
Proceedings of the

16th European Lisp Symposium
Amsterdam, Nederlands

April 24 — 25, 2022
In cooperation with ACM

ISBN-13: 978-2-9557474-7-6
ISSN: 2677-3465



ii ELS 2023



Preface

Message from the Program Chair

Welcome to the 16thth European Lisp Symposium!
It is my pleasure to off these proceedings to the community. Herein you will find descriptions
of the keynote presentations, as well as the research papers and demo descriptions submitted
by researchers. I hold the utmost appreciation to the keynote presenters for agreeing to present
their work to this symposium. In additional, I would like to thank everyone who made a sub-
mission to this year’s symposium.
A special thanks goes out to the chairing committee who had the task of reviewing the submis-
sions, and giving feedback to the authors. This work is mostly done in silence and may not be
appreciated by the symposium atendees. So again thank you for your work.
Thank you also to the virtualization team.
Further special thanks to the local chair Breanndán Ó Nualláin for keeping me in the dark of all
that was needed to have a venue and to keep us fed.
Finally, thank you to all the attendees. I hope you enjoyed the symposium, and that you find
something helpful and inspiring.

ELS 2023 iii



iv ELS 2023



Organization

Symposium Organizer

• Didier Verna, EPITA, France

Programme Chair

• Stefan Monnier, DIRO, Université de Montréal, Canada

Local Chair

• Breanndán Ó Nualláin, Machine Learning Programs, Nederlands

Virtualization Team

• Georgiy Tugai

• Michał Herda

• Nicolas Hafner

Programme Committee

Mark Evenson not.org, Austria
Marco Heisig Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
Ioanna Dimitriou Igalia S.L., Germany
Robert Smith HRL Laboratories
Mattias Engdegård
Marc Feeley Université de Montréal, Canada
Marc Battyani FractalConcept
Alan Ruttenberg National Center for Ontological Research, USA
Nick Levine RavenPack, Spain
Ludovic Courtès Inria, France
Matthew Flatt University of Utah, USA
Irène Durand Université Bordeaux 1, France
Jay McCarthy Brigham Young University, USA
Ambrose Bonnaire-Sergeant Cisco
Christopher League Long Island University, NY, USA
Pascal Costanza Intel, Belgium
Christian Queinnec

ELS 2023 v



Sponsors

We gratefully acknowledge the support given to the 16thth European Lisp Symposium by the
following sponsors:

Franz, Inc.
2201 Broadway, Suite 715
Oakland, CA 94612
USA
www.franz.com

SYSCOG
Campo Grande, 378 – 3
1700–097 Lisboa
Portugal
www.siscog.pt

EPITA
14–16 rue Voltaire
FR–94276 Le Kremlin–Bicêtre CEDEX
France
www.epita.fr

DIRO
2920, chemin de la Tour
Montréal, QC
Canada
diro.umontreal.ca

Machine Learning Programs
Buckholt Drive
Warndon, Worcester, WR4 9SR
United Kingdom
www.mlprograms.com

vi ELS 2023

www.franz.com
www.siscog.pt
www.epita.fr
diro.umontreal.ca
www.mlprograms.com


Invited Contributions

Run-Time Verification of Communication Protocols in Clojure

Sung-Shik Jongmans, Open University, Heerlen, the Netherlands

To simplify shared-memory concurrent programming, languages have started to offer core sup-
port for high-level communications primitives, in the form of message passing though channels,
in addition to lower-level synchronization primitives. Yet, a growing body of evidence suggests
that channel-based programming abstractions also have their issues.
The Discourje project aims to help programmers cope with channels and concurrency bugs in
Clojure programs, based on dynamic analysis. The idea is that programmers write not only
implementations of communication protocols in their Clojure programs, but also specifications.
Discourje then offers a run-time verification library to ensure that channel actions in implemen-
tations are safe relative to specifications.

Hedy: Gradual, Multi-Lingual, and Teacher-Centric Program-
ming Education

Felienne Hermans, Leiden University, the Netherlands

When kids learn to program they often use either a visual language like Scratch, or a textual
language like Python. While visual languages are great for the first steps, children and educa-
tors often want to move on to textual languages. However, early on, a textual language and its
error messages can be scary. Hedy aims to bridge this gap with a programming language that
is gradual, using different language levels.
In level 1, there is hardly any syntax at all; printing is done with: print hello!
At every level, new syntax and concepts are added, so learners do not have to master everything
at once. Hedy builds up to a subset of Python including conditions, loops, variables, and lists.
To make learning as accessible as possible, Hedy also allows for the use of localized keywords,
e.g. in Spanish: imprimir Hello! Hedy (www.hedy.org) was launched in early 2020 and over 5
million Hedy progams have been created to date, and has been translated into 46 languages.

A Language-Based Approach to Programming with Serial-
ized Data

Michael Vollmer, University of Kent, Canterbury, UK

It is common for software running today to use object representations fixed by the language
runtime system; both the Java and Haskell runtimes dictate an object layout, and the compiler
must stick to it for all programs. And yet when humans optimize a program, one of their pri-
mary levers on performance is changing data representation. For example, an HPC program-
mer knows how to pack a regular tree into a byte array for more efficient access. Unfortunately,
this is error-prone, making it an undesirable way to achieve performance optimization at the
expense of safety and readability.

ELS 2023 1

www.hedy.org


Furthermore, whenever a program receives data from the network or disk, rigid insistence on
a particular heap layout causes an impedance mismatch we know as deserialization. Data rep-
resented in memory has pointers and arbitrary, sparse layout, while data on disk is packed
contiguously, so data must be transformed from one form to another and back.
Programming with serialized data is a technique for unifying the in-memory and on-disk rep-
resentations of data, where the serialized form is used both on-disk and in-memory. This tech-
nique allows data processing programs to skip the deserialization/reserialization steps by op-
erating directly on the data in its serialized form. It also represents a principled approach to
optimizing programs by compacting data representations, which increases locality and mini-
mizes indirection.
In this talk, I will present a programming language, LoCal, for programming with serialized
data. I will also describe Gibbon, an experimental compiler that automatically transforms func-
tional programs to operate on serialized data.

Artificial Intelligence: a Problem of Plumbing?

Gerald J. Sussman, MIT CSAIL, USA
We have made amazing progress in the construction and deployment of systems that do work
originally thought to require human-like intelligence. On the symbolic side we have world-
champion Chess-playing and Go-playing systems. We have deductive systems and algebraic
manipulation systems that exceed the capabilities of human mathematicians. We are now ob-
serving the rise of connectionist mechanisms that appear to see and hear pretty well, and chat-
bots that appear to have some impressive linguistic ability. But there is a serious problem. The
mechanisms that can distinguish pictures of cats from pictures of dogs have no idea what a cat
or a dog is. The chatbots have no idea what they are talking about. The algebraic systems do
not understand anything about the real physical world. And no deontic logic system has any
idea about feelings and morality.
So what is the problem? We generally do not know how to combine systems so that a system
that knows how to solve problems of class A and another system that knows how to solve
problems of class B can be combined to solve not just problems of class A or class B but can
solve problems that require both skills that are needed for problems of class A and skills that
are needed for problems of class B.
Perhaps this is partly a problem of plumbing. We do not have linguistic structures that facilitate
discovering and building combinations. This is a fundamental challenge for the programming-
language community. We need appropriate ideas for abstract plumbing fittings that enable this
kind of cooperation among disparate mechanisms. For example, why is the amazingly powerful
tree exploration mechanism that is used for games not also available, in the same system, to a
deductive engine that is being applied to a social interaction problem?
I will attempt to elucidate this problem and perhaps point at avenues of attack that we may
work on together.

2 ELS 2023



Program overview

Monday Morning 24 April 2023

09:30–09:45 Registration, Badges, Meet and Greet
09:45–10:00 Welcome Message

10:00–11:00 Keynote Sung-Shik Jongmans
Run-Time Verification of Communication Protocols in Clojure

11:00–11:30 Coffee break

11:30–12:00 Research Dider Verna
Paper A Mop-based Implementation for Method Combinations

12:30–12:30 Research Marcel Santos
Paper A Minimal Run-time Overhead Metaobject Protocol for Julia

12:30–14:00 Lunch

14:00–14:30 Research Jim Newton
Paper An Elegant and Fast Algorithm for Partitioning Types

14:30–15:00 Demo Panicz Maciej Godek
GRASP: An Extensible Tactile Interface for Editing S-expressions

15:00–15:30 Coffee break

15:30–16:30 Keynote Felienne Hermans
Hedy: Gradual, Multi-Lingual, and Teacher-Centric Program-
ming Education

16:30–17:00 Enlightening Lightning Talks

ELS 2023 3



Tuesday Morning 25 Avril 2023

09:00–09:30 Meet and Greet
09:30–10:30 Keynote Michael Vollmer

A Language-Based Approach to Programming with Serialized
Data

10:30–11:00 Coffee Break

11:00–11:30 Demo Alejandro Zamora Fonseca
Remote A stepper for Armed Bear Common Lisp (ABCL)

11:30–12:00 Experience Nicolas Hafner
Report Kandria - A Game in Common Lisp

12:00–12:30 Sponsored Fábio Almeida
SISCOG - 35 years of keeping trains on track

12:30–14:00 Lunch

14:00–14:30 Research Hayley Patton
Remote Parallel Garbage Collection for SBCL

14:30–15:00 Research Alexander Wood, Charles Zhang, and Christian Schafmeister
Paper Design of an Efficient Lisp Bytecode Machine and Compiler

15:00–15:30 Coffee Break

15:30–16:30 Keynote Gerald J. Sussman
Remote Artificial Intelligence: a Problem of Plumbing?

16:30–17:00 Enlightening Lightning Talks
17:00–17:15 Closing Ceremony
17:15 Conference End

4 ELS 2023



Monday, 24 April 2023

ELS 2023 5



A Mop-Based Implementation for Method Combinations
Method Combinators Revisited

Didier Verna
EPITA, LRE

Le Kremlin-Bicêtre, France
didier@lrde.epita.fr

ABSTRACT
In traditional object-oriented languages, the dynamic dispatch algo-
rithm is hardwired to select and execute the most specific method
in a polymorphic call. In Clos, the Common Lisp Object System, an
abstraction known as method combinations allows the programmer
to define their own dispatch scheme. When Common Lisp was
standardized, method combinations were not mature enough to be
fully specified.

In 2018, using Sbcl as a research vehicle, we analyzed the un-
fortunate consequences of this under-specification and proposed
a layer on top of method combinations designed to both correct
a number of observed behavioral inconsistencies, and propose an
extension called “alternative combinators”. Following this work,
Sbcl underwent a number of internal changes that fixed the re-
ported inconsistencies, although in a way that hindered further
experimentation.

In this paper, we analyze Sbcl’s new method combinations im-
plementation and we propose an alternative design. Our solution is
standard-compliant so any Lisp implementation can potentially use
it. It is also based on the Mop, meaning that it is extensible, which
restores the opportunity for further experimentation. In particular,
we revisit our former “alternative combinators” extension, broken
after 2018, and demonstrate that provided with this new infrastruc-
ture, it can be re-implemented in a much simpler and non-intrusive
way.

CCS CONCEPTS
• Software and its engineering→ Object oriented languages;
Extensible languages; Polymorphism; Inheritance; Classes and
objects; Object oriented architectures; Abstraction, modeling and mod-
ularity .

KEYWORDS
Object-Oriented Programming, Common Lisp Object System, Meta-
Object Protocol, Generic Functions, Dynamic Dispatch, Polymor-
phism, Multi-Methods, Multiple Dispatch, Method Combinations,
Orthogonality
ACM Reference Format:
Didier Verna. 2023. AMop-Based Implementation for Method Combinations:
Method Combinators Revisited. In Proceedings of the 16th European Lisp

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ELS’23, April 24–25 2023, Amsterdam, Netherlands
© 2023 Copyright held by the owner/author(s).
ACM ISBN 978-2-9557474-7-6.
https://doi.org/10.5281/zenodo.7818680

Symposium (ELS’23). ACM, New York, NY, USA, 10 pages. https://doi.org/
10.5281/zenodo.7818680

1 INTRODUCTION
Common Lisp was the first programming language equipped with
an object-oriented (OO) layer to be standardized [14]. Although
in the lineage of traditional class-based OO languages such as
Smalltalk and later C++ and Java, Clos, the Common Lisp Ob-
ject System [2, 5, 6, 8], departs from those in several important
ways.

First of all, Clos offers native support for multiple dispatch [3, 4].
The existence of multi-methods pushes the dynamic dispatch one
step further in the direction of separation of concerns: polymor-
phism and inheritance are clearly separated. Next, when imple-
mented on top of the Mop [9, 11], the very semantics of Clos itself
can be extended or modified, hence providing a form of homoge-
neous behavioral reflection [10, 12, 13].

Yet another improvement over classical OO lies in the concept
of method combination. In the traditional approach, the dynamic
dispatch algorithm is hardwired: every polymorphic call ends up
executing the most specific method available (applicable) and using
other, less specific ones requires explicit calls to them. In Clos
however, a generic function can be programmed to implicitly call
several applicable methods, not necessarily by order of specificity,
and combine their results in a particular way. Along with multiple
dispatch, method combinations constitute one more step towards
orthogonality [7, chapter 8]: a generic function can now be seen as
a 2D concept: 1. a set of methods and 2. a specific way of combin-
ing them. As usual with this language, method combinations are
also fully programmable, essentially turning the dynamic dispatch
algorithm into a user-level facility.

In a private conversation, Richard P. Gabriel reported that at
the time Common Lisp was standardized, the committee didn’t
believe that method combinations were mature enough to make
people implement them in one particular way (the only industrial-
strength implementation available back then was in Flavors on Lisp
Machines). Consequently, they intentionally under-specified them
in order to leave room for experimentation. At the time, the Mop
was not ready either, and only added later, sometimes with unclear
or contradictory protocols.

In 2018 [15], using Sbcl1 as a research vehicle, we analyzed the
unfortunate consequences of this under-specification and exhibited
a number of oddities in the design and behavior of method combina-
tions. In particular, it turned out that method combinations weren’t
required to have a global name-space, meaning that every generic
function could end up with its own method combination object,

1http://www.sbcl.org

6 ELS 2023



ELS’23, April 24–25 2023, Amsterdam, Netherlands Didier Verna

completely disconnected from the original definition, and hence
unaffected by subsequent modifications to it. It is worth mentioning
that although counter-intuitive, this behavior does not contradict
the standard. We proposed an extension to method combinations,
called “method combinators”, designed, amongst other things to
establish proper dependencies between global method combination
definitions and the associated generic functions. Wewere able to im-
plement that extension in a non-intrusive, semi-portable way. This
means that no modifications to Sbcl’s internals were needed; only
a couple of calls to internal functions here and there. In addition
to that, method combinators allowed us to develop an additional
feature, alternative combinators, namely, the ability to call the same
generic function with different method combinations at the same
time, and at the minimum performance cost, that is, without the
need to reinitialize the function every single time.

After this work, Sbcl underwent a number of internal changes
that fixed the reported inconsistencies. In particular, in its current
state, the dependencies between generic functions and their method
combinations are handled in a more intuitive fashion: generic func-
tions are updated if their original method combination is redefined
globally. Unfortunately for us, the new dependency management
code is buried deep down into Sbcl’s internals and doesn’t go
through any of the official or even just suggested protocols. As a
consequence, those changes broke our implementation of alterna-
tive combinators, and made it impossible to re-implement them as
before, in a non-intrusive way.

In this paper, we propose yet another iteration over a possible
implementation of method combinations. The paper is organized
as follows. Section 2 provides an analysis of the current implemen-
tation in Sbcl, emphasizing on how the dependencies between
method combinations and generic functions are handled. Section 3
proposes an alternative, Mop-based implementation. This imple-
mentation conforms to the standard, so it could very well be used
not only by Sbcl but by all interested Lisp implementations. The
design we propose also focuses on extensibility and experimen-
tation, which was in fact the original motivation for leaving the
method combinations area under-specified in the standard. Sec-
tion 4 describes some additional refinements aimed at extensibility,
and illustrates the benefits with a couple of examples. In particu-
lar, we revisit our former alternative combinators extension, and
demonstrate that this time, it can be re-implemented in a much
simpler and non-intrusive way. Finally, Section 5 provides some
feedback on the performance of the proposed design.

2 METHOD COMBINATIONS IN SBCL
In this section, we analyze how post-2018 Sbcl implements method
combinations, and how it handles the dependencies between them
and the generic functions in the system.

2.1 Method Combinations Hierarchy
The Sbcl method combination classes hierarchy is depicted in Fig-
ure 1.

2.1.1 Description
The method-combination class is the only one mandated by the
standard. The existence of a sub-hierarchy is nevertheless also a
requirement, as the standard stipulates that method combination

metaobject

method-combination

standard-method-combination
type-name
options
%generic-functions

short-method-combination
operator
identity-with-one-argument

long-method-combination

function
args-lambda-list

Figure 1: Sbcl Method Combination Classes Hierarchy

objects be “indirect instances” of the method-combination class2;
something that the Mop itself confirms by saying that this class
should be “abstract”.

Although, again, the standard does not require it, there is a
standard-method-combination class, which is in fact a natural
thing to provide. Indeed, it aligns the design of method combi-
nations with the key components of Clos which do have such
a standardized equivalent: standard-class, standard-generic-
function, and standard-method notably.

Apart from the standard method combination, every other one
(that is, either built-in or user-defined) will be an instance of either
the short-method-combination, or long-method-combination
class.

2.1.2 Analysis
Already the case in 2018, a notable aspect of this implementation
is the mixture of define-time and use-time attributes to method
combinations.

The type-name, operator, identity-with-one-argument, and
args-lambda-list slots represent information passed to define-
method-combination. The options slot, on the other hand, holds
specific sets of options passed to the :method-combination option
in calls to defgeneric. As a consequence, different instances cre-
ated from the same original method combination will only differ
by their options slot.

One particular excerpt from the standard may explain this de-
sign, which is in fact that of Pcl [1] rather than of Sbcl itself.
The following sentence appears in the description of the method-
combination class3.

A method combination object contains information about both
the type of method combination and the arguments being used

with that type.

In Pcl, the ability for a method combination instance to access
information related to its original type is necessary anyway. Indeed,

2http://clhs.lisp.se/Body/t_meth_1.htm
3http://clhs.lisp.se/Body/t_meth_1.htm

ELS 2023 7



A Mop-Based Implementation for Method Combinations ELS’23, April 24–25 2023, Amsterdam, Netherlands

method-combination-info
lambda-list
#’constructor
cache

(options . mcobject)
…
(options . mcobject)

Figure 2: Sbcl Method Combination Info Structure

that information is used by the code computing effective methods
when a generic function is called.

Note that even with this particular design, the information re-
lated to the method combination type is not exhaustive.The method
combination’s lambda-list is missing (it is in fact stored somewhere
else), and so is the potential :generic-function option’s value
for long method combinations.

Finally, let us also mention that the function slot of longmethod
combinations exists for historical reasons, but is not used any-
more in Sbcl. Instead, Sbcl uses a global hash table mapping
method combination names to such functions (stored in the *long-
method-combination-functions* global variable). The functions
in question are each method combination type’s specific version
of compute-effective-method, so there is indeed only one per
method combination type (they are parameterized by the contents
of the options slot).

