of the latest
emails for each account that are marked as already read.
mkdir "latest-read-by-account" do

grouped-for account in
"select distinct account from emails" do

grouped-for num_latest in
"(select ${num_latest[0]}) union (select 5) union

(select 10) union (select 100)" do
for msg in

"select header_date || '-' ||
addr_from || '-' ||
cast(id as text), file_path

from emails where
((deferred is null or deferred = '')

and
(fresh is null or not fresh))
and account = ${account[0]}
order by id desc
limit ${num_latest[0]}"

symlink $msg[0] $msg[1]
done

done
done

This creates a subdirectory for each account in use, then creates
subdirectories for different numbers of latest emails to select, then
creates symlinks to the latest read messages in each such subdirec-
tory (using the account and the message count to build the database
query).

The filename is always the first element in the row returned by
the database request; note that if a user tries to access a specific
file, the filename is already known, and the generating code can
use it (for optimisation or for creating new tags on the fly etc.), this
is what happens with num_latest in this (part of the query).

For such a query, QueryFS produces a directory containing
entries raskin@mccme.ru, raskin@in.tum.de etc. One can list
raskin@mccme.ru/7 and obtain 7 symbolic links like

2021-02-28T09:00:00Z-,els2021@easychair.org,-123456
2021-02-28T09:01:00Z-,els2021@easychair.org,-123457

Note that the grouped-for directive creates a level of filesystem
hierarchy; the for directive does not, so the symlinks are all inside
the same directory.

Some (sub)queries define mutable filesystem objects. For exam-
ple, the following code for creating symbolic links to the files with
unread emails defines the database request that marks the message
read when the symlink is removed.

for msg in
"select id, file_path from emails
where account=${account[0]} and fresh

and header_date = ${timestamp[0]}"
symlink $msg[0] $msg[1] on-remove

"update emails set fresh = 'f'
where id = ${msg[0]}"

This query language also supports templates allowing creation
of recursive data structures. For example, this is used to support
hierarchical tag structures.

There are other query languages defined, such as the following
primitive Lisp-based one used for browsing packages as directories.

with pkg from
(mapcar (lambda (s) (list (package-name s) s))

(list-all-packages))
file "::nicknames" (fmt "~{~a~%~}"

(package-nicknames pkg))
file "::uses" (fmt "~{~a~%~}"

(package-use-list pkg))
file "::used-by" (fmt "~{~a~%~}"

(package-used-by-list pkg))

4

ELS 2022 17

QueryFS: compiling queries to define a filesystem ELS’22, March 21–22, 2022, Porto, Portugal

Currently the DSL for SQL-based queries and two versions of
Lisp-based queries (the mixed format in the above example, and
direct input of CL-Meta-FS based code) appear to be useful for some
practical applications, with the other plugins either defining some
helper functionality or being used for testing purposes.

The queries in use include:
• Commands for controlling QueryFS itself
(reloading queries and plugins, requesting the error message
from the last error, etc.)

• Various functionality for handling emails indexed in Post-
greSQL

• Viewing the scraped web feeds
• Both plain and hierarchical (with unlimited depth) file tag-
ging

• Lisp package and symbol browsing
• Simple SQL-backed notes storage and (encrypted) password
storage

6 FILESYSTEM API SCOPE AND SECURITY
CONSIDERATIONS

QueryFS uses the filesystem API to present data that is not expected
to match the normal filesystem semantics perfectly. A strong secu-
rity model would conflict with QueryFS design goals: the plugins
should be allowed to define query languages manipulating arbitrary
external data. Separating this from arbitrary code execution by plug-
ins would require a lot of complexity. On the other hand, the default
FUSE behaviour is to forbid any filesystem access by the other users.
The current assumption is that plugins and queries are stored in a
place writeable only by the user who launches QueryFS, access to
the virtual filesystem by other users is not allowed, QueryFS can
fully trust plugins and queries, and queries can safely assume that
whoever accesses the filesystem is fully trusted.

The support of filesystem the features is driven by the needs
of the workflows. Specifically, the file permissions and the file
size reporting are necessary for comfortable interaction with a
filesystem. The support is limited for simplicity; for example, the
files are assumed to be writeable only by the owner (or by nobody at
all). Timestamps are supported by CL-Fuse but not by CL-Meta-FS.
Better support for these features can be easily added throughout
the stack.

Advanced functionality such as inotify or mmap is not sup-
ported at all, and adding it would require significant work; in any
case it is unclear whether there is any good way to define the
semantics for SQL-based queries, or for browsing Common Lisp
symbols.

From a practical point of view, Vim or Emacs can edit writeable
virtual files provided by QueryFS.

7 IMPLEMENTATION LANGUAGE
DEPENDENCE OF THE DESIGN

While QueryFS is implemented in Common Lisp, there are many
FUSE filesystems implemented in various programming languages.
The choice of the implementation language affects the available
options in various parts of the CL-Fuse/CL-Meta-FS/QueryFS stack.

At the bottom level CL-Fuse cannot use the default event loop
provided by FUSE because its thread management doesn’t interact

well with SBCL expectations about the threads. This limitation is
shared with many high-level languages with garbage collection.
Single-request high-level FUSE API is used instead.

CL-Meta-FS design is based on the assumption that the program-
ming language supportsmacros. In some languages themost natural
replacement would be based on higher-order function, probably
resulting in more indirection. On the other hand, for standalone
use in Common Lisp a CLOS-based design could have been better.
But a more primitive interface was chosen for use of CL-Meta-FS
as a translation target.

Writing the plugin code for translating the queries into Lisp
code after initial parsing benefits from availability of convenient
pattern-matching facilities. In the case of languages with good
macro support, one can expect multiple pattern matching libraries
to arise. This is indeed the case with Common Lisp.

QueryFS compiles code in runtime and supports reloading single
queries and recompiling their code without restarting the entire
filesystem instance. This would require additional effort in the
languages assuming ahead-of-time compilation (such as Pascal, C,
or Rust).

In a language without macro support, one way to implement the
QueryFS design would use a replacement for CL-Meta-FS in the
form of an AST rewriting library.

Overall, the chosen architecture is best implemented in a just-in-
time compiled languagewithmacro support, which is a combination
observed in the Lisp language family and in Julia.

8 EVALUATION
QueryFS has been in daily use for the past few years for a few
different use cases.

One of the use cases is to index and track pending/dismissed
state of some streams of files; this includes both emails and e.g.
downloaded planet.lisp.org articles. In both cases the fetcher process
puts each item into a separate file; a database entry is created with
the item properties and the file path. Then QueryFS is used to both
view the items matching some criterion, and to update the metadata
related to the entry. Some of the workflows initially prototyped on
QueryFS were eventually migrated to small helper tools doing the
DB accesses directly.

An additional use case is storing some small snippets of text in a
DB with transparent encryption.

I have tried a couple of file tagging solutions implemented as
QueryFS queries, but ended up preferring the use of a hierarchical
classification of the files. Sometimes tags get assigned to emails,
though, as the current tooling expects the files with the emails to
reside in a single directory.

From the point of view of performance, QueryFS seems to be
quite acceptable in practice. It is of course much slower than a usual
filesystem, but this is to be expected given the requests need to
be handled in multiple userspace processes (QueryFS, PostgreSQL)
instead of just the kernel. Single operations are fast enough to
not be an issue. Large files are only referenced using symlinks,
avoiding the main performance risk altogether. The most common
slowdown is related to a specific SQL query that performs poorly
when PostgreSQL caches are cold. Removal of too many entries
one by one is also noticeably slow.

5

18 ELS 2022

ELS’22, March 21–22, 2022, Porto, Portugal M. Raskin

Slowdowns related to QueryFS itself are unnoticeable in practice.
For instance, asking cat to open, read, and close a file containing
the number 579 obtained as the sum of 123 and 456 many times
in a row takes about 170𝜇𝑠 per iteration. This is much more than
around 1𝜇𝑠 per iteration necessary for a normal file on a traditional
filesystem. On the other hand, in the absolute terms this delay is
quite small and it is rarely the main bottleneck. For comparison,
PostgreSQL on the same computer needs more than 30𝜇𝑠 within
the engine (without the communication overhead included) to plan
and execute a trivial query.

From the point of view of expressive power, QueryFS with the
current set of plugins seems to be unmatched in the specific area
the author cares about: defining virtual directories via completely
arbitrary SQL queries and their subdirectories via SQL queries
dependent on the data returned by the higher-level queries. The
tagging query is behind some of the tagging filesystems due to the
author only using it for a narrow set of tasks.

9 CONCLUSION AND FUTUREWORK
The present paper describes QueryFS, a tool allowing Common
Lisp code to provide a filesystem interface for external tools, and
its use to provide virtual filesystem structures defined using SQL
queries.

We believe that the stability of the filesystem APIs is a desirable
property when providing interface for foreign applications to in-
teract with Common Lisp code. Another similar option is HTTP(S)
API, but filesystem interface is convenient for integration with a
different set of tools. The author will be glad to support any project
that wishes to try CL-Meta-FS or QueryFS as a tool for providing
an interface to the internal data of a Common Lisp based tool.

The rising use of virtual machines for isolation of software that
would be previously considered a part of a single system motivates
expanding QueryFS to also support the Plan9 resource sharing
protocol 9p (also known as Styx) [13]. This will reduce the overhead
when allowing a VM to access a QueryFS instance, as such access
would otherwise happen over a 9p connection with just another
layer of indirection.

An interest in supporting a specific use case could motivate
development of new DSLs for QueryFS. A natural candidate is an
integration with some desktop search engine.

AVAILABILITY
QueryFS and its supporting libraries are currently hosted as a
Common-Lisp.net project [14].

ACKNOWLEDGEMENTS
The author is grateful to Nikita Mamardashvili for advice on the
design of some of the SQL-based query DSL. The author is grateful
to Lars Brinkhoff, the author of another CL-Fuse project (limited
to browsing the packages and the symbols), for the idea of using
FUSE to browse Common Lisp image contents and for the permis-
sion to take over the CL-Fuse name on the Common-Lisp.net for a
more general Common Lisp FUSE library. The author would like to
thank the anonymous reviewers for their feedback regarding the
presentation.

REFERENCES
[1] Stephan Bloehdorn, Olaf Görlitz, Simon Schenk, and Max Völkel. Tagfs - tag se-

mantics for hierarchical file systems. In 6th International Conference on Knowledge
Management (I-KNOW’06), 2006.

[2] Vincenzo Ciancia. Relfs project, 2004–2005. URL http://relfs.sf.net/.
[3] Piotr Dlugosz. Recollfs — fuse filesystem using recoll index, showing filtered

files in directories, 2014. URL https://github.com/pidlug/recollfs.
[4] Jean-François Dockes. Recoll project, 2012–2020. URL https://www.

lesbonscomptes.com/recoll/.
[5] Jean-François Dockes. Extended attributes and tag file systems, 2015. URL

https://www.lesbonscomptes.com/pages/tagfs.html.
[6] David Gifford, Pierre Jouvelot, Mark Sheldon, and James O’Toole. Semantic file

systems. 1991.
[7] goesZen.com user tengo. Tagfs, tracking progress in the field of semantic file

systems, 2009. URL https://linux.goeszen.com/tagfs-tracking-progress-in-the-
field-of-semantic-file-systems.html.

[8] Roberto Guido. Hyppocampus project, 2005–2008. URL https://sourceforge.net/
projects/hyppocampus/.

[9] Alexander Holupirek, Christian Grün, and Marc H. Scholl. Basex and deepfs —
joint storage for filesystem and database. In EDBT (Demo Track), 2009.

[10] Aaron Laursen. Stuffs: A novel tag-based file-system, 2014. URL
https://digitalcommons.macalester.edu/cgi/viewcontent.cgi?article=1036&
context=mathcs_honors.

[11] Ben Martin. libferris project, 2001–2018. URL http://www.libferris.com/.
[12] Lee Burton Onne Gorter. dbfs project, 2004. URL http://dbfs.sourceforge.net/.
[13] Rob Pike and Dennis M. Ritchie. The styx architecture for distributed systems.

1999.
[14] Michael Raskin. Queryfs project, 2010–2020. URL https://gitlab.common-lisp.

net/cl-fuse/.
[15] Paul Ruane. Tmsu project, 2011–2022. URL https://tmsu.org/.
[16] Miklos Szeredi and Nikolaus Rath. Fuse project, 2001–2020. URL https://github.

com/libfuse/libfuse.
[17] Tx0. Tagsistant project, 2006–2017. URL https://www.tagsistant.net/.

6

ELS 2022 19

A CLOS protocol for lexical environments

Robert Strandh
robert.strandh@gmail.com

Unaffiliated

Irène Durand
irene.durand@u-bordeaux.fr

LaBRI, University of Bordeaux
Talence, France

ABSTRACT

The concept of an environment is mentioned in many places
in the Common Lisp standard, but the nature of the object is
not specified. For the purpose of this paper, an environment
is a mapping (or several such mappings when there is more
than one namespace as is the case for Common Lisp) from
names to meanings.

In this paper, we propose a replacement for the environ-
ment protocol documented in the book “Common Lisp the
Language, second edition” by Guy Steele. Rather than return-
ing multiple values as the functions in that protocol do, the
protocol suggested in this paper is designed so that functions
return instances of standard classes. Accessor functions on
those instances supply the information needed by a compiler
or any other code walker application.

The advantage of our approach is that a protocol based
on generic functions and standard classes is easier to extend
in backward-compatible ways than the previous protocol, so
that implementations can define additional functionality on
these objects. Furthermore, CLOS features such as auxiliary
methods can be used on these objects, making it possible to
extend or override functionality provided by the protocol, for
implementation-specific purposes.

CCS CONCEPTS

� Software and its engineering � Compilers;

KEYWORDS

CLOS, Common Lisp, Environment, Compilation

ACM Reference Format:
Robert Strandh and Irène Durand . 2022. A CLOS protocol for

lexical environments. In Proceedings of the 15th European Lisp
Symposium (ELS’22). ACM, New York, NY, USA, 7 pages. https:

//doi.org/10.5281/zenodo.6331519

1 INTRODUCTION

The Common Lisp standard [1] contains many references
to environments. Most of these references concern lexical
environments at compile time, because they are needed in
order to process forms in non-null lexical environments. The
standard does not specify the nature of these objects, though

Permission to make digital or hard copies of part or all of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ELS’22, March 21–22 2022, Porto, Portugal

© 2022 Copyright held by the owner/author(s).
https://doi.org/10.5281/zenodo.6331519

in the book “Common Lisp, the Language, second edition”
[4] (henceforth referred to as “CLtL2”) there is a suggested
protocol that is supplied by some existing Common Lisp
implementations.

The protocol documented in CLtL2 has several problems.
Functions in the protocol return multiple values, a fact that
makes the protocol hard to extend. Furthermore, the protocol
is incomplete. A typical compiler needs more information
than the protocol provides, making implementation-specific
extensions obligatory for the protocol to be useful. For that
reason, although existing Common Lisp implementations
often provide such extensions, the CLtL2 protocol is not
what the native compiler of the implementation actually
uses.

In this paper, we propose a modern alternative protocol
based on CLOS. Rather than returning multiple values, our
protocol functions return instances of standard classes. Acces-
sors for those instances can be used by compilers and other
code walker applications in order to obtain the information
needed for the task to be accomplished. This protocol is
defined and implemented in the Trucler library.1

Two of the functions in the section about environments in
CLtL2 are not discussed in this paper, namely parse-macro

and enclose. These functions do not contribute any func-
tionality to the protocol being described, and the interface
provided by these functions does not require any modifica-
tions, which is why they are not discussed here. The function
enclose requires an evaluator such as a compiler or an inter-
preter, and the evaluator will certainly use the functionality
in the protocol, but not add to it. The function parse-macro

does not seem to even use this functionality, and indeed the
optional env parameter of this function is declared ignore

both in SBCL and CCL.
Although parse-macro and enclose are essential for any

code-walking application, the purpose of the current work
is not to provide a complete implementation-independent
library for code walking, but just to propose an alternative
protocol for accessing lexical environments.

2 PREVIOUS WORK

In this section, we describe how different implementations of
Common Lisp represent lexical environments, and whether
these implementations include a version of the protocol de-
scribed in CLtL2. For commercial implementations, we in-
clude only their documented version of the CLtL2 protocol.
We start by presenting the details of the CLtL2 protocol as
described in the book.

1https://github.com/s-expressionists/Trucler

20 ELS 2022

ELS’22, March 21–22 2022, Porto, Portugal Robert Strandh and Irène Durand

2.1 Common Lisp the Language, second
edition

Section 8.5 of CLtL2 describes a set of functions for obtaining
information from an environment object, for creating a new
such object by augmenting an existing one, and two more
operators related to environments that are outside the scope
of this paper, i.e., parse-macro and enclose.

In this section, we provide an overview of that protocol,
and we give an assessment of its usefulness in the context of
a language processor.

2.1.1 Environment query. For environment query, the pro-
tocol defines three functions. We describe them briefly here.

The function variable-information takes a symbol and
an optional environment object as arguments. It returns
three values. The first value indicates the type of the binding
(lexical variable, special variable, symbol macro, constant
variable) or nil if there is no binding or definition in the
environment for that symbol The second value is a Boolean,
indicating whether the binding is local or global. The third
value is an association list containing declarations that apply
to the binding.

The function function-information takes a function name
and an optional environment as arguments. Again, three val-
ues are returned. The first value indicates the type of the
binding (function, macro, special operator2) or nil if there is
no binding or definition in the environment for that function
name. As before, the second value indicates whether the defi-
nition is local or global, and the third value is an association
list of declarations that apply.

The function declaration-information is used in order
to query the environment for declarations that do not apply
to any particular binding in the environment. It takes a decla-
ration identifier3 and an optional environment as arguments.
The declaration identifier can be the symbol optimize, the
symbol declaration, or some implementation-defined dec-
laration identifier. It returns a single value that contains
information related to the corresponding declaration identi-
fier.

To begin with, it is clear that this set of functions is
insufficient to process all Common Lisp code, because no
mechanism is described for querying the environment for
information related to blocks and go tags. Functions for this
purpose are provided as extensions by Allegro Common Lisp
as described in Section 2.7, and by LispWorks as described
in Section 2.8.

2.1.2 Environment augmentation. For augmenting an en-
vironment, i.e., creating a new, augmented, environment
from an existing one, the same section describes the func-
tion augment-environment. This function has a keyword pa-
rameter for each type of object to be added to the current
lexical environment: :variable, :symbol-macro, :function,

2The term used in the book is special form, but the terminology has
been improved since then
3The term used in the book is name and the parameter is called
decl-name, but the terminology has changed since then.

:macro, and :declare. Furthermore, each argument is a list
of lexical definitions, thereby allowing an arbitrary number of
mappings to be added to an environment in order to create
an augmented environment.

2.1.3 Assessment of the protocol. In general, the protocol
as described in the book is insufficient for use in any but the
simplest kind of language processor. Even if query functions
are added for tags and blocks, and additional keyword ar-
gument are added to the function augment-environment for
tags and blocks, we argue that the protocol would still be
insufficient.

Any non-trivial language processor would need for a func-
tion such as function-information to return information
about the function, other than related declarations. At the
very least, information such as the lambda list of the func-
tion, and information needed for inlining, would have to be
included.

The protocol could obviously be extended to allow for such
information, but such extensions would involve incompatible
additions such as more return values. Furthermore, none of
the Common Lisp implementations we investigated use this
protocol internally, which is an indication that the compiler
needs more information than the protocol provides. And none
of the implementations we investigated provide extensions
that would allow the use of the protocol in a non-trivial
language processor.

2.2 SBCL

2.2.1 Native. SBCL4 defines a structure class lexenv. In-
stances of this class are passed as the &environment argument
to macro expanders and other functions that take lexical en-
vironment objects as arguments.

This structure class contains several slots, and in particu-
lar:

∙ An association list of information about defined func-
tions. The name of the function is used as a key.

∙ An association list of information about defined vari-
ables. The name of the variable is used as a key.

∙ An association list of information about blocks, The
name of the block is used as a key.

∙ An association list of information about tagbody tags.
The name of the tag is used as a key.

2.2.2 CLtL2. The distribution of SBCL contains a contri-
bution that supplies some of the funtionality described in the
book CLtL2 but that was not included in the Common Lisp
standard. Part of this contribution is an implementation of
the environment protocol of CLtL2.

2.3 CCL

2.3.1 Native. CCL5 defines a class lexical-environment
which is a special kind of class called an istruct. Classes
of this type are represented as lists of slots rather than as

4http://ww.sbcl.org/
5https://ccl.clozure.com/

ELS 2022 21

A CLOS protocol for lexical environments ELS’22, March 21–22 2022, Porto, Portugal

standard objects as would normally be the case, probably for
reasons of bootstrapping.

2.3.2 CLtL2. CCL has implementations of the functions
defined in CLtL2. These functions take a native lexical envi-
ronment as an optional argument.

2.4 CMUCL

2.4.1 Native. A lexical environment is an instance of the
structure class lexenv. There is a slot for each type of entry,
i.e., functions, variables, blocks, tags, and some other
slots for implementation-specific details. Each of the main
slots contains an association list in which the name is the key
and the value contains associated information for the name.

Access to the lexical environment is provided by the macro
lexenv-find and the function lexenv-find-function. These
operators do not take an environment object as an argument,
and instead access this object as the value of the special vari-
able *lexical-environment*. And lexenv-find-function

is a wrapper for a call to lexenv-find with a specific :test

function for the key of the association list containing func-
tions.

2.4.2 CLtL2. CMUCL provides definitions of the functions
defined in CLtL2. The code for these functions is defined
in the package ext. No extensions are provided for tags or
blocks.

2.5 ECL

2.5.1 Native. The native compilation environment of ECL6

is represented as a single cons cell where the car is a list
of variable records and the cdr is a list of macro records.
Information about blocks and tags is included in the list of
variable records. With few exceptions, a record is a list with
the name of the entity in the car. Records for blocks and
tags are distinguished by having a keyword symbol :block
or :tag in the car of the list representing the record.

2.5.2 CLtL2. Currently, ECL does not offer a CLtL2-
compatible interface to its lexical environments. Some work
has been done to create such an interface, but it is still work
in progress.

2.6 Clasp

2.6.1 Native. The native compilation environment of Clasp7

is currently that used in early versions of the Cleavir8 compiler
framework. Ultimately, Clasp will use Trucler as described
in Section 3.

2.6.2 CLtL2. Clasp provides an implementation of the
CLtL2 protocol. The code is present in the package named
clasp-cltl2. The function augment-environment has two
additional keyword arguments, namely tag and block. How-
ever, no extension allows for client code to access information
about blocks and tags.

6https://common-lisp.net/project/ecl/
7https://github.com/clasp-developers/clasp
8https://github.com/s-expressionists/Cleavir

2.7 Allegro

2.7.1 Support for CLtL2 protocol. The documentation for
Allegro Common Lisp contains a separate document describ-
ing their protocol for environments in the spirit of CLtL2.9

We summarize the differences between the Allegro implemen-
tation and the CLtL2 protocol here.

∙ Information about blocks and tags have been added
in the form of two new functions block-information
and tag-information.

∙ The function augment-environment accepts additional
keywords arguments such as :block, :tag, etc. in order
to make it possible to augment an environment with
all relevant information that the language processor
may encounter.

∙ The function augment-environment accepts an addi-
tional keyword argument :locative that can be used
by client code to supply additional information about
the entity, for example the value of a constant variable.
The query functions return an additional value which
is the information supplied to augment-environment.

∙ The order and the number of the return values of the
query functions have been modified, so as to allow for
the additional locative value, and to have frequently
used return values before the less frequently used.

∙ Several other features have been added to the protocol
in order to make it a complete tool for a language
processor, and for the purpose of minimizing memory
allocation. These additional features are outside the
scope of this paper.

2.8 LispWorks

2.8.1 Support for CLtL2 protocol. The documentation for
LispWorks Common Lisp describes the operators that imple-
ment the CLtL2 protocol. These operators are available in
the hcl package.

Like Allegro, LispWorks also provides the functionality
for blocks and tags that is missing from the CLtL2 proto-
col, but instead of adding functions block-information and
tag-information, LispWorks provides a single additional
function named map-environment. This function has a single
required parameter, namely an environment object. It has
four keyword parameters: variable, function, block, and tag.
Each corresponding argument is a designator for a function
that can accept three arguments: name, kind, and info as
follows:

∙ The function variable is called for each local variable
binding in the environment. name is the name of the
variable, kind is one of :special, :symbol-macro or
:lexical, with the same meaning as for the function
variable-information in the CLtL2 protocol. When
kind is :symbol-macro, then info is the expansion;
otherwise, info is unspecified.

∙ The function function is called for each local function
in the environment. name is the name of the function,

9https://franz.com/support/documentation/current/doc/environments.htm

22 ELS 2022

ELS’22, March 21–22 2022, Porto, Portugal Robert Strandh and Irène Durand

kind is one of :macro or :function, with the same
meaning as for the function function-information

in the CLtL2 protocol. When kind is :macro, then
info is the macro-expansion function; otherwise, info
is unspecified.

∙ The function block is called for each block in the envi-
ronment. name is the name of the block, kind is the
keyword symbol :block, and info is unspecified.

∙ The function tag is called for each tag in the environ-
ment. name is the name of the tag, kind is the keyword
symbol :tag, and info is unspecified.

However, when map-environment calls the function in the
keyword argument function and the name of the function
is of the form (setf symbol), then the argument is not the
name of the function, but instead a symbol that is used
internally in LispWorks to name the function. According to
the maintainer of LispWorks, this restriction will be removed
in future versions.

Similarly, the keyword argument :function of the function
augment-environment must be a list of symbols. To represent
a function with a name of the form (setf symbol), the
internal symbol used by LispWorks must be passed, rather
than the true name of the function. Again, this restriction
will be removed in future versions.

2.9 CLtL2 compatibility system

The system cl-environments10 provides a compatibility layer
that allows client code to use the CLtL2 environment pro-
tocol independently of the Common Lisp implementation.
Supported Common Lisp implementations are CLISP, CCL,
ECL, ABCL, CMUCL, SBCL, Allegro, and LispWorks.

This library does not provide additional operators for
querying the environment for tags or blocks, nor does it
provide keyword arguments on augment-environment for
augmenting an environment with such information.

2.10 Software including a code walker

In his paper presented at the European Lisp Symposium
2017 [3], Raskin gives an overview of various libraries that
require code walking. In that paper, he also argues that it
is impossible to write a completely portable code walker,
although he addresses many of the difficulties in his own,
mostly portable, code walker named Agnostic Lizard.

In particular, one of the libraries he mentions in his paper
is hu.dwim.walker. This library provides a general-purpose
configurable code walker. It uses its own protocol for accessing
and augmenting the environment. This protocol resembles
the one presented in this paper in some ways.

3 OUR TECHNIQUE

We define a CLOS-based protocol for accessing and aug-
menting a lexical environment. This protocol is defined and
implemented in the Trucler library.

10https://github.com/alex-gutev/cl-environments

3.1 Querying the environment

A language processor calls one of the query functions in order
to determine the nature of a language element, depending on
the position in source code of that language element. All these
functions are generic, and they all take a client parameter
and an environment parameter. Methods defined by Trucler
do not specialize to the client parameter. Client code should
pass an object specific to the application as a value of that
parameter, and it can supply methods specialized to the class
of this object, for the purpose of extending or overriding
default behavior. The environment parameter is an object of
the type used by the implementation that Trucler is config-
ured for. Functions that are used to query a particular name
have an additional parameter for this purpose.

The following query functions are defined by Trucler. Each
one returns an instance of a class that allows the language
processor to determine the exact nature of the language
element (nil is returned if there is no definition for the
element), for example by using the instance in a call to a
generic function:

∙ describe-variable. This function returns an instance
of a class that distinguishes lexical variables, special
variables, constant variables, and symbol macros.

∙ describe-function. This function returns an instance
of a class that distinguishes global functions, local
functions, and macros.

∙ describe-block.
∙ describe-tag.
∙ describe-optimize.
∙ describe-declarations. This function is called by the
language processor in order to determine the declara-
tion identifiers of declaration proclamations.

3.2 Augmenting the environment

A language processor calls one of the augmentation func-
tions in order to define a lexical environment within the
scope of a declaration or a definition encountered in source
code. All these functions take at least a client parameter
and an environment parameter just like the query functions,
and they all return a new lexical environment, augmented
according to the function being called.

The following functions are called by the language proces-
sor when a local definition is encountered, and they return a
new environment that includes the new definition:

∙ add-lexical-variable.
∙ add-special-variable.
∙ add-local-symbol-macro.
∙ add-local-function.
∙ add-local-macro.
∙ add-block.
∙ add-tag.

The following functions are called by the language processor
as the result of a local declaration that restricts an existing
local function or variable:

∙ add-variable-type.

ELS 2022 23

A CLOS protocol for lexical environments ELS’22, March 21–22 2022, Porto, Portugal

∙ add-variable-ignore.
∙ add-variable-dynamic-extent.
∙ add-function-type.
∙ add-function-ignore.
∙ add-function-dynamic-extent.

The following functions are called by the language processor
as the result of a local optimize declaration.

∙ add-inline.
∙ add-speed.
∙ add-compilation-speed.
∙ add-debug.
∙ add-safety.
∙ add-space.