2.1.3 Summary
From this analysis, it turns out that Sbcl’s method combinations
hierarchy, only slightly divergent from that of Pcl’s, contains a
mixture of information specific to every instance and information
related to a method combination definition (in which case that infor-
mation is duplicated). Two bits of information related to a method
combination definition are also stored elsewhere, outside this hi-
erarchy (the method combination’s lambda list and function), and
the long-method-combination class retains one obsolete, unused
slot.

2.2 Dependency Management
One notable change in post-2018 Sbcl is a more natural handling of
the dependencies between generic functions and method combina-
tions. More specifically, method combinations have regained global
name-space semantics, which means that should one of them be
redefined, the generic functions using it would be notified. We now
explain how this is done.

Each defined method combination is represented by an instance
of a structure called method-combination-info, which is depicted
in Figure 2. A global variable named **method-combinations**
maintains a hash table mapping method combination names to
such instances. The lambda-list slot stores the method combina-
tion’s lambda-list. It is the one that was noted as missing from the
hierarchy in Figure 1.

2.2.1 Instantiation
Every method combination info maintains a cache of method com-
bination objects. When a generic function is defined to use a specific
method combination with a specific set of options, the standard
Mop function find-method-combination is called. If a method

combination object associatedwith those particular options is found
in the cache, it is simply returned. Otherwise, a new method com-
bination object is created by calling the constructor function,
and the cache is populated accordingly. Depending on the context,
method combination objects will be instances of either the short-
or long-method-combination classes.

2.2.2 Redefinition
Note, in Figure 1, the existence of a new slot (added post-2018
to Sbcl) named %generic-functions in the standard-method-
combination class. This is how every method combination object
keeps track of the generic functions using it.

When a method combination is redefined (by calling define-
method-combination again), Sbcl updates the concerned info struc-
ture, and then traverses its cache, calling change-class on every
method combination object. Also, for each “client” generic func-
tion in each method combination object’s %generic-functions
slot, Sbcl flushes the effective method cache and reinitializes the
function by calling reinitialize-instance.

Note that this whole redefinition process is done in Sbcl’s inter-
nals, without going through any standard (there is, in fact, none)
or even just public protocols.

2.2.3 Updating
In a similar vein, when a generic function is created or updated, care
is taken to add or remove it, to or from the %generic-functions
slots in the concerned method combination objects. This time, the
updating is done through a public protocol, namely, [re]initial-
ize-instance.

2.2.4 Summary
Post-2018 Sbcl now handles the dependencies between method
combinations and generic functions in a more intuitive way. Unfor-
tunately, half of the dependency management code is buried in the
implementation, without going through public protocols.

Note also that with the addition of the method-combination-
info data structure, the global variable *long-method-combina-
tion-functions* has become superfluous. Indeed it could be re-
placed with an additional function slot in said structure, although
that slot would be unused for short method combinations.

3 METHOD COMBINATIONS REVISITED
The lack of dependency management was our biggest concern
in [15]. At the time, we were able to address it in a non-intrusive
and extensible way. Although Sbcl’s current solution works, it
is buried deep down into the internals and doesn’t go through
any well-defined or public protocols. As a consequence, it is now
impossible to continue experimenting with method combinations
or providing extensions on top of them, without having to modify
the language’s implementation.

In this section, we suggest an alternative implementation for
method combinations. In addition to proper dependency manage-
ment, our implementation has the following properties.

• It remains standard-compliant.
• It retains Pcl’s method combinations hierarchy (modulo
some variations in the classes definitions).

8 ELS 2023



ELS’23, April 24–25 2023, Amsterdam, Netherlands Didier Verna

• It clearly separates define-time and use-time method combi-
nation properties.
• It is grounded into the Mop. This means that it remains
extensible and allows further experimentation, as was the
original intent behind their under-specification, and as is, in
general, the intent behind any Mop-based implementation
of Clos.

3.1 Overview
In the Pcl implementation, and with the exception of the standard
one, method combination objects are instances of one of the two
built-in classes short- or long-method-combination (Figure 1).
Yet, the standard consistently talks of method combination types45,
which seems to suggest that define-method-combination should
create new classes of method combinations.

In addition to that, recall that define-method-combination
comes in two forms, which means that there are in fact two types of
types of method combinations. And so have we naturally entered
the world of meta-objects.

The design we propose is thus as follows. We provide a hier-
archy of method combination types, to distinguish between short
and long ones. These are, in fact, meta-classes. define-method-
combination is made to create a new method combination class,
which is injected in Pcl’s method combinations hierarchy, and at
the same time implemented as either a short or long method com-
bination type. In other words, new method combination classes
are sub-classes of either short- or long-method-combination as
before, but are also instances of either short- or long-method-
combination-type.

Further details are provided in the following sections. In the new
hierarchies presented below, slots beginning with a percent sign
contain information that is required for implementation purposes
but are considered internal. Other slots are made publicly readable.

3.2 Method Combinations
Figure 3 depicts the updated method combinations hierarchy. It
departs from Pcl’s in a number of ways.

First of all, the standard-method-combination class will not
represent the built-in “standard method combination” anymore
(there is, in fact, an ambiguity in the term). Rather, it exists as
an intermediate implementation class similar to standard-class,
standard-generic-function, or standard-method.

Also, this updated hierarchy doesn’t hold any information re-
lated to the method combination type in use (information com-
mon to all instances). Instead, we only retain two slots: options
(the options passed to the :method-combination option in calls
to defgeneric), and %generic-functions (the cache of functions
using this particular method combination object). As a consequence,
the short- and long-method-combination classes are empty, and
still exist only for specialization purposes.

3.3 Method Combination Types
Figure 4 depicts the added method combination types hierarchy;
in other words, the hierarchy ofmethod combinationmeta-classes. It
4http://clhs.lisp.se/Body/m_defi_4.htm
5http://clhs.lisp.se/Body/m_defgen.htm

metaobject

method-combination

standard-method-combination
options
%generic-functions

short-method-combination long-method-combination

Figure 3: Method Combinations Hierarchy

standard-class

method-combination-type

standard-method-combination-type
type-name
lambda-list
%constructor
%cache

short-method-combination-type
operator
identity-with-one-argument

long-method-combination-type

%args-lambda-list
%function

Figure 4: Method Combination Types Hierarchy

essentially serves as a replacement for Sbcl’s method-combination-
info structure.

The standard-method-combination-type class holds the same
information as the former info structure, with the addition of the
method combination type’s name.The former contents of the short-
and long-method-combination classes, which was indeed com-
mon to all instances, is hence moved here, in the short- and long-
method-combination-type classes. Note that in this new imple-
mentation, the %function slot will actually be used.

3.4 Standard Method Combination
As a first example of how those two hierarchies work together, let
us now recreate the standard method combination. This is depicted
in Figure 5.

We don’t want to treat the standard method combination as an
“exception” of any kind, and as mentioned before, we also want to
remove any ambiguity around the term “standard” in this particular
context. Because of that, the standard method combination type

ELS 2023 9



A Mop-Based Implementation for Method Combinations ELS’23, April 24–25 2023, Amsterdam, Netherlands

standard-method-combination
options
%generic-functions

standard-standard-method-combination
type-name: standard
lambda-list: nil
%constructor
%cache: (nil . )

standard-method-combination-type
type-name
lambda-list
%constructor
%cache

«instanceof»

*standard-method-combination*

options: nil

«instanceof»

Figure 5: The Standard Method Combination

will be represented by a specific class (like any other method combi-
nation type). However, there will only ever be one standard method
combination object, so the class in question will be a singleton one.

The standard method combination type is hence materialized
by the singleton class standard-standard-method-combination.
Because it is neither short nor long, it is a direct subclass of standard-
method-combination, and it is directly implemented as a standard-
method-combination-type for which the type name is standard,
and the lambda-list is nil.

The standard method combination object (created by the %con-
structor function) is the only instance of that class, for which
the options are also nil. Sbcl also happens to store that object
in the global variable *standard-method-combination* for opti-
mization purposes.

Finally, the %cache of method combination objects associates
the options nil with the aforementioned single instance.

3.5 Built-In Method Combinations
Here we demonstrate how the built-in method combinations work
as a second example. In Pcl, the built-in method combinations types
are created using the short form of define-method-combination.
Note that the creation of long method combination types works in
exactly the same way. Figure 6 illustrates the effect of calling:
(define-method-combination progn

:identity-with-one-argument t)

A new subclass of short-method-combination is created and
implemented as a short-method-combination-type. The type
name is progn (so is the operator), the lambda list is that of short
method combinations and it falls back to identity with one argu-
ment, as specified in the call to define-method-combination.

Suppose now that two generic functions are created with:
(defgeneric gf1 (...)

(:method-combination progn))
(defgeneric gf2 (...)

(:method-combination progn :most-specific-last))

The %constructor function is called twice, resulting in the cre-
ation of two instances of the progn method combination type (mc1
and mc2), each with the corresponding options. The method com-
bination’s %cache is populated accordingly. Finally, each method

standard-method-combination
options
%generic-functions

short-method-combination

standard-method-combination-type
type-name
lambda-list
%constructor
%cache

short-method-combination-type
operator
identity-with-one-argument

anonymous
type-name: progn
lambda-list: (&optional (order :most-specific-first))
operator: progn
identity-with-one-argument: t
%constructor
%cache: (nil . ) ((:most-specific-last) . )

«instanceof»

mc1

options: nil
%generic-functions:

«instanceof»

mc2

options: (:most-specific-last)
%generic-functions:

«instanceof»

gf1 gf2

Figure 6: The progn Method Combination

combination object registers the concerned generic function as one
if its “clients”.

The reader may wonder why the progn method combination
class is anonymous (especially since the standard method combina-
tion one isn’t). The reason is that those classes are created automat-
ically by the system, and as such, are not meant to be visible (even
less so manipulable) by the programmer. We don’t want them to
“pollute” the global class name-space either.The fact that we provide
a global name for standard-standard-method-combination is
merely to facilitate the implementation. Sbcl provides three special-
izations on compute-effective-method; one on short-method-
combination, one on long-method-combination, and one for the
standard method combination type. Each user-defined method com-
bination type will thus inherit automatically from one of the first
two such methods. In the case of the standard method combination
type, naming it explicitly (and statically) allows us to remain in the
Mop’s first layer (macro layer):
(defmethod compute-effective-method

((gf generic-function)
(mc standard-standard-method-combination)
applicable-methods)

...)

3.6 Implementation
We have implemented this approach in Sbcl. The resulting imple-
mentation is publicly available on Github, in a specific branch of
our own Sbcl fork6.

The implementation is in fact pretty straightforward, with the
exception of one difficulty related to the bootstrapping of Clos.
During that phase of the build, the Clos/Mop infrastructure is not

6https://github.com/didierverna/sbcl/tree/method-combination-types

10 ELS 2023



ELS’23, April 24–25 2023, Amsterdam, Netherlands Didier Verna

standard-method-combination
options
%generic-functions

short-method-combination

early-short-method-combination
type-name
operator
identity-with-one-argument

early-standard-method-combination
type-name

Figure 7: Early Method Combination Classes

fully available, and Sbcl creates two “early” method combination
objects: the standard and the or one. The difficulty is that a lot of
the early Clos code relies on those objects having the characteristics
of the old infrastructure, which we have modified. In order to be
as little intrusive as possible in the bootstrap, we use the following
solution.

3.6.1 Bootstrap
We defer the creation of the method combination types hierarchy
until after bootstrap. On the other hand, the updated method combi-
nations hierarchy (Figure 3), which is available during bootstrap, is
extended with two additional classes created specifically for the two
initial method combination objects. These are early-standard-
method-combination and early-short-method-combination, as
depicted in Figure 7. As you can see, those two classes re-introduce
the old slots that we moved around. With the appropriate accessors
in place, the bootstrap code doesn’t see the difference, and thus
the required modifications are minimal: we just need to instantiate
those “early” classes instead of the regular ones.

3.6.2 Injection
After bootstrap, themethod combination types hierarchy is installed
and the standard and built-in short method combination types are
created. At that point, the complete new infrastructure is in place,
but it is empty: we still have the two early method combination
objects dangling around, and early generic functions using them.

These objects are in fact stored in two global variables named
*standard-method-combination* and *or-method-combina-
tion*. Thus, it is easy for us to update the system: we transfer
the generic function caches from these objects to the new ones,
we update the existing generic functions to point to the new
method combination objects, and we eventually re-assign the
global variables to these new objects as well.

3.6.3 Additions
With that infrastructure in place, a number of suggestions already
made in [15] can be re-implemented. In particular, we provide the
following function which accesses the global method combination
type name-space (analog to what find-class does).
find-method-combination-type

(name &optional (errorp t))
"Find a NAMEd method combination type.
If ERRORP (the default), throw an error if no such

method combination type is found.
Otherwise, return NIL."

Also previously noted ([15, Section 2.3.1]) is the confusing na-
ture of find-method-combination, which may be called with a
method combination name and options (2=3 and 3A3 arguments)
that do not correspond to the method combination actually in use
by the generic function (1BC argument). Since the generic function
argument to this protocol is in fact unused, it is easy to provide an
alternative convenience function as follows.

find-method-combination*
(name &optional options (errorp t))

"Find a method combination object for NAME and OPTIONS.
If ERRORP (the default), throw an error if no NAMEd
method combination type is found.
Otherwise, return NIL.

Note that when a NAMEd method combination type exists,
asking for a new set of (conformant) OPTIONS will
always instantiate the combination again, regardless
of the value of ERRORP."

4 EXTENSIBILITY
Establishing a clear distinction between the properties of method
combination types and those of method combination objects cer-
tainly is a good thing from a software engineering point of view.
On the other hand, it may seem overkill to introduce a meta-class
hierarchy to do so. Indeed, the existence of duplicated information
in the original hierarchy is not a critical problem; a simpler alterna-
tive to avoid duplication could have been the use of :allocation
:class slots, etc.

What the proposed design gives back, however, is something
quite valuable, especially in the general context of Clos and the
Mop, and that is extensibility. Recall that one of the original rea-
sons for the general fuzziness around method combinations in the
standard was to leave room for experimentation. The Clos Mop is
notoriously good at that when it provides (meta-)class hierarchies
to extend, and protocols to specialize.

With the proposed design, it becomes possible to push experi-
mentation with method combinations further, and in a less intrusive
way, by extending the method combination and/or method combi-
nation types hierarchies separately.

4.1 Protocol refinements
In addition to the hierarchies proposed in the previous section, a
number of refinements can be made to the current implementation
to ease experimentation.

4.1.1 Method Combination Types Redefinition
When a method combination type is redefined, the current im-
plementation in sb-pcl calls change-class on every concerned
instance, and then reinitializes every (dependent) generic function
listed in the instances caches. Here, we provide two small refine-
ments for extensibility.

ELS 2023 11



A Mop-Based Implementation for Method Combinations ELS’23, April 24–25 2023, Amsterdam, Netherlands

First, the code dealing with generic function reinitialization is
installed in an :aftermethod on update-instance-for-differ-
ent-class. This allows potential extensions to get notified if a
method combination type has changed.

Next, the code in question is wrapped in a new protocol named
u-g-f-f-r-m-c7, a protocol that was already proposed in [15].
This, in turn, allows potential extensions to generic functions to be
notified when their method combination is updated.

4.1.2 Method Combination Types Definition
Finally, there is a simple way to allow extensions to seamlessly
plug sub-classes of method combination (types) into the system.
According to the Common Lisp standard (in particular Section
1.6 Language Extensions8), it is permissible to add new keyword
arguments to functions or macros, provided that “they do not al-
ter the behavior of conforming code and provided they are not
explicitly prohibited […]”. Consequently, we can extend define-
method-combination in the following manner (granted, this is just
a macro so it wouldn’t be difficult to provide a different one instead).

The short form is made to understand two additional options,
the meaning of which should be self-explanatory.
:method-combination-class name
:method-combination-type-class name

or
:method-combination-type-class (name initargs*)

Similarly, the long form is made to recognize those as well, pro-
vided that they appear in that order, and only after the :arguments
and :generic-function options when present.
(:method-combination-class name)
(:method-combination-type-class name initargs*)

Of course, care is taken to verify that when provided, the alterna-
tive classes make sense in the present context, and with each other
(e.g. only sub-classes of short-method-combination[-type] are
authorized in the short form, etc.).

We now provide two examples making use of this kind of exten-
sibility. The complete code is available on Github9 and requires the
aforementioned fork of Sbcl to work.

4.2 Medium Method Combinations
We want to define “medium” method combinations, that is, method
combinations behaving like short ones, but also equipped with
:before and :after methods, and which do not request the qual-
ification of primary methods. Of course, these may be defined
as regular long method combinations (all method combinations
can). However, we may want to keep the short-style operator and
identity-with-one-argument properties around, for information
purposes (e.g. specializing print-object or producing detailed ref-
erence manuals with Declt10).

We hence provide a new method combination type class, as
depicted in Figure 8. A new convenience macro could be used as
below:

7update-generic-function-for-redefined-method-combination
8http://clhs.lisp.se/Body/01_f.htm
9https://github.com/didierverna/ELS2023-method-combinations
10https://www.lrde.epita.fr/~didier/software/lisp/typesetting.php#Declt

standard-method-combination-type
type-name
lambda-list
%constructor
%cache

long-method-combination-type

%args-lambda-list
%function

medium-method-combination-type
operator
identity-with-one-argument

Figure 8: The Medium Method Combination Type Class

(define-medium-method-combination-type myprogn
:operator progn :identity-with-one-argument t)

which, in turn, will expand to this:

(define-method-combination myprogn
(&optional (order :most-specific-first))

((around (:around))
(before (:before))
(primary () :order order :required t)
(after (:after)))
(:method-combination-type-class

medium-method-combination-type
:operator progn :identity-with-one-argument t)

...)

Because this new method combination type is fully integrated into
the original hierarchy, nothing else is required for it to work. In
particular, Sbcl’s original specialization on compute-effective-
method for long method combinations remains applicable here.

4.3 Alternative Method Combinations
Alternative method combinations have been proposed and de-
scribed in [15, Section 6]. In short, the idea is to be able to call
the same generic function with different method combinations ef-
ficiently (meaning, without having to reinitialize it at every call),
simply by maintaining a cache of discriminating functions.

Just as a quick reminder of a potential use-case, assume that ac-
cess to alternative calls is provided through a reader-macro such as
this one: #!combination(func arg1 arg2 ...). It may be con-
venient, depending on the context, to vary the calls to a function at
minimal cost like this:

#!append(func arg1 arg2 ...)
#!nconc(func arg1 arg2 ...)

Given the new method combination architecture proposed in
Section 3, the implementation of this idea is not only straightfor-
ward, but also much simpler than that of 2018. In fact, we don’t even
need to extend the method combination type hierarchy anymore;
only the generic functions one.

12 ELS 2023



ELS’23, April 24–25 2023, Amsterdam, Netherlands Didier Verna

standard-generic-function

generic-function!

%functions

Figure 9: Extended Generic Functions

method-combination-mixin
%alternative-generic-functions

short-method-combination long-method-combination

short-method-combination! long-method-combination!

Figure 10: Extended Method Combinations

4.3.1 Alternative Calls
We provide a new class of generic functions, as depicted in Fig-
ure 9.The %functions slot implements the discriminating functions
cache. It is a hash table mapping method combination objects to
discriminating functions. When a generic function is called with an
alternative method combination, it is reinitialized with that method
combination, called, and the resulting discriminating function is
cached. The function is then switched back to its original method
combination.

Note that we also arrange for the two method combination ob-
jects (the original and the alternative one) to reference the generic
function in their respective cache. This is why we don’t need to ex-
tend the method combinations hierarchy anymore, but this means
that the caches in question contain a mixture of generic functions
using the method combination as their “primary” one, and others
using it as an alternative one.

Another possible implementation would be to maintain separate
caches for primary and alternative generic functions, in which case
the method combinations hierarchy (not the method combination
types one) would need to be extended as depicted in Figure 10.

4.3.2 Generic Function Modification
New :after methods are installed on add-method and remove-
method to clear the discriminating functions cache in case the
generic function is modified.

4.3.3 Method Combination Change
An :around method on reinitialize-instance is installed in
order to intercept a method combination change to the generic
function. On top of the normal behavior, if the new method combi-
nation was previously used as an alternative one for this generic
function, both the generic function’s discriminating functions cache,
and the method combination’s generic functions cache are updated.

0

0.5

1

1.5

2

2.5

3

3.5

4

Short (10e7 iterations) Long (10e7 iterations)

(s
ec
on

ds
)

Original
Fork

1

13

3

6

6

1 1

3

36

6

Figure 11: compute-effective-method Performance

4.3.4 Method Combination Redefinition
Finally, a new method on u-g-f-f-r-m-c11, one of our newly pro-
posed protocols, is installed. This method simply detects the redef-
inition of a method combination that was used as an alternative
one, and invalidates the cached discriminating function associated
with it.

5 PERFORMANCE
In this section, we study the impact of our proposed architectural
changes on the performance of the system. We are not interested in
benchmarking the creation ormodification ofmethod combinations,
since that is bound to happen very rarely. Rather, the impact of
the method combinations implementation is likely to be visible
where they are used, that is, when effective methods are computed.
In other words, we are interested in the performance of compute-
effective-method.

In Sbcl, there are three different cases.
(1) The case of the standard method combination is completely

hardwired, so regardless of its implementation, the perfor-
mance will be exactly the same.

(2) The case of short method combinations is handled by a sin-
gle function, short-compute-effective-method, but this
function accesses properties specific to the method combi-
nation types every time it is called (type name, operator,
identity with one argument).

(3) Finally, the case of long method combinations is handled by
calling a function that is specific to eachmethod combination
type.

In order to roughly evaluate the consequences of our proposed
architecture in terms of performance, we timed the execution of
compute-effective-method (ten million calls in a row) on one
generic function using a short method combination, and another
one using a long method combination, each time with one, three,
and six applicable methods. Those tests were run on a regular
Sbcl as well as on our forked version. The code is available in the
aforementioned Github repository, and the results are presented in
11update-generic-function-for-redefined-method-combination

ELS 2023 13



A Mop-Based Implementation for Method Combinations ELS’23, April 24–25 2023, Amsterdam, Netherlands

Figure 11. The number of applicable methods is indicated on top of
each bar.

5.1 Short Method Combinations
In the case of short method combinations, we observe a degradation
ranging from 50% to 22% (the degradation decreasing as the number
of applicable methods increases). This may be explained as follows.

In the original version of Sbcl, short-compute-effective-
method retrieves three method combination properties (type name,
operator, and identity with one argument) through regular acces-
sors to the slots depicted in Figure 1.

In our new architecture, those properties belong to the method
combination type rather than to the method combination object.
As visible in Figure 6, accessing those properties from a method
combination object hence requires an additional call to class-of.
In other words, we are comparing (accessor mc-object) with
(accessor (class-of mc-object)). Also, because the number
of such accesses remains constant (exactly three), it is not surprising
that the impact on performance decreases when the number of
applicable methods increases: it just means that it takes longer to
execute the function with more applicable methods.

Even though such a degradation may seem important, we still
don’t think it matters that much, in the sense that effective meth-
ods are not computed very frequently (thanks to caching); only
when the set of applicable methods varies. And if it does matter,
it is always possible to duplicate that information back into the
method combination objects themselves, without sacrificing the
new architecture.

5.2 Long Method Combinations
In the case of long method combinations on the other hand, we
observe an improvement ranging from 7% to 3% (also less important
as the number of applicable methods increases), which may or
may not be considered significant. Again, this may be explained as
follows.

In the original version of Sbcl, compute-effective-method
retrieves the method combination “function” (in charge of actually
computing the effective method in a way specific to that particular
method combination type) from a hash table (see Section 2.1.2).

In our new architecture (see Figure 4), that function is stored in
the method combination type itself, that is, in the implementation of
the method combination object. So here this time, we are comparing
a hash table lookup with (accessor (class-of mc-object)).

6 CONCLUSION AND PERSPECTIVES
Method combinations are an extremely powerful, yet somewhat
obscure part of Clos. The arguable complexity of define-method-
combination’s long form is a probable obstacle to a more wide-
spread use, and their under-specification doesn’t facilitate experi-
mentation, as there is almost no official protocol that Lisp imple-
mentations need to conform to.

In this paper, we have proposed a Mop-based implementation for
method combinations.We believe that this implementation presents
a number of advantages compared to vendor-specific solutions.
First, it reifies the notion of method combination type, which, in
fact, seems quite a natural thing to do upon careful reading of

the Common Lisp standard. It is also standard-compliant, which
gives us hope that it would trigger some general interest across the
existing Lisp implementations. It remains close to Pcl’s original
design, notably by maintaining a hierarchy distinguishing short and
long method combinations (it merely adds to it). Finally, and this
is probably the strongest point, it makes the method combination
infrastructure extensible, which really is the philosophy behind the
Mop and puts this area of Clos back in line with the rest of it. The
proposed architecture as been implemented in an Sbcl fork and is
publicly available.

In Section 4, we have presented several simple examples demon-
strating how we can benefit from an extensible design for further
experimentation. There are still a number of things that we plan
to work on. One of them is turning the :description option of
the long form’s method group specifiers into something useful for
documentation purposes (Declt would like very much to have that).
The Pcl implementation seems to ignore that option completely.
Arguably, this would not be done as an extension but rather in the
core of the architecture.

Another potential area of research is to extend method combi-
nations to forms that would be neither short, nor long. Provided
with an alternative to the define-method-combination macro
which can’t be used anymore, the proposed architecture makes it
easy to do so: one simply has to sub-class both standard-method-
combination and standard-method-combination-type, and pro-
vide additional methods on compute-effective-method.

Granted, every possible method combination type can be created
with the long form of define-method-combination, since it is
always possible to provide a single method group matching all
applicable methods (using * as the pattern), and do everything in
the method combination’s form. So the question is not whether it is
possible to do it, but rather how easy it is. We can already think of
several investigation routes to ease the creation of complex method
combinations: alternative semantics for the long form’s method
groups, such as the ability to re-use the same method in multiple
groups or to specify qualifier patterns with regular expressions.

More generally, every time a method combination type is neither
as simple as a short one nor as general as a long one (the “medium”
type from Section 4.2 falls into that category), there might be a gain
in defining it as an intermediate form, with a tailored method com-
bination function, leading eventually to improving the performance
of compute-effective-method.

REFERENCES
[1] Daniel G. Bobrow, Kenneth Kahn, Gregor Kiczales, Larry Masinter, Mark Stefik,

and Frank Zdybel. Commonloops:Merging lisp and object-oriented programming.
SIGPLAN Notices, 21(11):17–29, June 1986. ISSN 0362-1340. doi: 10.1145/960112.
28700. URL http://doi.acm.org/10.1145/960112.28700.

[2] Daniel G. Bobrow, Linda G. DeMichiel, Richard P. Gabriel, Sonya E. Keene, Gregor
Kiczales, and David A. Moon. Common lisp object system specification. ACM
SIGPLAN Notices, 23(SI):1–142, 1988. ISSN 0362-1340.

[3] Giuseppe Castagna. Object-Oriented Programming, A Unified Foundation. Progress
in Theoretical Computer Science. Birkhäuser Boston, 2012. ISBN 9781461241386.

[4] Giuseppe Castagna, Giorgio Ghelli, and Giuseppe Longo. A calculus for over-
loaded functions with subtyping. SIGPLAN Lisp Pointers, 5(1):182–192, January
1992. ISSN 1045-3563. doi: 10.1145/141478.141537. URL http://doi.acm.org/10.
1145/141478.141537.

[5] Linda G. DeMichiel and Richard P. Gabriel. The common lisp object system:
An overview. In European Conference on Object Oriented Programming, pages
151–170, 1987.

14 ELS 2023



ELS’23, April 24–25 2023, Amsterdam, Netherlands Didier Verna

[6] Richard P. Gabriel, Jon L. White, and Daniel G. Bobrow. Clos: integrating object-
oriented and functional programming. Communications of the ACM, 34(9):29–38,
1991. ISSN 0001-0782.

[7] Andrew Hunt and David Thomas. The Pragmatic Programmer: From Journeyman
to Master. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1999.
ISBN 0-201-61622-X.

[8] Sonja E. Keene. Object-Oriented Programming in Common Lisp: a Programmer’s
Guide to Clos. Addison-Wesley, 1989. ISBN 0-20117-589-4.

[9] Gregor J. Kiczales, Jim des Rivières, and Daniel G. Bobrow. The Art of the Metaob-
ject Protocol. MIT Press, Cambridge, MA, 1991.

[10] Patty Maes. Concepts and experiments in computational reflection. In OOPSLA.
ACM, December 1987.

[11] Andreas Paepcke. User-level language crafting – introducing the Clos metaobject
protocol. In Andreas Paepcke, editor, Object-Oriented Programming: The CLOS
Perspective, chapter 3, pages 65–99. MIT Press, 1993. Downloadable version at
http://infolab.stanford.edu/~paepcke/shared-documents/mopintro.ps.

[12] Tim Sheard. Accomplishments and research challenges in meta-programming. In
Walid Taha, editor, Semantics, Applications, and Implementation of Program Gen-
eration, volume 2196 of Lecture Notes in Computer Science, pages 2–44. Springer
Berlin / Heidelberg, 2001. ISBN 978-3-540-42558-8.

[13] Brian C. Smith. Reflection and semantics in Lisp. In Symposium on Principles of
Programming Languages, pages 23–35. ACM, 1984.

[14] Ansi. American National Standard: Programming Language – Common Lisp.
ANSI X3.226:1994 (R1999), 1994.

[15] Didier Verna. Method combinators. In 11th European Lisp Symposium, pages
32–41, Marbella, Spain, April 2018. ISBN 9782955747421. doi: 10.5281/zenodo.
3247610.

ELS 2023 15



A Minimal Run-time Overhead Metaobject Protocol for Julia
Marcelo Santos

Instituto Superior Técnico
Lisbon, Portugal

marcelocmsantos@tecnico.ulisboa.pt

António Menezes Leitão
INESC-ID/Instituto Superior Técnico

Lisbon, Portugal
antonio.menezes.leitao@tecnico.ulisboa.pt

ABSTRACT
Metaobject Protocols enable programmers to extend programming
languages without the need to understand the lower level details of
their implementation. However, designing these protocols presents
two challenges: allowing programmers to limit their concerns to
higher-level concepts and minimizing performance penalties in
programs. In this work, we propose a metaobject protocol for the
Julia programming language. Julia does not follow the traditional
object-oriented paradigm. However, Julia’s compilation approach
allows for a considerable degree of code optimization through the
exploration of run-time type information. Through the usage of
Julia’s run-time optimizations, it becomes possible to implement a
metaobject protocol that combines user-extensibility with minimal
performance penalties in run-time. This paper focuses on the de-
velopment of a multiple inheritance method dispatch and method
combination mechanisms with minimal run-time overhead.

CCS CONCEPTS
• Software and its engineering → Software notations and
tools→ General programming languages→ Language fea-
tures;

KEYWORDS
Julia,Metaobject Protocols,Object-Oriented Programming,Performance

ACM Reference Format:
Marcelo Santos and António Menezes Leitão. 2023. A Minimal Run-time
Overhead Metaobject Protocol for Julia. In Proceedings of the 16th European
Lisp Symposium (ELS’23). ACM, New York, NY, USA, 8 pages. https://doi.
org/10.5281/zenodo.7823097

1 INTRODUCTION
Traditionally, there has been a separation between programmers
and language designers. Programmers treat languages as black
boxes with pre-defined rules, as established by the language design-
ers. In this model, the semantics of a language is seen as unchange-
able, thus imposing limits to its expressiveness.

Metaobject Protocols (MOPs) blur the distinction between pro-
grammers and language designers, by providing programmers with
an interface to modify the language. By treating the language itself
as a mutable object-oriented program, one can alter the semantics

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ELS’23, Apr 24–25 2023, Amsterdam, Netherlands
© 2023 Copyright held by the owner/author(s).
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM.
https://doi.org/10.5281/zenodo.7823097

and introduce new behaviours in the language through the abstrac-
tions made available by the object-oriented (OO) paradigm. With
the use of MOPs, one can define a different language semantics spe-
cific for only a part of the program and leave the default semantics
for the rest of the program. It also becomes fairly straightforward
to add new behaviour to existing code without directly modifying
it by extending the semantics of the language. This extension is
accomplished by the same inheritance mechanisms present in the
OO paradigm, but applied to metaclasses. With MOPs, the distinc-
tion between object behaviour and language semantics becomes
evident, allowing for a better separation of concerns.

A prime example on the implementation of MOPs is the one
present in the Common Lisp Object System (CLOS) [8].

1.1 The Julia Programming Language
One of the main challenges faced in the implementation of the
CLOS metaobject protocol was guaranteeing good performance
alongside the flexibility of the MOP [8]. This is a recurring problem
in the implementation of higher-level languages, known as the Para-
dox of High-Level Languages [8]. The main premise of high-level
languages is that they allow programmers to better formulate what
their programs do through more expressive methodologies. Con-
sequently, compilers for these languages should be able to exploit
this knowledge and output faster programs than their low-level
counterparts. Unfortunately, the reality is that there are concepts
which are, in fact, not being expressed more clearly, instead re-
quiring programmers to provide sufficient detail to enable efficient
execution.

In the most recent years we have seen a fast growth in the pop-
ularity of languages featuring object-oriented and dynamic prop-
erties [5, 10]. Python is one of these languages, being extensively
used in the fields of numerical and scientific computing, which
often require large-scale computations. However, one of the major
complaints regarding Python is that it is slow [11]. To resolve that
problem, a few strategies have been applied:
• Creating libraries that rely on faster languages to process
more intensive operations (e.g., Numpy, a numerical com-
puting library for python, is written in C and C++);
• Using a more efficient compiler/interpreter implementation
(e.g., Pypy and Numba);
• Prototyping in this high-level language and then translating
the code to amore performant and often lower level language
like C, C++, or Fortran. This last route is the one yielding the
best results performance-wise, but it falls short for relying
on a dichotomy of languages, requiring more knowledge and
work from the programmer.

The Julia programming language [2], a dynamic language with a
focus on performance, tries to solve this last problem. By employing
strategies like JIT compilation and code specialization on run-time

16 ELS 2023



ELS’23, Apr 24–25 2023, Amsterdam, Netherlands Marcelo Santos and António Menezes Leitão

types, it achieves very good performance when compared to other
dynamic languages like Python [1].

Julia adopted some of the distinguishing features of Common
Lisp, particularly, generic functions andmethods.Multiple dispatch -
the dynamic dispatch of methods based on the run-time information
of all the arguments - is used extensively in Julia and it allows for
extending the language by creating more methods for pre-defined
generic functions.

Julia features a very basic object system. There is no inheri-
tance, subtyping can only be accomplished from abstract types and
multiple subtyping is not supported.

1.2 Objectives
There are multiple examples of OO languages that resulted from the
development of Object Systems atop existing languages. The Lisp
community saw the development of CommonLoops [3], which com-
bined Lisp’s procedure-oriented paradigm with OO programming.
The same evolutionary strategy was applied in Objective-C, which
stemmed from the C language and became a prime example of an
OO language by just adding a small number of syntactic features
taken from the Smalltalk language, while keeping compatibility
with the remaining aspects of C [7].

In this work, we focus on the Julia Programming Language and
we propose JOS - the Julia Object System - a CLOS-inspired object
system, alongside a meta-object protocol designed to have minimal
run-time overhead.

2 RELATEDWORK
2.1 Metaobject Protocol Implementations
Although there are languages that leverage MOPs to extend their
functionality, we will only focus on the most expressive one, the
CLOS MOP, and one of the most efficient ones, the OpenC++ MOP.
One of the main problems of the CLOS MOP is the imposed perfor-
mance hit. The cause for this problem is the existence of metaobjects
at run-time, which are needed to change the semantics of the lan-
guage. Although this allows for greater flexibility, it increases the
level of additional run-time logic.

2.1.1 CLOS. The motivation for the development of the CLOS
MOP came from the need to give developers the ability to modify
the language from a high-level perspective, i.e., without low-level
knowledge of the inner workings of the language. CLOS provides
ways to incrementally change the behaviour of fundamental lan-
guage constructs. This is possible through the reification of ele-
ments such as classes, generic functions, and methods. These ele-
ments are said to be metaobjects and their exposure and consequent
modification is what allows for the manifestation of changes to the
language semantics. As is often the case, applying global changes
to an already existing system without proper testing can lead to
unforeseen results. Furthermore, a programmer’s intent might be
to just change a portion of the language for a specific section of
the program and not its entirety. This problem is solved by CLOS
by exposing metaobjects as part of an object-oriented hierarchy
capable of being extended. As such, one can look at the semantics
of the language as an object-oriented program as well.

2.1.2 OpenC++.
OpenC++[6] is a metaobject protocol extension to C++[12] similar
to CLOS but with a very different approach. It moves all the logic
of the MOP to compile-time. The purpose of this move is to incur
zero run-time speed or space overhead, while still allowing the
compiler to perform optimizations. The basic system architecture
is as follows:

OpenC++
Source

OpenC++
Compiler

C++
Source

C++
Compiler

The OpenC++ compiler generates the metaobjects responsible
for executing the protocol when compiling OpenC++ to C++. These
metaobjects intercept the parsing of regular C++ entities (e.g., class
definitions, member access, object creation, virtual function in-
vocation) and take control of their compilation. In essence, these
metaobjects modify the program’s semantics through the manipu-
lation of parse trees. The resulting modifications are then passed as
a regular C++ source to a C++ compiler which has no knowledge of
the MOP. With this strategy, no metaobjects exist at run-time, thus
saving time and memory. One big disadvantage of this approach
is that, since the protocol only acts at compile-time, it becomes
impossible to apply the same changes at run-time. Another minor
problem is the increase of time and complexity of compilation.

The solution of OpenC++, which tries to solve the performance
issues from metaobject protocols, seems to hint the existence of
a tradeoff between execution speed and flexibility, similar to the
aforementioned Paradox of High-Level Languages.

2.2 Julia
In this section, we present features of Julia that we consider relevant
for our proposal. These include patterns that allow us to build an
object system and performance optimizations capable of removing
most of the overhead of our implementation.

Julia provides the concepts of generic functions and methods
just like CLOS[4]. Generic functions are implicitly declared through
the definition of methods.

We now concern ourselves with method specialization, the mech-
anism employed by Julia which, combined with JIT compilation,
generates compiled code and caches it based on the types of the
arguments.

We can observe in Listing 1 the definition of a method g taking
an argument of any type. Afterwards we employ the @code_llvm
macro to expose the generated LLVM [9] low-level code for two
different calls to the method: one passing an argument of an Int64
type and another passing a Float64. Note that Julia applies a JIT
strategy to compile, at run-time, type-specific versions of a method
according to its arguments.