3.3 Restricting the environment

Recall that the description of the function enclose in section
8.5 of CLtL2 mentions that the consequences are undefined if
the lambda-expression argument contains references to enti-
ties in the environment that are not available at compile time,
such as lexically visible bindings of variable and functions,
go tags, or block names.

As a service to a robust implementation of the enclose

function, the Trucler library provides a function named
restrict-for-macrolet-expander that takes an environ-
ment as an argument and returns an environment that con-
tains only entities available at compile time. Using this func-
tion, the implementation of enclose can return a function
that will signal an error if the lambda-expression argument
contains unavailable references.

3.4 The reference implementation

Trucler supports some existing Common Lisp implementa-
tions as described in Section 3.5, but it also comes with a
reference implementation that can be used by a new Common
Lisp implementation that does not have its own representa-
tion of lexical environments. The reference implementation
is used by SICL11 for instance.

In the reference implementation, a lexical environment is
represented as a standard object containing a slot for each
type of description to be returned by a query function as
described in Section 3.1. Each slot contains a list of descrip-
tions ordered from innermost to outermost. A query function
merely returns the first item on the list that matches the
name that was passed as an argument to the query func-
tion. As a direct consequence of this representation, there is
no performance penalty in the query functions, due to the
fact that a new environment is created for every call to an
augmentation function.

In order to create new objects such as environments or
descriptions, we use a technique that we call quasi cloning.
A generic function named cloning-information is called
with the original object as an argument. This function then
returns a list of pairs. The first element of the pair is a
slot initialization argument for the class of the object and

11https://github.com/robert-strandh/SICL

the second element of the pair is the name of a slot reader
for the same slot. This information is then used to access
slots in the original object and to pass that information
as an initialization argument to make-instance. We call it
quasi cloning, because some new value is prepended to the
initialization arguments so that the copy is like the original,
except for one slot.

The advantage of quasi cloning is that Trucler does not
need to know the right class to instantiate. It creates an
instance of the same class as the original object, and that
class can be defined by client code. Client code must define a
method on cloning-information, but this generic function
uses the append method combination, so that only slots
defined by client code need to be mentioned in that method.

Occasionally, an entirely new instance of some class must
be created, rather than being obtained by quasi cloning an ex-
isting instance. This situation occurs when information about
a new item such as a local variable or a local function must be
used to augment an existing environment. To allow Trucler
to create an instance of a class that has been determined by
client code, Trucler first calls what we call a factory func-
tion. This function takes the client object and returns the
class metaobject to instantiate. For example, to create an in-
stance of a class that describes lexical variables, Trucler calls
the function lexical-variable-description-class, pass-
ing it the client object supplied by client code. The de-
fault method on this generic function returns the default
class used by the reference implementation, but client code
that needs additional information about lexical variables
may create a subclass of the default class, and a method
on lexical-variable-description-class that returns this
subclass.

3.5 Supported Common Lisp
implementations

Trucler currently provides support for SBCL and CCL. Con-
tributions for other Common Lisp implementations are wel-
come. With these implementations, it is possible to write
code walkers that are portable across different Common Lisp
implementations. In particular, a Cleavir-based compiler can
compile source code for any of the supported implementa-
tions.

3.6 Examples

In this section, we show some examples of how Trucler can
be used by a code walker. All examples are from Cleavir
used in the SICL compiler. We have simplified the examples
compared to the actual code, in order to avoid too much
clutter. For example, we have omitted the handling of error
situations and restarts.

The part of Cleavir that uses Trucler is the phase that
converts a concrete syntax tree (CST) to an abstract syntax
tree (AST). A concrete syntax tree can be thought of as a
Common Lisp expression but where each sub-expression is
wrapped in a standard object that holds additional informa-
tion such as source location. At the core of this compilation

24 ELS 2022

ELS’22, March 21–22 2022, Porto, Portugal Robert Strandh and Irène Durand

phase is the generic function convert-cst. For each class
of description objects that Trucler can return, this generic
function has a method specialized to that class.

The function convert-cst is called by a top-level function
convert that determines the structure of the expression to
convert and calls the appropriate Trucler query function
and then invokes convert-cst with the object returned by
Trucler.

The method specialized to local-macro-description looks
like this:

(defmethod convert-cst

(client

cst

(info trucler:local-macro-description)

environment)

(let* ((expander (trucler:expander info))

(expanded-form

(expand-macro expander cst environment))

(expanded-cst

(cst:reconstruct expanded-form cst client)))

(setf (cst:source expanded-cst) (cst:source cst))

(with-preserved-toplevel-ness

(convert client expanded-cst environment))))

As we can see, this method is specialized to the Trucler
class local-macro-description, and no other parameter is
specialized. The code calls the accessor expander on the info
parameter, which returns the macro expander associated with
the local macro.

The function expand-macro is responsible for taking into
account *macroexpand-hook* as the Common Lisp standard
requires. The call to reconstruct has to do with preserving
source information in the expanded form. The essence of the
body is the call to convert which converts the expanded
form (wrapped in a concrete syntax tree).

The next example shows how the environment is aug-
mented when a block special form is converted:

(defmethod convert-special

(client

(symbol (eql ’block))

cst

environment)

(cst:db origin (block-cst name-cst . body-cst) cst

(declare (ignore block-cst))

(let ((name (cst:raw name-cst)))

(let* ((ast (cleavir-ast:make-ast

’cleavir-ast:block-ast))

(new-environment

(trucler:add-block

client environment name ast)))

(setf (cleavir-ast:body-ast ast)

(process-progn

client

(convert-sequence

client body-cst new-environment)

environment))

ast))))

In the example above, cst:db is a version of the standard
Common Lisp operator destructuring-bind, that is used to

destructure concrete syntax trees as opposed to ordinary Com-
mon Lisp source expressions. The last argument to add-block
is an optional argument that Trucler calls identity and that
Trucler stores in the environment, associated with the block
information. The nature of the object supplied is entirely
determined by client code. In our case, we supply an abstract
syntax tree that represents the block special form so that
when an associated return-from is found, the two abstract
syntax trees can be connected.

The essence of the method body is the call to the function
named convert-sequence which converts the body of the
block form in the original environment augmented with
information about the block form.

4 BENEFITS OF OUR TECHNIQUE

The query functions of our protocol are generic functions,
allowing client code to define methods for overriding or ex-
tending default behavior. For this purpose, the query func-
tions all have a client parameter. Default methods supplied
by Trucler do not specialize to this parameter, but client
code should supply a standard object as the corresponding
argument when these functions are called. The class of this
argument can then be used in primary or auxiliary methods
defined by client code, thereby allowing arbitrary customiza-
tion of the library.

Furthermore, each query function returns an instance of a
standard class, rather than multiple values. Client code can
define subclasses of the classes used by the query functions.
In particular, for objects in the global environment, client
code can return instances of classes containing arbitrary in-
formation that it finds useful for the language processor. For
example, if a global function turns out to be a generic func-
tion, client code can then return a subclass of the Trucler
class global-function-description that contains informa-
tion such as the the generic-function class, the method class,
and the method combination, as we suggested in our paper
about make-method-lambda [2].

5 DISADVANTAGES OF OUR
TECHNIQUE

Compared to the protocol defined in CLtL2, our protocol
probably involves more memory allocation, or “consing”.
Multiple values are likely to be handled without memory
allocation in most high-end Common Lisp implementations,
whereas our query functions return standard objects which
obviously need to be allocated. Initializing the slots of these
standard objects also comes with an additional cost.

To make things worse, our protocol is able to add a single
mapping for each call to a protocol function, whereas the
CLtL2 protocol function augment-environment is able to
add an arbitrary number of mappings with a single call.

Our protocol consists of generic functions, and in implemen-
tations with a mediocre implementation of generic dispatch,
our protocol can require more resources for function calls.
Furthermore, the multiple values returned by the CLtL2
protocol are likely transmitted to the caller in registers or

ELS 2022 25

A CLOS protocol for lexical environments ELS’22, March 21–22 2022, Porto, Portugal

some other relatively direct location, whereas the informa-
tion returned by our query functions is present in slots of the
standard objects being returned. Accessing this information
involves calling a slot reader, which involves another call to
a generic function.

However, we believe that the work done by the code walker
of a compiler is small compared to that of other compilation
phases such as optimization of intermediate code.

6 CONCLUSIONS AND FUTURE
WORK

We have defined a CLOS-based protocol for lexical environ-
ments. This protocol can be used by any code walker such
as a compiler or a version of macroexpand-all. Compared
to the protocol defined in CLtL2 [4], ours is complete in that
it has operators for querying an environment for references
to tags and blocks, and for augmenting environments with
such entities.

Furthermore, our protocol is implemented in the Trucler
library. Trucler supplies implementations for some existing
Common Lisp implementations, currently SBCL and CCL.
The library also contains a reference implementation that can
be used in new Common Lisp implementations that do not
have an existing native representation of lexical environments,
such as SICL and Clasp.

Future work involves adding more supported existing Com-
mon Lisp implementations. Individual implementations may
require additional protocol functions, but such functions will
have names in a package that is specific to the implementa-
tion.

Future work also involves investigating what new function-
ality might be required in the reference implementation in
order to support specific requirements of new Common Lisp
implementations that choose to use an extended version of
the Trucler reference implementation.

7 ACKNOWLEDGMENTS

We would like to thank Jan Morningen and Karsten Poeck
for reading an early draft of the paper and for suggesting
improvements. Furthermore, we would like to thank Martin
Simmons for explaining the wordings in the documentation
of the CLtL2 protocol for LispWorks.

REFERENCES
[1] INCITS 226-1994[S2008] Information Technology, Programming

Language, Common Lisp. American National Standards Institute,
1994.

[2] Irène Durand and Robert Strandh. MAKE-METHOD-LAMBDA
revisited. In Nicolas Neuss, editor, Proceedings of the 12th Eu-
ropean Lisp Symposium (ELS 2019), Genova, Italy, April 1-2,
2019, pages 20–23. ELSAA, 2019. doi: 10.5281/zenodo.2634303.
URL https://doi.org/10.5281/zenodo.2634303.

[3] Michael Raskin. Writing a best-effort portable code walker in
Common Lisp. In Proceedings of the 10th European Lisp Sym-
posium (ELS 2017), Brussels, Belgium, April 3-4, 2017, pages
98 – 105. ELSAA, April 2017. doi: 10.5281/zenodo.3254669. URL
https://doi.org/10.5281/zenodo.3254669.

[4] Guy L. Steele, Jr. Common LISP: The Language (2Nd Ed.).
Digital Press, Newton, MA, USA, 1990. ISBN 1-55558-041-6.

26 ELS 2022

Closing the Performance Gap Between Lisp and C
Marco Heisig

Chair for System Simulation
FAU Erlangen-Nürnberg

Erlangen, Germany
marco.heisig@fau.de

Harald Köstler
Chair for System Simulation
FAU Erlangen-Nürnberg

Erlangen, Germany
harald.koestler@fau.de

ABSTRACT
Lisp is the second oldest programming language, and the first one
to value productivity more than raw execution speed. This initial
disregard for performance has indeed led to some mind-bogglingly
slow implementations, especially in the early days, but modern Lisp
compilers such as SBCL have almost fully closed the performance
gap to the fastest imperative programming languages. Almost, but
not quite: Until now,many loop optimizations and support for single
instruction, multiple data (SIMD) programming are still missing in
Lisp.

We correct this deficiency with two libraries: The first one is
sb-simd, an SBCL-specific library that provides convenient bindings
for various SIMD instructions sets. The second one is Loopus, a
portable loop optimization framework that works via macros and
source to source transformations. The most prominent features of
Loopus are its optimization of array accesses and that, on SBCL, it
automatically applies SIMD vectorization to certain loops.

We conclude with a performance evaluation for several example
programs, and show that Lisp code using our libraries can achieve
up to 94% of the performance of highly optimized C code.

ACM Reference Format:
Marco Heisig and Harald Köstler. 2022. Closing the Performance Gap Be-
tween Lisp and C. In Proceedings of the 15th European Lisp Symposium
(ELS’22). ACM, New York, NY, USA, 7 pages. https://doi.org/10.5281/zenodo.
6335627

1 INTRODUCTION
A common misconception about Moore’s law is that it promises
a doubling of the performance of our computers roughly every
two years. In fact, Gordon Moore was predicting that the num-
ber of transistors in an integrated circuit would double roughly
every two years. This fine distinction between performance and
number of transistors was hardly relevant for a long time, where
hardware manufacturers managed to translate more transistors di-
rectly into more performance. Unfortunately, the last two decades
show that this particular free lunch is now over, and that additional
performance can only be gained in combination with additional
complexity. We see chips having multiple cores, multiple levels of
caches, and larger, more specialized instruction sets.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ELS’22, March 21–22, 2022, Porto, Portugal
© 2022 Copyright held by the owner/author(s).
https://doi.org/10.5281/zenodo.6335627

In terms of programming models for multiple cores, pretty much
all programming languages are sitting in the same boat. Program-
mers are compelled to use multiple threads, and some of the dozens
of possible synchronization and communication primitives for dis-
tributing and coordinating work. The more interesting challenge is
to increase the performance of a single core. In that case, and assum-
ing memory bandwidth and latency is not an issue, the performance
can only be improved by using more powerful instructions. The
most important ones for doing so are SIMD instructions, where a
single instruction can perform an operation simultaneously on all
elements of a small, specialized vector. This paper is about using
SIMD instructions in Common Lisp.

There are two challenges when incorporating SIMD instructions
into a programming language. The first challenge is to seamlessly
integrate the low-level functionality for manipulating the 128 bit,
256 bit, or even 512 bit wide SIMD packs offered by the hardware.
The second challenge is to provide the programmer with tools
that can automatically convert scalar code to efficient SIMD code,
at least for the most frequently occurring cases. Without such a
tool for automatic conversion, SIMD programming is unnecessarily
error-prone and cumbersome, and will likely only be used by a
small group of extremely dedicated programmers.

In this paper we present two libraries. The first one is sb-simd1, a
SBCL-specific library that provides convenient bindings for various
SIMD instructions sets. The second one is Loopus2, a portable loop
optimization framework that works via macros and source to source
transformations, and that automatically turns many kinds of scalar
loops into more efficient versions using SIMD instructions. We
conclude with a performance comparison of Common Lisp code
using Loopus, and C code using the most recent version of GCC.

2 RELATEDWORK
Programs written in Common Lisp are frequently among the fastest
in scenarios that benefit from extensive metaprogramming, or from
incremental compilation. Examples of this are Paul Graham’s macro
for generating Bézier curves[2], Breanndán Ó Nualláin’s DSL for
graph algorithms[5], or Børge Svingen’s use of on-the-fly compi-
lation for genetic programming[3]. These projects achieve high
performance by exploiting cases where Lisp has an inherent advan-
tage. Our work differs from this in that we want to achieve high
performance in cases where Lisp has no inherent advantage, such
as image processing or number crunching.

The most recent publication comparing the performance of Lisp
and C for a case where Lisp has no inherent advantage is fromDidier
Verna and was published in 2006[4]. In that paper, the author shows
how Lisp can reach and sometimes even exceed the performance of
1https://github.com/marcoheisig/sb-simd
2https://github.com/marcoheisig/Loopus

ELS 2022 27

ELS’22, March 21–22, 2022, Porto, Portugal Marco Heisig and Harald Köstler

C for several simple image manipulation tasks. However, neither
the C code nor the Lisp code in that paper use SIMD instructions.
All recent C compilers will use SIMD instructions for such tasks,
so the only way to catch up once more is to use SIMD instructions
in Lisp, too.

Apart from the paper of Verna, there is also the seminal, although
somewhat dated, book about the performance and evaluation of
Lisp systems by Richard P. Gabriel[1], discussing the performance of
various Lisp implementations in general. From today’s perspective,
the most important information therein is the discussion of the
various tradeoffs being made when implementing Lisp and their
implications for performance.

3 SB-SIMD
The library sb-simd allows Common Lisp code to utilize SIMD
instructions. In contrast to most other SIMD interfaces, e.g., C in-
trinsics, sb-simd incorporates the usual conveniences of Common
Lisp. Each instruction set has its own package, and instruction set
inheritance is modeled by re-exporting the symbols of each parent
instruction set. All SIMD data types have their own built-in classes
that can be queried and specialized upon. All functions automati-
cally coerce all supplied arguments to the correct type, broadcast
them to the correct SIMDwidth, and, when the underlying operator
allows it, accept any number of arguments.

Luckily, we didn’t have to trade convenience against speed when
designing the public interface of sb-simd. SBCL’s type inference and
compiler are powerful enough to eliminate the overhead of dynamic
typing, implicit conversions, broadcasts, and variadic arguments
where necessary. Most calls to functions in sb-simd are compiled
to a single machine instruction.

3.1 Software Architecture
The biggest challenge in writing this library was the sheer number
of SIMD instructions available on a modern machine. The AVX
instruction set alone provides almost 1000 instructions, which is
more than the number of functions in the CL package!

The solution we came up with is, perhaps unsurprisingly, Lisp
macros. We first create a table of metadata for each instruction
set, which contains information about all data types, functions,
corresponding mnemonics, mathematical properties, and so forth.
Then we use the data in these tables to generate all the types,
declarations, compiler transformations, machine code emitters, and
functions, that are specified in each table. Not a single line of the
code that is invoked when calling a function in sb-simd is written
by hand. This is not just an eccentricity. By generating all code, we
ensure that each bug breaks all functions simultaneously, which is
much easier to detect and to fix.

All of the tables that are used to generate the functions and data
structures in sb-simd can also be queried at run time. This makes
it possible to look up the supported instruction sets, the functions
exported by each instruction set, the arguments and return types
of each function and much more. Our loop optimization library
Loopus uses this metadata to perform automatic vectorization.

Something we didn’t manage, unfortunately, is to make our
SIMD interface portable across multiple Lisp implementations. The
𝑘 × 𝑛 interactions in code that runs on 𝑘 implementations and 𝑛

architectures turned out to be too big of a headache. At some point
we decided that it is better to have a high-quality SIMD interface
for one Lisp implementation, than a mediocre one that is portable.

3.2 Data Types
The central data type in sb-simd is the SIMD pack. A SIMD pack is
very similar to a specialized vector, except that its length must be a
particular power of two that depends on its element type and the
underlying hardware. The set of element types that are supported
for SIMD packs is similar to that of SBCL’s specialized array element
types, except that there is currently no support for SIMD packs of
complex numbers or characters.

The list of supported scalar types is shown in Figure 1. For each
scalar data type X, there exists one or more SIMD data type X.Y
with Y elements. For example, in AVX there are two supported
SIMD data types with element type f64, namely f64.2 (128bit) and
f64.4 (256bit).

sb-simd Common Lisp
f32 single-float
f64 double-float
s𝑁 (signed-byte 𝑁)
u𝑁 (unsigned-byte 𝑁)

𝑁 ∈ {8, 16, 32, 64}

Figure 1: Scalar data types in sb-simd and their correspond-
ing Common Lisp type specifiers.

SIMD packs are regular Common Lisp objects that have a type, a
class, and can be passed as function arguments. The price for this is
that SIMD packs have both a boxed and an unboxed representation.
The unboxed representation of a SIMD pack has zero overhead and
fits into a CPU register, but can only be used within a function
and when the compiler can statically determine the SIMD pack’s
type. Otherwise, the SIMD pack is boxed, i.e., spilled to the heap
together with its type information. In practice, boxing of SIMD
packs can usually be avoided via inlining, or by writing their values
to specialized arrays (see section 3.11) instead of passing them
around as function arguments.

3.3 Casts
For each scalar data type X, there is a function named X that is
equivalent to (lambda (v) (coerce v ’X)). For each SIMD
data type X.Y, there is a function named X.Y that ensures that its
argument is of type X.Y, or, if the argument is a number, calls the
cast function of X and broadcasts the result.

All functions provided by sb-simd (apart from the casts them-
selves) implicitly cast each argument to its expected type. So to
add the number five to each single float in a SIMD pack x of type
f32.8, it is sufficient to write (f32.8+ x 5). We don’t mention
this implicit conversion explicitly in the following sections, so if
any function description states that an argument must be of type
X.Y, the argument can actually be of any type that is a suitable
argument of the cast function named X.Y.

28 ELS 2022

Closing the Performance Gap Between Lisp and C ELS’22, March 21–22, 2022, Porto, Portugal

3.4 Constructors
For each SIMDdata type X.Y, there is a constructor named make-X.Y
that takes Y arguments of type X and returns a SIMD pack whose
elements are the supplied values.

3.5 Unpackers
For each SIMD data type X.Y, there is a function named X.Y-values
that returns, as Ymultiple values, the elements of the supplied SIMD
pack of type X.Y.

3.6 Reinterpret Casts
For each SIMD data type X.Y, there is a function named X.Y! that
takes any SIMD pack or scalar datum and interprets its bits as a
SIMD pack of type X.Y. If the supplied datum has more bits than
the resulting value, the excess bits are discarded. If the supplied
datum has less bits than the resulting value, the missing bits are
assumed to be zero.

3.7 Associatives
For each associative binary function, e.g., two-arg-X.Y-OP, there
is a function X.Y-OP that takes any number of arguments and
combines them with this binary function in a tree-like fashion. If
the binary function has an identity element, it is possible to call the
function with zero arguments, in which case the identity element is
returned. If there is no identity element, the function must receive
at least one argument.

Examples of associative functions are f32.8+, for summing any
number of 256 bit packs of single floats, and u8.32-max, for com-
puting the element-wise maximum of one or more 256 bit packs of
8 bit integers.

3.8 Reducers
For binary functions two-arg-X.Y-OP that are not associative, but
that have a neutral element, we provide functions X.Y-OP that take
any positive number of arguments and return the reduction of
all arguments with the binary function. In the special case of a
single supplied argument, the binary function is invoked on the
neutral element and that argument. Reducers have been introduced
to generate Lisp-style subtraction and division functions.

Examples of reducers are f32.8/, for successively dividing a
pack of 32 bit single floats by all further supplied packs of 32 bit
single floats, or u32.8- for subtracting any number of supplied
packs of 32 bit unsigned integers from the first supplied one, except
in the case of a single argument, where u32.8- simply negates all
values in the pack.

3.9 Comparisons
For each SIMD data type X.Y, there exist conversion functions X.Y<,
X.Y<=, X.Y>, X.Y>=, and X.Y= that check whether the supplied
arguments are strictly monotonically increasing, monotonically
increasing, strictly monotonically decreasing, monotonically de-
creasing, equal, or nowhere equal, respectively. In contrast to the
Common Lisp functions <, <=, >, >=, =, and /= the SIMD compari-
son functions don’t return a generalized boolean, but a SIMD pack
of unsigned integers with Y elements. The bits of each unsigned

integer are either all one, if the values of the arguments at that
position satisfy the test, or all zero, if they don’t. We call a SIMD
packs of such unsigned integers a mask.

3.10 Conditionals
The SIMD paradigm is inherently incompatible with fine-grained
control flow. A piece of code containing an if special form cannot be
vectorized in a straightforward way, because doing so would require
asmany instruction pointers and processor states as there are values
in the desired SIMD data type. Instead, most SIMD instruction sets
provide an operator for selecting values from one of two supplied
SIMD packs based on a mask. The mask is a SIMD pack with as
many elements as the other two arguments, but whose elements
are unsigned integers whose bits must be either all zeros or all ones.
This selection mechanism can be used to emulate the effect of an if
special form, at the price that both operands have to be computed
each time.

In sb-simd, all conditional operations and comparisons emit
suitable mask fields, and there is a X.Y-if function for each SIMD
data type with element type X and number of elements Y whose
first arguments must be a suitable mask, whose second and third
argument must be objects that can be converted to the SIMD data
type X.Y, and that returns a value of type X.Y where each element
is from the second operand if the corresponding mask bits are set,
and from the third operand if the corresponding mask bits are not
set. An example of masks and conditionals is given in Figure 3.

3.11 Loads and Stores
In practice, a SIMD pack X.Y is usually not constructed by call-
ing its constructor, but by loading Y consecutive elements from
a specialized array with element type X. The functions for do-
ing so are called X.Y-aref and X.Y-row-major-aref, and have
similar semantics as Common Lisp’s aref and row-major-aref.
In addition to that, some instruction sets provide the functions
X.Y-non-temporal-aref and X.Y-non-temporal-row-major-aref,
for accessing a memory location without loading the referenced
values into the CPU’s cache.

For each function X.Y-foo for loading SIMD packs from an array,
there also exists a corresponding function (setf X.Y-foo) for
storing a SIMD pack in the specifiedmemory location. An exception
to this rule is that some instruction sets (e.g., SSE) only provide
functions for non-temporal stores, but not for the corresponding
non-temporal loads.

One difficulty when treating the data of a Common Lisp array as
a SIMD pack is that some hardware instructions require a particular
alignment of the address being referenced. Luckily, most architec-
tures provide instructions for unaligned loads and stores that are,
at least on modern CPUs, not slower than their aligned equivalents.
So by default we translate all array references as unaligned loads
and stores. An exception are the instructions for non-temporal
loads and stores, that always require a certain alignment. We do
not handle this case specially, so without special handling by the
user, non-temporal loads and stores will only work on certain array
indices that depend on the actual placement of that array in mem-
ory. We’d be grateful if someone could point us to a mechanism for
constraining the alignment of Common Lisp arrays in memory.

ELS 2022 29

ELS’22, March 21–22, 2022, Porto, Portugal Marco Heisig and Harald Köstler

3.12 Specialized Scalar Operations
Finally, for each SIMD function X.Y-OP that applies a certain opera-
tion OP element-wise to the Y elements of type X, there exists also a
functions X-OP for applying that operation only to a single element.
For example, the SIMD function f64.4+ has a corresponding func-
tion f64+ that differs from cl:+ in that it only accepts arguments
of type double float, and that it adds its supplied arguments in a
fixed order that is the same as the one used by f64.4.

There are good reasons for exporting scalar functions from a
SIMD library, too. The most obvious one is that they obey the same
naming convention and hence make it easier to locate the correct
functions. Another benefit is that the semantics of each scalar op-
eration is precisely the same as that of the corresponding SIMD
function, so they can be used to write reference implementations
for testing. A final reason is that scalar functions can be used to
simplify the life of tools for automatic vectorization.

3.13 Instruction Set Dispatch
One challenge that is unique to image-based programming sys-
tems such as Lisp is that a program can run on one machine, be
dumped as an image, and then resumed on another machine. While
nobody expects this feature to work across machines with different
architectures, it is quite likely that the machine where the image is
dumped and the one where execution is resumed provide different
instruction set extensions.

As a practical example, consider a game developer that develops
software on an x86-64 machine with all SIMD extensions up to
AVX2, but then dumps it as an image and ships it to a customer
whose machine only supports SIMD extensions up to SSE2. Ideally,
the image should contain multiple optimized versions of all crucial
functions, and dynamically select the most appropriate version
based on the instruction set extensions that are actually available.

This kind of run time instruction set dispatch is explicitly sup-
ported by means of the instruction-set-case macro. The code
resulting from an invocation of this macro compiles to an efficient
jump table whose index is recomputed on each startup of the Lisp
image. An simple example of such an instruction set dispatch is
given in Figure 2.

4 LOOPUS
Even though the interface provided by sb-simdis relatively con-
venient — at least when comparing it to similar libraries in other
programming languages — there are certain repetitive patterns
when writing vectorized code that almost beg for another layer of
abstraction via macros. The most frequent repetitive pattern is that
of using two loops to process a range of data: One with a step size
that is the vectorization width, and one with a step size of one for
handling the remainder. Figure 3 gives an example for this pattern.
Further repetitive patterns are that of rewriting calls to aref as
uses of row-major-aref, and hoisting all the loop invariant part
of the index calculation outside of the loop.

After writing a variety of prototypes, we decided to create a
portable loop optimization library for Common Lisp that can be
used via macros. The library is invoked by using the loopus:for
macro for looping over a range of integers. Once that macro is
encountered, the whole form is turned into a tree of loops, where

(defpackage #:sb-simd-user1

(:use #:common-lisp #:sb-simd)2

(:local-nicknames3

(#:sse2 #:sb-simd-sse2)4

(#:avx #:sb-simd-avx2)))5

6

(in-package #:sb-simd-user)7

8

(defun quadruple4 (array)9

(declare (type (simple-array f64 (4)) array))10

(declare (optimize (speed 3) (safety 0)))11

(prog1 array12

(instruction-set-case13

(:avx14

(setf (avx:f64.4-aref array 0)15

(avx:f64.4*16

(avx:f64.4-aref array 0)17

4)))18

(:sse219

(setf (sse2:f64.2-aref array 0)20

(sse2:f64.2*21

(sse2:f64.2-aref array 0)22

4)23

(sse2:f64.2-aref array 2)24

(sse2:f64.2*25

(sse2:f64.2-aref array 2)26

4))))))27

28

Figure 2: A simple example for selecting the best available
instruction set at run time: The eight elements of a supplied
vector of double floats are quadrupled, using either AVX in-
structions, or, if those aren’t available, SSE2 instructions.

each loop contains zero or more data flow graphs whose nodes
are function calls, and whose roots are array store instructions
or reduction statements. Each data flow graph may also reference
nodes from any of the graphs of the surrounding loops. The leaves of
each data flow graph are either constants or array load instructions.