ELS 2023 17



A Minimal Run-time Overhead Metaobject Protocol for Julia ELS’23, Apr 24–25 2023, Amsterdam, Netherlands

Listing 1: Specialization of generic function
1 julia > g(x) = x + 1

2
3 julia > @code_llvm g(1)

4 define i64 @julia_g_167(i64 signext %0) {

5 %1 = add i64 %0, 1

6 ret i64 %1

7 }

8
9 julia > @code_llvm g(1.0)

10 define double @julia_g_186(double %0) {

11 %1 = fadd double %0, 1.000000e+00

12 ret double %1

13 }

2.2.1 Method redefinition.
Immutability, which Julia takes advantage of, is an important fac-
tor when it comes to compiler optimization. The more structures
that are guaranteed to stay constant, the more optimizations the
compiler can perform. A function accessing variables outside of its
scope will generate completely different assemblies depending on
their mutability. The immutability of our system would guarantee
better performance, but given the nature of run-time metaobject
systems, the opposite is expected. The ability to change program
structure at run-time is one of the main benefits of using MOPs. We
can approach this by exploiting another of Julia’s features: method
redefinition.

The redefinition of a method changes its behaviour and triggers
the recompilation of methods which depend on it. Redefinition
allows for behaviour changes without relying on data structures to
hold mutable data. This also provides fast access to data without
compromising flexibility.

2.3 Problem
This section has shown two Metaobject Protocol systems, CLOS
and OpenC++, and exposed a dilemma between flexibility and per-
formance. The nature of these two implementations focuses on
the time-frame in which metaobjects exist: run-time in the case of
CLOS or compile-time in the case of OpenC++. Our goal is to bridge
the gap between these two approaches and create a performant
run-time metaobject protocol on top of the Julia language.

3 SOLUTION
In this section we will describe our proposal for an object system
for the Julia language that supports multiple-inheritance, method
dispatch, andmethod combinationwithminimal run-time overhead,
without changing the language implementation or semantics.

3.1 Class Definition
We begin by describing our class definition mechanism. One can
define a new class by calling the @defclass macro. It takes the
name of the class to be defined and optionally a list of superclasses.
In Listing 2, we define four classes: A, which has no explicit super-
classes, B and C, both inheriting from A, and D which inherits from

Listing 2: Class definition
1 @defclass A

2 @defclass B (A,)

3 @defclass C (A,)

4 @defclass D (B, C)

B and C. For this example, the macro is responsible for ensuring the
following:

• Create a Julia structure and a Julia abstract type for the class.
• Define the default constructor for the class.
• Define the method superclasses which takes the Julia ab-
stract type for the class and returns the types corresponding
to the direct superclasses. If the class is defined without ex-
plicit superclasses, its only superclass is Any, the type in Julia
of which every type is a subtype.
• Define the method preclist which takes the Julia type for
the class and returns the precedence list for the class. A class
precedence list is an ordered list of classes which determines
specificity. By default this order is determined by applying a
topological sort to the class hierarchy, similar to CLOS.
• Define the method classof that, from an instance of the
class, returns the class itself. This method is analogous to
Julia’s typeof.

We present in Listing 3 some examples of the application of these
methods in the classes defined in Listing 2:

• In line 1, we show how to call the default constructor. We
employ a calling convention similar to the one used in Julia
for instantiating structs.
• In line 2, we retrieve the class of the previously instantiated
object.
• In line 5, the similarity between our system’s classes and the
language’s types is exposed. Classes are also types in the
eyes of Julia.
• In line 8, even though we did not declare any superclasses for
A, we observe that Any is implicitly declared as a superclass.
This is consistent with Julia, where a type declared without
a supertype has Any as its supertype.
• In line 12, we show the explicitly declared direct superclasses
of D.
• Finally, in line 15, we see the precedence list of D, which
includes itself up to Any.

Note that these mechanisms for retrieving class information do
not rely on mutable data structures or constants because:

• Although constants allow for the optimization of generated
code, they forbid future changes, which goes against one of
the purposes of metaobject protocols.
• Even thoughmutable data structureswould allow for changes
in the class system, they prevent the same optimizations per-
mitted by the use of constants.

Methods whose only purpose is to return data give us the best
of both worlds: mutability and optimizations. The only cost for
mutability is recompilation time.

18 ELS 2023



ELS’23, Apr 24–25 2023, Amsterdam, Netherlands Marcelo Santos and António Menezes Leitão

Listing 3: Class information methods
1 > a = A()

2 > classof(a)

3 A

4
5 > typeof(classof(a))

6 DataType

7
8 > superclasses(A)

9 (Any ,)

10
11 > d = D()

12 > superclasses(classof(d))

13 (B, C)

14
15 > preclist(classof(d))

16 (D, B, C, A, Any)

Listing 4: Slots definition
1 > @defclass A () (a, b, c)

2
3 > obj = A(a=1, b=2, c=3)

4
5 > obj.a + obj.b + obj.c

6 6

3.1.1 Slots. In the beginning of this section, we presented class
definition. We provided simple examples without concerning our-
selves with the allocation of data. As such, in this subsection, we
will describe the definition of slots, which hold data for objects.
In Listing 4, we define a class A with three slots, a, b, and c. We
observe that we now have a constructor capable of taking three
arguments, one for each slot. Upon creating the instance of A, we
can access each slot by using the familiar syntax in Julia for struct
field access.

One limitation of Julia is that structs, once defined, cannot be
redefined to have a different layout. However, in our object system,
just like in CLOS, we want to support the redefinition of classes.
In Listing 5, we define a class X with one slot, a. We also create
an instance of X, x1. We then redefine X to add a new slot b. We
are then able to create a new instance of X, x2, containing slots
a and b. We verify that both x1 and x2 are instances of the same
class, although with a slight difference. x1 is an instance of an
old version of X, meaning that it does not have the new slot, as
we can see in the error message (the message will become clearer
in subsubsection 3.1.3). Although the underlying struct of the
instances is different, both are accepted in methods taking X as an
argument. It is the user’s responsibility to ensure the compatibility
between both versions of X. This is the default behaviour for class
redefinition.

3.1.2 Inheritance. We now proceed to show how to define classes
using inheritance. For the next example in Listing 6, we define three
classes, each with one slot: A with slot a, B with slot b, and C with
slot c. Note that, due to inheritance, each class also contains the

Listing 5: Class redefinition
1 > @defclass X () (a)

2 > x1 = X(a=1)

3 > @defclass X () (a, b)

4 > x2 = X(a=1, b=2)

5 > classof(x1)

6 X

7 > classof(x2)

8 X

9 > x2.b

10 2

11 > x1.b

12 ERROR: type X__v1 has no field b

Listing 6: Simple slot inheritance
1 @defclass A () (a)

2 @defclass B (A,) (b)

3 @defclass C (B,) (c)

4
5 > objA = A(a=1)

6
7 > objB = B(a=1, b=2)

8
9 > objC = C(a=1, b=2, c=3)

Listing 7: Multiple inheritance
1 @defclass A () (a=1)

2 @defclass B () (a=2)

3 @defclass C (B,A) (c=3)

4
5 > preclist(C)

6 (C, B, A, Any)

7
8 > objC = C()

9
10 > objC.a

11 2

slots defined in its superclasses: B has slots a and b, and C has slots
a, b, and c.

Our proposal also addressesmultiple inheritance, using the prece-
dence list to resolve ambiguities.

In Listing 7, we observe a class Cwith direct superclasses B and A.
Because B is declared as a superclass before A it shows up first in C’s
precedence list. We notice that both A and B define a as a slot with
a distinct default value for each. Our disambiguation rule picks B
as the defining class for the default value of a when instantiating C.

3.1.3 Inside @defclass. We now explain what the @defclass
macro and the declared constructors do at a lower level. The ap-
proach that we chose to pursue tries to take as much advantage
as possible of the language’s type system and native direct data
storage facilities.

ELS 2023 19



A Minimal Run-time Overhead Metaobject Protocol for Julia ELS’23, Apr 24–25 2023, Amsterdam, Netherlands

Listing 8: Struct versions
1 @defclass A () (a::Int64 , b:: String)

2 @defclass A () (a::Int64 , b::Int64)

3
4 # Defined types:

5 abstract type A end

6
7 struct A__v1 <: A

8 a:: Int64

9 b:: String

10 end

11
12 struct A__v2 <: A

13 a:: Int64

14 b:: Int64

15 end

Julia allows the definition of structs, in a similar way to what
class definitions allow in object-oriented languages. Although structs
allow for fast data access, they have several drawbacks as we have
seen previously (e.g., definition immutability and lack of inheri-
tance). A naive implementation might maintain the use of structs
to hold data, but adding a layer above them to implement the de-
sired functionalities. One example would be storing all slot data in a
hashtable held by a struct. This would easily support all features,
but would also remove the speed advantages of the direct memory
access provided by structs.

To preserve performance, a class definition should be equivalent
to a struct definition. Our implementation does exactly that: a
@defclass form expands into a struct with the fields as the slots.
However, to allow future redefinitions of the class, each expansion
generated a different version of the struct.

Following the example in Listing 8, we demonstrate that for
each time we call the @defclass macro, we define a new struct
associated to the class with the version number appended to its
name. In order to maintain some degree of compatibility between
each struct version and the actual class A, we define an abstract type
with the same name as the class stated in the macro and declare
each struct version as its subtype.

Each time the user tries to instantiate A, the constructor returns
an instance of the struct with the highest version number. Conse-
quently, previously defined instances might be incompatible with
newer instances. With the goal of eliminating indirection in fa-
vor of performance, we leave the responsibility of updating older
instances to the user.

3.1.4 Metaclasses. For the implementation of this metaobject pro-
tocol, we follow a strategy similar to that chosen in CLOS when it
comes to metaclasses.

3.2 Method Dispatch
We now describe how we use Julia’s language features to build a
multiple-inheritance method dispatch mechanism. We provide the
@defmethod macro, that, just like regular Julia method definitions,

Listing 9: classof and typeof MOP class
1 > @defclass A

2 A

3 > f(:: Type{Type{A}}) = 1

4 > f(classof(A))

5 1

6 > f(typeof(A))

7 1

Listing 10: Defining and callingmethods (following Listing 2)
1 > @defmethod bar(a::A) = 0

2 > bar(D())

3 0

4 > @defmethod bar(b::B) = 1

5 > @defmethod bar(c::C) = 2

6 > bar(D())

7 1

takes a method name, the list of parameters and optionally their
types, and the method body, as we can see in Listing 10.

This macro is responsible for:
• Storing an anonymous function that takes generic arguments
with the samemethod body as the one passed to @defmethod
macro. This is stored in a key-value manner, in which the
key is the list of the types of the parameters and the value is
the anonymous function.
• Creating a julia method, the method computer, accepting
the same number of arguments as the one specified with
@defmethodwhose purpose is to select the appropriatemethod
to apply given the types of the arguments. If the method
computer already exists, it is redefined to include the update
of the available anonymous functions.

3.2.1 The Method Computer. The method computer is where most
of the dispatch work takes place. It executes the following steps:
• Gather a list of the types of the arguments supplied to the
method.
• Get the list of methods whose parameters are compatible
with the arguments.
• Sort this list of methods by specificity.
• Call the most specific method, passing it the arguments re-
ceived and returning its return value.

We say that a list of parameters 𝑃 is compatible with a list of
arguments 𝐴 if:
• The length of 𝑃 is equal to the length of 𝐴.
• For each pair (𝑃𝑘 , 𝐴𝑘 ) where 𝑃𝑘 is the 𝑘𝑡ℎ parameter and𝐴𝑘

is the 𝑘𝑡ℎ argument, the class of 𝑃𝑘 is in the precedence list
of the class of 𝐴𝑘 .

A method𝑀 is more specific than some method 𝑁 , with respect
to a list of arguments 𝐴 if 𝑀 has the smallest 𝑘 for which 𝑀𝑃𝑘
comes before 𝑁𝑃𝑘 in the precedence list of 𝐴𝑘 , where 𝑀𝑃𝑘 is the
𝑘𝑡ℎ element of the parameters of𝑀 , 𝑁𝑃𝑘 is the 𝑘𝑡ℎ element of the
parameters of 𝑁 , and 𝐴𝑘 is the 𝑘𝑡ℎ argument.

20 ELS 2023



ELS’23, Apr 24–25 2023, Amsterdam, Netherlands Marcelo Santos and António Menezes Leitão

Listing 11: Method combination
1 > @defmethod foo(d::D) =

2 println (" Primary method ")

3 > foo(D())

4 Primary method

5 > @defmethod foo:: before(d::D) =

6 println (" Calling before ")

7 > @defmethod foo::after(d::D) =

8 println (" Calling after")

9 > foo(D())

10 Calling before

11 Primary method

12 Calling after

3.3 Method Combination
Currently we support the same method combination implemented
by the CLOS Standard Method Combination, i.e., before, after and
around methods. See Listing 11 for an example.

Besides selecting the most specific method, the method computer
must also take into account method combination. To do so, it must:
• Separate the method lists into four groups: before, after,
around and primary. Primary methods are those defined
without any method combination specifier.
• Apply the same filtering and ordering logic from the argu-
ments for each group.
• Generate and call an effective method, which results from
applying all valid methods from the combination.

3.3.1 Computing the Effective Method. The effective method is an
anonymous function returned by the recursivemethod join_lambdas.
join_lambdas receives four arguments, one for eachmethod group.
Each call to join_lambdas attaches one method from one group,
while processing one group at a time. The order for processing
groups is the same as the one specified by CLOS’ method combina-
tion semantics: around, before, primary, and after.

The method join_lambdas has a different way of joining meth-
ods depending on the group it is currently processing:
• While processing a method from the around group, it re-
turns an anonymous function which calls the method be-
ing processed. Besides receiving the arguments passed to
the effective method, the method being processed also re-
ceives two functions as arguments: callnextmethod and
hasnextmethod. The former encodes the next recursive call
to join_lambdas and passes the same arguments to the next
call if called without arguments or override them if called
with arguments. The latter returns true if there are more
methods following in the combination and false otherwise.
The join_lambdasmethod for processing the around group
is shown in Listing 12.
• Processing the before group is much simpler. The only con-
cern of the returned anonymous function is calling the cur-
rent method and recurring into the join_lambdas call.
• Handling the primary group is very similar to the around
group, given that it must allow calling hasnextmethod and
callnextmethod. The biggest difference from the around

Listing 12: Joining anonymous functions with join_lambdas.
1 function join_lambdas(around ::Tuple , b::Tuple ,

2 p::Tuple , a::Tuple)

3 (x...) -> begin

4 next = join_lambdas(around [2: end], b, p, a)

5 callnextmethod () = next(x...)

6 callnextmethod(y...) = next(y...)

7 hasnextmethod () = true

8 around [1](x...,

9 callnextmethod ,

10 hasnextmethod)

11 end

12 end

Listing 13: Resulting effective method of foo from Listing 11
(simplified)

1 (x1...) -> begin

2 ((d) -> println (" Calling before "))(x1...)

3
4 ((x2...) -> begin

5 res = ((d) ->

6 println (" Primary method "))(x2...)

7
8 ((x3...) -> begin

9 ((d) ->

10 println (" Calling after "))(x3...)

11 end)(x2...)

12
13 return res

14 end)(x1...)

15 end

group processing is storing the return value from the call
and returning it only after the after group.
• Processing the after group is identical to what is done with
the before group.

We follow these steps instead of an iterative method-calling
approach because the JIT compilation approach can better optimize
method call chains. The resulting effective method generated for
the foo call in Listing 11 can be seen in Listing 13.

3.4 Metaobject Protocols
With an object system and method combination mechanism in
place, we are now able to implement new metaobject protocols.

In Listing 14, we create a new class SpecialClass subclass of
StandardClass. By default every class metaobject in our system
is an instance of StandardClass. Afterwards, we define class A
as an instance of SpecialClass. A call to a class constructor re-
sults in a call to the makeinstance method, passing the class and
its arguments. For this example we define a method combination
for makeinstance, specifically for the metaclass SpecialClass,
to print a message before instantiation. The default behaviour for
instantiation is still preserved, as we can see in the last line, and
the message is displayed before the object is returned.

ELS 2023 21



A Minimal Run-time Overhead Metaobject Protocol for Julia ELS’23, Apr 24–25 2023, Amsterdam, Netherlands

Listing 14: Makeinstance protocol
1 > @defclass SpecialClass (StandardClass ,)

2 > @defclass A () () SpecialClass

3 > @defmethod makeinstance :: before(

4 class:: SpecialClass , args) begin

5 println (" Creating an instance of ", class)

6 end

7 > A()

8 Creating an instance of A

9 A

Listing 15: Setslot protocol
1 > @defclass SpecialClass (StandardClass ,)

2 > @defclass A () (a=0) SpecialClass

3 > a1 = A()

4 > @defmethod setslotwithclass !:: before(

5 t:: SpecialClass , instance , symbol , value) =

6 println (" Setting slot `$(symbol)`
7 of instance of $(t) with value `$(value)`")
8 > a1.a = 1

9 Setting slot a of instance of A with value 1

Another protocol is slot data setting. For slots, we have set the
default Julia methods to call the getslot and setslot! methods
for data access. These two methods then call getslotwithclass
or setslotwithclass!, passing the same arguments and the class
metaobject of the instance whose data we are trying to access. In
Listing 15, we create a new metaclass like in the previous example
and set it as A’s metaclass. Defining a method combination for
setslotwithclass! gives us the ability to change the slot setting
behaviour.

4 EVALUATION
We now proceed to analyse the performance of our solution. We
will take two approaches. First, we look at the LLVM Intermediate
Representation (IR) language [9], a higher-level assembly, generated
by the JIT compiler. Second, we compare execution timeswith CLOS.
The following tests were executed on an Intel Core i5-8250U 3.4GHz
PC with 16GiB of RAM running the Linux operating system.

4.1 Generated IR
We can analyse the performance of our method dispatchmechanism
by taking the code from Listing 10 and reading its IR in Listing 16.
As we can see, no computation from method dispatch is present
in the end result and only the relevant method body remains. This
shows why our multiple-inheritance method dispatch is just as
performant as Julia’s single-inheritance method dispatch.

The overhead resulting from computing the effective method
in Listing 11 can be seen in Listing 17. Just like in the previous
example, no overhead is present. Not only that, but there are also
no intermediate method calls being made from the chain produced
by join_lambdas. The bodies from each method were joined into
a single body and only the calls to println are visible.

Listing 16: IR code from calling bar(D())

1 define i64 @julia_foo_1266 () #0 {

2 top:

3 ret i64 1

4 }

Listing 17: IR code from calling the method combination of
foo(D()) (simplified)

1 define void @julia_foo_1172 () #0 {

2 top:

3 %1 = call nonnull {}* @j1_println_1178 ("...")

4 %2 = call nonnull {}* @j1_println_1179 ("...")

5 %3 = call nonnull {}* @j1_println_1180 ("...")

6 ret void

7 }

Listing 18: Regular Julia method equivalent to method com-
bination in Listing 11

1 function foo_effective(d::D)

2 println (" Calling before ")

3 println (" Primary method ")

4 println (" Calling after")

5 end

This makes the use of ourmethod combinationmechanism equiv-
alent to creating a regular Julia method with a body as the concate-
nation of the bodies of the methods defined for the combination.
This regular Julia method, defined in Listing 18 yields the same IR
as the method combination in Listing 11, shown in Listing 17, thus
having the same execution times.

4.2 Execution time against CLOS
In this section we present preliminary results regarding the perfor-
mance of our proposal. For comparison, we use Steel Bank Common
Lisp (SBCL), a high-performance Common Lisp implementation.
More specifically, we compare an ad-doc example of method dis-
patch between SBCL and the proposed JOS.

For this example, we iterate a list of objects to force method
dispatch. We have the Julia version in Listing 19 and the SBCL
version in Listing 20. Both versions assume a class hierarchy like
the one specified in Listing 2. Each iteration example ran twice and
we registered the results of the second run. Calling foo with arr
as an argument takes 0.016 seconds in Julia and 0.156 seconds in
SBCL. However, the comparison is not entirely fair because Julia
uses modular arithmetic and it correctly infers the element type of
the array. To do a better comparison we included type declarations
in the SBCL code, namely, to ensure fixnum arithmetic and iteration
over a simple array of D element-type. Additionally we included a
(declare (optimize (speed 3) (safety 0))) in all functions
and methods. With these changes, SBCL executes the example in
0.092 seconds, still less performant than the Julia implementation.
Although the example provided is quite simple and does not expose

22 ELS 2023



ELS’23, Apr 24–25 2023, Amsterdam, Netherlands Marcelo Santos and António Menezes Leitão

Listing 19: Julia example
1 @defmethod baz(b::B, n) = n+1

2
3 @defmethod baz(c::C, n) = n*2

4
5 arr = fill(D(), 10000000)

6
7 foo(a) =

8 let y = 0

9 for e in a

10 y += baz(e, 10)

11 end

12 y

13 end

Listing 20: CLOS example
1 (defclass B (A) ())

2 (defclass C (A) ())

3 (defclass D (B C) ())

4
5 (defmethod baz ((b B) n)

6 (+ n 1))

7 (defmethod baz ((c C) n)

8 (* n 2))

9
10 (defparameter arr

11 (make -array '(10000000)

12 :initial -element (make -instance 'D)))

13
14 (defun foo (a)

15 (let ((y 0))

16 (loop for e across a do

17 (incf y (baz e 10)))

18 y))

a real-world scenario, it serves as a good starting point in the
development of our proposed metaobject protocol for Julia.

5 FUTUREWORK
The work presented in this paper is an initial attempt at the imple-
mentation of a metaobject protocol for Julia. It is far from being a
replacement of the CLOS MOP. There are several topics left to be
developed in the future, for example: mechanisms for introspect-
ing and analysing generic functions and methods; the possibility
of changing the slot inheritance mechanism; and a more complex
metaclass hierarchy. Even though our implementation lacks many
features, it sets a foundation for the further development of the
system, opening a way to get closer to the levels of expressiveness
of CLOS.

6 CONCLUSION
In this paper, we discussed metaobject protocols. We analysed two
different implementations, CLOS MOP and OpenC++, choosing
trade-offs in terms of expressiveness and performance, respectively.

We analysed the fundamental differences between them, namely the
time in which the logic of the metaobject protocols was evaluated:
run-time or compile-time. We also introduced Julia, a dynamic lan-
guage with JIT compilation features and optimizations. Although it
is a fast language, it lacks an object system, which we implemented
on top of the language. We explored the language’s optimizations
and proposed a minimal run-time overhead solution to bridge the
gap between the two aforementioned implementations. We focused
on two main pieces of metaobjects protocols, multiple-inheritance
method dispatch and method combinations, and performed a com-
parison with SBCL, a high performance Common Lisp compiler.

7 ACKNOWLEDGEMENTS
This work was supported by national funds through Fundação para
a Ciência e a Tecnologia (FCT) under the reference UIDB/50021/2020.

REFERENCES
[1] S BorağanAruoba and Jesús Fernández-Villaverde. A comparison of programming

languages in macroeconomics. Journal of Economic Dynamics and Control, 58:
265–273, 2015.

[2] Jeff Bezanson, Alan Edelman, Stefan Karpinski, and Viral B Shah. Julia: A fresh
approach to numerical computing. SIAM review, 59(1):65–98, 2017.

[3] Daniel G Bobrow, Kenneth Kahn, Gregor Kiczales, Larry Masinter, Mark Stefik,
and Frank Zdybel. Commonloops:Merging lisp and object-oriented programming.
ACM Sigplan Notices, 21(11):17–29, 1986.

[4] Daniel G Bobrow, Linda G DeMichiel, Richard P Gabriel, Sonya E Keene, Gregor
Kiczales, and David A Moon. Common lisp object system specification. ACM
Sigplan Notices, 23(SI):1–142, 1988.

[5] Stephen Cass. The 2015 top ten programming languages.
[6] Shigeru Chiba. A metaobject protocol for c++. In Proceedings of the tenth annual

conference on Object-oriented programming systems, languages, and applications,
pages 285–299, 1995.

[7] Brad J Cox. Object oriented programming: an evolutionary approach. Addison-
Wesley Longman Publishing Co., Inc., 1986.

[8] Gregor Kiczales, Jim Des Rivieres, and Daniel G Bobrow. The art of the metaobject
protocol. MIT press, 1991.

[9] Chris Lattner and Vikram Adve. Llvm: A compilation framework for lifelong pro-
gram analysis & transformation. In International Symposium on Code Generation
and Optimization, 2004. CGO 2004., pages 75–86. IEEE, 2004.

[10] Linda Dailey Paulson. Developers shift to dynamic programming languages.
Computer, 40(2):12–15, 2007.

[11] Rui Pereira, Marco Couto, Francisco Ribeiro, Rui Rua, Jácome Cunha, João Paulo
Fernandes, and João Saraiva. Energy efficiency across programming languages:
How do energy, time, and memory relate? In Proceedings of the 10th ACM
SIGPLAN International Conference on Software Language Engineering, SLE 2017,
page 256–267, New York, NY, USA, 2017. Association for Computing Machinery.
ISBN 9781450355254. doi: 10.1145/3136014.3136031. URL https://doi.org/10.1145/
3136014.3136031.

[12] Bjarne Stroustrup. The C++ programming language. Pearson Education India,
2000.

ELS 2023 23



An Elegant and Fast Algorithm for Partitioning Types
Jim E. Newton

jnewton@lrde.epita.fr
EPITA/LRE

Le Kremlin-Bicêtre, France

ABSTRACT
We present an improvement on the Maximal Disjoint Type De-
composition algorithm, published previously. The new algorithm
is shorter than the previously best known algorithm in terms of
lines of code, and performs better in many, but not all, benchmarks.
Additionally the algorithm computes metadata which makes the
Brzozowski derivative easier to compute–both easier in terms of
accuracy and computation time. Another advantage of this new
algorithm is its resilience limited subtypep implementations.

CCS CONCEPTS
• Theory of computation→ Data structures design and anal-
ysis; Type theory.

ACM Reference Format:
Jim E. Newton. 2023. An Elegant and Fast Algorithm for Partitioning Types.
In Proceedings of the 16th European Lisp Symposium (ELS’23). ACM, New
York, NY, USA, 9 pages. https://doi.org/10.5281/zenodo.7813576

1 INTRODUCTION
This paper discusses recent developments in a procedure introduced
in a previous European Lisp Symposium paper from 2016, where
Newton et al. [18] introduced regular type expressions (RTEs), and
suggested a technique to computemembership of the corresponding
regular languages. The paper mentioned several limitations which
needed further study.

Newton et al. [18] developed the theory further applied only
to Common Lisp [3], and generalized to other programming lan-
guages [17]: Clojure [10, 11], Scala [20, 21], and Python [24].

In Section 2.1, we briefly summarized the theory in order to set
the stage for the contributions of this article.

1.1 Contributions
We introduce a new procedure for computing the MDTD (maximal
disjoint type decomposition), Definition 2.1. Our new procedure
has several advantages over previously known techniques.

(1) It is elegant, Section 3.2.
(2) It is provably correct, Section 3.4.
(3) It eases computation of Brzozowski derivative, Section 4.
(4) It is fast, Section 5.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ELS’23, April 24–25 2023, Amsterdam
© 2023 Copyright held by the owner/author(s).
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM.
https://doi.org/10.5281/zenodo.7813576

1.2 Overview
Given an RTE (Section 2.1), we construct a deterministic finite
automaton (DFA) whose language of acceptance (set of all accepted
sequences) is the same as the accepting language of the RTE. A DFA
consists of states and transitions. The transitions are labeled with
Common Lisp type specifiers; see Figures 1 and 2. The construction
process simply needs to be able to (1) construct a state with its
transitions, and must (2) be repeated until all states have been
created. There are two questions to be answered:
• Given a state, what are its transitions?
• What are all the states?

To determine the states and transitions, the Brzozowski derivative
of an RTE, 𝑟 with respect to type 𝜐, (Section 2.3) is employed. We
compute a value denoted, 𝜕𝜐 𝑟 , once for each transition, where 𝑟
represents an RTE, and𝜐 represents a type. The recursive procedure
to compute 𝜕𝜐 𝑟 (Section 4) relies heavily on knowledge of disjoint
and subtype relations between types (represented in Common Lisp
as so-called type specifiers). Each time we compute 𝜕𝜐 𝑟 for given
values of 𝑟 and 𝜐, we produce yet another RTE, and add it to the
working list of RTEs for which we must again compute 𝜕𝜐 𝑟 (for
other values of 𝜐). Every time we encounter an RTE which we have
not seen before, we create a new state, and associate the RTE with
that state. We label the transitions with the type used in computing
𝜕𝜐 𝑟 . E.g., if states 1 and 2 correspond to RTEs 𝑟1 and 𝑟2 respectively,
and 𝑟2 = 𝜕𝜐 𝑟1 for some value of 𝜐, then we construct a transition
from state 1 to state 2 labeledwith the type𝜐. The process eventually
terminates.

The above flow description is not new. What is new and is the
novel contribution we present in this article is how to tackle two
computational challenges:
• For a given RTE, 𝑟 , what is the set of types, 𝜐, for which
we must compute 𝜕𝜐 𝑟? The MDTD Algorithm in Section 3,
efficiently computes this set of types.
• Computing 𝜕𝜐 𝑟 relies on knowledge of disjoint and subtype
relations between types. Often, programs rely on subtypep
to decide such relations, but calls to subtypep can be com-
pute intensive and may return inconclusive results, which
we refer to an inaccurate.1 Our proposed MDTD procedure
circumvents reliance on inaccurate results of subtypep for
these problematic cases.

2 RTE TO DFA FLOW
2.1 Regular Type Expressions
Traditional regular expressions are a DSL (domain specific lan-
guage) for specifying sets of strings according to which sequences
of characters appear in the string. The DSL provides mechanisms
1The Common Lisp specification refers to the second return value of subtypep as an
accurate [indicator].

24 ELS 2023



ELS’23, April 24–25 2023, Amsterdam Jim E. Newton

for specifying optionality, alternation, and repetition. Hazel [8, 25]
has provided a regular expression library for Common Lisp, but
such libraries are standard in most modern programming languages.
We assume the reader understands traditional regular expressions.
For a theoretical treatment, see Hopcroft [12].

The regular type expression (RTE) is an expression akin to the
tradition regular expression, but which the DSL is written in terms
of types (rather than characters), and algebraic combinations of
these types to specify optionality, repetition, and alternation. Ex-
amples of RTEs are:

𝑟1 =
(
symbol · (number+ ∪ string+) )+ (1)

𝑟2 = (integer · number) ∪ (number · integer) (2)

Expression (1) means the set of all non-empty sequences of one
or more occurrences of a symbol followed by either a number or a
string. Sequences such as (x 3 a "hello") and (y 3.1 b "hello"
c "world") are accepted, while sequences such as (x a "hello")
and (x 3 a "hello" c) are rejected. Expression (2) represents
the set of sequences of length two, which consist of two numbers,
at least one of which is an integer.

The idea of RTE is reminiscent of Clojure Spec [14] and Malli [9].
Although Hickey [11] mentions Spec’s existence, but we have found
no other peer reviewed articles on either. Thus far, conversations
between experts on public forums have lead us to contradictory
conclusions that Spec is not based on finite automata theory at all,
and other claims that it is based on NFA (non-deterministic finite
automata) work by Might et al. [2, 13]. An NFA-based procedure
(presumably using backtracking) would have at least polynomial
complexity—our approach offers linear complexity. Grande [1],
released a regular pattern matching library in Clojure called seqexp.
According to an interview with Grande, the seqexp does not use a
finite automata approach because of JVM limitations.

2.2 DSL for Regular Type Expressions
Expressions (1) and (2) (from Section 2.1) are represented as RTEs
respectively as follows

The RTE, 𝑟1 = (symbol · (number+ ∪ string+))+, is represented
in Common Lisp as:
(:cat symbol (:+ (:or (:+ number) (:+ string))))

The RTE, 𝑟2 = (integer · number) ∪ (number · integer), is repre-
sented in Common Lisp as:
(:or (:cat integer number) (:cat number integer))

Keyword symbols such as, :*, :+, :and, :or, :not, represent the
traditional regular expression operators, while leaf level objects
represent Common Lisp type specifiers: number, string, integer.

2.3 Constructing a DFA from an RTE
The Common Lisp library, rte, is available on quicklisp, or di-
rectly from GitLab at https://gitlab.lrde.epita.fr/jnewton/regular-
type-expression. Analogous to the classical case, an RTE can also
be represented by a finite automaton. Whereas in the classical case,
transitions are labeled by so-called letters from a fixed, finite alpha-
bet; in our case, we label transitions with type specifiers. Each type
specifier denotes the possibly infinite set of possible Common Lisp
objects. Newton et al. [18] outlined a procedure for converting an

RTE to a finite automaton using the Brzozowski derivative [5], in
particular Newton follows closely the procedure outlined by Owens
et al. [22]. The Brzozowski derivative, denoted 𝜕𝜐 𝑟 , (read: derivative
of 𝑟 with respect to 𝜐) is a function which accepts an RTE, 𝑟 , and a
type specifier, 𝜐, and returns an RTE.

As explained in [18] and restated in Algorithm 1, a finite automa-
ton can be constructed by computing the derivative of the given
RTE, with respect to each element of a set,A, of types, producing a
new set of RTEs. Each of these RTEs represents an additional state
in the finite automaton, and the transitions to the states are labeled
by the (with-respect-to) type in the derivative computation. The
procedure is repeated on the new RTEs, producing more states and
transitions, including transitions to pre-existing states, i.e. loops to
states we have seen already. Brzozowski [5] argues that this process
terminates.

Algorithm 1: Construct DFA by Brzozowski derivative
Input: 𝑟 : an RTE
Output: 𝜎DFA

1.1 begin
1.2 𝑞0 ← new 𝑆𝑡𝑎𝑡𝑒 (𝑟 ), 𝑇 ← (), 𝑄 ← {𝑞0},𝑊 ← {𝑞0}
1.3 while 𝑊 ≠ ∅ do
1.4 𝑞1 ← any element from𝑊

1.5 𝑟 ← 𝑞1 .rte
1.6 𝑊 ←𝑊 \ {𝑞1}
1.7 for 𝜐 ∈ MDTD(1𝑠𝑡 (𝑟 )) do
1.8 𝑑 ← 𝜕𝜐 𝑟 // canonicalize

1.9 if 𝑑 = ∅ then
// avoid unsatisfiable transition

1.10 continue
1.11 else if ∃ 𝑞2 ∈ 𝑄 such that 𝑞2 .rte = 𝑑 then

// transition to pre-existing state

1.12 𝑇 ← (𝑞1, 𝜐, 𝑞2) :: 𝑇
1.13 else

// transition to a new state

1.14 𝑞2 ← new 𝑆𝑡𝑎𝑡𝑒 (𝑑)
1.15 𝑇 ← (𝑞1, 𝜐, 𝑞2) :: 𝑇
1.16 𝑊 ← 𝑞2 ::𝑊
1.17 𝑄 ← 𝑞2 :: 𝑄

// compute final states, cf Owens [22]

// ⟦·⟧ explained in Section 4.

1.18 𝐹 ← {𝑞 ∈ 𝑄 | () ∈ ⟦𝑞.rte⟧}
1.19 return (𝑄,𝑞0, 𝐹 ,𝑇 )

RTE to DFA construction is a generalization of classical DFA
construction. Our particular DFA is a special case of that D’Antoni
and Veanes [6] describe called symbolic finite automata. Algorithm 1
outlines the DFA construction using the Brzozowski derivative, and
Figure 1 illustrates such a constructed DFA given an RTE. There
are several parts of Algorithm 1 which deserve further explanation,
making the topic interesting to research.

(1) TheA needed for Algorithm 2 is computed as a call to 1𝑠𝑡 (𝑟 )
on line 1.7, discussed below.

(2) Canonicalization of an RTE on line 1.8, discussed below.

ELS 2023 25



An Elegant and Fast Algorithm for Partitioning Types ELS’23, April 24–25 2023, Amsterdam

0 1

2

3

𝑠𝑦𝑚𝑏𝑜𝑙

𝑛𝑢𝑚𝑏𝑒𝑟

𝑠𝑡𝑟𝑖𝑛𝑔

𝑠𝑦𝑚𝑏𝑜𝑙

𝑛𝑢𝑚𝑏𝑒𝑟

𝑠𝑦𝑚𝑏𝑜𝑙

𝑠𝑡𝑟𝑖𝑛𝑔

Figure 1: Deterministic finite automaton representing the
expression: (symbol · (number+ ∪ string+))+

(3) Computation of the MDTD, a central contribution of this paper,
and explained in Section 3.

(4) Computation of 𝜕𝜐 𝑟 on line 1.7, explained in Section 4.
On line 1.7, we call the MDTD function. The argument (as we’ll

in Section 3) is a set of types. We could pass the set of all type
specifier mentioned in the RTE: {symbol, string} for Expression (1),
and {integer, number} for Expression (2). This would give a cor-
rect answer, but most of the derivatives computed would be ∅, so
most computation time would be wasted. Instead, an important
optimization explained in [16] is to only consider relevant types.
For example, Figure 1 shows that number is not relevant to the
transitions at state 0. On line 1.7, 1𝑠𝑡 (𝑟 ) references a procedure for
deciding a priori, which types are relevant. We do not discuss this
optimization more in this paper as it has no effect on the MDTD
algorithm.

Some amount of canonicalization is necessary (1.8). As men-
tioned above, Brzozowski [5] argues that this process eventually
terminates provided a reasonable amount of canonicalization is
performed on the computed expressions.

2.4 Determinism
Figure 2 illustrates the distinction between deterministic and non-
deterministic finite automata. In order that the automaton be deter-
ministic, we must be assure that the set of transitions leaving any
given state contain no overlapping types. For example, state 0 in
Figure 2 (Top) has exiting transitions number and integer , which
are not disjoint types—a situation which we must avoid. On the
other hand, state 0 in Figure 2 (Bottom) has transitions integer and
number ∩ integer , which are indeed disjoint types.

Definition 2.1 (MDTD). Suppose we are given a finite set of type
specifiers, A = {𝐴1, 𝐴2, . . . 𝐴𝑛} The set X = {𝑋1, 𝑋2, . . . , 𝑋𝑚} is
called themaximal disjoint type decomposition ofA, if the following
hold.

(1) Union invariance:
𝑋1 ∪ 𝑋2 ∪ . . . ∪ 𝑋𝑛 = 𝐴1 ∪𝐴2 ∪ . . . ∪𝐴𝑛 .

0

2

3

1

integer

number integer

number

0

2

3

1

integer

number ∩ integer integer

number

Figure 2: Finite automata representing: (integer · number) ∪
(number · integer), (Top: non-deterministic, Bottom: determin-
istic)

(2) Disjointness:
If 𝑋𝑖 , 𝑋 𝑗 ∈ X, with 𝑖 ≠ 𝑗 , then 𝑋𝑖 ∩ 𝑋 𝑗 = ∅.