Only a small subset of Common Lisp is allowed in the body of
a loopus:for macro: functions, macros, and the special operators
let, let*, locally, and progn. For now, this subset strikes the
right balance between expressiveness and ease of optimization, but
we may add support for further special operators in the future.
The good news is that once a programmer obeys these restrictions,
the entire loop nest and all expressions therein are subject to the
following optimizations:

• Rewriting of multi-dimensional array references to refer-
ences using only a single row-major index.

• Symbolic optimization of polynomials, and especially of the
expressions for calculating array indices.

• Hoisting of loop invariant code.
• Automatic SIMD vectorization.

30 ELS 2022

Closing the Performance Gap Between Lisp and C ELS’22, March 21–22, 2022, Porto, Portugal

One may wonder why we use macros and didn’t just add our
loop optimizations to SBCL directly. The reason is that implement-
ing loop optimizations for the entire Common Lisp language is a
daunting task. The many possible interactions of language features
would force us to be conservative in terms of optimization, or spend
much more time on the development that we can currently spare.
One advantage of providing optimizations as a macro, is that they
are automatically available to all Lisp implementations.

5 EXAMPLES
5.1 Sum of Positive Numbers
This first example illustrates the various features provided by sb-
simd. We deliberately don’t utilize Loopus for this example to give
a realistic impression of how programming with raw SIMD instruc-
tions looks like. The example problem is that of summing numbers
in a supplied vector, with the additional constraint that numbers less
than zero shall be ignored. The AVX2 vectorized code to perform
this task is given in Figure 3.

(in-package #:sb-simd-avx2)1

2

(defun sum-positive-numbers (vec)3

(declare (type (simple-array f64 (*)) vec))4

(let ((n (array-total-size vec))5

(i 0)6

(acc (f64.4 0))7

(result 0d0))8

(declare (f64.4 acc) (f64 result))9

(loop while (<= i (- n 4)) do10

(let ((v (f64.4-aref vec i)))11

(f64.4-incf acc12

(f64.4-if (f64.4> v 0) v 0))13

(incf i 4)))14

(f64-incf result (f64.4-hsum acc))15

(loop while (< i n) do16

(let ((v (f64-aref vec i)))17

(f64-incf result18

(f64-if (f64> v 0) v 0)))19

(incf i))20

result))21

22

Figure 3: Summing all positive numbers in a vector, using
AVX2 intrinsics. Two loops are needed to process any num-
ber of elements correctly: One vectorized loop with a step
size of four (lines 10–14), and another one for handling the
remainder (lines 16–20).

5.2 Jacobi
In this second example, we compare the performance of Common
Lisp and C for the problem of applying Jacobi’s method on a two-
dimensional domain. For the C code, we took the best implementa-
tion we could find (Figure 4) and compiled it with GCC 9.2 and with

highest optimization settings (-Ofast -march=native). For the
Lisp code in Figure 5 we used SBCL 2.2.0 and our loop optimization
framework Loopus. The most critical part of assembler code of both
versions is shown in Figures 6 and 7.

void jacobi(double* dst, double* src,1

unsigned int rows,2

unsigned int columns) {3

double *C = dst + columns + 1;4

double *N = src + 1;5

double *W = src + columns ;6

double *E = src + columns + 2;7

double *S = src + 2*columns + 1;8

9

for(size_t iy = 0; iy < rows - 2; ++iy) {10

for(size_t ix = 0; ix < columns - 2; ++ix) {11

size_t idx = iy * columns + ix;12

C[idx] = 0.25 * (N[idx]+ S[idx]+W[idx]+E[idx]);13

}14

}15

}16

17

Figure 4: An efficient C implementation of Jacobi’s method.

(defun jacobi (dst src)1

(declare (type (simple-array f64 2) dst src))2

(loopus:for (i 1 (1- (array-dimension dst 0)))3

(loopus:for (j 1 (1- (array-dimension dst 1)))4

(setf (f64-aref dst i j)5

(f64* 0.25d06

(f64+7

(f64-aref src i (1+ j))8

(f64-aref src i (1- j))9

(f64-aref src (1+ i) j)10

(f64-aref src (1- i) j)))))))11

12

Figure 5: A Common Lisp implementation of Jacobi’s
method.

One can see that the assembler code produced by GCC (Figure
6) and SBCL (Figure 7) is extremely similar. Both versions use three
256 bit vector additions and one 256 bit vector multiplication. The
only differences are that GCC’s assembler code combines two loads
directly with the subsequent addition, and manages to perform the
loop test entirely in registers. In SBCL, the nature of how operations
of its virtual machine are translated to assembler instructions makes
it very hard to combine loads with subsequent instructions. We
haven’t yet investigated why SBCL decided to reference the stack
for checking for termination of the innermost loop.

The reason that SIMD operations appear at all in the code by
SBCL is that Loopus has automatically rewritten the scalar loop

ELS 2022 31

ELS’22, March 21–22, 2022, Porto, Portugal Marco Heisig and Harald Köstler

L1: vmovupd ymm5, [rbx+rax*1]1

vmovupd ymm6, [r11+rax*1]2

vaddpd ymm0, ymm5, [rcx+rax*1]3

vaddpd ymm1, ymm6, [r10+rax*1]4

vaddpd ymm0, ymm0, ymm15

vmulpd ymm0, ymm0, ymm36

vmovupd [rdx+rax*1], ymm07

add rax,0x208

cmp [rsp+0x20], rax9

jne L110

11

Figure 6: The assembler code of the innermost loop pro-
duced by GCC 9.2 for our C code.

L1: vmovupd ymm0, [rsi+rbx*4+8]1

vmovupd ymm1, [rsi+rbx*4-8]2

vmovupd ymm2, [r9+rbx*4]3

vmovupd ymm3, [r8+rbx*4]4

vaddpd ymm0, ymm0, ymm15

vaddpd ymm1, ymm2, ymm36

vaddpd ymm0, ymm0, ymm17

vmulpd ymm0, ymm4, ymm08

vmovupd [rcx+rbx*4], ymm09

add rbx, 810

cmp rbx, rdx11

jl L112

13

Figure 7: The assembler code of the innermost loop pro-
duced by SBCL 2.2 for our Lisp code.

from Figure 5 line 4–11 as two loops, where the first loop has a step
size of four and uses SIMD instructions and where the second loop
has a step size of one and handles the remainder in case the loop
length is not divisible by four. Furthermore, Loopus replaces each
access to a Common Lisp array by direct pointer arithmetic, and
hoists most of the loop index calculations outside of the innermost
loop. This way, each array access can be encoded as a single load
instruction whose address is the sum of two registers, where the
value of the second register is scaled by a power of two, plus a small
constant.

To compare the performance of our Lisp and C codes, we ran each
Jacobi implementation for several minutes on a problem that fits
well into the L1 cache of the target machine. In doing so, we ensure
that the computation is not limited by memory throughput and
thus accurately reflects how well the CPU can digest the generated
machine code. Our results for a variety of x86-64 CPUs are shown
in Figure 8.

CPU Lisp C Ratio
AMD EPYC 7451 “Naples” 8.1 8.6 0.94
AMD EPYC 7452 “Rome” 8.2 10.0 0.82
Intel Xeon “Skylake” Gold 6148 10.8 13.9 0.78
Intel Xeon “Cascade Lake” Gold 6248 7.2 9.3 0.77
AMD EPYC 7543 “Milan” 12.8 18.1 0.71
Intel Xeon “Haswell” E5-2695 v3 6.9 9.8 0.70
Intel Xeon “Icelake” Platinum 8360Y 11.3 16.1 0.70
Intel Xeon “Icelake” Platinum 8358 7.9 11.3 0.70
Intel Xeon “Broadwell” E5-2697 v4 5.0 7.5 0.67

Figure 8: Performance in GFlop/s for Jacobi’smethod on var-
ious CPU architectures, as well as the ratio of the porfor-
mance of the Lisp version and the C version.

6 CONCLUSIONS
We have narrowed the performance gap between Common Lisp
and C for number crunching to something between 6% and 33%,
depending on the target hardware. We achieved this by developing
a low-level SIMD library for SBCL, named sb-simd, and a portable
library for loop optimization and automatic vectorizaton, named
Loopus.

The interface provided by sb-simd is the most convenient way
of using SIMD intrinsics among all programming languages known
to us. It treats SIMD packs as regular, typed objects, allows the
development of SIMD codes at the REPL, and even provides an
introspection mechanism for querying the avaiable instructions and
data types at run time. We hope that the interface provided by sb-
simdwill eventually be supported bymultiple Lisp implementations
and turn into a de-facto standard similar to bordeaux-threads.

The loop optimization library Loopus is still in its infancy, but al-
ready powerful enough to vectorize inner loops written in a certain
subset of Common Lisp. This makes it possible to harness SIMD
instructions for a wide variety of loops using minimal effort. We
hope that this paper will attract further contributors, and that Loo-
pus will one day reach feature parity with the loop optimization
machinery in GCC and Clang.

What makes us particularly excited about these new libraries
is that they turn Common Lisp into a viable language for high
performance computing. Programmers in that domain can now
finally enjoy the convenience and flexibility of using Lisp, and,
most importantly, harness the power of Lisp macros to develop
lightweight, domain-specific optimizations. We are confident that
in many cases, such domain-specific optimizations can outperform
the general-purpose work that is normally done by a compiler. We
are looking forward to working on such optimizing Lisp macros in
the future.

7 ACKNOWLEGMENTS
This work wouldn’t have been possible without the support of
many other people and organizations. We express our heartfelt
gratitude to:

• KONWIHR, the Competence Network for Scientific High
Performance Computing in Bavaria, for funding the advance-
ment of SIMD instructions in SBCL and our work on sb-simd.

32 ELS 2022

Closing the Performance Gap Between Lisp and C ELS’22, March 21–22, 2022, Porto, Portugal

• Paul Khuong, for writing the initial support for SIMD pro-
gramming in SBCL.

• Stas Boukarev, for adding the low-level machinery required
for AVX, AVX2, and FMA instructions to SBCL.

• All the other SBCL developers for kindly supporting this
work and providing feedback, especially Douglas Katzmann,
Charles Zhang, and Christophe Rhodes.

• Bela Pecsek for being an ardent user of sb-simd since the
first day, for porting various benchmarks from C to SIMD-
enhanced Lisp, and for his frequent feedback and bug reports.

• Nicolas Neuss, Hayley Patton, Michał Herda, Jan Münch, and
Shubhamkar Ayare, for some valuable discussions.

• The group from the Erlangen National High Performance
Computing Center (NHR@FAU) for giving us access to their
benchmark systems, and for insistently questioning the per-
formance of Lisp. The latter turned out to be a surprisingly
good motivation.

REFERENCES
[1] Gabriel, R. P. Performance and Evaluation of LISP Systems. The MIT Press, 08

1985.
[2] Graham, P. On LISP. Pearson, Upper Saddle River, NJ, Sept. 1993.
[3] Svingen, B. When lisp is faster than C. In Proceedings of the 8th Annual Conference

on Genetic and Evolutionary Computation (New York, NY, USA, 2006), GECCO ’06,
Association for Computing Machinery, p. 957–958.

[4] Verna, D. How to make lisp go faster than C. In Proceedings of the International
MultiConference of Engineers and Computer Scientists (Hong Kong, June 2006),
International Association of Engineers.

[5] Ó Nualláin, B. Executable pseudocode for graph algorithms. In Proceedings of
the 8th European Lisp Symposium (Apr. 2015), ELS2015.

ELS 2022 33

April: APL Compiling to Common Lisp
Andrew Sengul

asengul@fastmail.fm

╴┘╴┘┴┘┘┘┘╴╴╴┽┽┴┼┴┘┘┴┼╃╴╇┼┘┘┘╴╃┼╃┽┼┽┴┴┘╴┘┽┼┽┽┘┼┼┴┴┴┼┽┽┴┘┘┴┘┘╴┘┘┘┘╴┘┘┼┼┘┴┘╴┴┴┼╃┼┼┴┼┴┘┼┴┼┽╴┘┘┘╴┴┽┼┼┼┽╴┴┘╃┴╴┼┽┽┴┽┴┘╴
╴┘┘┘┘╴┴┘╴┼┼┘┘┘┼╇┽┘╴┴╴┽╃┼┴╴┘╴┼╇┴┴╴╃┘╇╇┴┴┘┼╃┼┼┼┴┼┴┼┽┘┘╴┴╴╴┘╴┘┽┘┴┴┘┼╇╴╇┴┘┴╴┴╴╴┴┴┘┘┴╋┽┼┴┽┘┴┽┴┘╴┘┘╴┼┼┴╇╴┴┽╇╴┼┴┘┴┘┽┼┘╴
┘┘╴┼╴┽┽┴╴┴╴╴┘┴┴┼┼┼╴┼┴┘┘┴┘╴┴┘┽┴┽┴┼┽┴┽┴┼┴┽┴┴┼┘┽┽┴┘┽┼┼╇┼┽┘╴┘┘┽┘┼╴┴┘┴┼╇┴┘┼┽┽┼┽┴┼╴┘┘┘┼╃┽┼┽┴╇┽┴╴┴┴┴┘╴┘╴┽┽┘┘┽┽┘╴┴╴┘╇┽┘┘
┘┘┘╃┼╃┴╴┘┼┴┼┘┴┼┽┴┴┴┴┽┽┌──┐╴┼┽┴┼┴┘┘╴┼╇┽┘╴╴┴╴┽┘┽┴┼
┘┴┘┼┼┘┴╴┼╃┽┽┽┼┽┼┼┼┘┽┽┼│'╴┘┴┼┽╃╇╋'⌷⍨1++/{⊃1 ⍵∨.∧3 4=+/,1 0 ¯1∘.⊖1 0 ¯1⌽¨⊂⍵}\7⍴⊂1-⍨?9 112⍴2│┽┼╇┴┼┼┘┘╃┼┴╴┘┘┴┽╇┴┴┴┽┴
┼┼┼┽┽┼┼┽┴┼┼╃┴┘┴┼┼┼╴┴┽┼└──┘┽┽┘┽┴┴┼┼┘┽┘┘┘┘┴╇┘┼┴┼╴╃
┼┘╴┼┼╴╇╇┴┘┴┼┽┘┽╇┴┽┴╃╴╃┴┘┼┼╴╴╴┘┼╴╃╃╴┘┘╃┼┘┘┴┴┴┴┘┽┽┘┼┘┴┴┘┴┘┘┘┘╴┼┼┴┼╴╃╇╇┼┼┽┽╴╴┘┴┽┴╃┘┘╴┴┼┴┴╇┴╃┼┴┘╴╃╴╃┴╃┼┘┴┘┘┼╴┴┴┴┼╃╋╴
┼┴╇┼┽┘╴╴╴┘┘╃┽┴╴┽┴┘┘┽┴┴┴┘┘┴┽┘┘╴┘┽┽┼╴┘┘┘┘┴┘╴╴┴┴╃┽╴┴┘┘┘┴┽┴┘┘┘╴┴┘┼╇╃┘┼┘┘┴┼┴┴┴┘┘╃╃┼┘┘┘╴┘┴┽┽┽┼┘┘┴┴┽╇╴┼╴╋┼┼┘┘┼┽┽┴┴┼┽┴┼┴
┴┴╃┴┘╴┘┘┘┘┘┘┼╃╴┽╃╴╴┽┽┽┘┽┼┘╴┘┘╴┴┘╃┘┴┘┘╴┘┘┼┴┘┘┴┘┘┘╴┽┴┴╇┼╴┘╴┘┘┘┘┴┘┽┼┼┽╇┽┴┘┘┘┘╴┼╴╇┘┘┘┴┽╋┴┘┘┽┼┘┘┘┽┘╃╃┘┼┴╃┽┴┴┘┴┴┼┽┘╴┴┘

Figure 1: An APL expression framed by its output

ABSTRACT
This paper demonstrates the April APL compiler (code hosted at
https://github.com/phantomics/april). April compiles a subset of
the APL language into Common Lisp, allowing APL’s terse, effi-
cient syntax to be leveraged for array processing andmathematical
operations within a Common Lisp program. Along with the com-
piler April includes a suite of specification tools making it easy to
extend the language, allowing for a uniquely flexible development
approach. Released under the permissive Apache 2.0 license, April
has been leveraged in a graphical display hardware startup and a
variety of applications including statistical analysis, vector graph-
ics and terminal interfaces.

CCS CONCEPTS
• Software and its engineering → Software design engineering;
• Computing methodologies → Computer algebra systems;
Representation of mathematical functions.

KEYWORDS
Demonstration, Compiler, Array, DSL, APL, Lisp, Linear algebra,
Vector languages, Interoperability
ACM Reference Format:
Andrew Sengul. March 2022. April: APL Compiling to Common Lisp. In
Proceedings of the 15th European Lisp Symposium (ELS’22).ACM, New York,
NY, USA, 5 pages. https://doi.org/10.5281/zenodo.6381963

1 INTRODUCTION
APL is known for its exotic character set and minimalist style. Like
Lisp the language was originally designed as a mathematical nota-
tion [7] and creator Ken Iverson didn’t anticipate that APL expres-
sions could be evaluated by a computer. His colleagues built the
first APL interpreter using a variant of Iverson’s notation simpli-
fied for use with a teletype terminal [4], just as John McCarthy’s
students traded M-expressions for S-expressions to develop the

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of thisworkmust be honored.
For all other uses, contact the owner/author(s).
ELS’22, March 21–22, 2022, Porto, Portugal
© March 2022 Copyright held by the owner/author(s).
https://doi.org/10.5281/zenodo.6381963

original IBM 704 Lisp interpreter. APL followed an evolutionary
path somewhat similar to that of Lisp as the language grew to
prominence on mainframes, functioning as a complete operating
system for the machines where it ran [5].

Work on April began in late 2017 and it has since gone through
multiple development iterations of its core compiler, functions and
specificationmacros. A previous talk I gave on April can be viewed
at https://youtube.com/watch?v=AUEIgfj9koc. Since thenApril has
evolved considerably, incorporating tacit function composition, in-
line operators and multithreading support for almost all functions.

2 USING APRIL
The simplest way to use April is to pass APL strings to the (april)
macro. An example is (april "1+1 2 3"), which returns the vec-
tor #(2 3 4) – APL composes addition and other scalar functions
over arrays, so the 1 is added to each element of #(1 2 3). APL’s
core functions are all just one character long, like +, -, × and ÷.
April can also take files of APL code as input and it has a wide va-
riety of configuration options. April’s parameters may be passed
as the first argument to the (april) macro inside a (with) form.

A complete introduction to the APL language is far beyond the
scope of this section but a good starting point is April’s README
file, located at the link in the abstract. The README has guide-
lines on ways of entering APL characters and links to resources
including language references and interactive tutorials. April is
included in Quicklisp and installing it is as simple as evaluating
(ql:quickload 'april).

April runs its character input through a lexer, converting the
characters to tokens which are then fed to a compiler that gener-
ates Common Lisp code. The (:print-tokens) parameter prints
tokens output by the lexer before they are passed to the compiler:

* (april (with (:print-tokens)) "1+1 2 3")
(3 2 1 (:FN #\+) 1)
#(2 3 4)

Note that the lexer accumulates the tokens in reverse order; this
is natural since APL code is evaluated from right to left and the
tokens are thus fed to the compiler starting from the end of each
line read.

The (:compile-only) parameter causes April to print its com-
piled output instead of evaluating it:

34 ELS 2022

ELS’22, March 21–22, 2022, Porto, Portugal Andrew Sengul

* (april (with (:compile-only)) "1+1 2 3")
(IN-APRIL-WORKSPACE COMMON

(LET ((OUTPUT-STREAM *STANDARD-OUTPUT*))
(DECLARE (IGNORABLE OUTPUT-STREAM))
(SYMBOL-MACROLET

((INDEX-ORIGIN ⊑*INDEX-ORIGIN*)
(PRINT-PRECISION ⊑*PRINT-PRECISION*)
(COMPARISON-TOLERANCE

⊑*COMPARISON-TOLERANCE*)
(DIVISION-METHOD ⊑*DIVISION-METHOD*)
(RNGS ⊑*RNGS*))

(A-OUT (A-CALL (APL-FN-S +)
(AVEC 1 2 3) 1)

:PRINT-PRECISION
PRINT-PRECISION))))

Note the ⊑ readermacro. It works to intern symbols in the proper
workspace packages in tandem with the (in-april-workspace)
macro. Like other APLs April stores its functions and variables
in named workspaces, which are implemented as Common Lisp
packages. When the macro (in-april-workspace common ...)
is expanded, an instance of ⊑symbolwithin is transformed into the
symbol april-workspace-common::symbol. Considerable work
has been done to make April’s compiled output human-readable,
with many macros abbreviating common structures that would
otherwise bloat the code.

Compared to other APL implementations April stands out for
its seamless interoperability with Common Lisp, and through CL
other languages and systems. APLs have traditionally been imple-
mented as monolithic interpreters whose communication with ex-
ternal APIs must be done through plugins to the executable. The
most popular APL implementation, Dyalog APL1, is proprietary
and thus any such plugin must be created by Dyalog. Other free
softwareAPLs exist, but their implementation inAlgol descendants
like C++ and Java makes extension an ordeal.

The simplest way to pass values from CL into April is to use the
(april-c) macro. Here, the number 10 is passed as the second
argument to (april-c) and is represented by ⍵, which stands for
the right argument, within the APL function.

* (april-c "{⍵+5}" 10)
15

April’s (:state) parameter with the sub-parameters (:in) and
(:out) can be used for more complex input and output.

* (april (with (:state :in ((a 3) (b 5))
:out (a c)))

"c←a+⍳b")
3
#(4 5 6 7 8)

Variables named a and b are passed in, and the variables named
a and c are returned. The [⍳ index] function seen here produces
a vector of numbers from 1 to its argument, and ← assigns the result
of the vector’s addition to a to the variable c.

Passing functions into April is likewise simple:

1https://www.dyalog.com/

* (april (with (:store-fun
(add-ten (lambda (x)

(+ x 10)))))
"")

NIL ;; nothing is evaluated, so nil is returned

* (april "addTen 20")
30

Dash-separated variable names are converted to camelCasewithin
April, since the - character expresses the subtraction function in
APL and so cannot be part of a variable name.

April does not have any stock functions for system interaction,
but using the (:store-fun) parameter they can easily be added
as required. Here is an example using the uiop2 library:

* (april (with
(:store-fun
(sh (lambda (s)

(uiop:run-program
(coerce s 'string)
:output :string)))))

"")
NIL

* (april "' GOODBYE',⍨sh 'echo HELLO'")
"HELLO
GOODBYE"

In just a few lines, April can thus be extended to support run-
ning terminal commands. Recurring questions addressed to other
vector language projects like “When will we get JSON support?”
and “When will we be able to make HTTP requests?” can be ad-
dressed by April users within minutes.

3 IMPLEMENTATION
Common Lisp has powerful tools for working with arrays but their
syntax is often cumbersome. APL can build and transform arrays
with only a handful of characters, making tasks that take a large
amount of code in Common Lisp much simpler to write.This led to
my interest in leveraging APL within Common Lisp, and CL is one
of the best choices of language to implement APL because it has
almost all of the necessary array faculties inbuilt. With support for
nested arrays, high-rank arrays and zero-rank arrays, it’s easy to
work with April’s array output using standard CL code. This sec-
tion outlines some of the more interesting challenges encountered
in the course of developing April.

3.1 The Core Specification
Building a programming language is a complex task. I wrote the
(specify-vex-idiom) macro to mitigate this complexity, imple-
menting a core specification for April that can be seen in the source
file april/spec.lisp3. This large macro specifies all of April’s
lexical functions and operators along with its language utilities,
putting all the language’s significant configuration in one central

2https://gitlab.common-lisp.net/asdf/asdf/-/tree/master/uiop
3https://github.com/phantomics/april/blob/master/spec.lisp

ELS 2022 35

April: APL Compiling to Common Lisp ELS’22, March 21–22, 2022, Porto, Portugal

location. Information like the inverse forms of functions and their
alternative character representations can be found here, alongwith
all of their unit tests.

This centralized organization has made the development of the
language significantly faster than would have been possible with a
different style. For example, the recent addition of an inverse form
for the [⍸ where] function required just one new line in the spec
along with an 18-line function added to April’s main library.

Moreover, April’s specification macros can be used to augment
the language with new functional characters in just a handful of
lines.

(extend-vex-idiom
april
(functions
(with (:name :extra-functions))
(⍛ (has :title "Add3")

(ambivalent
(scalar-function
(lambda (omega) (+ 3 omega)))

(scalar-function
(lambda (alpha omega) (+ 3 alpha omega))))

(tests (is "⍛77" 80)
(is "8⍛7" 18)))))

In this code, functional character ⍛ is added to the April lan-
guage, implementing a rather silly function called Add3 that adds
three to its argument (if given one argument) or to the sum of
its arguments (if given two arguments). A pair of unit tests for
this function are added to the main test sequence as well. The
(extend-vex-idiom) macro can also be used to overload April’s
utilities, like the functions that strip comments from code and parse
numeric strings.

With this macro skilled developers can patch the language for
specific applications, creating custom variants of April with no
need to fork its main codebase. The specification macros are imple-
mented in April’s sub-package vex4, which contains a set of gen-
eral tools for implementing vector languages. In the future other
vector languages may be implemented based on the vex model.

3.2 Array Prototypes
The only significant array feature APL has that CL lacks is empty
array prototypes. The prototype of an APL array is its first row-
major element [1]. Prototypes are used by functions like [↑ take]
and [/ expand] to fill the empty space resulting when an array is
made larger. When an APL array is reduced to size 0, as with func-
tions like [⍴ shape] and [↓ drop], it retains the “memory” of its
prototype so that if it is expanded to a nonzero size, the prototype
will be used to populate the space in the new array. For a character
array the prototype is a blank space, and for a numeric or mixed
array the prototype is 0. For an array whose first row-major ele-
ment is a nested array, the prototype is an array of the same shape
whose elements are the prototype of the nested array. Thus if the
first element in the array is the matrix #2A((1 2)(3 4)), the ar-
ray’s prototype will be #2A((0 0)(0 0)).

4https://github.com/phantomics/april/blob/master/vex/vex.lisp

The Common Lisp array model does not include a “prototype”
value, but for non-zero-sized arrays it’s unnecessary since the pro-
totype is simply an “empty” version of the first element. Func-
tions that output a zero-sized array will displace the array to a
one-element vector containing a list of metadata with the proto-
type. The (array-displacement) function can be used to fetch
the metadata from any context, making it straightforward to get
the empty array’s prototype for functions that use it.

3.3 Multithreading
One of April’s recent development priorities has been to use multi-
threading wherever possible. April uses macros called (xdotimes)
and (ydotimes) to accomplish this, leveraging the lparallel5 li-
brary. These macros’ definitions can be found in the source file
april/aplesque/aplesque.lisp6.The (xdotimes)macro is used
for algorithms that iterate across the elements in a function’s out-
put array in row-major order.Thismacro splits an array processing
task into appropriately-sized segments to divide between threads.
Most CL implementations have been observed to use registers with
sizes equal to the sizes of array elements when modifying arrays
of elements 8 bits in size or larger. When dealing with arrays that
have integer elements smaller than 8 bits, 64-bit registers are usu-
ally used to hold the values of elements being processed.Thismeans
that when operating on arrays with sub-8-bit integer elements,
threads must work upon sub-vectors of elements with a length of
(/ 64 element-size) to stop elements from being clobbered as
multiple threads try to write to the same location in memory.

The (ydotimes) macro is like (xdotimes) but it doesn’t sup-
port sub-8-bit elements; in the case of arrays with elements smaller
than 8 bits, (ydotimes) will perform a task synchronously. April
uses (ydotimes) in cases where it’s impractical to iterate over an
output array in row-major order and thus the operation can’t be
divided into 64-bit segments for small integer elements.

Most of April’s array-transforming functions have a similar de-
sign pattern. Based on the dimensions of the input array and the
arguments passed to the function, the shape of the output array
is determined. Then, April iterates over the output or input array
using (xdotimes) or (ydotimes) and performs arithmetic on the
row-major index of each output element to determine the corre-
sponding row-major element in the input, finally copying the ele-
ments from the input array to the output array.

4 APPLICATIONS
April has been used for image editing, statistical analysis, web de-
velopment, terminal interfaces and more. In my experience, while
Lisp is unmatched as a general-purpose language APL enables the
most intuitive development within its domain of array processing
and discrete algorithms. April shares in the interactive features of
Common Lisp environments, enabling developers to re-evaluate
individual closures in source code, which standard APL environ-
ments don’t allow - their interactivity is limited to the REPL and
to reinterpreting entire discrete functions.

5https://lparallel.org/
6https://github.com/phantomics/april/blob/master/aplesque/aplesque.lisp

36 ELS 2022

ELS’22, March 21–22, 2022, Porto, Portugal Andrew Sengul

* (april "
random ← {⎕IO-⍨?2⍴⍨|⍺ ⍵}

⍝ create a randomized binary matrix
life ← {⊃1 ⍵∨.∧3 4=+/,1 0 ¯1∘.⊖1 0 ¯1⌽¨⊂⍵}

⍝ the classic Conway's Game of Life function
trace ← {⍺[;1]⌷⍨⊂⍺[;2]{1⌈⍺{⍵×⍵≤≢⍺}⍺⍳⍵}{2⊥,⍵}⌺3 3⊢⍵}

⍝ use [⌺ stencil] to outline cells according to matrix decoding maps

chars ← '─ ─ │ │ ┌ ┌ └ └ ┐ ┐ ┘ ┘ '
ints ← 48 384 144 288 16 416 128 304 32 400 256 176
xEncInts ← 68 69 257 261 321 324
decodings ← ints⍪⍨{⍵⍴⍨1,⍴⍵} chars~' '

H ← 14 ⍝ height
W ← 112 ⍝ width
I ← 5 ⍝ iterations of life function to perform before printing
M ← ' ' {(⍺,0)⍪⍵[1;] {(⍪⍸×⍵),⍨⍪⍺⌷⍨⊂⍵~0} ⍵[2;] {⍺{⍵×⍵≤≢⍺}⍺⍳⍵} {2⊥,(2 2⍴0)⍷3 3⍴(9⍴2)⊤⍵}¨⍳2*9} decodings

⍝ map of binary decodings of stencil matrices to box-drawing characters
M⍪← '┼',⍪xEncInts ⍝ add cross-line character values to decoding map

⎕←M trace life⍣I⊢H random W ⋄ (⍕I),' iterations'
")
─┐ │ │ ┌─┘ └──┐ ┌─┘ │┌──┘ │┌┘ └┐ ┌┘ └┐ │ └┐ │ └┘ │ ┌─┘ └─┐ ┌─┘ └┐ │ ││
│ └┐ │ ┌─┘ └──┘ └┘ └┘ │ │ └─┐ │ │ │ ┌┘ │ │ │ └┐ ┌┘ └┘ ┌──
│ └─┼─┘ ┌┐ ┌┐ ┌──┐ ┌┐ ┌┐ └─┐│ └┐ │ ┌┘┌─┐ │ │ ┌┘ │ └┐ │┌┘ ┌┐ ┌┐└──
│ │ ┌┐└┘┌─┐ └┘ │ │ └┘ └┘ ││ ┌─┐ │ └┐ │┌┘ └┐ └┐ │ │ ┌──┘ └┐ ┌┘│ ┌┘└─┘│
─┘ └┐ └┘ │ │ ┌┘ └┐ ┌┐ │└─┘┌┘ │ └┐ ┌┘│ └┐ │ └─┐│ └─┐ └──┘ │ │ ┌─┐│

│ └┐│ │ └──┘└────┐ └─┐ │ ┌─┘ │ └─┘┌─┐ └┐ └┐ │└─┐ └─┐ │ │ │ └┼┐
┌──┐ │ └┘ │ └┐ ┌┐ ┌──┐ └─┘┌┘ └┐ └┐│ │ │ ┌┼──┘ └─┐ ┌──┼─┼─┼┐ └┘
│ └────┘ ┌─┐ ┌──────┘ └─┐ ││ └──┘ └┐ └┐ └┘ ┌┘ ┌─┘ └┘ ┌──┐ │ │ │ │ └┘
┘ ┌─┘ │ ┌┘ ┌─┐ ┌─┼─┼┘ │ └──┐ ┌┘ │ ┌────┼─┐│ │ │ │ └─┐

┌┼─┐ └──┘ │ └┐ ┌┘ └─┘ │ └──┘ │ │ │ │└┐ ┌┘ └──┘ └────┐
──┐ ┌┐ └┘ │ ┌┘ └┐ ┌┘ ┌┐ ┌───┘ ┌──┐ ┌┘ │ ┌─┐└┐└┐└─┘ └─

│ │└─┐ │ ┌────────┐ │ │ │ ┌┐ ┌┐ └┘ │ ┌┘ └┐ │ │┌┘ └─┘ │
│ │ └───┘ ┌─┘ └┐┌─┘ │ │ └┘ └┘ │ ┌─┐ │ │ │ ┌┘│ └┐ ┌─┐┌──┐
└─┘ │ ┌┐ ││ ┌────┘ │ ┌┐ ┌──┐ │ │ │ └┐ ┌┘ └──┐ │ └─┐ ┌─┐ │ │ ││ │

"5 iterations"

Figure 2: APL evaluated via April implementing the Game of Life function with a convolution kernel to outline cells

4.1 Terminal Graphics
An example using April to generate text-based visuals is shown
in Figure 2. This code includes a classic APL function used to im-
plement mathematician John Conway’s Game of Life [2]. Rather
than displaying the cells themselves, it uses the [⌺ stencil] op-
erator to draw boxes around the locations of the cells. This opera-
tor can implement convolution kernels, a common technology in
computer graphics [3][6]. Convolution kernels are used to blur and
sharpen images, for pattern-matching (to detect faces, for example)
and in this case to find edges.

The trace function uses [⌺ stencil] to process 3x3 submatri-
ces of the binarymatrix generated by the life function, producing
9-bit integers decoded from the binary vector displaced to each sub-
matrix. In other words, matrix #2A((1 1 0)(1 0 0)(0 0 0)) is
displaced to vector #(1 1 0 1 0 0 0 0 0) which decodes in bi-
nary to 416. This number corresponds to the box-drawing charac-
ter ┌ stored in the table M. For decoded values like 416 that indicate

the presence of adjacent cells while no cell is actually present at the
position, box-drawing characters are placed in a character matrix
of the same shape as the Game of Life matrix.

Amore complex variant of this function is used inApril’s ncurses
demo application (april/demos/ncurses/7 in the repository). It’s
integratedwith the croatoan8 CL ncurses binding library to imple-
ment a terminal application displaying the cell outlines generated
by the code in Figure 2. It also varies each character’s background
color to reflect the presence or absence of cells in those spaces over
time. Building these graphical algorithms in Common Lisp would
have required much more code than could fit on one page.

Developing with ncurses has been regarded as a tedious and
painful enterprise since using conventional languages means writ-
ing dozens of nested loops. April offers the potential to quickly and
intuitively specify terminal interface elements and even add some
animation and color to keep things fun.
7https://github.com/phantomics/april/tree/master/demos/ncurses
8https://github.com/McParen/croatoan

ELS 2022 37

April: APL Compiling to Common Lisp ELS’22, March 21–22, 2022, Porto, Portugal

Figure 3: Three color combinations shown on the Bloxl display

4.2 Speaking of Color…
TheApril compiler’s most prominent application is designing pixel
animations for use with a custom LED display built by a hardware
startup called Bloxl9. Raster graphics are a natural fit for APL; for
instance, this code using the opticl10 image processing library is
all that’s needed to produce a palette matrix of the unique colors
(one set of RGB values per row) in a PNG image:

(april-c "{⍉E⊤∪,(E←3⍴2*8)⊥2 3 1⍉⍵}"
(opticl:read-png-file "/path/to/image.png"))

While designing patterns for display on the LED device I exper-
imented with different methods to generate appealing color com-
binations. This is one of the simpler algorithms I wrote:

(april-c "{(⍺×3)⍴1-⍨2*?⍵⍴8}" segment leds)

Figure 3 shows three of the resulting color schemes. A vector of
random numbers between 1 and 8 of length segment is created, 2
is raised to the power of each element, 1 is subtracted from each
result, and the output vector is repeated to fill a vector of length
leds times 3 (3 RGB integer values for each LED). The resulting 8-
bit integers will manifest a color series on an LED array. Varying
the length of the segment will produce different patterns. In the
span of about 10 minutes I wrote this code and used it to build a
library of palettes for use with the Bloxl display, generating dozens
of RGB vectors and saving the ones that looked good.

April has been a unique boon to the development of Bloxl since
building animations often requires custom code for each animation
that isn’t used anywhere else. Using a more verbose language, I
would be faced with the choice of either placing the custom code
directly inside the spec for an individual animation and bloating
it by many lines or collecting all custom animation functions in
another part of the codebase, adding the cognitive overhead and
technical debt of many more functions that are each only used for
one task. April makes it possible to express sophisticated custom
effects in just a line or two, negating complexity in a way that
wouldn’t otherwise be possible.
9https://bloxl.co
10https://github.com/slyrus/opticl/

5 ACKNOWLEDGEMENTS
Justin Dowdy and Nikolai Matiushev for many bug reports, Kevin
Jones, Jérôme Ibanes and Nathan Rogers for steadfast support, Jan
Münch, Elias Mårtenson, Marshall Lochbaum and many others on
IRC, Matrix and Github for conversation and commentary.

6 CONCLUSIONS AND FUTUREWORK
I consider April to have substantially fulfilled my initial design
goal: an alloy of two languages with complementary strengths.
April has reduced the time needed to accomplish many tasks and
made things possible that weren’t before. At events featuring the
Bloxl device I have live-coded effects that would have taken hours
to assemble using conventional methods.

Upcoming design priorities for April include further speedups
through the use of SIMD and even possible GPU acceleration through
integration with ArrayFire11. April remains slower than Dyalog
APL but the compiler has a multifaceted framework for optimiza-
tion, including its parallelizing macros and a pattern-matching sys-
tem for code that can be implemented in a faster way than the
compiler normally would (april/patterns.lisp12).

REFERENCES
[1] APLWiki.com. Prototype, 2020. URL https://aplwiki.com/wiki/Prototype.
[2] APLWiki.com. John scholes’ conway’s game of life, September 2021. URL https:

//aplwiki.com/wiki/John_Scholes%27_Conway%27s_Game_of_Life.
[3] Thiago Carvalho. Basics of kernels and convolutions with opencv, 2020.

URL https://towardsdatascience.com/basics-of-kernels-and-convolutions-with-
opencv-c15311ab8f55.

[4] Adin Falkoff. Apl 360 history. In Proceedings of the Conference on APL, APL
’69, page 8–15, New York, NY, USA, 1969. Association for Computing Machinery.
ISBN 9781450373784. doi: 10.1145/800012.808128. URL https://doi.org/10.1145/
800012.808128.

[5] H. Hellerman. Experimental personalized array translator system. Commun.
ACM, 7(7):433–438, Jul 1964. ISSN 0001-0782. doi: 10.1145/364520.364573. URL
https://doi.org/10.1145/364520.364573.

[6] Roger Hui. Towards improvements to stencil, 2020. URL https://www.dyalog.
com/blog/2020/06/towards-improvements-to-stencil/.

[7] Kenneth E. Iverson. Notation as a tool of thought. Commun. ACM, 23(8):444–465,
Aug 1980. ISSN 0001-0782. doi: 10.1145/358896.358899. URL https://doi.org/10.
1145/358896.358899.

11https://github.com/arrayfire/arrayfire
12https://github.com/phantomics/april/blob/master/patterns.lisp

38 ELS 2022

Tuesday, 22 March 2022

ELS 2022 39

Transpiling Python to Julia using PyJL
Miguel Marcelino

INESC-ID/Instituto Superior Técnico, University of Lisbon
Lisbon, Portugal

miguel.marcelino@tecnico.ulisboa.pt

António Menezes Leitão
INESC-ID/Instituto Superior Técnico, University of Lisbon

Lisbon, Portugal
antonio.menezes.leitao@tecnico.ulisboa.pt

ABSTRACT
Transpilers convert source code between programming languages.
With the rise of new high-level programming languages, transpilers
are ideal tools to speedup the conversion of libraries written in more
established languages to newer and/or less popular ones, fostering
their adoption.
Julia is a recently introduced programming language that targets
various application areas of the widely popular Python language.
Unfortunately, it still lacks many of the high-quality libraries found
in Python. To speedup the development of libraries, we propose
extending the PyJL transpiler to translate Python source code into
human-readable, maintainable, and high-performance Julia source
code.
Despite being at an early development stage, our preliminary results
show that PyJL generates human-readable code that can achieve
good performance with minor changes.

CCS CONCEPTS
• Software and its engineering→ Source code generation; •
General and reference → Cross-computing tools and tech-
niques.

KEYWORDS
Source-to-Source Compiler, Automatic Transpilation, Library Trans-
lation, Python, Julia
ACM Reference Format:
Miguel Marcelino and António Menezes Leitão. 2022. Transpiling Python to
Julia using PyJL. In Proceedings of the 15th European Lisp Symposium (ELS’22).
ACM, New York, NY, USA, 8 pages. https://doi.org/10.5281/zenodo.6332890

1 INTRODUCTION
A generic definition of a transpiler is a tool that transforms input
source code into output source code, where the input and output
source code can be written in the same or in different programming
languages. The term transformation is relatively broad, and many
solutions use more specific concepts to categorize different transpi-
lation approaches. DMS [3], a tool that focuses on the automatic
management of large software solutions, uses the concept of Design
Maintenance. Other tools in the area of Safety-Critical Computing
[28] use the concept of Source Code Manipulation to implement
Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ELS’22, March 21–22, 2022, Porto, Portugal
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM.
https://doi.org/10.5281/zenodo.6332890

fault-tolerance mechanisms. In the context of this research, we fo-
cus on the topic of Source-to-Source Translation, where transpilers
translate source code from an input language to a target language.

The first transpiler was developed in 1978 to provide compatibil-
ity between an 8-bit and a 16-bit processor. It was called CONV86 [7]
and was developed by Intel to translate assembly source code from
the 8080/8085 to the 8086 processor. At the time, many other tran-
spilers were developed with a similar purpose, such as TRANS86
and XLT86 [30]. Nowadays, with programmers developing soft-
ware in higher-level programming languages, it makes sense to
have transpilers operate at this level.

In recent years, we have seen the rise of many new high-level
programming languages, such as Rust, Go, TypeScript and more.
Among them is the Julia programming language, which claims
to have the performance of C, the ease of use of Python, and the
macro capabilities of Lisp, among others. However, Julia currently
lacks the large library sets found in more established programming
languages. Converting libraries from these languages to Julia would
allow programmers to benefit from extended library support and
from Julia’s performance on modern hardware.

Manually translating large code-bases is a difficult task and re-
quires substantial resources. For instance, the Commonwealth Bank
of Australia converted its code-base from COBOL to Java, spending
$750 million over five years. In this regard, manually translating
Python’s large library set would be an enormous challenge. Using a
transpiler to convert libraries automatically would benefit program-
mers. However, automatic translation is a challenge for a transpiler,
which we will discuss in the following section.

2 AUTOMATIC TRANSLATION
Automating the translation between source and target languages
is addressed with differentiating perspectives. LinJ [18] aims at a
fully automatic translation of Common Lisp to Java source code.
JSweet [24] translates Java to JavaScript and preserves JavaDoc
documentation in JSDoc. Other tools, such as the Fortran-Python
two-way transpiler [5], intentionally require manual intervention
and request the programmer to annotate the input Python source
code with type hints before translating it to Fortran.

We consider that automating the translation process is relevant,
as the goal is to translate libraries. Furthermore, since the aim is
to generate human-readable and maintainable code, the transpiler
needs to translate language syntax and semantics as programmers
would, by preserving the pragmatics of Julia.

To translate language syntax and semantics, we need to consider
how different constructs map to the target language. As an example,
consider the following code written in Python:
ls1 = [1,2]
ls2 = [3,4]
ls_sum = ls1 + ls2

40 ELS 2022

ELS’22, March 21–22, 2022, Porto, Portugal M. Marcelino and A. M. Leitao

Despite the fact that Julia has identical syntax for assignments,
arrays, and arithmetic operators, executing this example in Julia
would not yield the same results. In Julia, adding ls1 and ls2
results in an element-wise addition, producing [4,6]. In Python,
this results in the creation of a new list that contains the elements
of both lists, i.e., [1,2,3,4]. A correct translation to Julia would
use the syntax:
ls_sum = [ls1;ls2]

Furthermore, if the source and target languages promote different
programming paradigms, the transpilation process becomes even
more difficult. For example, consider translating Object-Oriented
(OO) Python code to Julia, where a transpiler would need to map
functionalities such as multiple inheritance, which Julia currently
does not support, and handle method overrides. Python classes
also implement special methods, such as __init__ and __str__.
Additionally, Python also allows redefining built-in operators, such
as arithmetic operators, for class instances. A transpiler that aims
to preserve Julia’s pragmatics would need to map all these func-
tionalities while also generating a target program that is easy to
understand and modify.

The mapping of library calls to the target language should also
be considered. This can be done on a per-function basis, where func-
tions in the input language are mapped to functions with equivalent
behavior in the target language. For instance, calls to the function
np.amax of Python’s NumPy [23] library, which retrieves the max-
imum value of a matrix, should be translated to calls to Julia’s
function maximum.

Type information is another important aspect of transpilation. In
particular, the mapping of dynamically typed languages to statically
typed ones presents a challenge, which was already addressed by
some proposals ([18], [31]). Furthermore, languages such as Julia
may benefit from type annotations to optimize code performance.

A transpiler can translate most use-cases automatically if the
input and target languages have similar levels of abstraction. How-
ever, some cases present ambiguous translation scenarios, which
we will discuss in the following section.

3 DISAMBIGUATE TRANSLATIONS
In the previous section, we discussed several conflicts that a tran-
spiler should automatically resolve. However, there are some trans-
lation scenarios where automatic translation could result in the
generation of convoluted code, which would make the mapping
between the input and the generated source code fuzzy.

In particular, consider transpiling source code written in a dy-
namically typed language, such as Python. This scenario exposes
the limitations of type inference, as we are bound to the information
available at compile time. As an example, consider the following
Python function and its translation to Julia:
def sum_two(x, y):

return x + y

The function sum_two receives two inputs, x and y that can
have arbitrary types. The main problem lies in Python’s + operator,
which applies different operations depending on the runtime types
of its operands, such as integer addition or string concatenations,
among other possibilities.

A possible solution to disambiguate such cases is to request the
programmer to annotate the Python source code using type hints to
assist the translation process. In the previous case, annotating the x
and y arguments using type hints would result in a more accurate
translation.

Generally, it is a good practice to annotate the arguments and re-
turn types of functions, as this conveys the programmer’s intentions
of the source code. Furthermore, functions such as sum_two are too
generic to be able to infer any type information. In such cases, the
transpiler requires type-hints to correctly map the operations to
Julia.

4 JULIA AND PYTHON
After discussing several aspects of transpilation, it is important
that we introduce the two languages that will be the focus of our
project.

Python was introduced more than 30 years ago. Throughout the
years, its popularity has increased among the scientific community
for providing an easy learning curve and an extensive library set.

The Python programming language has many alternative im-
plementations. Two of them are Jython [12] and IronPython [13],
where the first approach compiles Python source code to Java byte-
code that runs on the JVM and the latter compiles Python source
code to IL bytecode for the .NET platform. However, these imple-
mentations lack support for Python 3. CPython, Python’s reference
implementation, is written in the C programming language and has
support for Python’s latest version.

However, CPython suffers from slow performance on modern
hardware due to Python’s implicit dynamism. Programmers who re-
quire highly efficient code usually implement a prototype in Python
and then convert the kernel parts to C. Furthermore, Python’s high-
performance libraries, such as NumPy[23], are also highly optimized
libraries written in C that provide a speedup when compared to
Python’s native implementations. This is commonly referred to as
the two-language problem, where the prototyping language differs
from the main implementation language.

On the other hand, we have the recently introduced Julia pro-
gramming language, which has been proving to be a high-performance
alternative to Python, aiming at solving the two-language problem.
Julia’s simple syntax combined with high performance on modern
hardware makes it a great alternative to Python.

Nowadays, two critical factors for the success of programming
languages are the quality and quantity of available libraries. This
problem was acknowledged in the context of Common Lisp [19],
which, despite being a high-performance and flexible language,
did not become popular due to its absence of libraries and the
difficult mechanisms used to integrate them. Julia has a good library
integration mechanism, which has incentivized the development
of many third-party libraries. However, the available library set is
still small, which is an issue we plan to address.

5 PYJL
The development of this project is based on an existing solution
called Py2Many [29], which includes the PyJL transpiler. Py2Many
provides a generic architecture and implements the necessary tran-
spilation mechanisms to transpile Python to many C-like languages.

ELS 2022 41

Transpiling Python to Julia using PyJL ELS’22, March 21–22, 2022, Porto, Portugal

Figure 1: PyJL Architecture

PyJL builds upon that architecture and defines its transpiler imple-
mentation to translate Python to Julia. We opted to use Py2Many,
since it has an active community updating it. Additionally, our
preliminary analysis of the frameworks’ architecture shows that it
is a good starting point to support this project.

Our implementation of PyJL [22] is still in its initial development
stages and far away from our goal of automating the translation
of Python libraries to Julia. The following section describes the
current state of PyJL. We also analyze a performance scenario and
detail our future plans for this project.

5.1 PyJL Architecture
In this section, we describe the stages of the transpilation pipeline
used in PyJL. PyJL uses the same architecture as the Py2Many
framework and adds the necessary functionality to transpile Python
source code to Julia. The language-independent stages apply trans-
formations common to all languages and are not extended by PyJL.
The current pipeline can be seen in figure 1.

The input of this pipeline is Python source code that is parsed
using Python’s ast module1, which generates an Abstract Syntax
Tree (AST). All the Phases in the Pipeline receive an AST as their
input and use the visitor pattern to visit and modify nodes. We now
describe each phase in the transpilation process:

(1) Rewriters can be both language-specific or -independent and
perform modifications in select nodes of the AST. A common
use case of Rewriters is to change the structure of nodes to
match the target language.

(2) Core Transformers are language-independent transformers
that modify the AST with relevant information for the trans-
lation process. The added information includes:

(a) Variable context: Adds all the variables to the node that
represents their scope.

(b) Scope context: Adds a scope attribute to each node in the
AST.

(c) Assignment context: Adds information to node assign-
ments. An example is to annotate nodes that are on the
left-hand side of an assignment, which is useful for opera-
tions that want to verify a node’s position in later phases.

(d) List call information: Adds all list transformation opera-
tions to the scope of the variable referencing the list.

1Abstract Syntax Tree - Python 3.10: https://docs.python.org/3/library/ast.html (Re-
trieved on January 27th, 2022)

(e) Variable Mutability: Analyzes functions to detect mutable
variables.

(f) Nesting levels: Annotates nodes with the respective nest-
ing levels. This is important for languages sensitive to
white spaces.

(g) Annotation flags: Differentiates type annotations and nested
types

(3) Transformers are language-specific and add complementary
information to specific nodes of the AST. An example would
be to add type information to nodes to help with type infer-
ence.

(4) Post Rewriters are rewriters that have dependencies on some
previous phase. Their functionality is identical to that of
Rewriters.

(5) Configuration Rewriters is an addition made to the Py2Many
pipeline for PyJL, which supports configuration files in JSON
and YAML format to modify the AST. This stage is language-
specific.

(6) Transpiler translates language syntax and semantics and
converts the AST to a string representation in the target
language using the information provided by the previous
phases. It is language-specific.

In the pipeline, the Core Transformers phase executes at two
different stages. The first makes this information available for the
stages that perform intermediary transformations. The second guar-
antees that no intermediary transformation overwrites the core
functionalities of Py2Many and makes them available in the Tran-
spiler phase.

After the pipeline has processed the Python source code, it gener-
ates the equivalent source code in the target language. The current
implementation supports the transpilation of one or more files and
performs the changes synchronously.

5.2 Code Annotations
The PyJL transpiler currently has a simple mechanism to allow
programmers to specify code annotations separate from the Python
source code. The goal is to support updates to the input source code
while separately preserving the annotations that affect the transpi-
lation process. This mechanism is integrated in the Configuration
Rewriters phase of the Pipeline and reads YAML or JSON files that
contain annotations, adding them to the corresponding AST nodes.
This mechanism also supports the use of annotations in specific
scopes, where a programmer can, for example, declare a decorator
for a function within a specific class.

This is very beneficial when translating Python libraries to Julia.
If a programmer annotates a Python library directly, this process
will have to be repeated every time a new library version is released.
By separating annotations from the source code, their application
is ensured in subsequent translations.

An addition that is being considered is the integration of a Do-
main Specific Language (DSL) in PyJL, such as LARA [25], which
was designed to be language-independent while offering more pre-
cise code annotations. Similar to the previous approach, the anno-
tations are separate from the source code.

42 ELS 2022

ELS’22, March 21–22, 2022, Porto, Portugal M. Marcelino and A. M. Leitao

5.3 Improving Compatibility
To maximize interoperability, programming languages commonly
offer Foreign Function Interfaces (FFIs) to call externally developed
modules or libraries. For instance, Julia’s PyCall[15] provides an FFI
to interoperate with Python. Tools such as PyonR [27] use Racket’s
FFI to call Python functions, and benchmarks reveal that it is a
high-performance alternative to mapping Python’s data model in
Racket.

Despite FFI’s presenting an alternative to translation, we argue
that the translation process brings more benefits in the case of
Julia. Using an FFI results in less maintainable source code, as ex-
ternal calls use a different language syntax. Furthermore, many of
Python’s highly-optimized libraries already have dedicated alterna-
tive implementations in Julia. Translated libraries would preserve
Julia’s syntax and benefit from Julia’s performance on modern
hardware.

Regarding the translation process, we found some cases that
offer no direct mapping from Python to Julia. An example is the
translation of Python’s generator functions, which return a lazy
iterator that implements the producer/consumer pattern. The pro-
ducer generates a new value whenever yield is called and saves its
execution state. When the consumer requests a value, the generator
resumes its execution from the saved state. To demonstrate this
use-case, we present an implementation of the Fibonacci sequence
that returns an infinite iterator:
def fib():

a = 0
b = 1
while True:

yield a
a, b = b, a + b

The producer/consumer pattern can be implemented in Julia
using channels. The producer uses the put! function to add values
to the channel while the consumer uses the take! function to
retrieve them. We include a possible implementation below:
function fib()

Channel() do ch
a = 0
b = 1
while true

put!(ch, a)
a, b = b, a + b

end
end

end

Despite the syntactic similarities, there is an important difference.
Even with the use of unbuffered Channels, the execution will only
block at the first call to put!, allowing side effects in the producer
to be executed before the consumer requests the first value.

A possible alternative that preserves Python’s behavior is to use
the third-party package ResumableFunctions [17]. This package
defines a @resumable macro that is used to simulate the behavior
of generator functions in Julia. A @yield macro is used to replace
Python’s yield keyword. Similar to Python, this implementation
uses a Finite State Machine to save the execution state and resume it

in subsequent calls. An equivalent implementation of the Fibonacci
sequence using this package is the following:
@resumable function fib()

a = 0
b = 1
while true

@yield a
a, b = b, a + b

end
end

Besides preserving Python’s behavior, this approach also has the
benefit of mapping more directly to its equivalent Python imple-
mentation, resulting in improved readability.

Another approach we found that helps the translation process is
to use Julia’s macro capabilities to map Python functionalities. We
are experimenting with the development of a dataclass macro,
that currently offers preliminary support for Python’s dataclass
decorator in Julia. However, we need to account for the fact that Ju-
lia’s macros are expanded at macro-expansion time, which happens
at compile time, while Python decorators operate dynamically at
runtime. We are assessing the limitations of such implementations.

We considered both of these approaches in the development
of our transpiler and found measurable improvements. Whenever
possible, the transpiler should default to using Julia’s native con-
structs. However, we recognize that translating Python’s behavior
may require the addition of new functionalities in Julia or the use
of third-party packages. When the transpiler requires the use of
these mechanisms to ensure correctness, it should always inform
the programmer by producing a corresponding log message.

5.4 Object Mapping
Python allows programmers to use functional programming. How-
ever, it also supports the use of the OO Paradigm. Julia, on the other
hand, is a mostly functional programming language, that does not
fully support the OO paradigm. For the development of PyJL, we
considered mapping Python’s classes to Julia using native Julia
constructs.

Translating Python’s class model to Julia represents a tradeoff. A
positive aspect is that we preserve the intended behavior of Python
programs in Julia. However, this could potentially introduce a high
overhead in computations, due to the added indirection of hav-
ing class representations. We believe that a correct approach that
also offers a choice to programmers is to support two alternative
aproaches:

(1) The first uses Julia constructs to create a class hierarchy
mechanism

(2) The second relies on the use of a third party package called
Classes [26].

The first approach converts classes into mutable structs, which
have the corresponding fields of the class. It also creates abstract
types for each class that are extended by each corresponding struct.
The methods of each class are translated with a self field as their
first parameter, which extends the abstract type mapped to the
corresponding Python class.

The second approach uses the aforementioned Classes package.
This package contains the @classmacro, which defines a hierarchy

ELS 2022 43

Transpiling Python to Julia using PyJL ELS’22, March 21–22, 2022, Porto, Portugal

of abstract types and creates the necessary functions for each type,
including a constructor function. This is a method of automating
the previously introduced solution, with the benefit of having a
simpler syntax.

To visualize both mechanisms, we provide a simple class inheri-
tance example written in Python:
class Person:

def __init__(self, name:str):
self.name = name

def get_id(self) -> str:
return self.name

class Student(Person):
def __init__(self, name:str, student_num:int):

super().__init__(name)
self.student_num = student_num

def get_id(self) -> str:
return f"{self.student_num} - {self.name}"

In this example, we define the Person and the Student classes.
Student extends the Person class and adds the student_num field
and a new definition of the get_id function. A possible translation
to Julia using the first approach is the following:
abstract type AbstractPerson end
abstract type AbstractStudent <: AbstractPerson end

mutable struct Person <: AbstractPerson
name::String

end
function get_id(self::AbstractPerson)

return self.name
end

mutable struct Student <: AbstractStudent
name::String
student_num::Int

end
function get_id(self::AbstractStudent)

return "$(self.student_num) - $(self.name)"
end

As was previously mentioned, this involves the creation of one
abstract type for each Python class. In this case we have both
the AbstractPerson and AbstractStudent abstract types which
are inherited by the Person and Student structs respectively. The
functions include a self parameter, which has the type of the corre-
sponding abstract type. The argument types allow Julia’s dispatch
mechanism to select the correct function when performing calls.