(3) Refinement:
If 𝜐 ∈ X and 𝜇 ∈ A, then either 𝜐 ⊆ 𝜇 or 𝜐 ∩ 𝜇 = ∅.

In Figure 2 (bottom) we express the MDTD (maximal disjoint
type decomposition) of {⊤, integer, number} as {integer, number ∩
integer ,⊤∩ number }. As is common convention, the graph omits
the transition labeled ⊤∩ number , because it leads to the so-called
sink state, indicating a state of rejection as opposed to acceptance.

This kind of partition, illustrated in Figure 3, ensures that any
object encountered in a candidate sequence is a member either of
exactly one type in X or is a member of no type in the decomposi-
tion. Figure 3 expresses the MDTD as {𝑋1, 𝑋2, . . . , 𝑋9}. Notice there
is one 𝑋𝑖 for each bounded disjoint area in Figure 3.

If ⊤, the universal type, is included in the input, A, then the
output X will also include the region outside 𝐴1, i.e., 𝐴1 ∈ X.

We have proven in [16] that a MDTD exists and is uniquely
determined for any finite set of types.

3 A NEWMDTD PROCEDURE
We present the procedure shown in Algorithm 3 to compute the
MDTD. The procedure returns two values, X and S, where X is
the actual set of types comprising the type decomposition, and S is
metadata which can be reused to make the Brzozowski derivative
(Section 4), more efficient and more accurate. The actual metadata
is a mapping from each type specifier, 𝜐 in X, to two sets: a set of
factors (super-types) of 𝜐 and a set of disjoint types of 𝜐.

3.1 The subtypep function, in Common Lisp
In Common Lisp, programmatic reasoning about types is done
in term of two so-called type specifiers. The type specifiers 𝑡 and
𝑛𝑖𝑙 refer respectively to the universal type (containing all possible
Common Lisp object) and the empty type (containing no objects).
The intersection and union of two types can be specified using the
𝑎𝑛𝑑 and 𝑜𝑟 types; e.g., (or string (and integer (satisfies

26 ELS 2023



ELS’23, April 24–25 2023, Amsterdam Jim E. Newton

𝐴1

𝑋1

𝐴2
𝑋2

𝐴3𝑋3
𝑋4

𝑋5
𝑋6 𝑋7

𝐴4

𝑋8
𝐴5

𝑋9

Disjoint Derived Factors Disjoint
Set Expression Types

𝑋1 𝐴1𝐴2 𝐴3 𝐴4 𝐴1 𝐴2, 𝐴3, 𝐴4, 𝐴5
𝑋2 𝐴2𝐴3 𝐴4 𝐴1, 𝐴2 𝐴3, 𝐴4, 𝐴5
𝑋3 𝐴2𝐴3𝐴4 𝐴1, 𝐴2, 𝐴3 𝐴4, 𝐴5
𝑋4 𝐴3𝐴2 𝐴4 𝐴1, 𝐴3 𝐴2, 𝐴4, 𝐴5
𝑋5 𝐴2𝐴3𝐴4 𝐴1, 𝐴2, 𝐴3, 𝐴4 𝐴5
𝑋6 𝐴2𝐴4𝐴3 𝐴1, 𝐴2, 𝐴4 𝐴3, 𝐴5
𝑋7 𝐴3𝐴4𝐴2 𝐴1, 𝐴3, 𝐴4 𝐴2, 𝐴5
𝑋8 𝐴4𝐴2 𝐴3 𝐴5 𝐴1, 𝐴4 𝐴2, 𝐴3, 𝐴5
𝑋9 𝐴5 𝐴1, 𝐴4, 𝐴5 𝐴2, 𝐴3

Figure 3: Example of Maximal Disjoint Type Decomposition:
X = {𝑋1, 𝑋2, . . . , 𝑋9} is the MDTD of A = {𝐴1, 𝐴2, . . . , 𝐴5}. De-
rived expressions are intersections of types from A or com-
plements thereof.

evenp))). And types can be complemented (inverted) using the
𝑛𝑜𝑡 type; e.g. (not integer).

In Common Lisp, the subtypep function can be used to deter-
mine the subtype relation. The behavior of subtypep can be un-
derstand by the following three cases:

(1) The Common Lisp expresison, (subtypep integer
number), returns two values t,t; the first t indicates that
the subtype relation is validated (integer ⊆ number) while
the second t indicates that the subtype relation was proven
to be true.

(2) (subtypep number integer) returns two values nil,t;
the nil indicates that the subtype does not hold (integer ⊈
number) while the t indicates that the subtype relation was
proven to be false.

(3) If Common Lisp cannot determine whether the subtype
relation holds, subtypep returns nil,nil. (subtypep
(satisfies oddp) integer) returns two values nil,nil;
the first nil has no meaning because the second nil in-
dicates that the subtype relation was neither proven nor
disproven.

Algorithm 2: Compute MDTD of given A.
Input: A : a set of type designators
Output: (X,S): partition and metadata

2.1 begin
2.2 S ← {(⊤, {⊤}, {⊥})} // working list of triples

2.3 X ← {⊤} // working list of disjoint types

2.4 for 𝜇 ∈ A do
2.5 for (𝜐, 𝑓 , 𝑑) ∈ S do
2.6 S ← S \ {(𝜐, 𝑓 , 𝑑)}
2.7 if 𝜇 ∩ 𝜐 = ∅ then
2.8 S ← (𝜐, 𝑓 , 𝜇 :: 𝑑) :: S // 𝜐, 𝜇 disjoint

2.9 else if 𝜐 ⊆ 𝜇 then
2.10 S ← (𝜐, 𝜇 :: 𝑓 , 𝑑) :: S // 𝜐 ∩ 𝜇 = ∅
2.11 else

// 𝜇 ∩ 𝜐 and 𝜇 ∩ 𝜐 partition 𝜐

2.12 𝜐1 ← 𝜇 ∩ 𝜐
2.13 𝜐2 ← 𝜇 ∩ 𝜐
2.14 X ← (X \ 𝜐) ∪ {𝜐1, 𝜐2}
2.15 S ← (𝜐1, 𝜇 :: 𝑓 , 𝑑) :: S // 𝜐1 ⊆ 𝜇

2.16 S ← (𝜐2, 𝑓 , 𝜇 :: 𝑑) :: S // 𝜐2, 𝜇 disjoint

2.17 return (X,S)

Algorithm 3: expand-1: Helper function for MDTD. A triple
consists of a derived expression, list of factors, and list of
disjoint types as in Figure 3 (Bottom).
Input: 𝜇 : a type designator
Input: (𝜐, 𝑓 , 𝑑): a triple
Output: a set of one or two triples

3.1 begin
3.2 if 𝜇 ∩ 𝜐 = ∅ then
3.3 return {(𝜐, 𝑓 , 𝜇 :: 𝑑)}
3.4 else if 𝜐 ⊆ 𝜇 then
3.5 return {(𝜐, 𝜇 :: 𝑓 , 𝑑)}
3.6 else
3.7 return

{(
𝜇 ∩ 𝜐, 𝜇 :: 𝑓 , 𝑑

)
,
(
𝜇 ∩ 𝜐, 𝑓 , 𝜇 :: 𝑑

)}

An expression such as (subtypep integer nil) as whether
integer ⊆ ∅, i.e., whether the integer type is empty. To ask about
the disjoint relation, we ask whether the intersection is empty:
(subtypep (and integer string) nil) asks whether (integer∩
string) ⊆ ∅.

The Common Lisp specification allows subtypep to return
nil,nil under several circumstances, most notably in cases in-
volving the satisfies type in which case it is often impossible to
determine, but also when it deems an accurate determination to be
too costly in terms of computation time.

3.2 MDTD in Common Lisp
Algorithm 2 is restated more succinctly reduce and mapcan as in

Figure 4.We pass the local function, expand, to reduce. The expand
function uses mapcan to iterate a curried version of expand-1 (Al-
gorithm 3) acrossA. Each successive call to mapcan further refines

ELS 2023 27



An Elegant and Fast Algorithm for Partitioning Types ELS’23, April 24–25 2023, Amsterdam

( de fun mdtd (A)
( l a b e l s ( ( expand −1 (mu t r i p l e ) ( . . . ) )

( expand ( acc mu)
( mapcan ( lambda ( t r i p l e )

( expand −1 mu t r i p l e ) )
acc ) ) )

( l e t ( ( S ( r educe # ' expand A
: i n i t i a l − va lue ' ( ( t ( t ) ( n i l ) ) ) ) ) )

( v a l u e s ( mapcar # ' c a r S ) S ) ) ) )

Figure 4: The MDTD code expressed using mapcan, reduce, and
expand-1 fromAlgorithm 3. The variables S and M correspond
respectively to the variables S and A from Algorithm 3.

the current partition by intersecting appropriate type specifiers
with 𝜇, its complement 𝜇 , or both.

A subtle but crucial feature of our mdtd implementation is that
even if subtypep returns dont-know (either during a subtype check
or disjoint check) we nevertheless construct a well-formed partition
of the space. This certainty is because in the worst case, algorithm
lines 2.15, 2.16, and 3.7 partition the type, 𝜐, into 𝜐1 = 𝜐 ∩ 𝜇 and
𝜐2 = 𝜐 ∩ 𝜇 . If 𝜐 and 𝜇 are disjoint (despite subtypep returning
dont-know), then 𝜐1 ⊆ ∅. If 𝜐 ⊆ 𝜇, then 𝜇 ∩𝜐 ⊆ ∅. The consequence
is that the computed set, S might contain type specifiers which
specify the empty type, even though we have failed to detect the
fact that the types are empty.

3.3 Sample Run
We detail the computation of the types in Figure 3. Figure 5 shows
the computation tree. Each call to mapcan creates one horizontal
level of the tree. The computation starts with the top type, denoted
⊤. Each subsequent level partitions each of the type specifiers in
the previous level by intersecting with 𝜇, 𝜇 or both. If 𝜇 is disjoint
with the type in question or a supertype of the type in question,
the previous level’s type is inherited to the next level.

The second level of the tree intersects ⊤ with 𝐴1 and 𝐴1 . The
third level intersects each of

{
𝐴1, 𝐴1

}
with 𝐴2 and 𝐴2 .

𝐴1 ∩𝐴2 = 𝐴2

𝐴1 ∩ 𝐴2 = 𝐴1 ∩ 𝐴2 .

Since 𝐴2 ⊆ 𝐴1, line 2.10 is reached. No intersection computation is
necessary because the result would either be the empty type or the
same type we started with:

𝐴1 ∩𝐴2 = ∅
𝐴1 ∩ 𝐴2 = 𝐴1

Similar reasoning continues with the fourth and fifth levels.

3.4 Sketch of Proof of Correctness
We do not present a formal proof, but rather we sketch an infor-
mal argument. A formal proof will come in a future publication.
To sketch this proof, we’d like to show that the set of types spec-
ified by the bottom-most row of Figure 5 is indeed the MDTD of

the types {𝐴1, 𝐴2, 𝐴3, 𝐴4, 𝐴5}. We need to show three things from
Definition 2.1, which we address in Sections 3.4.1, 3.4.2, and 3.4.3.

3.4.1 Union invariance. By induction: To understand that the union
of the types specified at level 𝑛 (of Figure 5) is the same as the union
of the types at level 𝑛 + 1, we see that each 𝜐 at level 𝑛 corresponds
either to the same type at level 𝑛 + 1, or for some type 𝜇, two types

𝜐1 = 𝜐 ∩ 𝜇

𝜐2 = 𝜐 ∩ 𝜇

𝜐1 ∪ 𝜐2 = (𝜐 ∩ 𝜇) ∪ (𝜐 ∩ 𝜇 )
= 𝜐 ∩

(
𝜇 ∪ 𝜇

)
= 𝜐 ∩ ⊤ = 𝜐

So refining the partition moving from level-𝑛 to level 𝑛+1 preserves
the union, which at the top level is ⊤, or 𝐴1 in the case that ⊤ is
not included in the MDTD input.

3.4.2 Disjointness. To understand that the types specified at each
level are disjoint, we assume (an inductive proof) that the types at
level 𝑛 are disjoint and prove that the types at level 𝑛+1 are disjoint.
We know this, because each type, 𝜐, at level 𝑛 corresponds either
to the same type at level 𝑛 + 1 or to two types, 𝜐1 and 𝜐2, where

𝜐1 = 𝜐 ∩ 𝜇

𝜐2 = 𝜐 ∩ 𝜇

𝜐1 ∩ 𝜐2 = (𝜐 ∩ 𝜇) ∩ (𝜐 ∩ 𝜇 )
= (𝜐 ∩ 𝜐) ∩ (𝜇 ∩ 𝜇 )
= 𝜐 ∩ ∅ = ∅

So we see that 𝜐1 and 𝜐2 are disjoint. If two types, 𝜐1, 𝜐2 at level 𝑛+1
are derived from the different level-𝑛 parents, 𝜐3, 𝜐4 respectively,
then we know that 𝜐3 and 𝜐4 are disjoint by inductive hypothesis.
Thus there exist 𝜇1 and 𝜇2 such that

𝜐1 = 𝜐3 ∩ 𝜇1
𝜐2 = 𝜐4 ∩ 𝜇2

𝜐1 ∩ 𝜐2 = (𝜐3 ∩ 𝜇1) ∩ (𝜐4 ∩ 𝜇2)
= (𝜐3 ∩ 𝜐4) ∩ (𝜇1 ∩ 𝜇2)
= ∅ ∩ (𝜇1 ∩ 𝜇2) = ∅

Thus all the types specified at level 𝑛 + 1 are disjoint.
3.4.3 Refinement. If 𝜐 ∈ X and 𝜇 ∈ A, we see that 𝜇 is in either
the third column (Factors) or the 4th column (Disjoint types) of
the table in Figure 3. This fact is guaranteed because we know
that the function in Algorithm 3 was called with 𝜇 as an argument.
Algorithm 3 assures that 𝜇 is prepended either to the set of factors
or the set of disjoint types.

4 COMPUTING BRZOZOWSKI DERIVATIVE
We saw in Algorithm 1 that the output of MDTD is used as input for
the Brzozowski derivative on line 1.8. In this section, we show how
the metadata collected in MDTD helps to compute 𝜕𝜐 𝑟

Recall the 𝜕𝜐 𝑟 is the Brzozowski derivative of RTE, 𝑟 , with respect
to type 𝜐. The value or 𝜕𝜐 𝑟 is another RTE.

28 ELS 2023



ELS’23, April 24–25 2023, Amsterdam Jim E. Newton

⊤

𝐴1

𝐴2

𝐴2𝐴3

𝐴2𝐴3𝐴4

𝐴2𝐴3𝐴4

𝐴2𝐴3𝐴4

𝐴2𝐴3𝐴4

𝐴2𝐴3

𝐴2𝐴4𝐴3

𝐴2𝐴4𝐴3

𝐴2𝐴3 𝐴4

𝐴2𝐴3 𝐴4

𝐴1𝐴2

𝐴2𝐴3

𝐴2𝐴3𝐴4

𝐴2𝐴3𝐴4

𝐴2𝐴3𝐴4

𝐴2𝐴3𝐴4

𝐴1𝐴2 𝐴3

𝐴2 𝐴3𝐴4

𝐴5 𝐴2 𝐴3𝐴4𝐴5

𝐴1𝐴2 𝐴3 𝐴4

𝐴1𝐴2 𝐴3 𝐴4

𝐴1

𝐴1

𝐴1

𝐴1

𝐴1

Figure 5: Computation tree computing the MDTD for the types in Figure 3

𝜕𝜐 ∅ = ∅ (3)
𝜕𝜐 𝜀 = ∅ (4)

𝜕𝜐 (¬𝑟 ) = ¬𝜕𝜐 𝑟 (5)
𝜕𝜐

(
𝑟∗
)
= 𝜕𝜐 𝑟 · 𝑟∗ (6)

𝜕𝜐 (𝑟 ∨ 𝑠) = 𝜕𝜐 𝑟 ∨ 𝜕𝜐 𝑠 (7)
𝜕𝜐 (𝑟 ∧ 𝑠) = 𝜕𝜐 𝑟 ∧ 𝜕𝜐 𝑠 (8)

𝜕𝜐 (𝑟𝑠) =
{
(𝜕𝜐 𝑟 )𝑠 if 𝑟 not nullable
(𝜕𝜐 𝑟 )𝑠 ∨ 𝜕𝜐 𝑠 if 𝑟 nullable

(9)

𝜕𝜐 𝜇 = 𝜀 if ⟦𝜐⟧ ⊆ ⟦𝜇⟧ (10)
𝜕𝜐 𝜇 = ∅ if ⟦𝜐⟧ ∩ ⟦𝜇⟧ = ∅ (11)
𝜕𝜐 𝜇 otherwise, no rule defined (12)

Figure 6: Recursive rules for computing Brzozowski deriva-
tive of an RTE. These rules are applied in computing 𝜕𝜐 𝑟 on
line 1.8 of Algorithm 1. 𝜐 (similarly 𝜇) is a type specifier. ⟦𝜐⟧
(similarly ⟦𝜇⟧) represents the set of values comprising the
specified type.

4.1 Computation Details
To compute 𝜕𝜐 𝑟 , Owens et al. [22] suggest a recursive procedure.
Newton et al. [18] generalized this procedure to workwith Common
Lisp types. Newton [16] further generalized the recursive rules
of this procedure as shown in Figure 6. Rule 9 refers to nullable,
meaning that the language of 𝑟 contains the empty sequence. Owens
et al. explain a simple decision procedure to determine whether a
regular expression is nullable.

Some explanation is necessary to understand the notation and
the implications of Figure 6. Recall that the notation 𝜕𝜐 𝑟 means
that 𝑟 is an RTE and 𝜐 is a type. Programmatically, 𝑟 is a data
structure represented according to the rules of a DSL, which we
summarize in Section 2.2.

The 𝜐 in 𝜕𝜐 𝑟 specifies a type. Programmatically, 𝜐 is represented
by a Common Lisp type specifier.

Given a value of 𝑟 and 𝜐, to compute 𝜕𝜐 𝑟 , the rules in Figure 6
are applied recursively. There are several cases which terminate
the recursion.

Rule (3): Every RTE represents a set of Common Lisp sequences.
We use the symbol ∅ to represent the RTE which itself represents
the empty set of sequences. Careful, the empty set of sequences
is different from the set of empty sequences, denoted by 𝜀. The
derivative of ∅ is again ∅ regardless of 𝜐. The Common Lisp type
specifier nil specifives the empty type, equivalently empty set.

Rule (4): The symbol 𝜀 represents the set of empty sequences.
We sometimes represent this set as {()}; however in Common Lisp,
𝜀 includes the empty list, empty array, empty string, etc [15, 23].
The derivative of 𝜀 is ∅ regardless of 𝜐.

Rules (10) and (11): These rules represent the case where the
RTE, 𝜇, is known to represent specifically a set of singleton se-
quences,2 e.g. the set of singleton sequences whose first (and only
element) is an integer, or the set of sequences whose element is a
string. In the notation of Figure 6, 𝜇 represents the RTE (in turn
representing a set of sequences), while ⟦𝜇⟧ represents the set com-
prising of the first elements of these sequences: the set of integers,
or the set of strings, as opposed to the set of singleton lists of in-
tegers or set of singleton lists of strings. In Rule (11), we use ∅
to represent both the RTE containing no sequences, and also the
empty type.

4.2 Complications with subtypep
In order to distinguish rules (10) and (11) programmatically, we
must know whether one type is a subtype of another, given the
type specifiers, or knowwhether the two specified types are disjoint.
The Common Lisp function, subtypep, is an obvious implemen-
tation choice to make this run-time decision. However, subtypep
sometimes returns dont-know. If this occurs during DFA construc-
tion, we cannot determine the value of the derivative. Thus, we
must avoid this case.

2We can be assured that the 𝜇 represents a singleton sequence because we have
eliminated all other possiblities in rules 3 through 9; i.e., 𝜇 is not ∅, 𝜀 , ∗ , negation,
disjunction, conjunction, nor concatenation.

ELS 2023 29



An Elegant and Fast Algorithm for Partitioning Types ELS’23, April 24–25 2023, Amsterdam

( d e f c l a s s A1 ( ) ( ) )
( d e f c l a s s A2 (A1 ) ( ) )
( d e f c l a s s A3 (A1 ) ( ) )
( d e f c l a s s A23 ( A2 A3 ) ( ) ) ; X3 U X5
( d e f c l a s s A4 (A1 ) ( ) )
( d e f c l a s s A423 ( A4 A23 ) ( ) ) ; X5 U X6 U X7
( d e f c l a s s A5 (A4 ) ( ) )

( sub typep ' ( and A3 ( not A2 ) ( not A4 ) )
' A1 ) ; r e t u r n s T , T

( sub typep 'A3 'A2 ) ; r e t u r n s NIL , T
( sub typep ' ( and ( and A3 ( not A2 ) ( not A4 ) ) A1 )

n i l ) ; r e t u r n s NIL , NIL

Figure 7: Common Lisp code defining classes analogous to
Figure 3, also demonstrating successful and unsuccessful
calls to subtypep.

This weakness of subtypep is a significant problem for the Brzo-
zowski derivative computation, a limitation which we alleviate with
our proposed MDTD procedure. As an illustration of the problem,
suppose that we have an RTE, 𝑟 , representing a singleton sequence
whose element has type 𝑋4 from Figure 3, and suppose we need
to compute 𝜕𝜐 𝑟 where 𝜐 = 𝐴1. We need to determine whether(
𝐴3 ∩ 𝐴2 ∩ 𝐴4

)
⊆ 𝐴1 or whether

(
𝐴3 ∩ 𝐴2 ∩ 𝐴4

)
∩ 𝐴1 = ∅. It

is not syntactically obvious which (if either) is the case; there is
no mention of 𝐴1 within

(
𝐴3 ∩ 𝐴2 ∩ 𝐴4

)
. The human (or a suffi-

ciently intelligent subtypep) can of course answer this question by
reasoning that 𝐴3 is mentioned and 𝐴3 ⊆ 𝐴1. This reasoning only
works if𝐴3 and𝐴1 are specified by very simple type specifiers, such
as a class name. If on the other hand, either or both of 𝐴3, 𝐴1 are
type specifiers involving Boolean combination types such as (and
...), (or ...), (not ...), or (satisfies ...), such reasoning
would be less obvious and more compute intensive.

The Common Lisp code in Figure 7 defines classes which have
the same disjoint and subtype relations as in Figure 3. The code
contains three calls to subtypep to determine whether see how
SBCL and CLISP handle these calls to subtypep. The SBCL [15]
implementation responds T, T for the first, indicating that the sub-
type relation,

(
𝐴3 ∩ 𝐴2 ∩ 𝐴4

)
⊆ 𝐴1. The second example returns

NIL, T, indicating that𝐴3 ⊄ 𝐴2. However the third call which asks
whether

((
𝐴3 ∩ 𝐴2 ∩ 𝐴4

)
∩𝐴1

)
⊆ ∅ returns NIL, NIL indicating

dont-know. We get the same results in CLISP [7].
If we use subtypep to answer these questions, subtypep is al-

lowed (by the Common Lisp specification) to return dont-know.
However, we do not need to rely on subtypep in this case, be-
cause as we also see in the third column row 𝑋7 of Figure 3 (Bot-
tom) that 𝐴1 is guaranteed by construction to be a supertype of(
𝐴3 ∩ 𝐴2 ∩ 𝐴4

)
.

Even if the subtypep implementation in your particular imple-
ment of Common Lisp is intelligent enough to determine this sub-
type relation, doing so would necessarily be computation intensive.
Our MDTD procedure avoids this redundant complexity.

5 PERFORMANCE ANALYSIS
We have taken as benchmarks, the performance analysis presented
in [16, Ch 10]. In that work, Newton analyzed (ad nauseam) per-
formance characteristics of various MDTD algorithms on various
genre of input types, without conclusive results. We repeated some
of those performance comparisons with the procedure presented in
this paper. The experiments are summarized here. We considered
the following algorithms, a subset of those presented in [16].

(1) mdtd-bdd – A primitive base-line algorithm using BDDs [4]
as data structure to designate a type.

(2) mdtd-graph – A graph based algorithm also described
in [19], using Common Lisp type specifiers (s-expressions)
as type designators.

(3) mdtd-bdd-graph – Same algorithm as mdtd-graph but us-
ing BDDs as type designators.

(4) mdtd-padl – The procedure in Algorithm 2.
The reference benchmarks were divided into so-called pools. A

pool is a set of type specifiers, chosen with similar characteristics;
e.g., a set of (member ...) types, or a set of floating point range
types, or all predefined subtypes of number.

We show the results for several pools:
• MEMBER types – Types such as

( member 2 6 9 1 0 )
( member 1 2 4 5 9 )
( member 1 6 7 8 )
( member 0 1 4 6 7 9 1 0 )
( member 3 4 7 9 1 0 )

• CL combinations – Unions and intersections of types
whose name come from the common-lisp package. Examples
include
( or p r i n t −not − r e a d a b l e s t r u c t u r e − c l a s s )
( and s imple − s t r i n g bignum )
( or s t andard − char double − f l o a t )
( or c l a s s s t o r age − c ond i t i o n )

• Real number ranges – numerical ranges of integer, real,
and float. Examples include
( INTEGER 60 ( 7 9 ) )
( REAL 1 / 3 6 4 7 / 9 )
( FLOAT 55 . 1 4 2 5 3 2 6 0 . 7 2 2 7 9 4 )

• Subtypes of NUMBER – Subtypes of number and Boolean
combinations of them. Examples include
shor t − f l o a t
( and shor t − f l o a t ( not unsigned −by te ) )
( or shor t − f l o a t unsigned −by te )
unsigned −by te
( and number ( not b i t ) )
r a t i o n a l

• CL types – Symbols from common-lisp package which des-
ignate types. Examples include
a r i t hme t i c − e r r o r
f u n c t i o n
s imple − c ond i t i o n
a r r ay

30 ELS 2023



ELS’23, April 24–25 2023, Amsterdam Jim E. Newton

Running a benchmark consists of selecting successively larger
sets of type specifiers from the pool in question, and calling the
mdtd function, measuring the execution time. Figure 8 shows the
benchmark results. See the legend on the bottom-right of the figure
for the color scheme.

We see that for a small number of input types, the mdtd-padl al-
gorithm performs poorly compared to the others, in time ranges of
less than 0.1 millisecond. However, for times greater than 1 millisec-
ond, the algorithm performs well. In the top two plots in Figure 8,
mdtd-padl is the best performing, at least in the asymptotic case.
In the bottom-most plot, CL types, we see that mdtd-padl per-
forms worse by an order of magnitude. However, for most of the
cases, in the middle of the figure, the performance is very good but
outperformed by the BDD-based algorithm.

6 CONCLUSION
6.1 Results
In this work, we have introduced a new algorithm for comput-
ing the Maximal Disjoint Type Distribution of a given set of type
specifiers. Our experiments show that the procedure is usually
faster than previously reported procedures, and also provides data
which makes the Brzozowski derivative easier to compute. While
the improvements we have discussed here have also been applied
to our RTE implements in Clojure, Scala, and Python, we have only
addressed herein the aspects relating to Common Lisp.

Our MDTD procedure alleviates some of the consequences of
the incompleteness and compute intensity of subtypep. The fact
that certain dependence on direct calls to subtypep is elided, has
the effect of eliding certain unnecessary computations, potentially
making the Brzozowski derivative computation faster than it other-
wise might be. In addition to computation speed, we also enable the
algorithm to produce a correct (even if suboptimal) result despite
having a less powerful implementation of subtypep in your Com-
mon Lisp implementation. The MDTD algorithm is guaranteed to
compute a set of types which are disjoint; however, they may not
be provably inhabited.

6.2 Perspectives
We see in Figure 8 that the BDD-based MDTD procedure outper-
forms mdtd-padl, but not significantly so. We would like to refactor
the BDD-based procedure to use the approach of mdtd-padl but
applied to BDDs rather to s-expression based type specifiers.

We have not yet extensively investigated the application of our
algorithm to type-system related computations on JVM languages
such as Clojure and Scala. Sometimes questions of subtype-ness
and habitation/vacuity cannot be answered about JVM-based types,
because we do not know at computation time which shared libraries
may be dynamically loaded later in the running program. Our cur-
rent model in the RTE implementation in Clojure and Scala uses a
so-called world-view. An closed world-view means that we assume
no new classes will be added, and an open world-view means we
never know the entire list of subclasses of a given class. A open
world-view is predicted to result in larger DFAs with more unsatis-
fiable transitions. However, we do not yet have data to confirm or
measure this effect.

REFERENCES
[1] Seqexp: regular expressions for sequences, 2014. URL https://github.com/cgrand/

seqexp.
[2] David nolen on parsing with derivatives, 2016. URL https://www.youtube.com/

watch?v=FKiEsJiTMtI.
[3] Ansi. American National Standard: Programming Language – Common Lisp.

ANSI X3.226:1994 (R1999), 1994.
[4] Randal E. Bryant. Graph-Based Algorithms for Boolean Function Manipulation.

IEEE Transactions on Computers, 35:677–691, August 1986.
[5] Janusz A. Brzozowski. Derivatives of Regular Expressions. J. ACM, 11(4):481–

494, October 1964. ISSN 0004-5411. doi: 10.1145/321239.321249. URL http:
//doi.acm.org/10.1145/321239.321249.

[6] Loris D’Antoni and Margus Veanes. The power of symbolic automata and trans-
ducers. In Computer Aided Verification, 29th International Conference (CAV’17).
Springer, July 2017. URL https://www.microsoft.com/en-us/research/publication/
power-symbolic-automata-transducers-invited-tutorial/.

[7] Bruno Haible. Gnu clisp, 2010. URL https://clisp.sourceforge.io.
[8] Philip Hazel. PCRE - Perl Compatible Regular Expressions, 2015. URL www.pcre.

org.
[9] Mikko Heikkilä. Malli, metosin, 2022. URL https://github.com/metosin/malli.
[10] Rich Hickey. The Clojure Programming Language. In Proceedings of the 2008

symposium on Dynamic languages, page 1. ACM, 2008.
[11] Rich Hickey. A History of Clojure. Proc. ACM Program. Lang., 4(HOPL), June

2020. doi: 10.1145/3386321. URL https://doi.org/10.1145/3386321.
[12] John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. Introduction to Au-

tomata Theory, Languages, and Computation (3rd Edition). Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 2006. ISBN 0321455363.

[13] Matthew Might, David Darais, and Daniel Spiewak. Parsing with derivatives: A
functional pearl. In Proceedings of the 16th ACM SIGPLAN International Conference
on Functional Programming, ICFP ’11, page 189–195, New York, NY, USA, 2011.
Association for Computing Machinery. ISBN 9781450308656. doi: 10.1145/
2034773.2034801. URL https://doi.org/10.1145/2034773.2034801.

[14] Alex Miller. spec guide, 2022. URL https://clojure.org/guides/spec.
[15] William H. Newman. Steel Bank Common Lisp User Manual, 2015. URL http:

//www.sbcl.org.
[16] Jim Newton. Representing and Computing with Types in Dynamically Typed

Languages. PhD thesis, Sorbonne University, November 2018.
[17] Jim Newton and Adrien Pommellet. A portable, simple, embeddable type system.

In European Lisp Symposium, Online, Everywhere, May 2021.
[18] Jim Newton, Akim Demaille, and Didier Verna. Type-Checking of Heterogeneous

Sequences in Common Lisp. In European Lisp Symposium, Kraków, Poland, May
2016.

[19] Jim Newton, Didier Verna, and Maximilien Colange. Programmatic Manipulation
of Common Lisp Type Specifiers. In European Lisp Symposium, Brussels, Belgium,
April 2017.

[20] Martin Odersky andMatthias Zenger. Scalable component abstractions. In Sigplan
Notices - SIGPLAN, volume 40, pages 41–57, 10 2005. doi: 10.1145/1103845.1094815.

[21] Martin Odersky, Philippe Altherr, Vincent Cremet, Burak Emir, Stphane Miche-
loud, Nikolay Mihaylov, Michel Schinz, Erik Stenman, and Matthias Zenger. The
Scala language specification, 2004.

[22] Scott Owens, John Reppy, and Aaron Turon. Regular-expression Derivatives
Re-examined. J. Funct. Program., 19(2):173–190, March 2009. ISSN 0956-7968.

[23] Christophe Rhodes. User-extensible Sequences in Common Lisp. In Proceedings
of the 2007 International Lisp Conference, ILC ’07, pages 13:1–13:14, New York,
NY, USA, 2009. ACM. ISBN 978-1-59593-618-9. doi: 10.1145/1622123.1622138.
URL http://doi.acm.org/10.1145/1622123.1622138.

[24] Guido van Rossum and Fred L. Drake. The Python Language Reference Manual.
Network Theory Ltd., 2011. ISBN 1906966141, 9781906966140.

[25] Edmund Weitz. Common Lisp Recipes: A Problem-solution Approach. Apress, 2015.
ISBN 978-1-4842-1177-9.

ELS 2023 31



An Elegant and Fast Algorithm for Partitioning Types ELS’23, April 24–25 2023, Amsterdam

101 102
10−6

10−5

10−4

10−3

10−2

10−1

MEMBER types

101 102 103

10−5

10−4

10−3

10−2

10−1

CL combinations

101 102 103

10−5

10−4

10−3

10−2

10−1

Integer ranges

101 102

10−5

10−4

10−3

10−2

Subtypes of NUMBER

101 102 103
10−6

10−5

10−4

10−3

10−2

CL types

mdtd-bdd
mdtd-bdd-graph
mdtd-graph
mdtd-padl

Figure 8: Results of benchmark experiments: Lower is better. Each graph has number of given types as x-axis, and average
computation time in seconds, as y-axis. The pink/magenta curve indicates the results for mdtd-padl, that being the algorithm
described in this paper.

32 ELS 2023



GRASP: An Extensible Tactile Interface for Editing S-expressions
Panicz Maciej Godek
godek.maciek@gmail.com

ABSTRACT
GRASP is a Scheme-based extensible computational environ-
ment designed to work with S-expressions on touch screens.
It features a powerful extension mechanism as well as a sub-
system for handling gesture-based input. It is implemented
in Kawa Scheme, and can be compiled as an Android appli-
cation as well as run on a desktop windowing environment
and inside of terminal emulators.

GRASP is still a work-in-progress application, so the pur-
pose of the demo is:

(1) to show the current state of the application;
(2) to convey the ultimate vision behind GRASP;
(3) to present the development plan and methodology, and

optionally:
(4) to describe the hitherto history of the development.
The presentation of GRASP in this paper is written as if

all of its features were already implemented. The omissions
are presented in a separate section.

CCS CONCEPTS
• Software and its engineering → Integrated and visual de-
velopment environments; • Human-centered computing →
Visualization toolkits; Ubiquitous and mobile computing sys-
tems and tools; • Computing methodologies → Graphics in-
put devices.

KEYWORDS
visual programming, touchscreen-based editing, interactive
programming, structual editing

ACM Reference Format:
Panicz Maciej Godek. 2023. GRASP: An Extensible Tactile In-
terface for Editing S-expressions. In Proceedings of the 16th Eu-
ropean Lisp Symposium (ELS’23). ACM, New York, NY, USA,
4 pages. https://doi.org/10.5281/zenodo.7816633

1 THE CONCEPT OF GRASP
GRASP1 is a tactile-first structural editor for S-expressions.
Its design is based on representing S-expressions as nestable
boxes. The boxes are rendered so that their left and right

1GRASP is an open-source project hosted at https://github.com/panicz/
grasp

Permission to make digital or hard copies of part or all of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ELS’23, April 24–25 2023, Amsterdam, Netherlands
© 2023 Copyright held by the owner/author(s).
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM.
https://doi.org/10.5281/zenodo.7816633

edge resemble – respectively – opening and closing parenthe-
ses.

When displayed in a terminal, a Lisp program edited in
GRASP might look like this2:

define ! n

} •

Computes the product 1*...*n.

It represents the number of per-

mutations of an n-element set.

• ~

if <= n 0

1

* n ! - n 1

e.g. factorial 5 ===> 120

which corresponds to the following program text:

(define (! n)
"Computes the product 1*...*n.
It represents the number of per-
mutations of an n-element set."

(if (<= n 0)
1
(* n (! (- n 1)))))

(e.g. (factorial 5) ===> 120)

The left and right parentheses play different roles in tactile
editing: the left parenthesis is used for moving (if pressed
once) or copying (if pressed twice) an expression, whereas
the right parenthesis is used for resizing an expression.

An expression which is currently being moved can be deleted
by throwing it off the surface quickly. Likewise, moving a fin-
ger quickly while the expression is being resized causes the
box to be spliced into its parent (this feature is sometimes
referred to as “pulling-the-rug splicing”).

In addition to boxes, GRASP offers four other types of
objects: atoms, texts, extensions and comments.

2Some recordings presenting various prototypes of GRASP can be
watched on the author’s youtube channel: https://www.youtube.com/
channel/UCt4u6WQDy2yjXz6eXCcyijQ

ELS 2023 33



ELS’23, April 24–25 2023, Amsterdam, Netherlands Panicz Maciej Godek

Atoms are things like symbols, numbers, characters or
Boolean values in Lisp. They support touch gestures in a sim-
ilar way as the left parenthesis of a box: single touch causes
them to be dragged, whereas double touch causes their copy
to be dragged.

The text type corresponds to strings. They are displayed
inside boxes with quotation marks on their corners. The roles
of the quotation marks are analogous to the left and the right
parenthesis: the left one can be used to move the text within
the expression tree, remove it or copy, while the right one
can be used to change the shape of a text.

Comments in the Scheme programming language come in
three flavors, all of which are supported by GRASP:

• line comments, which span until the end of a given
line;

• block comments, which are similar to text;
• expression comments, which comment out a single ex-

pression.
Comments are invisible to the operations on the docu-

ment, such as car or cdr. Other than that, line and block
comments are similar to text.

The last type of objects supported by the editor are ex-
tensions. The list of extensions is open-ended. Expressions
are sometimes referred to as “magic boxes”, because they are
boxes which define their own rules of interaction.

A simple example of an extension is a button. If it is
loaded, the expression
(Button label: "Press me"

action: (lambda () (WARN "button pressed")))

can be rendered as a button, and responds to touch events
with the invocation of its action callback.

The terminal client of GRASP would display it in the
following manner:

Press me!

A more advanced extension – coming from an earlier pro-
totype of GRASP – allows to display graphs represented in
the form of neighbour list as an actual graph:

Extensions are meant to be user-definable, but the exact
API for defining them is subject to an ongoing research.

Some desired extensions for GRASP include:
• a drawing editor
• a graph visualizer/editor
• a visual evaluator
• a function plotter

and many others.