The second approach uses Classes.jl to generate Julia source
code that maps much more directly to Python. This package also
uses abstract types to define its hierarchy, which are generated
when using the @class macro. In the previous example, we chose
the names of the abstract types to match the names of the gener-
ated abstract types used in the Classes package, to allow for an
easier evaluation of the generated code. The following represents
an equivalent translation using this package:

using Classes

@class mutable Person begin
name::String

end
function get_id(self::AbstractPerson)

return self.name
end

@class mutable Student <: Person begin
student_num::Int

end
function get_id(self::AbstractStudent)

return "$(self.student_num) - $(self.name)"
end

This approach offers amore direct mapping between the Python and
the Julia source code. However, it still discloses some parts of the
underlying Julia mechanism. For instance, notice how both get_id
functions extend the types AbstractPerson and AbstractStudent
to work in a class hierarchy. Still, it hides the creation of the abstract
types and the creation of the structs to hold object fields, further
blurring the lines between Python and Julia.

To choose between these two implementations, a programmer
could use the provided annotation mechanism. The first approach
would be the default implementation, as it does not require the use
of a third-party library.

One important aspect that is not covered by both of these ap-
proaches is multiple inheritance. This would require implementing
the C3 [2] algorithm in Julia to support Python’s Method Resolu-
tion Order (MRO). For the first release of PyJL we are focused on
supporting single inheritance, which already covers a large subset
of Python implementations.

We also intend to cover the implementation of Python’s special
methods mentioned in section 2, such as __init__ and __str__.
These add necessary functionalities commonly used in Python. A
possible solution is to extend the Classes package and create a
new PyClass package that implements this functionality.

Furthermore, we also intend to map Python’s default class field
values. The current solution is to integrate the Parameters package
[33], which defines a new constructor for each struct that includes
default field values.

5.5 Mapping Dynamic Behavior
The mapping of operators from Python to Julia is frequently de-
pendent on the types of its arguments. However, since Python is a
dynamically typed language, this type information is only known
at runtime.

A possible solution is to create new functions in Julia to sim-
ulate the behavior of Python operators. For instance, in the case
of the sum_two function from section 3, we could map Python’s +
operator to a new py_add function in Julia. A similar approach was
implemented in PyonR [27] to translate Python to Racket. Although
this is a valid approach, the generated code would not preserve the
pragmatics of Julia, which negatively affects maintainability.

An alternative solution is to use a type inference mechanism
to help identify, at transpilation time, the most appropriate Julia

44 ELS 2022

ELS’22, March 21–22, 2022, Porto, Portugal M. Marcelino and A. M. Leitao

Python Ref. Julia Translated Julia w/ Fix Julia Ref.
0

2

4

6

8

10

12

4.114

11.094

0.211 0.024

Se
co
nd

s

Figure 2: Performance of N-Body Implementations

operations. As these mechanisms are limited by the information
available at compile time, it might be necessary to judiciously add
type hints to the Python source code. This is also the case of MyPy
[32], which requires type hints in function definitions to check for
the soundness of the code.

A possible alternative is TYPPETE [11], which is an inference
mechanism for Python based on the Z3 theorem prover [8] that
uses a MaxSMT solver to define type constraints.

The approach that is currently being studied is the integration
of the Pytype[10] type-inference mechanism. It generates separate
.pyi stub files that contain type annotations. Optionally, we can
merge these annotations with the original source code using the
provided merge-py tool. This integrates newly added type informa-
tion into the AST and makes the types available for the translation
process.

5.6 Performance
To evaluate the current capabilities of the PyJL transpiler, an im-
plementation of the N-Body Problem was translated to Julia. The
chosen implementation predicts the gravitational interactions of
planets in the solar system, and has both a Python [6] and a Julia
[9] reference version. The results of the translation are publicly
available2. The benchmarks were executed on a machine with an
Intel Core i7 4790K with 16GB of RAM under Windows 10. We
compared the implementations with an input value of 500000 and
chose an average of 10 runs for each test. Also, the obtained output
generated by the program was verified to be identical in Julia and
in Python.

The performance results shown in figure 2 reveal that the initial
translation is not as high-performing as Python and is orders of
magnitude slower than the reference Julia implementation.

After analyzing the generated source code, we discovered that
the slowdown was caused by insufficient type information. The
2Transpiled N-Body Problem: https://github.com/MiguelMarcelino/translated_n_
body_problem

Python function that resulted in the generation of generic Julia
source code is shown below.
def combinations(l):

result = []
for x in range(len(l) - 1):

ls = l[x+1:]
for y in ls:

result.append((l[x],y))
return result

This function receives a list as its argument and generates com-
binations using the elements of that list. It then adds those com-
binations to a new list, which is returned by the function. The
translation performed by the transpiler was the following:
function combinations(l)::Vector

result = []
for x in (0:length(l)-1-1)

ls = l[(x+1+1):end]
for y in ls

push!(result, (l[x+1], y))
end

end
return result

end

Note that the generated Julia function returns a generic array.
In this case, we cannot infer the type of the returned array, as it
is impossible to guarantee that the input list will always have the
same type. This forces the translation to use generic containers that
have considerable overheads when compared to type-specific ones.
The result produced by the combinations function is not type stable,
which impacts the performance of the generated source code.

After manually modifying one line of code by specifying the
necessary type information, we obtained a speedup of 52.6×, mak-
ing the translated Julia code 19.5× faster than the original Python
code. This result can be achieved in one of two ways. We can either
annotate the result array with its corresponding type:
result::Vector{Tuple{Tuple{Vector{Float64},

Vector{Float64},
Float64},

Tuple{Vector{Float64},
Vector{Float64},
Float64}}} = []

or convert the result array, changing the last line of the function
to the following:
return typeof(result[1])[result...]

Regarding the reference Julia implementation, it is relevant to
mention that it is highly optimized and takes advantage of Julia’s
performance characteristics.

5.7 Code Maintainability
The current status of PyJL does not allow us tomakemany claims on
code maintainability. The generated code for the N-Body problem
preserves Python’s code structure and pragmatics. However, this
example maps almost directly to Julia, only requiring minor syntax
changes. More complex Python examples that use native Python

ELS 2022 45

Transpiling Python to Julia using PyJL ELS’22, March 21–22, 2022, Porto, Portugal

constructs with no direct translation to Julia or use Python’s classes
are required to analyze code readability.

We are also evaluating how the use of third party packages
affects the readability of the generated source code. So far, they
have shown measurable improvements and offer a better mapping
between Python and Julia source code.

A proper evaluation would require user tests to determine if the
generated code is intelligible by programmers. We are considering
this evaluation method to assert that code generated by the PyJL
transpiler is similar to human-written code.

6 EVALUATION
In the context of program translation, it is important to assess the
limitations of transpilers, which will be covered in this section.

Throughout this work, we have acknowledged that there are
translation cases that reach the limitations of type inference. We
have previously shown two examples, the sum_two function in
section 3 and the combinations function in section 5.6, where the
lack of type information results in the generation of generic code.
Attempting to infer types in these situations might be possible but
only if bounded to a given scope, which does not guarantee overall
correctness.

Another problem that we encountered was related to the relia-
bility of type information, where some Python programs include
type hints that do not match the correct attribute or variable types.
One could use Pytype [10], the proposed inference tool, to perform
these checks or even enforce the type annotations provided by
programmers.

Regarding the mapping of Python’s classes to Julia, it is impor-
tant to note that translating Python’s OO behavior to Julia will
always inherent Julia’s mechanisms. We are still relying on multi-
ple dispatch to relate methods to object types, which implies that
there is weaker coupling to objects in Julia. In the case of the trans-
lations shown in section 5.4, the Julia methods are only bound to
the self argument that represents the equivalent Python Class.

7 FUTUREWORK
The PyJL transpiler is still a work in progress and far from our goal
of converting Python libraries to Julia. In this section, we discuss
the plans for the transpiler.

Regarding the mapping of Python’s dynamic behavior to Julia,
the integration of Pytype[10] should make the transpiler less depen-
dent on type hints and help evaluate their soundness. Nonetheless,
it is expected that type hints will still be necessary in function
definitions due to their ambiguity.

The transpiler should also use Julia’s functionalities to enhance
the generated Julia source code. We have previously mentioned
the creation of macros, which would result in the generation of
more maintainable code. However, since macros are executed at
compile-time, and due to Python’s dynamism, this might only be
achievable in some cases.

The performance of the generated source code is another facet
of the translation process that can be optimized. Performing code
optimizations is a topic which is more targeted at software restruc-
turing tools, usually employed in software maintenance. These have

the ability to change the structure of a given program without mod-
ifying its behavior [1]. The generated source code would probably
benefit mostly from perfective maintenance, an approach which
focuses on improving program performance or maintainability [14].

A transpiler developed for code translation can have mechanisms
that account for code restructuring. The programmer could use
the annotation mechanism discussed in section 5.2 to annotate
code segments to restructure. The transpiler could then apply the
intended code transformations during the translation process.

The restructuring process could result in improved code per-
formance. High performance in Julia is achievable through proper
techniques. We present some that were considered:

• Separating Kernel functions: Separate source code into differ-
ent functions to allow the compiler to generate type-specific
code [4].

• Devectorizing expressions: In Julia, loops are very well opti-
mized, making them as fast as loops written in C. We are
currently analyzing the Devectorize [20] package used to
devectorize expressions in favor of using loops.

• Improving Cache hit rate: Optimize the transpiler to rewrite
loops over matrices in column major order to achieve even
higher performance [4].

8 RELATEDWORK
In the area of source-to-source translation, many transpilers have
already used Python as their source language. PyonR [27] explores
the use of two complementary solutions to use Python function-
alities in Racket: (1) using an FFI to call Python’s C functions, (2)
translating Python’s data model to Racket and use the Racket ex-
ecution environment. In terms of performance, calls made to the
FFI ended up taking a very similar time when compared to the
calls made by Python to its C API. The implemented data model
also managed good performance, sometimes outperforming the
equivalent CPython implementations.

Additionally, some approaches that target the improvement of
Python’s performance. One of these [21] explores the use of Rust
as an intermediary, high-performance, and high-level language to
represent Python source code. The PyRS [16] transpiler, which is
now also part of Py2Many, is used to translate Python to Rust. It
is an experimental transpiler that requires manual intervention
in some cases to generate running Rust source code. The Rust
intermediary code can then be translated to a lower-level optimized
target. The performance evaluation of the transpiled code shows
that the transpiled Rust source code achieves better performance
while using less memory than Python.

The two-way Fortran-Python transpiler [5] also aims at improv-
ing Python’s performance by using Fortran as a high-performance
target language. It offers two solutions, where the programmer
can either transpile Fortran code to Python and improve its perfor-
mance or improve the performance of an already existing Python
program. The programmer annotates the kernel functions in Python
with a decorator, which are translated back to Fortran at runtime
to benefit from a high-performance execution environment. The
performance results are similar to those obtained when manually
translating Python to Fortran.

46 ELS 2022

ELS’22, March 21–22, 2022, Porto, Portugal M. Marcelino and A. M. Leitao

The context of library translation has also been discussed in
the development of Jnil [19], that transpiles Java to Common Lisp.
This approach also studied the challenges of preserving language
pragmatics in automatic translation, an important aspect for the
development of PyJL.

9 CONCLUSION
Throughout the years, transpilers have evolved to generate source
code that is not only human-readable, but also hard to distinguish
from human-written programs, which has allowed transpilers to
become alternatives to manual translation.

This work extends the PyJL transpiler to convert Python libraries
to human-readable and modifiable Julia source code. The process
of automating the translation represents a challenge, but it can be
achieved with high-levels of reliability if enough information is
provided in the Python source code. The generated code should
also respect the pragmatics of Julia.

We expect that PyJL further decreases the library gap between
Python and Julia, speeding up library development. The conver-
sion subset should cover widely used Python features, such as
the aforementioned yield construct or the dataclass decorator.
Python’s Data Model should also be mapped to an equivalent Julia
Data Model. This includes mapping Python’s classes to Julia, with
support for single inheritance.

Furthermore, this research also aims at improving the perfor-
mance of the translated libraries. Preliminary results show that
Julia’s compilation strategy can lead to huge performance increases
when some type hints are judiciously added to the generated code.

ACKNOWLEDGEMENTS
This work was supported by national funds through Fundação para
a Ciência e a Tecnologia (FCT) (references PTDC/ART-DAQ/31061/
2017 and UIDB/50021/2020).

REFERENCES
[1] R.S. Arnold. Software restructuring. Proceedings of the IEEE, 77(4):607–617, 1989.

doi: 10.1109/5.24146.
[2] Kim Barrett, Bob Cassels, Paul Haahr, David A. Moon, Keith Playford, and

P. Tucker Withington. A monotonic superclass linearization for dylan. In
Proceedings of the 11th ACM SIGPLAN Conference on Object-Oriented Program-
ming, Systems, Languages, and Applications, OOPSLA ’96, page 69–82, New York,
NY, USA, 1996. Association for Computing Machinery. ISBN 089791788X. doi:
10.1145/236337.236343. URL https://doi.org/10.1145/236337.236343.

[3] Ira D. Baxter, Christopher Pidgeon, and Michael Mehlich. Dms: Program transfor-
mations for practical scalable software evolution. In ICSE ’04: Proceedings of the
26th International Conference on Software Engineering, pages 625–634, Edinburgh
International Conference Centre, Scotland, UK, 2004. Semantic Designs.

[4] Jeff Bezanson, Stefan Karpinski, Viral Shah, Alan Edelman, et al. Julia Language
Documentation - Performance Tips, 2014. Chapter 3, p.279-299.

[5] Mateusz Bysiek, Aleksandr Drozd, and Satoshi Matsuoka. Migrating Legacy
Fortran to Python While Retaining Fortran-Level Performance through Transpi-
lation and Type Hints. In 2016 6th Workshop on Python for High-Performance and
Scientific Computing (PyHPC), pages 9–18, Salt Lake City, UT, USA, 2016. IEEE.
doi: 10.1109/PyHPC.2016.006.

[6] Kevin Carson, Fredrik Johansson, Tupteq, and Daniel Nanz. N-Body
Problem, Python Implementation, Mar 2021. Retrieved January 4th,
2022 from: https://benchmarksgame-team.pages.debian.net/benchmarksgame/
program/nbody-python3-1.html.

[7] Intel Corporation. Mcs-86 assembly language converter operating instructions
for isis-ii users, 1979.

[8] Leonardo de Moura and Nikolaj Bjørner. Z3: An efficient smt solver. In C. R.
Ramakrishnan and Jakob Rehof, editors, Tools and Algorithms for the Construction
and Analysis of Systems, pages 337–340, Berlin, Heidelberg, 2008. Springer Berlin
Heidelberg. ISBN 978-3-540-78800-3.

[9] Andrei Fomiga, Stefan Karpinski, Viral B. Shah, Jeff Bezanson, smallnamespaces,
Adam Beckmeyer, and Vincent Yu. N-body problem, julia implementation, Apr
2021. Retrieved January 4th, 2022 from: https://benchmarksgame-team.pages.
debian.net/benchmarksgame/program/nbody-julia-8.html.

[10] Google. Pytype: A static type analyzer for python code, March 2015. [Online.
Retrieved February 25th, 2022 from: https://github.com/google/pytype].

[11] Mostafa Hassan, Caterina Urban, Marco Eilers, and Peter Müller. Maxsmt-based
type inference for python 3, 2018.

[12] Jim Hugunin. Python and java: The best of both worlds. In Proceedings of the 6th
international Python conference, volume 9, pages 2–18, Reston, VA, 1997. Citeseer.

[13] Jim Hugunin. IronPython Home Page, 2013. [Online. Retrieved January 6th, 2022
from: https://ironpython.net/].

[14] ISO/IEC/IEEE. International Standard for Software Engineering - Software Life
Cycle Processes - Maintenance, 2006.

[15] JuliaPy. PyCall - Calling Python functions from the Julia language, February
2013. [Online. Retrieved February 25th, 2022 from: https://github.com/JuliaPy/
PyCall.jl].

[16] Julian Konchunas. PyRS - A Python to Rust Transpiler, 2015. [Online. Retrieved
January 18th, 2022 from: https://github.com/konchunas/pyrs].

[17] Ben Lauwens. Resumablefunctions.jl, August 2017. Retrieved on January 29th,
2022 from: https://github.com/BenLauwens/ResumableFunctions.jl.

[18] AntonioMenezes Leitao. Migration of common lisp programs to the java platform
-the linj approach. In 11th European Conference on Software Maintenance and
Reengineering (CSMR’07), pages 243–251, Amsterdam, Netherlands, 2007. IEEE.
doi: 10.1109/CSMR.2007.34.

[19] António Menezes Leitão. The next 700 programming libraries. In Proceedings
of the 2007 International Lisp Conference, ILC ’07, New York, NY, USA, 2007.
Association for Computing Machinery. ISBN 9781595936189. doi: 10.1145/
1622123.1622147.

[20] Dahua Lin. Devectorize.jl, 2015. Retrieved January 2nd, 2022 from: https://github.
com/lindahua/Devectorize.jl.

[21] Henri Lunnikivi, Kai Jylkkä, and Timo Hämäläinen. Transpiling Python to
Rust for Optimized Performance. In Alex Orailoglu, Matthias Jung, and Marc
Reichenbach, editors, Embedded Computer Systems: Architectures, Modeling, and
Simulation, pages 127–138, Cham, 2020. Springer International Publishing. ISBN
978-3-030-60939-9.

[22] Miguel Marcelino and António Menezes Leitão. Pyjl implementation, 2021.
Retrieved March 5th, 2022 from: https://github.com/MiguelMarcelino/py2many.

[23] Travis Oliphant. NumPy, 2009. [Online. Retrieved November 18th, 2021 from:
https://numpy.org/].

[24] Renaud Pawlak. Jsweet: insights on motivations and design a transpiler from
java to javascript, 2015.

[25] Pedro Pinto, Tiago Carvalho, João Bispo, and João M. P. Cardoso. LARA as a
Language-Independent Aspect-Oriented Programming Approach. In Proceedings
of the Symposium on Applied Computing, SAC ’17, page 1623–1630, New York,
NY, USA, 2017. Association for Computing Machinery. ISBN 9781450344869. doi:
10.1145/3019612.3019749. URL https://doi.org/10.1145/3019612.3019749.

[26] Richard Plevin. Classes.jl: A simple, Julian approach to inheritance of structure
and methods, November 2021. Retrieved November 22nd, 2021 from: https:
//github.com/rjplevin/Classes.jl.

[27] Pedro Henriques Palma Ramos and António Menezes Leitão. PyonR: A Python
Implementation for Racket. Master’s thesis, Instituto Superior Técnico, 2014.

[28] Maurizio Rebaudengo, Matteo Sonza Reorda, Massimo Violante, and Marco
Torchiano. A source-to-source compiler for generating dependable software.
In Proceedings First IEEE International Workshop on Source Code Analysis and
Manipulation, pages 33–42, Florence, Italy, 2001. IEEE. doi: 10.1109/SCAM.2001.
972664.

[29] Arun Sharma, Lukas Martinelli, Julian Konchunas, and John Vandenberg.
Py2many: Python to many clike languages transpiler, 2015. Retrieved November
18th, 2021 from: https://github.com/adsharma/py2many.

[30] Roger Taylor and Phil Lemmons. Upward migration part 1: Translators using
translation programs to move cp/m-86 programs to cp/m and ms-dos, 1982.

[31] Tijs van der Storm. Nomen: A Dynamically Typed OO Programming Language,
Transpiled to Java, 2016.

[32] Guido van Rossum, Jukka Lehtosalo, Ivan Levkivskyi, and Michael J. Sullivan.
Mypy, 2014. [Online. Retrieved February 29th, 2022 from: http://mypy-lang.org/].

[33] Mauro Werder. Parameters.jl, 2015. [Online. Retrieved February 30th, 2022 from:
https://github.com/mauro3/Parameters.jl].

ELS 2022 47

ETAP: Experimental Typesetting Algorithms Platform
Didier Verna

EPITA
Research and Development Laboratory

Le Kremlin-Bicêtre, France
didier@lrde.epita.fr

ABSTRACT
We present the early development stages of ETAP, a platform for
experimenting with typesetting algorithms.The purpose of this plat-
form is twofold: while its primary objective is to provide building
blocks for quickly and easily designing and testing new algorithms
(or variations on existing ones), it can also be used as an interactive,
real time demonstrator for many features of digital typography,
such as kerning, hyphenation, or ligaturing.

CCS CONCEPTS
• Software and its engineering → Application specific de-
velopment environments; • Human-centered computing→
Heuristic evaluations; Information visualization; • Applied
computing → Document preparation.

KEYWORDS
Typesetting, Paragraph Formatting, Real-Time Interactive Experi-
mentation
ACM Reference Format:
Didier Verna. 2022. ETAP: Experimental Typesetting Algorithms Platform.
In Proceedings of the 15th European Lisp Symposium (ELS’22). ACM, New
York, NY, USA, 5 pages. https://doi.org/10.5281/zenodo.6334248

1 INTRODUCTION
The world of digital typography is a fascinating one. As an applica-
tion domain, it combines a strong focus on aesthetics with many
complicated technical challenges. On the outside, the concern for
aesthetics is everywhere: from the shape of characters and the space
between them, to the overall balance of lines, paragraphs, pages,
complete documents. On the inside, any kind of formatting algo-
rithm (for example, a paragraph justification one) risks exponential
complexity as soon as some level of quality is expected.

Defining the notion of (good) typesetting quality is a very com-
plicated and subtle problem, and is out of the scope of this paper.
On the other hand, bad typesetting is easily perceived, and hence,
rather easy to demonstrate, as it impacts readability and involves
such notions as aesthetic disturbance.

Figure 1 exhibits the first four lines of a badly justified paragraph.
Notice for example how different the inter-word spacing is between
lines 1 (very large) and 4 (very small). Notice also that line 4 is so

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ELS’22, March 21–22 2022, Porto, Portugal
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-2-9557474-6-9.
https://doi.org/10.5281/zenodo.6334248

Figure 1: Example of a badly justified paragraph

compressed that it becomes very difficult to separate the words
from each other. Finally, within the particular context of the highly
compressed fourth line, where the inter-word spacing becomes
close to the inter-letter one, the word “knowledge” almost appears
written in two words: “know ledge”. Even when the casual reader
is unaware of all these problems, reading badly typeset documents
results in fatigue.

This project originates in two connected, yet slightly different
motivations. The first one is a general interest for the world of
digital typography, and the will to “play” and experiment with
typesetting algorithms (also in order to get a better understanding
of how they work and what they actually do). The second one,
more pragmatic, is the need to strengthen an existing lecture on
typesetting, with striking illustrations for the various aesthetic
challenges that the discipline faces. These two motivations have
something in common: they both require a system which must be
as real-time and interactive as possible. Suppose you are trying
out a new paragraph justification algorithm. Rapid prototyping
and experimentation would be made a lot easier with a direct vi-
sualization of the results on a sample text (actual contents not so
important), and with the ability to interactively tweak such or such
parameter from a Graphical User Interface (GUI), while observing
the effects in real-time. In a similar vein, in order to illustrate the
importance of, say, kerning (inter-letter spacing adjustment), there
is nothing like having the ability to visualize a sample text (again,
actual contents not so important), and turn kerning on or off by
the click of a button.

In general, typesetting experimentation or demonstration is
not a very practical thing to do. What You See Is What You Get
(WYSIWYG) systems such as Word or Libre Office are usually quite
reactive, but their algorithms are not necessarily of the highest qual-
ity, and neither are they easily configurable or extensible, let alone
replaceable. On the other hand, TEX[6, 7], the obvious competitor,
and still a de facto standard in terms of typographic quality and
customizability, is not a a very interactive system. It works more
like a compiled programming language with separate development,
compilation, and visualization phases. There was one attempt at
providing a GUI for controlling typesetting parameters[2], but it

48 ELS 2022

ELS’22, March 21–22 2022, Porto, Portugal Didier Verna

was limited to global ones and didn’t go very far. Many projects
attempt to mitigate this by providing more or less interactive and
real-time WYSIWYG layers on top of it. However, TEX itself cer-
tainly doesn’t make it easy to tweak or replace any of its internal
typesetting algorithmic components. In fact, the “spaghetti code
effect” is a well-known characteristic among the community of TEX
hackers.

Whatever the approach, all these systems have one thing in com-
mon: they are production systems. They target the feature-bloated
generation of complete, actual documents. Interactive and real-time
experimentation, testing, rapid prototyping, or demonstration is
a different goal, and it is the niche that ETAP tries to occupy. It is
not meant to become a complete typesetting system, although it
could very well turn out to be a Petri dish for one [11, 12]. Rather,
it attempts to provide low-level data structures and building blocks
for experimenting with new typesetting algorithms (or variations
on existing ones), with interactive and real-time parametrization
and visualization, and hopefully in a near future, quality assertion
and analysis (for some definition of “quality”).

Section 2 describes the project and its current features. Section 3
gives a brief overview of the underlying implementation. Finally,
Section 4 concludes and Section 5 details some general directions
for future work.

2 CURRENT FEATURES
Figure 2 provides a screenshot of ETAP’s GUI, which is currently
implemented in LispWorks1 CAPI2. The platform currently focuses
on paragraph formatting algorithms. The interface can be described
as having four main areas.

2.1 Area 1: Text Editor
Area 1 is a simple text editor (a CAPI editor-pane) which lets you
adjust the textual contents of the typeset paragraph. Any change
in the text is automatically and continuously propagated to the
paragraph view (area 4).

2.2 Area 2: Global Options and Features
Area 2 provides control over some global options, features, and
visual clues, also tracked continuously and in real-time.

The paragraph disposition pane lets one choose between justifica-
tion and various ragged formatting. Note that some combinations
of algorithm / disposition don’t actually make much sense, but
still, these parameters are considered sufficiently orthogonal to be
separate in the GUI.

The features pane lets one toggle kerning (inter-letter spacing),
ligatures (character fusion, e.g. ff for ff), and hyphenation (word
splitting) on or off. Kerning and ligature information is provided by
the font in use.The hyphenation implementation is that of TEX, itself
based on Liang’s thesis[9]. The language (hence the hyphenation
patterns set) is currently hard-coded to English.

The clues pane allows one to choose what is actually displayed
in the paragraph view (area 4): the characters themselves, but also
different kinds of bounding boxes, plus the hyphenation points,
and the underfull / overfull boxes. In Figure 2, the paragraph view

1http://www.lispworks.com/
2http://www.lispworks.com/products/capi.html

exhibits individual characters, hyphenation points, and underfull
boxes.

Finally, there is a slider to set the desired paragraph width.

2.3 Area 3: Algorithms
This is where you select a specific paragraph formatting algorithm.
Depending on the chosen one, this area also displays algorithm-
dependent variants, options, or other adjustable parameters. Again,
any choice of algorithm or any modification of its parametrization
is automatically and continuously reflected in the final paragraph
view.

A complete description of the currently available algorithms
is out of the scope of this paper, but each one is implemented in
its own file, and there is always an explanatory comment at the
top. Here, we only provide a quick overview of the five algorithms
currently implemented.

2.3.1 Fixed. The “fixed” algorithm uses only the natural, constant,
inter-word spacing (a value provided by the font in use). Hence, it
can practically never justify properly. Lines are created sequentially,
without look-ahead or backtracking: there are no paragraph-wide
considerations.

2.3.2 Fit. As the name suggests, this is an implementation of the
so-called First, Best, and Last Fit classical algorithms. Those ones
make full use of elastic inter-word spacing (“glue” in TEX terms)
when attempting to justify lines. The acceptable range of inter-
word spacing is also an information provided by the font in use. By
nature of the *-Fit algorithms, lines are also created sequentially
here, without look-ahead or backtracking: there are no paragraph-
wide considerations.

2.3.3 Barnett. This one is an implementation of a justification
algorithm from Michael Barnett[1], originally published in 1965.
In short, this algorithm behaves more or less as a combination of
different *-Fit policies, while favoring overfull lines when no perfect
solution is found.

2.3.4 Duncan. This one is an implementation of a justification
algorithm from C. J. Duncan [5], originally published in 1963. In
short, this algorithm searches for an acceptable breaking solution
while minimizing hyphenation.

2.3.5 Knuth-Plass. Finally, the fifth and last one is the TEX one,
a.k.a. the famous “Knuth-Plass” algorithm[8]. This is the one visible
in Figure 2, and you can see that it has TEX’s full set of adjustable
parameters available.

2.4 Area 4: Paragraph View
Area 4 is where the typeset paragraph is eventually rendered, de-
pending on the selected algorithm and options, and along with
the various visual clues selected in area 2. In the screenshot from
Figure 2, the orange triangles indicate the hyphenation points, and
the rectangles at the end of lines 2 and 9 denote the underfull lines
(that is, the lines that are too short to be justified). Overfull lines
would be indicated, as in TEX, by the same rectangles, only filled in
with orange.

ELS 2022 49

ETAP: Experimental Typesetting Algorithms Platform ELS’22, March 21–22 2022, Porto, Portugal

Figure 2: ETAP’s graphical user interface

There is a slider for zooming in / out the view. Note that the
zooming facility is the only GUI component that doesn’t retrigger
the typesetting engine. It operates at the window level.

The paragraph is currently rendered with a hard-wired font:
Latin Modern Roman 10pt, Extended Cork encoding. The font and
encoding descriptions have been copied from a MacTEX (TEXlive)
distribution3. In particular, the font information (notably including
kerning and ligatures) is read from its original TEX Font Metrics

3https://www.tug.org/mactex/

(TFM) file thanks to a library also developed by the author of this
paper4.

3 IMPLEMENTATION
In this section, we provide a brief overview of ETAP’s implemen-
tation. The design of the internals is heavily inspired from that of
TEX, but it also fits a different set of objectives, most importantly
being a experimentation platform rather than a production system.

4https://github.com/didierverna/tfm

50 ELS 2022

ELS’22, March 21–22 2022, Porto, Portugal Didier Verna

3.1 Basic Data Structures
ETAP provides five basic data structures. Characters are directly
represented by their corresponding character-metrics structure
from the TFM library. Then, there are classes for kerns (fixed, pos-
sibly negative, space between characters), and break points (discre-
tionaries and glues). Discretionaries and glues follow TEX’s jargon
and design.

A discretionary represents a potential break point with different
material to typeset, depending on whether the break actually occurs
or not. For example, the sequence of characters ffi is reified as a
discretionary specifying that without a break, the ligature ffi may
be used, and in case of breaking the line, the first line ends with
f- and the next one begins with fi (or the ligature fi). A simple
hyphenation point simply states that in case of breaking a line, the
first one ends with a dash, and nothing else happens otherwise.

A glue represents an elastic space between words, with a natural
width, plus specific amounts of shrinkability and stretchability
(again, those values are provided by the font in use).

3.2 The Lineup
The paragraph text retrieved from Area 1 of the GUI is processed
into a so-called lineup. A lineup is essentially a vector of objects to
typeset. The paragraph text is trimmed from consecutive blanks.
It is then sliced into words, possibly hyphenated (in which case
discretionaries are added). After that, ligatures are handled if re-
quested (which may lead to the creation of new discretionaries,
or the modification of existing ones). Kerns are then inserted at
the appropriate places, again, if requested. Finally, an infinitely
stretchable glue is appended at the end of the lineup.

3.3 The Lines
Each algorithm’s entry point is implemented as a method on a
generic function called create-lines. The algorithms receive a
lineup, a paragraph width, a disposition, and set of algorithm-
specific options specified in the GUI. They compute their own view
on where exactly the lineup should be broken into lines, and they
return the lines in question.

A line is essentially a sequence of characters, each one with a
specific horizontal placement with respect to the beginning of the
line. This placement is computed out of the characters widths, the
kerns, and the glue present in the lineup, and of course, the desired
line’s length. Characters placed at a specific horizontal position are
called pinned characters.

3.4 The Paragraph
Finally, the resulting paragraph is created and passed to the GUI for
rendering.There is in fact notmuch left to do to generate it. Each line
computed by the selected algorithm is positioned both horizontally
and vertically, relative to the paragraph’s top-left corner. Such a
fully placed line is called a pinned line. The horizontal position of
each line depends on the selected paragraph disposition (centered,
flushed, or justified). Vertically, the lines are simply spaced by a
currently hard-wired constant (the “line skip” in TEX’s jargon).

4 CONCLUSION
ETAP is currently in an “early prototype” development state5. The
internals are not stabilized, there is no decent documentation, the
code has not been carefully crafted, and no concern for optimization
or general performance has entered the picture yet.

Despite all this, the project already works surprisingly well. The
GUI runs very smoothly in real-time, and it has been used success-
fully several times already to support lectures or conferences on
typesetting. The observable reactions in the audience, facing the
real-time effects of kerning, hyphenation, or ligaturing, for example,
is a testimony to the pertinence of this approach for increasing the
general awareness of the technical challenges involved in digital
typography.

One of the most important advantages in using Common Lisp
[10] for this project is the ease of development and the concision
of the resulting code. The program (excluding the TFM library
and a large font description file) is currently just under 3000 lines
of code. The GUI code and the typesetting building blocks take
around 25% of that each, and the other half of the code is devoted to
the algorithms implementations. The Knuth-Plass algorithm itself,
for which we actually provide two different implementations (see
Section 5.2), takes less than 500 lines (granted, the whole of TEX
isn’t there obviously; user-level macros, mathematics, etc.).

5 FUTUREWORK
In addition to improving the general state of the project (essentially
meaning stabilizing the internals and providing accurate and up to
date documentation), we currently envision two major directions
for future work.

5.1 Direction 1: Experimentation
One of the very first, and already achieved goal of this project
was to make it easy to experiment with typesetting algorithms, by
either creating new ones, extending or modifying existing ones, and
quickly visualizing the results. In a near future, we intend to use
ETAP to do research on known typesetting problems such as rivers
detection, or experiment with new features or extensions, notably
to the Knuth-Plass algorithm. Some people, for instance, prefer
different kinds of placement for end-of-line hyphens in justified
paragraphs.

5.2 Direction 2: Analysis
Because typography is not a technical question only, but also an
aesthetic one, a very difficult problem, when experimenting with
typesetting algorithms, is how to evaluate the quality of the results.
Of course, the ability to directly visualize a typeset paragraph, as
in this project, is a tremendous help, but it is surely not enough.

In fact, we can come up with mathematical formulas represent-
ing some measure of typesetting quality (for example, taking into
account the amount of stretching or shrinking of lines, compared
to their natural width), and this is in fact precisely what the Knuth-
Plass algorithm attempts to optimize, paragraph-wide (the so-called
badness).

5https://github.com/didierverna/etap

ELS 2022 51

ETAP: Experimental Typesetting Algorithms Platform ELS’22, March 21–22 2022, Porto, Portugal

With a platform such as ETAP, it becomes very easy to instru-
ment the underlying data structures to keep track of quality mea-
surement (badness, demerits from TEX, or anything else one may
think of), and perform statistical analysis afterward.

Here lies the secondmost important advantage in using Common
Lisp for this project. Its interactive nature makes it effortless to
bypass the GUI altogether, and run the typesetting algorithms,
without visualization, from the Read-Eval-Print Loop (REPL) or
through a batch script.

In a near future, it is hence also our intention to collect large
empirical data on the quality of typesetting (for example, using
TEX’s notion of quality) and perform statistical and comparative
analysis between different algorithms, or algorithm implementa-
tions. For example, we can easily run the five algorithms currently
implemented on the same paragraph, for many different widths,
and compare the resulting data. The original Knuth-Plass algorithm
uses a dynamic programming[3, 4] optimization technique for cut-
ting through the (potentially very large) graph of break possibilities.
ETAP already provides an unoptimized (and slow) variant imple-
mentation of it, working on the full graph. It would be interesting
to collect statistical data from both these implementations, in order
to get a concrete idea of the impact of TEX’s optimization on the
actual quality of the typesetting.

REFERENCES
[1] Michael P. Barnett. Computer Typesetting: Experiments and Prospects. MIT Press,

January 2000.
[2] Kaveh Bazargan. Batch commander: a graphical user interface for TEX. TUGBoat,

26(1):74–80, 2005.
[3] Richard Bellman. The theory of dynamic programming. Bulletin of the American

Mathematical Society, 60(6):503–516, 1954. doi: 10.1090/S0002-9904-1954-09848-8.
[4] Richard Bellman. Dynamic Programming. Princeton University Press, 2003.
[5] C.J. Duncan, J. Eve, L. Molyneux, E.S. Page, and M.G. Robson. Computer typeset-

ting: an evaluation of the problems. Printing Technology, 7:133–151, 1963.
[6] Donald E. Knuth. The TEXbook. Addison-Wesley, 1984.
[7] Donald E. Knuth. TEX: the Program, volume B of Computers and Typesetting.

Addison-Wesley, January 1986.
[8] Donald E. Knuth and Michael F. Plass. Breaking paragraphs into lines. Software:

Practice and Experience, 11(11):1119–1184, 1981. doi: 10.1002/spe.4380111102.
[9] Franklin Mark Liang. Word Hy-Phen-a-Tion by Com-Put-Er. PhD thesis, Stanford,

CA, USA, 1983.
[10] Ansi. American National Standard: Programming Language – Common Lisp.

ANSI X3.226:1994 (R1999), 1994.
[11] Didier Verna. Star TEX: the next generation. In Barbara Beeton and Karl Berry,

editors, TUGboat, volume 33. TEX Users Group, 2012.
[12] Didier Verna. TiCL: the prototype (Star TEX: the next generation, season 2). In

Barbara Beeton and Karl Berry, editors, TUGboat, volume 34. TEX Users Group,
2013.

52 ELS 2022

An Ontology-Based Dialogue Management Framework for
Virtual Personal Assistants in Common Lisp

Michael Wessel
michael.wessel@sri.com

SRI International
Menlo Park, California, USA

ABSTRACT
We present a new approach to dialogue specification for Virtual Per-
sonal Assistants (VPAs) based on so-called dialogue workflow graphs.
Our approach relies on Semantic Web technology (OWL), imple-
mented in Common Lisp with the help of the Racer reasoner. Our
new dialogue specification language (DSL) is a set of Common Lisp
macros, a Domain Specific Language, which facilitates customer
participation in the modeling process. The resulting dialogue mod-
els are also very concise. The DSL is a new modeling layer on top of
our ontology-based Dialogue Management (DM) framework OntoVPA.
We explain the rationale and benefits behind the new language,
and support our claims with concrete reduced Level-of-Effort (LOE)
numbers from two recent OntoVPA projects.

CCS CONCEPTS
• Software and its engineering → Model-driven software en-
gineering; Very high level languages; Domain specific lan-
guages; State based definitions; Application specific develop-
ment environments; Software design tradeoffs; Rapid appli-
cation development; • Information systems→Web Ontology
Language (OWL);Ontologies;Business intelligence; •Human-
centered computing → Participatory design; • Computing
methodologies → Discourse, dialogue and pragmatics; De-
scription logics; Ontology engineering.

KEYWORDS
Knowledge-Based Dialogue Modeling, Knowledge-Based Workflow
Modeling, Ontology-Based Dialogue Management, Semantic Nat-
ural Language Processing, Domain Specific Modeling Languages,
Semantic Web, OWL, SPARQL, Common Lisp, Macros
ACM Reference Format:
Michael Wessel. 2022. An Ontology-Based Dialogue Management Frame-
work for Virtual Personal Assistants in Common Lisp. In Proceedings of the
15th European Lisp Symposium (ELS’22). ACM, New York, NY, USA, 8 pages.
https://doi.org/10.5281/zenodo.6335631

1 INTRODUCTION & MOTIVATION
In 2021, Virtual Personal Assistants (VPAs) have become common-
place on our smartphones and smart speakers.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ELS’22, March 21–22, 2022, Porto, Portugal
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM.
https://doi.org/10.5281/zenodo.6335631

The VPA landscape ranges from simple “one-shot request-response”
systems to control appliances and lights in an IoT home automation
network, over more sophisticated task-oriented virtual specialists
à la KASISTO [14] that help with complex tasks such as online
banking, to freeform conversational chatbots that aim at passing
the Turing Test.

With growing demands and user’s expectations regarding the “in-
telligence” and “human-likeness” of VPAs, there is clearly a need for
DM systems that go beyond the simple “one-shot request-response”
model.

A recent Gartner blogpost reads as follows [8]:

Gartner predicts that by 2025, 50 % of knowledge
workers will use a virtual assistant on a daily basis,
up from 2 % in 2019.

In 2022, users expect systems that are capable of supporting a)
elements of freeform chat with contextual memory (e.g., learn about
the user and current situation), b) are capable of supporting complex
workflows and multiple turns, and c) can combine both in a non-
rigid, non-linear, naturally flowing conversation that doesn’t feel
like a telephone hotline support system. We have embraced and
addressed some of these challenges in our OntoVPA framework
[33, 35].

Most VPAs rely on one central component – the Dialogue Man-
ager. The Dialogue Manager is typically concerned with Dialogue
Management (DM), which encompasses Dialogue State Tracking
[37], and it also implements the Dialogue Policy: the computation
of the system response (“system turn”) based on the current state
of the world and dialogue / discourse (including the previous and
current “user turns”).

A commonly used conceptual DM model is the Dialogue Flow
Graph.We are referring to this graph as a conceptual model because
the actual dialogue model representation might be different from a
graph (e.g., in case of a rule-based manager). Still, the flow graph
is a useful conceptual notion of high utility for developers and
customers, given its comprehensibility. Unsurprisingly, various
commercial solutions for “visual drag & drop” chatbot construction
exist.

In the following, we prefer the term Dialogue Workflow Graph
(DWG) because it emphasizes that this graph may also contain
elements (“nodes and edges”) of workflow management, i.e., ele-
ments that describe the workflow actions that need to be carried
out behind the scenes of the dialogue.

In this paper, we are presenting a novel DWG Specification Lan-
guage in Common Lisp, Dialogue Specification Language (DSL) for
short, and demonstrate its potential for significantly reducing the
VPA modeling effort. Our DSL is also a Domain Specific Language
in the conventional sense. It is built on top of OntoVPA [33, 35].

ELS 2022 53

ELS’22, March 21–22, 2022, Porto, Portugal Michael Wessel, Edgar Kalns, Girish Acharya, Andreas Kathol

OntoVPA is a declarative, knowledge-based dialogue manager, in
which new VPA domains can be implemented with very little to no
conventional programming effort. OntoVPA is highly expressive
and comes with built-in solutions to standard DM problems such
as state tracking, anaphora resolution, contextual intent slot-filling,
intent management, stack-based sub-dialogue management, etc.
The rules that implement these common DM capabilities are generic
and cross-domain. They are typically expensive to implement from
scratch. As we will illustrate in Section 2.2, by relying on expressive
ontology reasoning and forms of higher-order logic quantifications,
these rules can succinctly cover large regions in the DM problem
space, hence greatly reducing the modeling effort, yet achieving
generality and hence cross-domain reusability.

Unfortunately, a much bigger Level-of-Effort (LOE) is required
to model the dialogue workflows by means of rules. These are
obviously VPA domain-specific and hence cannot be transferred
cross-domain easily. From our experience in developing 5 VPAs
with OntoVPA, this LOE can easily account for more than 70 % of
the overall LOE.

Our DSL has shown great potential to reduce and simplify this
LOE. It also has the benefit of being more intuitive and much less
technically involved: unlike plain OntoVPA, developers no longer
need to use OWL and SPARQL exclusively. Visual workflow di-
alogue graphs can be generated automatically from the textual
DSL specifications, which facilitates customer participation, trans-
parency, and comprehensibility. The DSL hence has the potential to
significantly reduce the modeling effort, thus widening the dialogue
workflow modeling bottleneck.

The remainder of this paper is structured as follows. We first
describe the OntoVPA framework, providing the basis for this work.
The essence of ontology-based DM is illustrated by means of typical
DM problems in the "Restaurant Recommendation" domain [13].
OntoVPA relies on Common Lisp and Racer [11] for the OWL DM
modeling and reasoning at development time - we hence describe
the modeling environment and OntoVPA compiler. At runtime, the
compiled (target) ontology and a set of ontology-based SPARQL
rules are being executed by the JENA reasoner [6, 19] to implement
the runtime dynamics. We then subsequently describe three differ-
ent workflow representation options, corresponding to abstraction
layers. The lowest layer (Level 1) corresponds to plain OntoVPA di-
alogue workflow modeling, and the final (Level 3) abstraction layer
corresponds to the new DSL. Next we give a concrete illustration
of the DSL, utilizing Common Lisp macros. We then quantitatively
demonstrate the benefits of the DSL in terms of reduced modeling
LOE. We conclude with a discussion of related work and a summary.

2 ONTOLOGY-BASED DIALOGUE
MANAGEMENT

The original OntoVPA is described elsewhere in full detail [33, 35]. It
realizes many of the ideas first described by Milward and Beverdige
[21, 22], using modern Semantic Web languages and frameworks.

Let us first summarize OntoVPA’s distinguished features and
architecture so that we can describe the DSL improvements "on
top" of the OntoVPA model.

Figure 1: Domain-Specific Ontology

2.1 The Original OntoVPAModel & Architecture
OntoVPA employs theWeb Ontology Language (OWL) for knowl-
edge representation and reasoning [27]. Additionally, it uses ontolo-
gy-based SPARQL [28] rules for DM which are executed in a custom
VPA-specific rule engine built on top of the JENA reasoner [6, 19].
In what follows, we assume basic familiarity with OWL notions
such as class, instance, and property, and likewise for SPARQL [3].

These SPARQL rules are SPARQL queries extended with some
extra-annotations: rules have IDs, priorities for conflict resolution,
can pass control to other rules, etc. This results in a custom, DM-
specific ontology-based highly expressive rule language and engine:
the OntoVPA rule engine.

An OntoVPA model has the following main components:
• An OWL ontology for background and domain knowledge –
e.g., for the Restaurant Recommendation VPA it will have
classes (concepts), relations (OWL object and datatype prop-
erties) and instances (individuals) for representing (types of)
restaurants, cities, different cuisines, an actual database of
restaurant instances, etc. Frequently, we extent and reuse
Schema.org [24]; see Figure 1.

• An OWL ontology of classes and relations for dialogue / dis-
course representation – this includes classes for user and
system turns, intents and their slot values, and system re-
sponse classes. Speech act theory [25] provides us with a
coarse but useful upper ontology, for Requests, Response,
etc.; also compare [5] for a similar upper-level ontology.
A portion of OntoVPA’s upper-level ontology is shown in
Figure 2. At runtime, these classes and relations are instan-
tiated in an OWL ABox, which is a set of class instances
and relationships, representing the actual dialogue, i.e., the
history of user and system dialogue turns. For example, a
restaurant recommendation VPA will have a user intent
class FindRestaurantIntent, and a corresponding system
response class SuggestRestaurantResponse, and relations
(object properties) for "slots" such as cuisine and location.

• A layer of Generic Dialogue Management Rules – these rules
implement core DM capabilities, like slot-value filling, ana-
phora resolution, context-based disambiguation, details of

54 ELS 2022

An Ontology-Based Dialogue Management Framework for Virtual Personal Assistants in Common Lisp ELS’22, March 21–22, 2022, Porto, Portugal

Figure 2: OntoVPA Upper Ontology - Subclasses of DialogStep

turn taking, etc. Not every domain requires all these capa-
bilities; they can be disabled individually, but also refined as
needed.

• VPA domain-specific rules that implement the dialogue work-
flow and intent processing. In a Restaurant Recommendation
VPA, there will be rules that trigger if certain intents are in-
stantiated, e.g., a RecommendRestaurant rule triggers if the
current intent is a FindRestaurantIntent. The rule checks
for the presence of the requested location and cuisine,
then employs ontology-based query answering to retrieve
matching restaurant instances and presents the result.

We heavily rely on upper-level ontologies and inheritance, and on
generic and reusable behavior specified in the generic DM rules. The
combination of ontology reasoningwith expressive, succinct higher-
order ontology-based rules is the defining feature of OntoVPA.

2.2 Ontology-Based Dialogue Management
Example

Let us illustrate the interplay of ontology reasoning, generic DM rules,
and domain-specific rules that implement the dialogue workflow by
means of the following dialogue in the Restaurant Recommendation
Domain:

User I am looking for a restaurant!
VPA In what city?
User In Palo Alto.
VPA How about McDonalds?
User Chinese please.
VPA Got it – Su Hong on 4256 El Camino Real?

The first utterance can clearly be classified as a FindRestaurant-
Intent by the statistical intent classifier – let us assume this intent
class has a required slot location (of range City), and an optional
slot cuisine (of range Cuisine). This intent is instantiated in the
dialogue representation ABox, but without any slot values.

A generic DM rule now inspects the current intent and the definition
of its associated OWL intent class and determines that a required
slot value (the location slot) is missing. To check for the presence
or absence of slot values, this generic SPARQL rule uses existential
quantification over slots / predicates; consequently, we consider this
a higher-order rule. It hence triggers a follow-up question to the
user, who subsequently answered "Palo Alto".

The string "PaloAlto" is automatically mapped to the correspond-
ing OWL City instance of the same name. Next, another generic
DM rule determines that the PaloAlto individual is substitutable
for the inquired location slot value of the previous intent – the
user has answered the question. Hence, PaloAlto is filled in as a
slot value of the previous FindRestaurantIntent, and the intent
is now marked completely specified by another DM rule. This sub-
sequently triggers the domain-specific workflow RecommendRest-
aurant rule, which proceeds as already described. It retrieves and
presents a single restaurant to the user, who subsequently requests
"Chinese" instead of the presented option.

Since no intent was recognized from the word "Chinese" in iso-
lation, the system relies again on the dialogue history for sense
making / understanding in context. The ontology-based parser has
mapped "Chinese" to the class ChineseCuisine, which is a sub-
class of Cuisine. From the dialogue history it determines that
ChineseCuisine is a potential slot-filler for the cuisine slot on
the previous FindRestaurantIntent, and it is hence augmented
with the optional slot filler. Given that the intent has changed, it is
then re-executed by a rule that detects the change and which then
triggers re-execution of the RecommendRestaurant rule.

Many of OntoVPA’s generic DM rules are specified in a simi-
lar flavor. Central expressive means of these higher-order generic
SPARQL rules are the ability to

• introspect the OWL class definitions (of intents),
• traverse and assess the full dialogue history,
• perform ontology reasoning (e.g., sub-class and sub-property
inferences) in the rule itself,

• existentially and universally quantify "in a second-order
fashion" over arbitrary classes and slots (properties) rather
than having to codify individual rules for individual classes
and slots,

• create and update arbitrarily nested and complex structured
graph representations (in the ABox); SPARQL allows for the
creation of Skolem instances in the right-hand side of rules,
and of arbitrary atoms / structure,

• specify defeasibility and priorities on rules.
These DM rules are supplied in an upper level, reusable rule layer
applicable to any domain – they provide generic DM capabilities.

In addition, OntoVPA modelers typically still must write domain
specific rules like the RecommendRestaurant rule, which is the
highest LOE activity that we are seeking to replace with the DSL
here.

2.3 Rationale for Using a Lisp Language Layer
The OntoVPA compiler is written in Common Lisp with Racer [11].
Given that the runtime engine of OntoVPA is implemented in Java
with JENA [6, 19], why have Racer and Common Lisp in the loop at
all? We could have just used Protégé [23] for OWL modeling (and

ELS 2022 55

ELS’22, March 21–22, 2022, Porto, Portugal Michael Wessel, Edgar Kalns, Girish Acharya, Andreas Kathol

Figure 3: Source Ontology Fragment in Racer Syntax

SPARQL rules are written by hand anyway). We are using the Racer
& Common Lisp-empowered tool chain for the following reasons.

Common Lisp provides an ideal framework for implementing
the DSL. Its macros, and most importantly, the ability to flexibly ad-
just, extent, and change the DSL for the current VPA project under
development makes Common Lisp ideal for resource-constrained
research-oriented prototyping projects in which high agility and
flexibility is required. In fact, there never was a single DSL, and it
was never “designed” - the DSL evolved dynamically over and in
different projects, sometimes even incorporating customer-specific
terminology to increase model comprehensibility for the customer
and hence customer participation. It is likely that these projects
would have failed or would have required substantially more de-
velopment time if a more formal, less agile, “plan and implement”
waterfall modeling approach had been taken. After all, implement-
ing a fresh DSL in more traditional DSL environments usually
requires specifications of meta-models (MOFs), grammars, parsers,
etc., greatly adding to the development time and ultimately, project
development costs.

Racer is implemented in Common Lisp, providing convenient
and mature Lisp-based OWL modeling and reasoning. OWL mod-
eling in Lisp has many advantages, is concise and readable, and
Common Lisp macros can reduce the amount of boiler-plate mod-
eling representations to a minimum. Racer’s built-in OWL parsers
enable use to reuse existing OWL and RDFs ontologies (such as
Schema.org [24]) by importing these, combining, extending and
blending them with our dialogue model, post-processing the uni-
fied combined model, and then exporting it in a standard OWL
syntax (OWL RDF XML, OWL Functional) utilizing one of Racer’s
OWL renderers. The source ontology definition of the just discussed
FindRestaurantIntent is illustrated in Figure 3.

Racer is used to perform (static) inferences about the domain and
dialogue model at development time for quality assurance and ulti-
mately, trust; e.g., for identifying inconsistencies, redundancies, and
implied relationships between classes and relations. Racer is mature
and offers reliable, high performance for non-trivial medium-sized
ontologies.

Racer then transforms (“compiles”) the development time (source)
ontology into a runtime (target) ontology that is loaded into JENA
together with the (hand-authored) ontology-based SPARQL rules.

The main rationale for the compilation process is to avoid most
(if not all) potentially expensive JENA OWL inferences at runtime,
as VPAs must be very reactive. We achieve this by compiling the
source ontology into a light-weight version of itself, and by mak-
ing most relevant inferences explicit at compile time (anticipating
them) via inference materialization. At runtime, OWL inference for

Figure 4: Target Ontology Fragment in OWL RDF/XML

JENA is hence then mostly reduced to slot-value lookups, or simple
taxonomic query answering, which is extremely fast.

As illustrated in Figure 4 using the target ontology definition
of the FindRestaurantIntent, this inference materialization pro-
cess has computed the deductive closure of the taxonomy via
the assertedType property, and has also pre-computed the re-
quired and optional slot values of intents. In general (but not in the
FindRestaurantIntent), intent superclasses will inherit required
property values to their subclasses, and these will need to be spec-
ified in a dialogue with the user. The ranges of property values
(e.g., City) might as well enforce yet additional necessary property
values (e.g., Citymight have required name and geoLocation prop-
erties). The materialization process pre-computes required and opo-
tional properties as well as their characteristics (e.g., their ranges
and cardinalities). Note the optional/requiredParameterSpec
properties and corresponding specification instances in Figure 4.
The deductive closure is a finite subset of the full deductive closure
of the ontology (which might be infinite). In general, we avoid dis-
junctions in the ontology. Disjunctions can be dealt with at runtime
in the dialogue via SPARQL rules, but don’t need to be present in
the OWL ontology.

The OntoVPA compiler also facilitates the generation of visual
representation; we are using DOT and Graphviz [7, 9].

3 MODELING DIALOGUEWORKFLOWS
Our underlying conceptual model is the

• Dialogue Workflow Graph (DWG). Like a (labeled) transition
system [36], this graph represents the space of possible dia-
logues and workflows, and hence the policy of the system.

This is a development time (static) representation. At runtime, this
conceptual graph is interpreted and operationalized by the Dialogue

56 ELS 2022

An Ontology-Based Dialogue Management Framework for Virtual Personal Assistants in Common Lisp ELS’22, March 21–22, 2022, Porto, Portugal

Figure 5: Illustration Transition System & Unrolling

Figure 6: Simple SPARQL Transition Rule

Manager to compute the system answers / turns. This results in the
dynamic

• Dialogue (Discourse) History, which is an OWL ABox in On-
toVPA. OWL instances are representing user and system
turns (nodes), which are asserted and computed, with their
causal, temporal, and thematic attributes and relationships.

The dialogue history can be considered an unrolling of the con-
ceptual DWG, analog to the unrolling of a transition system into a
trace of dynamic system behavior, see Figure 5.

In this abstract example, Amight represent a ConfirmRestaurant-
Location state, R a corresponding user utterance ("In Palo Alto!"),
and B a SuggestRestaurant system response.

The dialogue history employs a notion of current user turn and
current (last) system turn. User turns are simply asserted in the
dialogue history (and made current) by the intent classifier and
ontology-based slot-filler, whereas the system turns are computed
by the Dialogue Manager.

In the following, we describe three concrete representation op-
tions for the conceptual DWG, corresponding to layers of represen-
tations in OntoVPA. Level 1 is the original OntoVPA representation,
Level 3 the new DSL, and Level 2 an intermediate representation.

3.1 Level 1 – Rule-Based Workflow Graph
Modeling

It is straightforward to operationalize a conceptual DWG, or transi-
tion system, via rules:

For each labeled edge 𝐴 𝑅−→ 𝐵 in the DWG, create a
corresponding rule that, given current state𝐴, creates
a new successor node of state 𝐵 if condition 𝑅 holds.

A corresponding OntoVPA SPARQL rule is shown in Figure 6. If,
in the WHERE antecedent, the current user step satisfies 𝑅 and the
previous system response was of type 𝐴, then the CONSTRUCT con-
sequent of the SPARQL rule creates a new node of type 𝐵 via the
_:s Skolem constant constructor. The freshly constructed node will
be asserted as current system step into the dialogue history, and the
asserted message property will cause a system utterance. Note that
𝐴, 𝐵, and 𝑅, are OWL ontology classes and properties, and that the
SPARQL engine is aware of the deductive closure of the OWL ontology
(i.e., its inferences).

The type and number of conditions (𝑅 in the example) can be
arbitrarily complex and may involve full OWL / Description Logic
reasoning over the current dialogue, workflow completion, and
world state.

There is no limit on what can be asserted with a CONSTRUCT
consequent of a SPARQL rule at dialogue runtime – not only can
we update the dialogue history, but also other parts of the ABox.
For example, personal information learned about the user could be
stored on the user’s profile information in the ABox.

Let us discuss two obvious drawbacks of the just discussed rule-
based modeling style are: a) the large number of rules required, and
b) the amount of boilerplate code needed (e.g., each SPARQL rule
must determine the CurrentUserStep in the history, construct the
follow-up node, mark it as CurrentSystemStep, etc.)

Regarding a), the number of rules is roughly given by

#𝑛𝑜𝑑𝑒𝑠 ∗ 𝑎𝑣𝑒𝑟𝑎𝑔𝑒_𝑛𝑜𝑑𝑒_𝑜𝑢𝑡_𝑑𝑒𝑔𝑟𝑒𝑒

This number is quickly in the three-figure range for non-trivial
dialogue models, see Table 1 in Section 4.

Problem b) can be alleviated by using our SPARQL macros. How-
ever, the "graph as a set of rules" representation is also unwieldy
from a modeling perspective, and a direct graph representation
would be preferable. Moreover, SPARQL modeling is intellectually
demanding and requires expert knowledge.

3.2 Level 2 – Graph-Based Workflow Graph
Modeling

Our first step of remediation is hence to represent the workflow
graph directly as a graph in the OWL ABox, in terms of instances
(nodes) and relationships (edges).

Unlike a set of SPARQL rules, an ABox graph representation is
not an executable specification – hence, aworkflow graph interpreter
is required that operationalizes the graph. We chose to implement
the interpreter (in a meta-circular way) itself in terms of OntoVPA’s
SPARQL rules, instead of extending the JENA-based rule engine.

The ABox-based, explicit and direct graph representation has
some modeling benefits – SPARQL domain rules no longer need
to be authored by the domain developer. The interpreter rules
are part of the OntoVPA framework already and usually do not
need to be altered, just like the generic DM rules already discussed.
Moreover, DWGs can now be inspected and, in principle, also be
edited visually, by means of OWL tools such as Protégé [23] and
RacerPorter [32, 34].

One drawback of this representation though is that it requires
additional modeling vocabulary, e.g., classes and relationships for
representing logical conditions and control structure, as we can

ELS 2022 57

ELS’22, March 21–22, 2022, Porto, Portugal Michael Wessel, Edgar Kalns, Girish Acharya, Andreas Kathol

Figure 7: DSL-Based Transition Specification

no longer rely on SPARQL specifications. The representation is
considerably less succinct – a graph of hundred nodes might require
a few thousandABox assertions (see Table 1 in Section 4 for concrete
numbers). The direct representation hence suffers from a boilerplate
representation problem and complicates modeling due to a lack of
tool support for our extra- and control-vocabulary.

Hence, a final abstraction layer added on top, Level 3. This layer
provides the high-level DSL which is translated (compiled) into the
Level 2 representation just discussed. We can consider Level 2 as se-
mantic virtual machine code produced from Level 3 DSL high-level
specifications, whereas Level 1 provides the generic implementation
of the virtual machine that implements the DM / VPA instruction
set in OntoVPA.

3.3 Level 3 – DSL-Based Workflow Graph
Modeling

In our DSL, a workflow graph node is described together with
its outgoing transitions and conditions. In Figure 7, the abstract
transition system example from Figure 5 is specified.

Transitions are activated by edge conditions, and in addition,
there is a notion of active and disabled nodes, based on the truth
values of their corresponding node conditions. The interpreter will
never transition into a disabled node.

A variety of condition types exist. These condition types are
specified via different clauses using the node macro. A more com-
plete illustration of the DSL is given in Figures 8 & 9, using the
MEDIC VPA domain (see Section 4). Here, the :next clause spec-
ifies an unconditional transition to the successor node, and the
:utterance-domain clauses correspond to the discussed
:transition clauses.

Node activation and transition conditions can be specified based
on:

• the current intent and its slot values. This information is usu-
ally asserted by a statistical intent classifier and the ontology-
based slot filler. However, training statistical intent classifiers
can be costly (in terms of training time and data requirments),
and we hence support building VPAs without them, by of-
fering ontology-based parsing of raw textual input, which
can be use to implement intent classification or information
extraction of slot-values or similar “text snippets” from the
raw input text.

• parsing raw textual user input (e.g., from ASR) via ontology-
based grammar expressions. The domain ontology then also
plays the role of a lexicon or thesaurus, providing domain
terms, and its hyponyms, hypernyms, synonyms, and antonyms.
We support regular expressions over ontology terms – for ex-
ample, the expression (Neg Ampl PosDesc) is satisfied by
the utterance "not very good", or "not so well", and might be
used to transition to some other node. Sometimes, simple

Figure 8: DSL Illustration from the MEDIC VPA

ontology-based keyword spotting is sufficient as well. We
usually accept a hyponym for the specified ontology term in
the expression, but this is not a strict requirement.

• complex (negated) logical conditions that are evaluated over
the ABox, having access to the dialogue history and (ABox)
domain model. Logical conditions are specified as path ex-
pressions of OWL properties and classes, starting from ei-
ther an ABox individual (that then has to satisfy the ex-
pression), or from a class name (then there needs to be
some instance that satisfies the expression). For example,
in Figure 8 & 9, two possible :next transitions are spec-
ified on the node_mhc_head_or_neck node (yellow node
in Figure 9): node_mch_check_if_clamp_applicable and
node_mch_dont_apply_clamp. The former is only active
(and a transition into it possible) if its :negated-condition
evalues to false, i.e., the hemorrhage-
Location must not be nearTo the Eye (the haemostatic
clamp cannot be applied to stop the bleeding in this case).

It is not always desirable or feasible to anticipate all potential dia-
logue transitions in terms of outgoing conditioned edges on nodes
at development time. To allow a more naturally flowing and less
linear dialogue, we allow transitions into different dialogue graph
regions, e.g., corresponding to different conversation topics,without
requiring explicit outgoing edges on nodes leading into these regions.

To facilitate these transitions into different regions, we employ
the notion of a trigger for a node. If the trigger on a node is satisfied,
control can transition into the trigger-activated node in a non-local
way, i.e., no edge needs to be transitioned to arrive at it.

Additional annotations are specified on the node-level, deter-
mining aspects of control and thus direct the interpreter

• whether the node is a start or end node of a "topic", i.e., a
sub-graph that initiates a dialogue / conversation about a
specific topic,

58 ELS 2022

An Ontology-Based Dialogue Management Framework for Virtual Personal Assistants in Common Lisp ELS’22, March 21–22, 2022, Porto, Portugal

• if it can be triggered, and hence gain control, if a certain
trigger condition is satisfied (i.e., an intent or special event
has been recognized and been asserted as current),

• whether the node allows to relinquish control to another
node via trigger-based / non-local transitions,

• whether the dialogue should return and resume at that point
after the node lost control in a non-local way (i.e., after the
triggered "sub-dialogue" has completed),

• if, in case of a topic end node, the control should return to
the previously active node, or simply continue;

• if the node is modal, i.e., waiting for input before continu-
ing / transitioning to the next node, or if the transition is
:immediate; immediate nodes are useful for breaking up the
workflow into smaller chunks, among other things.

Finally, the last group two groups of node annotations allow us to
a) generate output and b), to update the ABox.

For a), each node can be annotated with a multitude of messages
using the :message field. We support template-based NLG – rather
than using variables for the template "holes", we are yet again using
ontology-based path expressions that "peek into the ABox" to fill
the template holes; see Figure 9.

Regarding b),we can assert and retract arbitrary ABox assertions.
An example from a OntoVPA Medical Decision Support System is
shown in Figure 8: the medic is asked for the location of a bleeding.
Any answer subsumed by the BodyPart class is then extracted from
the utterance and stored as a slot value on the currentUser individ-
ual’s hemmorhageLocation slot, using the :extract-and-store
clause. Depending on the specific BodyPart, the system then tran-
sitions into different branches (for Limb, HeadOrNeck).

4 QUANTIFYING THE DSL BENEFITS
Table 1 shows the number of nodes, number of rules that did not
have to be modeled, number of ABox graph assertion generated by
the DSL compiler, the average number of Rules per Nodes (RpN), and
the number of Assertion per Node (ApN) for 2 domains, ChatPal and
MEDIC:

Domain #Nodes #Rules saved #Assertions RpN ApN
ChatPal 109 291 2520 2.7 23
MEDIC 29 26 374 0.9 11

Table 1: Quantifying the DSL Benefits

ChatPal: A virtual personal companion for the elderly that
aims to overcome loneliness and social isolation. ChatPal
flexibly engages the senior in templated conversations about
specific topics, such as hobbies, the senior’s life history, fam-
ily, relationships, etc., and it learns about the users’ interests,
hobbies, and relationships and is able to leverage the learned
knowledge in subsequent sessions. The generated visual
DWG can be found online; follow the URL under [30].

MEDIC: A simple Medical Decision Support System prototype.
It implements the workflows from a standard medical proce-
dure handbook. Using the DSL, its workflow dialogue graph
was developed in ≈ 20 hours only. Again, the visual DWG
can be found online; follow the URL under [31].

Figure 9: Crop of Generated MEDIC Visual DWG

From our experience, each Level 1 OntoVPA rule modeled by an
OntoVPA expert accounts for ≈ 1.5 hours LOE. In contrast, MEDIC
wasmodeled using DSLwith 0.68 hours LOE per DSL node; modeled
on Level 1, the corresponding 26 rules would have required 26 * 1.5
= 39 hours – a reduction by 48.7 %.

For ChatPal, the situation is even more significant: 1.5 * 291 =
436.5 vs. 109 * 0.68 = 74.12 hours – a reduction by 83 %.

5 RELATEDWORK
Knowledge bases and ontologies have been used since the early days
of the LUNAR system [38] for Natural Language Understanding,
Question Answering and Dialogue Systems, and, more recently, in
HALO [10]. Frequently, (OWL) ontologies are being used by the
Dialogue Manager for ontology-driven question answering relying
on domain ontologies and external knowledge sources [2], [29].

Other case studies focused on ontology modeling and dialogue
design based on task structures represented in OWL [4]. OntoDM
[1] uses OWL ontologies for domain representation and partially
for the dialogue history and NLU tasks such as anaphora resolution
[22], but unlike OntoVPA it relies on special purpose algorithms
that are informed by the ontologies, and is thus not fully declarative.

OWLSpeak [12] is based on Information State Theory [17], but
the state is not implemented in OWL at runtime; hence, no ontology-
based rules are being used. VOnDA [15] is similar to OntoVPA in
that it employs OWL and uses a proprietary RDFs/OWL-inference
aware "reactive rules" language for policy specification, whereas
OntoVPA relies on extended SPARQL over an ABox.

The Converness system [20] is a hybrid system that uses OWL2
for most aspects of dialogue and domain representation, SPARQL
endpoints for question answering, and defeasibility rules for context-
aware reasoning [18]. The rules support disambiguation and conflict
resolution over the dialogue discourse. Stoyanchev and Johnston
[26] implement the Information State Approach [17], using Know-
ledge Graphs, also drawing inspiration from OntoVPA [33, 35].

An early approach to a generic, visual dialogue flow specifica-
tion language is given by Kölzer [16]: a compiler translates visual
dialogue flow graphs into Prolog knowledge bases.

The dozens of contemporary commercial visual flow builders for
chat bot development (Google’s Dialogflow, bots, Visual Chatbot
Builder, etc.) usually require some form of programming for cus-
tomization once the boundaries of the narrowly defined standard
domains are reached (e.g., pre-defined models are supplied that

ELS 2022 59

ELS’22, March 21–22, 2022, Porto, Portugal Michael Wessel, Edgar Kalns, Girish Acharya, Andreas Kathol

don’t generalize well). We believe that OntoVPA’s DSL provides a
more general and more productive modeling environment.

6 CONCLUSION
We have made steps towards improving dialogue modeling effi-
ciency and customer participation for ontology-based VPAs with
our new dialogue modeling language, DSL. It corresponds to a new
abstraction layer on top of OntoVPA, comes with a less technical
DWG modeling syntax, a compiler and visualizer, and was suc-
cessfully applied in 2 projects, reducing dialogue modeling effort
significantly (by an estimated 49 % and 83 %, respectively).

Our solution is not based on visual programming or modeling;
we believe that the throughput, modeling efficacy and efficency of
textual modeling languages is higher and leads to more general
solutions.

ACKNOWLEDGMENTS
I am grateful for the fruitful collaborations, support, ideas, and
leadership provided by the following (ex-) SRI colleagues over the
last 6 years: Girish Acharya, David Berends, Edgar Kalns, Min Yin,
James Carpenter, Andreas Kathol, and Theodore Camus.

We would also like to thank Karen Myers and the anonymous
reviewers for feedback and suggestions that significantly helped to
improve the paper.

The work on MEDIC was supported by the US Army Medical
Research and Materiel Command under Contract No. W81XWH-
19-C-0096. The views, opinions and/or findings contained in this
report are those of the author(s) and should not be construed as an
official Department of the Army position, policy or decision unless
so designated by other documentation.

The development of OntoVPA and ChatPal was supported and
funded by SRI.

REFERENCES
[1] Duygu Altinok. An Ontology-Based Dialogue Management System for Banking

and Finance Dialogue Systems, 2018.
[2] G. Amores, G. Pérez, P. Manchón, F. Gómez, and J. González. Integrating OWL

Ontologies with a Dialogue Manager. Proces. del Leng. Natural, 37, 2006. URL
http://grupo.us.es/julietta/publications/2006/pdf/Integrating_OWL.pdf.

[3] F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. Patel-Schneider, edi-
tors. The Description Logic Handbook – Theory, Implemenation and Applications.
Cambridge University Press, 2003.

[4] Vinay K. Chaudhri, Adam Cheyer, Richard Guili, Bill Jarrold, Karen L. Myers, and
John Niekrasz. A case study in engineering a knowledge base for an intelligent
personal assistant. In In the Proc. of the 2006 Semantic Desktop Workshop, 2006.

[5] Enrique Fernández-Rodicio, Á. González, F. Alonso-Martín, Marcos Maroto-
Gómez, and M. Salichs. Modelling Multimodal Dialogues for Social Robots
Using Communicative Acts. Sensors (Basel, Switzerland), 20, 2020.

[6] Apache Software Foundation. Apache Jena Apache Jena – A free and open
source Java framework for building Semantic Web and Linked Data applications.,
Accessed: 9-14-2021. URL https://jena.apache.org/.

[7] Emden R. Gansner and Stephen C. North. An Open Graph Visualization System
and its Applications to Software Engineering. SOFTWARE - PRACTICE AND
EXPERIENCE, 30(11):1203–1233, 2000.

[8] Anthony J. Bradley / Gartner. Brace Yourself for an Explosion of Virtual Assistants,
8-10-2020. URL https://blogs.gartner.com/anthony_bradley/2020/08/10/brace-
yourself-for-an-explosion-of-virtual-assistants/.

[9] Graphviz. Graphviz & DOT Project Page, Accessed: 9-14-2021. URL https:
//graphviz.org/.

[10] David Gunning, Vinay K. Chaudhri, Peter E. Clark, Ken Barker, Shaw-Yi Chaw,
Mark Greaves, Benjamin Grosof, Alice Leung, David D. McDonald, Sunil Mishra,
John Pacheco, Bruce Porter, Aaron Spaulding, Dan Tecuci, and Jing Tien. Project
Halo Update—Progress Toward Digital Aristotle. AI Magazine, 31(3):33–58,
Jul. 2010. doi: 10.1609/aimag.v31i3.2302. URL https://ojs.aaai.org/index.php/
aimagazine/article/view/2302.

[11] Volker Haarslev, Kay Hidde, Ralf Möller, and Michael Wessel. The RacerPro
Knowledge Representation and Reasoning System. Semantic Web Journal, 3(3):
267–277, 2012.

[12] Tobias Heinroth, Dan Denich, and Alexander Schmitt. OwlSpeak - Adaptive
Spoken Dialogue within Intelligent Environments. In 2010 8th IEEE International
Conference on Pervasive Computing and Communications Workshops (PERCOM
Workshops), pages 666–671, 2010. doi: 10.1109/PERCOMW.2010.5470518.

[13] Matthew Henderson, Blaise Thomson, and Jason Williams. The Second Dialog
State Tracking Challenge. In In Proceedings of the SIGdial 2014 Conference, 2014.

[14] Kasisto. Kasisto company website, Accessed: 9-14-2021. URL https://kasisto.com/
kai/.

[15] Bernd Kiefer, Anna Welker, and Christophe Biwer. VOnDA: A Framework for
Ontology-Based Dialogue Management, 2019.

[16] A. Kölzer. Universal dialogue specification for conversational systems. Electronic
Transactions Artificial Intelligence (ETAI), 3:33–52, 1999.

[17] S. Larsson and D. Traum. Information State and Dialogue Management in the
TRINDI Dialogue Move Engine Toolkit. Natural Language Engineering, 6:323–340,
2000.

[18] Thanassis Mavropoulos, Georgios Meditskos, Spyridon Symeonidis, Eleni Ka-
materi, Maria Rousi, Dimitris Tzimikas, Lefteris Papageorgiou, Christos Eleft-
heriadis, George Adamopoulos, Stefanos Vrochidis, and Ioannis Kompatsiaris.
A Context-Aware Conversational Agent in the Rehabilitation Domain. Fu-
ture Internet, 11(11), 2019. ISSN 1999-5903. doi: 10.3390/fi11110231. URL
https://www.mdpi.com/1999-5903/11/11/231.

[19] B. McBride. Jena: A Semantic Web Toolkit. IEEE Internet Computing, 6(6):55–59,
2002.

[20] Georgios Meditskos, Efstratios Kontopoulos, Stefanos Vrochidis, and Ioannis
Kompatsiaris. Converness: Ontology-driven conversational awareness and con-
text understanding in multimodal dialogue systems. Expert Systems, 37(1), 2020.
doi: 10.1111/exsy.12378. URL https://doi.org/10.1111/exsy.12378.

[21] David Milward. Ontologies and the structure of dialogue. In Proceedings of the
8th Workshop on the Semantics and Pragmatics of Dialogue (Catalog, pages 69–77,
2004.

[22] David Milward and Martin Beveridge. Ontology-based Dialogue Systems. In
Proceedings of the 3rd IJCAI Workshop on Knowledge and Reasoning in Practical
Dialogue Systems, Acapulco, Mexico, pages 9–18, 2003. URL http://www.ida.liu.
se/labs/nlplab/ijcai-ws-03/papers/milward.pdf.

[23] Mark A. Musen. The Protégé Project: A Look Back and a Look Forward. AI
Matters, 1(4):4–12, 2015. doi: 10.1145/2757001.2757003. URL https://doi.org/10.
1145/2757001.2757003.

[24] Schema.org. Schema.org Project Page, Accessed: 9-14-2021. URL https://schema.
org/.

[25] John R. Searle. Speech Acts: An Essay in the Philosophy of Language. Cambridge
University Press, 1969. doi: 10.1017/CBO9781139173438.

[26] Svetlana Stoyanchev and Michael Johnston. Knowledge-Graph Driven Informa-
tion State Approach to Dialog. In AAAI Workshops, 2018.

[27] W3C. OWL 2 Web Ontology Language Document Overview (Second Edition),
Accessed: 9-14-2021. URL https://www.w3.org/TR/owl-overview/.

[28] W3C. SPARQL 1.1 Query Language, W3C Recommendation 21 March 2013,
Accessed: 9-14-2021. URL https://www.w3.org/TR/sparql11-query/.

[29] E. Wantroba and R. Romero. A Method for Designing Dialogue Systems by Using
Ontologies. In Standardized Knowledge Representation and Ontologies for Robotics
and Automation, volume 58, pages 89–123, September 2014.

[30] M. Wessel. Auto-Generated Visual Dialogue Workflow Graph for ChatPal, Ac-
cessed: 9-14-2021. URL https://www.michael-wessel.info/downloads/chatpal.pdf.

[31] M.Wessel. Auto-Generated Visual DialogueWorkflowGraph forMedic, Accessed:
9-14-2021. URL https://www.michael-wessel.info/downloads/medic.pdf.

[32] M. Wessel. RacerPorter Project Page, Accessed: 9-14-2021. URL https://github.
com/lambdamikel/RacerPorter.

[33] M. Wessel, G. Acharya, J. Carpenter, and M. Yin. OntoVPA - An Ontology-Based
Dialogue Management System for Virtual Personal Assistants. In M.; Devillers
L.; Mariani J. Eskenazi, editor, Advanced Social Interaction with Agents, volume
510 of Lecture Notes in Electrical Engineering, pages 219–233. Springer, 2019.

[34] Michael Wessel and Ralf Möller. Design Principles and Realization Techniques
for User Friendly, Interactive, and Scalable Ontology Browsing and Inspection
Tools. In Proceedings of the OWLED 2007 Workshop on OWL: Experiences and
Directions, volume 258, 01 2007.

[35] Michael Wessel, Girish Acharya, James Carpenter, and Min Yin. OntoVPA - An
Ontology-Based Dialogue Management System for Virtual Personal Assistants.
In International Workshop on Spoken Dialogue Systems, IWSDS 2017, 2017.

[36] Wikipedia. Transition system, Accessed: 9-14-2021. URL https://en.wikipedia.
org/wiki/Transition_system.

[37] Jason Williams, Antoine Raux, and Matthew Henderson. The Dialog State Track-
ing Challenge Series: A Review. Dialogue & Discourse, 7:4–33, 04 2016. doi:
10.5087/dad.2016.301.

[38] WilliamWoods. Lunar Rocks in Natural English: Explorations in Natural Language
Question Answering, volume 5, pages 521–569. 01 1977.

60 ELS 2022

RacketLogger: Logging and Visualising Changes in DrRacket
Turgut Reis Kursun

turgut.reis.kursun@vub.be
Vrije Universiteit Brussel

Brussels, Belgium

Jens Van der Plas
jens.van.der.plas@vub.be

Software Languages Lab, Vrije Universiteit Brussel
Brussels, Belgium

Quentin Stiévenart
quentin.stievenart@vub.be

Software Languages Lab, Vrije Universiteit Brussel
Brussels, Belgium

Coen De Roover
coen.de.roover@vub.be

Software Languages Lab, Vrije Universiteit Brussel
Brussels, Belgium

ABSTRACT
Developers frequently make code changes while programming,
such as deleting a line of code and renaming or introducing a
variable. These changes can be detected and logged, for example
by the IDE used by the developer. Logging changes is possible at
two levels: at the textual level or at the level of the abstract syntax
tree (AST) of the program. The logged changes, in both forms, are
useful because they can be used to build new software engineering
tools, such as static code analysers.

Plugins that log changes have already been developed for some
IDEs. However, so far, no change-logging plugin has been developed
for the DrRacket IDE, which supports the development of programs
written in Scheme-like languages such as R5RS Scheme and Racket.
To fill this gap, we have developed RacketLogger, a change-logging
plugin for DrRacket. RacketLogger logs changes both at the textual
level and at the AST level. To determine changes at the level of the
AST, we have adapted Negara et al.’s algorithm to support Scheme
syntax. We have evaluated our plugin by creating a visualisation
for the logged changes to measure how well RacketLogger can be
used as a building block, and conducted a small-scale user study to
measure its usability.

CCS CONCEPTS
• Software and its engineering → Integrated and visual de-
velopment environments.

KEYWORDS
Racket, change logging, IDEs

ACM Reference Format:
Turgut Reis Kursun, Jens Van der Plas, Quentin Stiévenart, and Coen De
Roover. 2022. RacketLogger: Logging and Visualising Changes in DrRacket.
In Proceedings of the 15th European Lisp Symposium (ELS’21). ACM, New
York, NY, USA, 8 pages. https://doi.org/10.5281/zenodo.6326894

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ELS’21, March 21–22, 2022, Genova, Italy
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM.
https://doi.org/10.5281/zenodo.6326894

1 INTRODUCTION
During development, developers make multiple changes to their
program. Many types of changes can occur: inserting new code,
deleting a variable, applying a refactoring, and so on. To support
development, usually, changes are tracked with version control sys-
tems, such as git. The changes logged by version control systems
are unsatisfactory for certain applications, as they only provide
snapshots of committed code. This raises the need for a more im-
mediate tracking of changes, allowing changes between commits to
also be stored. As a solution, a change logger can be used: a change
logger logs all changes that happen during development. Having
a lower-level view on the changes enables new applications such
as programming pattern detection [1, 5, 9, 10, 14], and tools for
collaborative software development [3].

Different granularities and representations can be used for the
logged changes. A change logger is called fine-grained if it logs
changes at a detailed level, so that almost every interaction is logged.
Such fine-grained change loggers can reconstruct every intermedi-
ary state of the source code using the logged data [6, 14]. On the
other hand, change loggers that only log certain interactions are
called coarse-grained.

Changes can be logged at two different levels: at the textual level,
and at the level of the abstract syntax tree (AST). Logging changes
at the textual level means a change denotes how the text of the
program has changed. Such a logging mechanism may for example
track every character insertion. Logging changes at the AST level
means that changes are represented as operations on the nodes of
the AST (e.g., inserting, deleting, or updating a node) that connect
the AST at a given state of the program to the AST of the subsequent
state of the program. Changes logged at the AST level are a rich
source of information. They represent which subtrees of the AST
have been subject to change, information that can for example be
used by incremental program analyses [11, Ch. 7],[12, 13]. Of course,
changes at the textual level and changes at the AST level are related,
as one often needs the textual changes in order to compute the AST
changes. However, AST changes can be obtained only when an
AST can be constructed, that is, at points during the development
of the program where the program can correctly be parsed.

Multiple change-logging plugins have already been developed.
For example, efforts have been made by the research community to
provide change loggers for IDEs such as IntelliJ [1] and Eclipse [14].
However, to the best of our knowledge, there does not yet exist a
change-logging plugin for the DrRacket IDE.

ELS 2022 61

ELS’21, March 21–22, 2022, Genova, Italy Kursun and Van der Plas, et al.

In this paper, we present RacketLogger, the first change-logging
plugin for the DrRacket IDE. RacketLogger —developed as part of
a Bachelor Thesis [8]— is implemented in the Racket language and
can log changes for any language that uses s-expression syntax –in
the remainder of this paper, we will focus on the Scheme language.
RacketLogger is a fine-grained change-logging plugin which logs
changes textually, representing the actual edits made to the source
code, and uses these changes to also infer changes at the AST
level, which are persisted as well. To this end, we have adapted the
change-inferencing algorithm of Negara et al. [6] to Scheme.

Section 2 discusses the two change representations adopted by
RacketLogger in more detail. We then show how RacketLogger
can be used as a building block to develop new tools by building
a change visualiser (Section 3) which we evaluate by means of a
user study (Section 4). Other potential usages of RacketLogger are
discussed in Section 5. In Section 6, we review related work on
change-logging. We conclude in Section 7.

2 REPRESENTING PROGRAM CHANGES
In this section, we discuss how changes to Scheme programs can
be represented. RacketLogger stores the changes at a textual level
but is also able to infer the AST node operations from these tex-
tual changes. First, in Section 2.1, changes at the textual level are
described, before presenting the changes at the level of the AST,
which we refer to as AST node operations, in Section 2.2.

2.1 Textual Changes
At the lowest level, RacketLogger logs all meaningful interactions
with the DrRacket IDE. For that reason, and similar to other change-
logging plugins [14], RacketLogger relies on a hierarchical represen-
tation of textual changes. The use of a hierarchy enables reasoning
about the changes at different levels of abstraction. The hierarchy
of changes used by RacketLogger is represented in Figure 1.

Figure 1: The change hierarchy used by RacketLogger

Changes are divided into two broad categories: textual changes
and interaction changes. Textual changes impact the contents of
the source code file, i.e., these are text inserts and text deletions.
Interaction changes are non-textual changes, and represent inter-
actions between the programmer and the IDE, such as opening,
saving, and closing a file. They provide a context for the textual
changes, such as in which file the textual changes were made. An
on parsable change is logged whenever the code reaches a parsable
state. This type of change is useful to trigger the inferencing of AST
node operations, which relies on the code being in a parsable state.

2.1.1 Persisting changes. The textual changes logged by Racket-
Logger are persisted to a file, where each line corresponds to one
change. An example log file is given in Listing 1. Each change is rep-
resented as a tagged list, where the first element, the tag, indicates
the type of the represented change, and the remaining elements
contain information about the change itself. For example, text in-
sert changes contain the text that has been inserted and the offset
at which the text was inserted. Storing changes as a tagged list is
particularly useful in Racket, as this representation can easily be
parsed and manipulated in Racket itself.

Listing 1: Example of persisted textual changes.
(text -insert ")" 39)

(on-parsable)

(on-close)

2.1.2 Merging changes. Logging changes at each keystroke is likely
to result in large log files. When multiple characters are inserted or
deleted at the same place in the source code, it is possible to merge
these changes into a single change [6, 14]. Consider the addition of
the character ’a’ in a program represented by (text-insert "a"
0), followed by the addition of the character ‘n’ (text-insert
"n" 1). These two changes can be merged into a single change,
(text-insert "an" 0).

RacketLogger automatically merges changes when possible, that
is, when the following conditions are met:

• The textual changes must be of the same type, e.g., a text in-
sertion change cannot be merged with a text deletion change.

• The changes have to be made consecutively in time, to avoid
losing information about how changes were interleaved, e.g.,
two changes cannot be merged if another change has been
made in between.

• Changes need to be made consecutively in space. This is
the case if the second change starts at the offset where the
first change has stopped. This means that if a character is
added somewhere in the file, and then a character is added
somewhere unrelated in the file, these two changes should
not be merged.

Note that merging is performed transitively: a change that is the
result of a previous merge can become part of a merge again, and
hence, any number of changes can become merged into a single
change as long as the above conditions are fulfilled.

As an example, consider Figure 2 which represents two textual
changes, (text-insert "ab" x) and (text-insert "c" x+2).
Note that when we add the offset of the first change, x, to the
length of its text, then the offset of the second change is obtained.
As the second change starts at the offset where the first change has
stopped, RacketLogger merges them. Similarly, two consecutive
textual deletions can also be merged. In this case, the first change
needs to be (text-delete "c" x+2) and the second change needs
to be (text-delete "ab" x).

2.2 AST Changes
Storing changes at the textual level may be too fine-grained or
impractical for applications to work with. For this reason, Racket-
Logger is able to infer AST changes from the textual changes when

62 ELS 2022

RacketLogger: Logging and Visualising Changes in DrRacket ELS’21, March 21–22, 2022, Genova, Italy

Figure 2: Two textual changes to be merged

the program is in a parsable state (so that an AST can be obtained).
AST changes describe how the AST has changed from one parsable
state to the next, and are computed as soon as the AST comes to a
new parsable state. To see this, consider Figure 3, which exemplifies
the derivation of AST changes from textual changes. Blue nodes
denote node update operations, meaning that the contents of the
node has been updated, and green nodes denote node insert opera-
tions, meaning that nodes are inserted. When no node operations
are present in a subtree, this means that the subtree has remained
unchanged between two parsable states. For example, in Figure 3,
consider the subtree encircled in orange. Clearly, the AST changes
are a more rich and interesting source of information — which can
be used by program analyses run by the IDE for example — than
the corresponding textual changes — which give no information on
what nodes have been updated, inserted, deleted, or have remained
unchanged.

Figure 3: AST changes between two parsable states, showing
node updates (blue) and node inserts (green). An unchanged
subtree has been encircled in orange.

2.2.1 An Analogy for AST Change Inferencing Algorithms. AST
changes are inferred from the last parsed AST before the changes,
the current parsed AST, and the textual changes that connect them.
To understand how the change-inferencing algorithm for AST oper-
ations works, we now first provide an intuitive analogy: the game
of spot-the-difference, often played by children, and exemplified in
Figure 4. The goal of the game is to find differences between two
images. Analogously to the game, a change-inferencing algorithm

finds the differences between two ASTs, in terms of node operations.
More similarities emerge between inferencing algorithms and the
game if we assume that the right image follows from the left image.
This assumption allows the left image to play the role of an old
AST, whereas the right image can play the role of a new AST. The
deletion of an item in the left image corresponds to a node deletion
operation in the old AST, and is indicated in black in the figure.
Notice that the deleted item is present only in the first image, and
similarly, a node deletion occurs only at a node of the old AST as it
cannot be shown in the new AST. The insertion of an item into the
second image corresponds to a node insertion operation into the
new AST, and is indicated in blue. The inserted item is present only
in the second image, and similarly, a node insertion occurs only
at a node of the new AST. Finally, some elements that are present
in both images are updated, which corresponds to node update
operations. The updated elements are present in both figures, and
similarly, updated nodes come in pairs: one in the old AST, one in
the new AST.

Figure 4: Example of a spot-the-difference game. Blue circles
mark updates to a part of the figure, green circles mark addi-
tions, and black circles mark deletions.

2.2.2 High-level overview of the Change-Inferencing Algorithm used
by RacketLogger. To derive AST changes made to a Scheme program
from textual changes, we have adapted the algorithm for the infer-
encing of AST node operations of Negara et al. [6]. This algorithm
returns node operations (insertions, deletions and updates), given
the old AST, new AST, and the corresponding textual changes that
represent the changes to code when going from the old AST to the
new AST. We first give an overview of the algorithm developed
by Negara et al. Afterwards, we discuss how it was adapted for
Scheme.

To generate node changes, the algorithm first establishes the root
of the changed subtree, called the common covering node, which is
present in both the old AST and the newAST. Finding it is of interest,
since the rest of the algorithm can then operate on this subtree,
saving computational efforts. Since such a common covering node
represents the root of the changed subtree, it encloses all changes. In
general, nodes are found by finding the traversal path from the root

ELS 2022 63

ELS’21, March 21–22, 2022, Genova, Italy Kursun and Van der Plas, et al.

of the AST to that node. Hence, finding the common covering node
boils down to finding its path. The path is found in two steps. First,
the algorithm looks for local covering nodes in both ASTs, these are
the innermost nodes that enclose all textual changes. Second, the
path to the common covering node is found by taking the common
part of the paths to local covering nodes.

When the algorithm has found the common covering node, it
starts matching descendants of the common covering node. The
matching of nodes denotes the fact that the new AST node was
already present in the old AST. Nodes are matched in two ways:

• The algorithmmatches outliers, i.e., nodes that have not been
affected by any changes. Hence, outliers remain unchanged
and no node operations need to be generated.

• The algorithm matches yet unmatched nodes that have the
same traversal path from their respective roots. For these
nodes, update operations need to be generated.

Lastly, the algorithm generates node insert, node delete, and node
update operations. For every unmatched descendant of the common
covering node in the old AST, a delete operation is generated. For
every unmatched descendant of the common covering node in
the new AST, an insert operation is generated. For every pair of
matched nodes whose content has changed, an update operation is
generated. Notice how this generation of operations is consistent
with our previous analogy.

2.2.3 Application to Scheme. Now that we have given an overview
of the original algorithm developed by Negara et al. [6], we explain
how we have adapted it to Scheme. First, we have noticed that the
algorithm must generate more update operations. More precisely,
an update operation must be generated for every pair of ancestors
of the common covering node. The original algorithm generates
operations only for nodes below the common covering node. Since
the common covering node in the old AST and the new AST share
their traversal paths, this means that they have an equal number
of ancestors, who match with each other. These nodes enclose all
changes since they enclose the common covering node, so they
must have changed. Thus, an update operation must be generated
for each pair of nodes on the path from the root of the AST to the
common covering node.

Second, we have implemented low-level logic that enables the
original algorithm to decide when a node is affected by a change.
Note that when the algorithm matches outliers, it must be able to
tell if a change affects a node. We have implemented this check
for Scheme, and have noticed some peculiarities that relate to the
syntax of the language. Consider Figure 5, where the code at the
top corresponds to an identifier enclosed within parentheses and
the code at the bottom corresponds to a simple identifier. Now,
consider a textual insertion that occurs to the right of these nodes,
indicated by the arrow. If a change starts at this offset, we see that
the top node is untouched. However, the node representing the
identifier node might be touched, as the name of the identifier may
be made longer: when the added code does not start with a space
or a parenthesis, the identifier is affected. Similar rules are required
for insertions that occur at the beginning of the code represented
by a node.

Figure 5: A bracketed S-exp, and an identifier S-exp. The
arrow indicates the offset of a textual insertion

2.2.4 RacketLogger’s Inferencing Algorithm in Pseudocode. Algo-
rithm 1 shows the pseudocode for RacketLogger’s AST node opera-
tions inferencing algorithm. The input to the algorithm is the old
AST, the new AST, and the textual changes. These are the textual
changes that took the code from the oldAST to the newAST. The
output to the algorithm is a set of AST node operations, ASTops.
These operations are update, insert, and delete operations. Recall
that our algorithm is based on the state-of-the-art algorithm used
by Negara et al. [6]. We have highlighted the parts of the algorithm
which we adapted to Scheme. We will now discuss the algorithm
in more detail.

First, two variables are initialised to the empty set, ASTops, which
will store the inferred AST node operations (line 3), and matches,
which the algorithm uses to store pairs of matched nodes between
the old and newAST (line 4). Then, the traversal path to the common
covering nodes is found, and, using this path, the common covering
nodes are obtained from both ASTs (lines 5-7).

Next, the algorithmmatches outliers, i.e., the nodes that have not
been affected by any change. Every descendant node of the common
covering node in the old AST is checked against the changes. A
change does not affect a node if the code that the node represents
is completely before the change, or completely after it. If the offset
of the node is before the change, the change does not impact the
offset of the node either. However, if the offset of a node is after
the offset of the change, it alters the offset of the node. Changing
the offset of a node can also be seen as shifting the node to the left
or to the right. Text insertions shift the offset by the length of the
inserted text, whereas text deletions shift the offset by the opposite
number (- length of deleted text). These offset shifts are computed
by the function getChangeOffset and accumulated in a variable
deltaOffset (line 12). If no changes affect the old AST node, then
the algorithm looks for its matching node in the new AST by using
deltaOffset (line 14), and the matched pair of nodes is added to
matches (line 15).

In the next step, the algorithm matches nodes that are still un-
matched but have the same traversal path starting at the root of
their ASTs. The algorithm first loops over all the old AST nodes
that are descendants of the oldCoveringNode and that have not
yet been matched (line 18). For each such node, the traversal path to
this node is computed and the algorithm attempts to find the node
in the new AST on that path (lines 20-21). This pair of nodes is then
matched together if the new AST node is also not yet matched (line
22). In case no node can be found, then there cannot be a match.

Next, the algorithm starts generating node operations. For each
matched node, the algorithm generates an update operation if the

64 ELS 2022

RacketLogger: Logging and Visualising Changes in DrRacket ELS’21, March 21–22, 2022, Genova, Italy

code contained in the old AST node is different from the code con-
tained in the matching new AST node (lines 25-27). Then, the algo-
rithm generates an update operation for all pairs of corresponding
ancestors of the common covering nodes, as explained in Section
2.2.3. Lastly, a delete operation is generated for each unmatched
descendant of the common covering node in the old AST (lines
31-33), and an insertion operation is generated for each unmatched
descendant of the common covering node in the new AST (lines
34-36).

3 EVALUATION: VISUALISING CHANGES
WITH RACKETVIZ

We have evaluated RacketLogger by using the AST changes it cap-
tures to create an interactive visualisation of the changes it has
logged. To this end, we have built a second plugin for DrRacket,
RacketViz. RacketLogger supports registering a callback function
which will be called each time a set of node operations is inferred.
RacketViz plugs into RacketLogger through this callback. Listing
2 shows how such a callback can be registered. RacketLogger pro-
vides five arguments to the callback: the old AST, the new AST, the
inferred node operations, the changes connecting both ASTs, and
an object which indicates in which tab the changes occurred (in
DrRacket, a developer can use multiple tabs simultaneously). Hence,
the first four arguments provide all information on the changes,
both textually and at the level of AST nodes. We refer back to Figure
3 for illustrative values of the first four arguments.

Listing 2: Registration of the callback function of RacketLog-
ger.
(set-AST-inference-callback!

(lambda (old-ast new-ast inferred-node-ops

changes-obj defs-text)

...))

RacketViz implements a visualisation of the current AST of the
program, which is updated according to the changes made by the
developer whenever the program reaches a parsable state. To this
end, RacketViz uses the information on AST node changes provided
by RacketLogger, and creates a visualisation that is encoded in the
dot language, so that it can be converted into an image by GraphViz
[2]. This image is shown to the user in the a frame within the
DrRacket editor, and the image is updated every time when AST
node operations are inferred. An example image is shown in Figure
6.

Since RacketViz is provided with the inferred AST node opera-
tions, it can colour the nodes of the new AST according to these
operations: update operations are coloured blue, and insert oper-
ations are coloured green. RacketViz does not show the old AST,
because this would be cumbersome to do within the small DrRacket
frame. Hence, delete operations cannot be visualised, as the deleted
nodes are no longer present in the new AST. However, it is en-
tirely possible to also generate images for the old AST, where delete
operations could be shown.

Finally, when the programmer changes to another tab, RacketViz
loads the image for the corresponding tab. This can simply be
retrieved from memory, where RacketViz stores the last generated
image for every tab.

Algorithm 1: Inferencing algorithm for AST node opera-
tions.
1 affects(change, node, offset) returns true if a change affects a node,

i.e., if the change is made within the boundary of the node.
2 getCommonCoveringPath(oldAST, newAST, changes) returns a list

describing the path to the common covering node, by finding a local
covering node in both oldAST and newAST, and extracting their
common path.

input :The old AST, oldAST, the new AST, newAST, and the
textual changes, changes.

output :A set of AST node operations, ASTops.
3 ASTops := ∅; // AST node operations.

4 matches := ∅; // Pairs of matched nodes.

5 coveringPath :=
getCommonCoveringPath(oldAST, newAST, changes) ;

6 oldCoveringNode := getNode(oldAST, coveringPath) ;
7 newCoveringNode := getNode(newAST, coveringPath) ;
// Match outliers.

8 foreach oldNode ∈ getDescendants(oldCoveringNode) do
9 deltaOffset := 0;

10 foreach change ∈ changes do
11 if affects(change, oldNode, deltaOffset) then

Continue foreach line 8 ;
12 else deltaOffset := deltaOffset +

getChangeOffset(change, oldNode, deltaOffset) ;
13 end
14 if ∃newNode ∈ getDescendants(newCoveringNode) :

getOffset(oldNode) + deltaOffset = getOffset(newNode) then
15 matches := matches ∪ (oldNode, newNode) ;
16 end
17 end

// Match same-path nodes.

18 foreach oldNode ∈ getDescendants(oldCoveringNode) do
19 if oldNode ∉ getOldNodes(matches) then
20 oldPath := getNodePath(oldNode, oldAST) ;
21 newNode := getNode(newAST, oldPath) ;
22 if newNode ≠ null and

newNode ∉ getNewNodes(matches) then
matches := matches ∪ (oldNode, newNode) ;

23 end
24 end

// Infer node operations.

25 foreach (oldNode, newNode) ∈ matches do
26 if getText(oldNode) ≠ getText(newNode) then

ASTops := ASTops ∪makeUpdateOp(oldNode, newNode) ;
27 end
28 foreach (oldParent, newParent) ∈

parentsOnPath(coveringPath, oldAST, newAST) do
29 ASTops := ASTops ∪makeUpdateOp(oldParent, newParent) ;
30 end
31 foreach oldNode ∈ getDescendants(oldCoveringNode) do
32 if oldNode ∉ getOldNodes(matches) then

ASTops := ASTops ∪makeDeleteOp(oldNode) ;
33 end
34 foreach newNode ∈ getDescendants(newCoveringNode) do
35 if newNode ∉ getNewNodes(matches) then

ASTops := ASTops ∪makeInsertOp(newNode) ;
36 end

ELS 2022 65

ELS’21, March 21–22, 2022, Genova, Italy Kursun and Van der Plas, et al.

Figure 6: AST visualisation by RacketViz. Node updates are
shown in blue, whereas node inserts are shown in green.

4 USER STUDY
To evaluate the usefulness of RacketLogger as a building block for
any application that requires information about changes, we have
conducted a user study. RacketViz, a tool enabled by RacketLogger,
was installed on the computers of five participants, all students in
computer science at the bachelor level, using DrRacket daily. Then,
they were given about a week to use RacketViz, after which we
asked them a series of closed and open questions regarding their
experience using RacketViz.

Table 1 lists the closed questions of our user study and the re-
sponses of the five participants. The first two questions were used to
evaluate the past experience of the participants with DrRacket and
Scheme and to know for how much time the participants have used
the IDE with RacketViz installed. Next, participants were given a
series of statements, for which they had to indicate how much they
agreed with each on a scale from 0 to 10.

The three last columns of the table in Table 1 summarise the
results of our user study. We see that the participants were already
familiar with the DrRacket IDE, having 2 to 4 years of experience
using it. The second question asked how intensively they used
DrRacket whilst the plugins (RacketViz and RacketLogger as its
dependency) were installed. In total, the users have reported using
it for 9 hours.

The remaining questions asked about their user experience with
RacketViz, where participants rated propositions on a scale from
0 to 10, where 0 indicates a negative user experience, whereas 10
indicates a positive user experience. By looking at all the answers,
we see that the users had a positive experience with the plugins. In
short, the participants found that DrRacket kept working smoothly,
they managed to easily inspect the AST, they found the provided
information quite useful and easy to understand, and that the shown
AST was quickly updated after changes.

Alongside our closed questions, we also asked the participants
some open questions. First, we asked whether any errors occurred
whilst using the plugins. Two errors were reported, explaining
that the AST is not shown when multiple frames (not tabs) of the
DrRacket IDE are open. Second, we asked what else our participants

would like to see in the visualisation. We explicitly encouraged wild
ideas from our participants. Three participants came up with an
idea:

• To add zoom buttons to the AST visualisation.
• To highlight the AST nodes corresponding to run-time er-
rors.

• To highlight the code that was added from one parsable state
to the next using a different colour in the editor.

We find that the third idea is particularly interesting since it could
make great use of the detailed data about changes provided by Rack-
etLogger. As a third open question, we asked participants whether
they had any additional remarks. However, no participant had ad-
ditional remarks. We plan in the future to extend this preliminary
evaluation to evaluate in details the performance, correctness, and
usability of RacketLogger and RacketViz.

5 OTHER POTENTIAL APPLICATIONS OF
RACKETLOGGER

In this Section, we discuss other applications that could be built on
top of the change information provided by RacketLogger. Recall
that RacketLogger provides information about textual changes as
well as AST changes.

Empirical studies. Developersmight be changing complex Scheme
expressions more often than straightforward ones. It could also be
the case that developers change procedure declarations more often
than class declarations. By using the information provided by Rack-
etLogger, and gathering a large and diverse sample of programmers,
one could shed light into these and related matters. Declarative
change query languages [9, 10] have been developed to facilitate
such empirical studies. One could also mine for patterns in the cap-
tured changes [5], which can be indicative of refactoring operations
for which automated tool support ought to be provided.

Incremental program analysis. Many IDEs already have some
form of built-in program analysis to support software development.
For example, IntelliJ employs a data flow analysis [4]. When soft-
ware changes, these analyses have to be rerun to update their results.
Clearly, this is a frequent event within an IDE, therefore making
it impractical to run a full software analysis upon every change
to the code base. As a remedy, incremental program analyses can
be used, which update the analysis results based on the changes
made to the code [11, Ch. 7],[12, 13]. This makes employing static
analysis practical, as an incremental update of the analysis results
takes less time than a full analysis of the codebase.

For an incremental analysis to be efficient however, it must have
an overview of the changes, allowing the analysis to find the parts
of its result that need invalidation and recomputation. In light of
this, RacketLogger could be used to provide these changes, and
therefore to bring incremental static analysis to DrRacket in the
future.

6 RELATEDWORK
In this section, we discuss some related work on change logging.

Yoon et al. developed Fluorite [14], an event-logging (or change-
logging) plugin for the Eclipse IDE. It logs all low-level events (or
changes) that occur in the editor using an XML format. This format

66 ELS 2022

RacketLogger: Logging and Visualising Changes in DrRacket ELS’21, March 21–22, 2022, Genova, Italy

Question Mean Min Max
How familiar are you with DrRacket/Scheme (in years) 3 2 4
How intensively have you used DrRacket after installing RacketViz (in minutes) 108 60 120
Answers on a scale of agreement from 1 to 10
Does DrRacket works as smoothly as usual when running RacketViz? 9 8 10
Could you easily inspect the AST? 9.6 9 10
Do you find the provided AST information useful? 8.4 8 10
Did the AST shown in DrRacket update quickly when the code was parsable? 9 8 10
Are the inferred node operations clear to you? 8.2 8 9

Table 1: Questions from our user study of RacketViz. The last 5 questions are answered on a scale of agreement from 0 (indicating
a negative user experience) to 10 (indicating a positive user experience).

allows the logged textual changes to be used by other plugins. Flu-
orite only logs textual events, merging changes whenever possible.
It does not capture AST changes.

Omori et al. [7] developed OperationRecorder, a change-logging
plugin for Eclipse. The goal of this plugin is to more deeply un-
derstand code evolution. Traditionally, code evolution is studied
by using snapshots in repositories, but the authors found that this
traditional way of studying code evolution is incomplete since in-
termediate changes in the editor are lost. OperationRecorder uses
its own inferencing algorithm, that also relies on textual changes.

Negara et al. [6] have developed CodingTracker, a change-logging
plugin for Eclipse. Its main goal is to study software evolution in a
more complete and precise way. The tool has been used to answer
five research questions. One of the questions served as motivation
for RacketLogger: “How much code evolution data is not stored
using Version Control (VC)?”. By performing a study with 15 partic-
ipants, across 2000 commits and 23002 committed files, they found
that on average 37 percent of changes never reach version con-
trol. This finding motivates change loggers since they give a more
complete picture of code evolution than version control reposito-
ries. Negara et al. [6] have also implemented a state-of-the-art AST
node operations inferencing algorithm, which we have adapted to
Scheme syntax.

Hattori and Lanza have developed Syde, a change-logging plugin
for Eclipse. Syde is developed as a tool for collaborative software
development. For example, changes are broadcast to all team mem-
bers of a project, and real-time visualisations of the evolution of
the system.

Beller et al. [1] have developed WatchDog, a change-logging
plugin for Eclipse, IntelliJ, and Visual Studio Code. By using Watch-
Dog, Beller et al. performed a large-scale study of the habits of
developers whilst testing. Their results have shed light on how
several activities of developers relate to each other. For example,
they found that developers often overestimate the time they spend
on testing software.

The most notable difference between existing work and Rack-
etLogger is the compatible IDE. To the best of our knowledge,
RacketLogger is the first change-logging plugin for DrRacket. Rack-
etLogger also has common DNA with other change loggers: it
logs textual changes [6, 7, 14], merges changes [6, 14], and uses
CodingTracker’s state-of-the-art AST node operations inferencing
algorithm [6].

7 CONCLUSION
In this paper, we have presented RacketLogger, the first change-
logging plugin for the DrRacket IDE. We explained that RacketLog-
ger uses a hierarchy of changes, and merges changes, similar to
many state-of-the-art change-logging plugins [6], and we discussed
AST changes. RacketLogger required adaptation of an existing state
inferencing algorithm in order to support Scheme-like languages.
We have explained how the nested structure of Scheme code im-
plies node update operations at matching ancestors of the common
covering nodes. We have also introduced the challenges that had to
be overcome in determining whether an s-expression is affected by
textual changes. Finally, we have shown how RacketLogger may
be used to build other plugins that require detailed information
about changes. To that end, we implemented a change visualiser,
RacketViz, which shows the AST of the program as it evolves in a
DrRacket frame. We have conducted a preliminary evaluation of
RacketViz through a user study, indicating that it was well received
by the participants.

REFERENCES
[1] Moritz Beller, Georgios Gousios, Annibale Panichella, Sebastian Proksch, Sven

Amann, and Andy Zaidman. Developer Testing in the IDE: Patterns, Beliefs, and
Behavior. IEEE Trans. Software Eng., 45(3):261–284, 2019. doi: 10.1109/TSE.2017.
2776152. URL https://doi.org/10.1109/TSE.2017.2776152.

[2] John Ellson, Emden R. Gansner, Eleftherios Koutsofios, Stephen C. North, and
Gordon Woodhull. Graphviz - open source graph drawing tools. In Petra Mutzel,
Michael Jünger, and Sebastian Leipert, editors, Graph Drawing, 9th International
Symposium, GD 2001, volume 2265 of Lecture Notes in Computer Science, pages
483–484. Springer, 2001.

[3] Lile Hattori and Michele Lanza. Syde: a tool for collaborative software devel-
opment. In Jeff Kramer, Judith Bishop, Premkumar T. Devanbu, and Sebastián
Uchitel, editors, Proceedings of the 32nd ACM/IEEE International Conference on
Software Engineering - Volume 2, ICSE 2010, pages 235–238. ACM, 2010. doi:
10.1145/1810295.1810339. URL https://doi.org/10.1145/1810295.1810339.

[4] Zarina Kurbatova, Yaroslav Golubev, Vladimir Kovalenko, and Timofey Bryksin.
The intellij platform: a framework for building plugins and mining software data.
arXiv preprint arXiv:2110.00141, 2021.

[5] Tim Molderez, Reinout Stevens, and Coen De Roover. Mining change histories
for unknown systematic edits. In Proceedings of the 14th International Conference
on Mining Software Repositories (MSR17), 2017.

[6] Stas Negara, Mohsen Vakilian, Nicholas Chen, Ralph E. Johnson, and Danny
Dig. Is It Dangerous to Use Version Control Histories to Study Source Code
Evolution? In James Noble, editor, ECOOP 2012 - Object-Oriented Programming
- 26th European Conference, volume 7313 of Lecture Notes in Computer Science,
pages 79–103. Springer, 2012. doi: 10.1007/978-3-642-31057-7_5. URL https:
//doi.org/10.1007/978-3-642-31057-7_5.

[7] Takayuki Omori and Katsuhisa Maruyama. A change-aware development
environment by recording editing operations of source code. In Ahmed E.
Hassan, Michele Lanza, and Michael W. Godfrey, editors, Proceedings of the
2008 International Working Conference on Mining Software Repositories, MSR

ELS 2022 67

ELS’21, March 21–22, 2022, Genova, Italy Kursun and Van der Plas, et al.

2008, pages 31–34. ACM, 2008. doi: 10.1145/1370750.1370758. URL https:
//doi.org/10.1145/1370750.1370758.

[8] Turgut Reis Kursun. RacketLogger: Logging changes from the drracket code
editor. Bachelor’s thesis, Vrije Universiteit Brussel, Brussels, Belgium, 2021.

[9] Reinout Stevens and Coen De Roover. Querying the history of software projects
using QwalKeko. In Proceedings of the 30th International Conference on Software
Maintenance and Evolution, Tool Demo Track, (ICSMe14), 2014.

[10] Reinout Stevens, Tim Molderez, and Coen De Roover. Querying distilled code
changes to extract executable transformations. Empirical Software Engineering,
24(1):491–535, 2019.

[11] Tamás Szabó. Incrementalizing Static Analyses in Datalog. PhD thesis, Univer-
sitätsbibliothek der Johannes Gutenberg-Universität Mainz, 2021.

[12] Tamás Szabó, Sebastian Erdweg, andMarkus Voelter. Inca: a DSL for the definition
of incremental program analyses. In David Lo, Sven Apel, and Sarfraz Khurshid,

editors, Proceedings of the 31st IEEE/ACM International Conference on Automated
Software Engineering, ASE 2016, pages 320–331. ACM, 2016. doi: 10.1145/2970276.
2970298. URL https://doi.org/10.1145/2970276.2970298.

[13] Jens Van der Plas, Quentin Stiévenart, Noah Van Es, and Coen De Roover. Incre-
mental Flow Analysis through Computational Dependency Reification. In 20th
IEEE International Working Conference on Source Code Analysis and Manipulation,
SCAM 2020, pages 25–36. IEEE, 2020. doi: 10.1109/SCAM51674.2020.00008. URL
https://doi.org/10.1109/SCAM51674.2020.00008.

[14] YoungSeok Yoon and Brad A. Myers. Capturing and analyzing low-level events
from the code editor. In Craig Anslow, ShaneMarkstrum, and Emerson R.Murphy-
Hill, editors, Proceedings of the 3rd ACM SIGPLAN workshop on Evaluation and
usability of programming languages and tools, PLATEAU 2011, pages 25–30. ACM,
2011. doi: 10.1145/2089155.2089163. URL https://doi.org/10.1145/2089155.2089163.

68 ELS 2022

ELS 2022 69

70 ELS 2022

	Preface
	Message from the Program Chair
	Post-Symposium Message from Virtualization Team

	Organization
	Symposium Organizer
	Programme Chair
	Virtualization Team
	Programme Committee
	Sponsors

	Invited Contributions
	Lisp as Renaissance Workshop: A Lispy Tour through Mathematical Physics – Sam Ritchie
	Building SICMUtils, the Atelier of Abstractions – Sam Ritchie
	Creating a Common Lisp Implementation – Robert Strandh

	Program overview
	Monday, 21 March 2022
	Open Closures: Disclosing lambda's inner monomaniac object! Stefan Monnier
	QueryFS: compiling queries to define a filesystem Michael Raskin
	A CLOS protocol for lexical environments Robert Strandh and Irène Anne Durand
	Closing the Performance Gap Between Lisp and C Marco Heisig and Harald Koestler
	April APL Compiler Andrew Sengul

	Tuesday, 22 March 2022
	Transpiling Python to Julia using PyJL Miguel Marcelino and Antńio Leitõ
	ETAP: Experimental Typesetting Algorithms Platform Didier Verna
	An Ontology-Based Dialogue Managment Framework for Virtual Personal Assistants in Common Lisp Michael Wessel
	RacketLogger: Logging and Visualising Changes in DrRacket Turgut Reis Kursun and Jens Van der Plas and Quentin Stiv́enart and Coen De Roover