1.1 Gesture-based input
Since devices with touch screens often lack a proper key-
board, and usually display regrettable keyboard substitutes
on their screens as needed, GRASP attempts to find a more
ergonomic alternative.

One idea is gesture-based input: the user draws a shape
on the screen, and if the shape is recognized, an appropriate
action is performed.

By default, the following shapes are recognized:
• horizontal line, which splits the panes it’s drawn over

vertically into halves (similar to C-x 2 in Emacs)

• vertical line, which splits the panes below horizontally
into halves (similar to C-x 3 in Emacs)

• box gesture, which creates a new box in the document
it’s drawn over

• wedge symbol, which causes the expression below its
blade to be evaluated (similar to C-x C-e in Emacs’
Lisp interaction modes)

34 ELS 2023



GRASP: An Extensible Tactile Interface for Editing S-expressions ELS’23, April 24–25 2023, Amsterdam, Netherlands

Since many touchscreen-equipped devices also feature ac-
celerometers, GRASP also lets define motion-based edit op-
erations – for example, shaking a device might result in re-
indenting the source code.

1.2 Keyboard input
Even though GRASP focuses on tactile editing and on mo-
bile devices, a lot of effort has been put into making it a
pleasant keyboard editing experience.

GRASP features a flexible key binding mechanism, which
unites the input systems from its target environments (An-
droid, terminal and windowing systems).

By default, it provides the “Common User Access” key-
board bindings (ctrl-z for undo, ctrl-c for copy etc.) and it
allows users to use keyboard arrows to navigate cursor over
the active document.

Keyboard editing is context-sensitive, so for example press-
ing the #\[ key creates a new box, unless the cursor is located
on a text element, in which case the #\[ character is inserted
verbatim into text.

Also, extensions are free to interpret most of the pressed
characters as they please.

2 STRUCTURAL EDITING
The documents in GRASP are considered mutable, and the
editing of a document occurs by means of mutating their
tree structure.

However, all these mutations are inter-mediated by ex-
plicit Edit operations. Each such operation has its inverse,
which on one hand is used to implement the undo mecha-
nism, and on the other – can be perceived as an interesting
“document editing assembly language”.

At the moment of writing this text, the language consists
of the following (invertible) operations:
(Move from: Cursor to: Cursor with-shift: int)

(Insert element: (either pair HeadTailSeparator)
at: Cursor)

(Remove element: (either pair HeadTailSeparator)
at: Cursor with-shift: int := 0)

(ResizeBox at: Cursor := (the-cursor)
from: Extent
to: Extent
with-anchor: real)

(InsertCharacter list: (list-of char)
after: Cursor := (the-cursor)
into: pair := (the-document))

(RemoveCharacter list: (list-of char)
before: Cursor := (the-cursor))

(SplitElement with: Space
at: Cursor := (the-cursor))

(MergeElements removing: Space
at: Cursor := (the-cursor))

Some of these operations are pairwise inverse (e.g. Insert
and Remove or SplitElement and MergeElements), while oth-
ers are self-inverse (e.g. Move or ResizeBox).

More details can be found in the source code of GRASP.
It is imaginable that some future version of GRASP could

observe the actions performed by user and the structure of
the document, and suggest certain operations based on pre-
vious actions (resembling Excel’s auto-fill feature).

3 CURRENT PROGRESS
Although this paper could leave a different impression, at
the moment of writing (February 2023) GRASP isn’t yet a
usable application, as:

• it doesn’t let users open or save files
• it doesn’t let users split or scroll the screen
• it doesn’t let users evaluate expressions
• it doesn’t support the basic gestures
• the extension mechanism isn’t available

In certain areas, it also seems to have similar shortcom-
ings:

• it doesn’t support displaying nor editing comments
• although it should display improper lists correctly, edit-

ing them has not been tested well
Fortunately, there’s still some time before European Lisp

Symposium, which takes place late in April. Currently, the
author envisions two milestones for the project:

(1) to reach the point that would let GRASP be used for
developing itself

(2) to support extension mechanism and focus on the de-
velopment of particular extensions

The author believes that reaching milestone 1 before ELS
might be possible. A more detailed plan is the following:

• support for keyboard editing (mostly done)
• support for displaying and editing comments (they are

already handled by parser)
• support for vertical keyboard movement (currently works

somewhat but is a kludge)
• support for loading and saving files
• support for screen splitting and scrolling
• support for syntactic extensions provided by Kawa

that are used in GRASP
• tests and bug fixes

4 RELATED WORK
The strongest source of inspiration for GRASP has been
Emacs[14], and the Scheme interaction mode provided by
the Geiser package. One motivation for the development
of GRASP was the desire to share experience of Lisp in-
teraction mode outside the world of Emacs, with possible
improvements. (Some fundamental shortcomings of Emacs
were pointed out with the announcement of Project Mage in
the January of 2023[11].)

The desire to add interactive visual extensions was born
when the author attempted to extend the idea of “evident
programming” to the domain of computational geometry and
graph algorithms.

However, the same idea was independently conceived by
Leif Andersen, who implemented it in Dr Racket, and then

ELS 2023 35



ELS’23, April 24–25 2023, Amsterdam, Netherlands Panicz Maciej Godek

created a browser-based IDE called visr.pl (for Clojure). Leif
also provided a very good explanation of the idea in a youtube
video [1].

Interactive visual syntax is also a key feature of the Poly-
tope editor developed by Elliot Evans. Polytope is a dedi-
cated editor for JavaScript [8].

There are many similarities between GRASP and the Boxer
environment developed at MIT in the 1980s by Andrea DiSessa
and Harold Abelson [4]. Recently there have been efforts
to resurrect Boxer within the Boxer Sunrise project run by
Antranig Basman and Steven Ghitens [5]. However, building
the project requires LispWorks, and pre-built snapshots are
only released for MacOS X. Also, despite being written in
Lisp, Boxer itself is not a Lisp interpreter.

There used to be a Boxer-inspired “integrated Scheme pro-
gramming environment” called Bochser, developed by Michael
Eisneberg in the 1980s at MIT[3].

Despite similarities, Bochser is a very different system
than GRASP, and with very different goals.

Eisenberg’s thesis contains a reference to another thesis,
which presents Franklyn Turbak’s “visual and manipulable
model for Scheme programs” called GRASP[15]. It has even
less in common with the system presented here than Bochser.

There are other interesting experiments in the area of rep-
resenting programs. One example is the Fructure editor de-
veloped by Andrew Blinn for the Racket programming lan-
guage (the editor itself is implemented in a purely functional
way, using Racket’s “big-bang” library)[6].

Another is OrenoLisp designed by Yasuyuki Maeda with
the purpose of artistic live music coding[12].

There’s a fun representation of ClojureScript programs
as nested circles invented by Ella Hoeppner for her Vlojure
editor[10].

Katie Bell created a browser-based structural editor for
Python called SplootCode[2].

A lot of work concerning data visualization has been hap-
pening around the Smalltalk distribution called Pharo, and
in particular its spin-off called Glamorous Toolkit, developed
by Tudor Girba and his associates[9].

There’s also a Visual Studio Code plug-in called “Debug
Visualizer” developed by Henning Dieterichs[7]. It lets visual-
ize various data structures during the execution of programs,
and is available for the majority of mainstream programming
languages.

While the scene of structural editing tools seems to be
flourishing, the same cannot be said about development tools
for mobile devices - most of existing tools seem to be shrinked
versions of PC-based development environments and require
external keyboard for comfortable work.

The only tool which stands out from this crowd that
the author of this work knows about is MobileCode (for-
merly medc) developed by Mark Mendell[13], which is a
vim-inspired touchscreen-based editor for C-like languages,
capable of collapsing procedures and blocks of code.

ACKNOWLEDGEMENTS
The author would like to thank Shriram Krishnamurthi for
reading the first draft of this work. He is also grateful to
Andrew Blinn for his spiritual support throughout the whole
development process, and the whole online scene of people
interested in making programming a better experience for
the future generations.

The terminal version of GRASP owes the use of Unicode
box-drawing characters (rather than slashes and backslashes)
to Job van der Zwan. After seeing the first prototype, Manuel
Simoni recommended not to grow the boxes vertically with
the increasing nesting level.

REFERENCES
[1] Leif Andersen, Michael Ballantyne, Mathias Felleisen, Adding

Interactive Visual Syntax to Textual Code, Proceedings of the
ACM on Programming Languages, Volume 4, Issue OOPSLA,
Article No.: 222, pp 128, https://doi.org/10.1145/3428290,
presentation: https://www.youtube.com/watch?v=8htgAxJuK5c
defense talk: https://www.youtube.com/watch?v=l0GfMs82PvU
online IDE: https://visr.pl

[2] Katie Bell, SplootCode, https://splootcode.io
[3] Michael Eisenberg, Bochser: An Integrated Scheme Program-

ming System, MIT 1985, https://boxer-project.github.io/boxer-literature/
theses/Bochser,AnIntegratedSchemeProgrammingSystem(Eisenberg,MITMSc,
1985).pdf

[4] Andrea DiSessa, Harold Abelson, Boxer: A Reconstructible
Computational Medium, MIT 1986, https://web.media.mit.edu/~mres/
papers/boxer.pdf

[5] Antranig Basman, Steven Ghitens, Boxer Sunrise Project
https://github.com/boxer-project/boxer-sunrise

[6] Andrew Blinn, Fructure: A Structure Editing Engine in Racket
source code: https://github.com/disconcision/fructure
2019 RacketCon presentation: https://www.youtube.com/watch?v=
CnbVCNIh1NA

[7] Henning Dieterichs, Debug Visualizer for Visual Studio Code
https://marketplace.visualstudio.com/items?itemName=hediet.
debug-visualizer

[8] Elliot Evans, Polytope, https://elliot.website/editor/
[9] Tudor Girba, Glamorous Toolkit, https://gtoolkit.com

[10] Ella Hoeppner, Vlojure: A New Way to Write Clojure,
presentation: https://www.youtube.com/watch?v=1OcAUhe3E1E
online IDE: https://vlojure.io/

[11] Dmitrii Korobeinikov, Emacs is Not Enough, Project Mage,
2023, https://project-mage.org/emacs-is-not-enough

[12] Yasuyuki Maeda, OrenoLisp, https://www.youtube.com/watch?v=
RuU0HI-paik

[13] Mark Mendell, MEDC project website: https://medc.mark.dev/ pre-
sentation: https://vimeo.com/641790697

[14] Richard Stallman, EMACS: The Extensible, Customizable
Display Editor, 1981, https://www.gnu.org/software/emacs/emacs-paper.
html

[15] Franklyn Turbak, GRASP: A Visible and Manipulable Model
for Procedural Programs, MIT 1986 https://cs.wellesley.edu/~fturbak/
pubs/turbak-masters-thesis.pdf

36 ELS 2023



Tuesday, 25 April 2023

ELS 2023 37



Demonstration: A stepper for Armed Bear Common Lisp
(ABCL)

Alejandro Zamora Fonseca
ale2014.zamora@gmail.com

ABSTRACT

In this paper a stepper tool for the Armed Bear Common Lisp
(ABCL) implementation is proposed, describing its features
and implementation related details. ABCL does not currently
have a stepper and the addition of one can help improve the
quality of the code designed to run in the implementation,
and also it can be useful to assist in the debugging process
of Common Lisp (CL) portable code.

CCS CONCEPTS

• Software and its engineering → Software notations
and tools;

KEYWORDS

Common Lisp, stepper, debugging

ACM Reference Format:

Alejandro Zamora Fonseca. 2023. Demonstration: A stepper for
Armed Bear Common Lisp (ABCL). In Proceedings of the 16th
European Lisp Symposium (ELS23). ACM, New York, NY, USA,
5 pages. https://doi.org/10.5281/zenodo.7815887

1 INTRODUCTION

A stepper is a tool that allows to control and follow step
by step the execution of a subprogram. Many programming
languages provide stepping tools as part of its debugging
mechanisms. CL is not an exception and includes the step
macro in its standard to be optionally implemented.

ABCL does not include a stepper and this fact has been men-
tioned as one of the reasons that detract the implementation
from being a proper contemporary CL implementation, see
[1].

This paper introduces a stepper to address this issue in
ABCL. I will describe its features, examples of use and some
implementation details.

Permission to make digital or hard copies of part or all of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ELS23, Apr 24–25 2023, Amsterdam, Netherlands
© 2023 Copyright held by the owner/author(s).
https://doi.org/10.5281/zenodo.7815887

The code for this tool is shared as open source in the form of
a pull request on ABCL’s own code in its Github repository
(see [2]).

2 RELATED WORK

Recently, João Távora [3] made a great summary of the state
of art of stepping in CL and presented a visual and portable
stepper module (sly-stepper) for his IDE Sly.

Unfortunately sly-stepper does not support ABCL and the
other efforts mentioned in that paper appear to be incomplete
or difficult to integrate into any CL implementation.

3 DESIGN AND
IMPLEMENTATION

In my opinion, a stepper is needed for ABCL to improve
the quality of the implementation, to bring more debugging
tools for users of ABCL or other CL systems, and to lay the
groundwork for integrations with external IDEs like Sly, Slime
and others. Having a simple stepper in text mode shipped
with the implementation, would also allow developers to not
depend on any external tools for this task, regardless of the
environment in which the implementation will run.

In this section I’ll describe details in the design and imple-
mentation of the stepper and its features.

This step tool is integrated in the evaluation code in ABCL’s
main evaluator which is, at its core, an interpreter. The
evaluator works by traversing the successive subforms in
interpreted code after the macroexpansion, but it cannot go
inside compiled functions, which are executed from its Java
bytecode. For this reason the stepper will not enter either
into compiled code.

Internally, when the user runs the step macro, the interpreter
first sets itself to stepping mode and will allow the user to
proceed to step through each sub-form according to her needs.
The stepping related code is implemented to be called from
selected stages of the evaluator. And finally after the form is
executed, the stepping mode is disabled.

The following diagram illustrates an overview of the stepper
arquitecture. The stepper hooks created in the middle of the
evaluator were used to call the component that implements
the logic of the options in the stepper (Handle Stepping),
based on the result of the component Step in symbol ?.

38 ELS 2023



ELS23, Apr 24–25 2023, Amsterdam, Netherlands Alejandro Zamora Fonseca

Both components manipulate the internal states of the step-
per in the evaluator (Lisp.java), which are mainly two flags
to control the step and next features.

Most of the code for this tool was done in Lisp (abcl-stepper.lisp),
taking advantage of the nice API that ABCL provides for
developers to interact between Java and Lisp. Namely, the
ability to create Primitive methods in Java that can be eas-
ily called from Lisp as functions was essential. On the other
hand, the constructions to call Java objects and methods
from Lisp were also useful.

See Figure 1.

Figure 1: The arquitecture of the stepper

This approach was used due to its simplicity, as opposed to
others that need to instrument the subforms of the code to
step, in order to perform the stepping. Taking advantage
of the built-in evaluator makes it possible to step into any
interpreted code without needing to instrumenting it.

On every stage of the stepping process, the user will be
prompted with a screen like the one in Listing 1.
We are in the stepper mode
Evaluating step 1 -->
(TEST)
Type ':?' for a list of options

Listing 1: The head of the prompt.

If the user presses :?, the system will show a simplified
help with a list of the features present in the stepper, see
Listing 2
Type ':l' to see the values of bindings on the local environment
Type ':c' to resume the evaluation until the end without the stepper
Type ':n' to resume the evaluation until the next form previously selected

to step in↪→
Type ':s' to step into the form
Type ':i' to inspect the current value of a variable or symbol
Type ':b' to add a symbol as a breakpoint to use with next (n)
Type ':r' to remove a symbol used as a breakpoint with next (n)
Type ':d' to remove all breakpoints used with next (n)
Type ':w' to print the value of a binding in all the steps (watch)
Type ':u' to remove a watched binding (unwatch)
Type ':bt' to show the backtrace
Type ':q' to quit the evaluation and return NIL
Type ':?' for a list of options

Listing 2: Minimal help option.

Now the rest of the options will be described in the following
subsections.

3.1 Locals bindings

The :l option will display the local bindings for variables
and functions in the current environment passed to the cur-
rent form to evaluate, a typical response would look like as
described in Listing 3:

Showing the values of variable bindings.
From inner to outer scopes:
N=2
Showing the values of function bindings.
From inner to outer scopes:
FLET1=#<FUNCTION #<(FLET FLET1) {3ACE0BC7}> {3ACE0BC7}>

Listing 3: Local bindings option.

3.2 Continue to the end

The continue :c option will, basically, ignore the stepping
process and perform the evaluation of the form without any
stop.

3.3 Stop at next marked symbol

The next :n feature allows to stop the stepper only when the
interpreter is analyzing one of the symbols specified in the
list of stepper::*stepper-stop-symbols* or any of the ex-
ported symbols presented in any of the list of packages speci-
fied in stepper::*stepper-stop-packages*. These variables
will have initially the value NIL and, if left unchanged, next
will behave almost exactly as continue. It is useful when
we want to step over large or complex code and avoid step-
ping every form in order to jump only to the interested
ones. This feature will be explained more in detail in next
sections.

In the middle of the stepping process it is possible to change
the value of the variable stepper::*stepper-stop-symbols*,
using the options :b, :r and :d. The :b option allows to add
a symbol to stepper::*stepper-stop-symbols*, option :r
will remove a symbol in stepper::*stepper-stop-symbols*
and the option :d will remove all the symbols in the afore-
mentioned variable.

3.4 Step into the form

The step :s functionality is the most basic operation in the
stepper, it will step into the current form until the evaluation
ends. It can even step into ABCL internal functions.

3.5 Inspect variables

This feature (:i) allows one to inspect the content of a
variable or binding, present in the current environment. It
will first ask the user to type the symbol to inspect and
proceed to print its value.

Some screens as quick examples (Listing 4)

ELS 2023 39



Demonstration: A stepper for Armed Bear Common Lisp (ABCL) ELS23, Apr 24–25 2023, Amsterdam, Netherlands

Type ':?' for a list of options
:i
Type the name of the symbol: *some-var*
NIL
Type ':?' for a list of options
:i
Type the name of the symbol: x
3

Listing 4: Inspect variable option.

3.6 Show backtrace

The :bt option provides the ability to print the current
backtrace, which is useful for analyzing the evaluation path
until the current stepping point.

3.7 Watch and (un)watch

The feature watch allows to follow the values of a variable in
all the steps, the user can add a variable to watch by typing
:w and when prompted, the symbol to watch. After that, the
user can remove the variable from being watched by using
the :u option and entering the same symbol.

3.8 Quit evaluation

The quit :q feature will abort the evaluation in the stepper
and return NIL. This is useful to avoid running the remaining
forms in the code when the user wants to leave the stepper,
especially if the rest of the program is performing expensive
operations.

3.9 Examples of usage

This subsection explains in details, by using some examples,
the features of the current stepper. The examples shown here
will be using the pure ABCL’s REPL but will behave the
same if you use the shell buffer in Emacs for a slightly more
comfortable development environment.

First let’s examine the inspect feature combined with the
step feature.

In this example we can see how the inspect feature is used
and it retrieves correctly the values for the lexical variable x
and the special variable *some-var* which is rebinded in the
code. The values are shown using cl:print. Listing 5

As a second example the use of the list locals feature will
be illustrated. Here, we can observe that the list of local
bindings include variable and function bindings and they are
showed from inner to outer scopes, for that reason the value
of variable a is first 2 and later 1. See Listing 6

In the previous example the use of the feature continue was
shown too, allowing to complete the evaluation of the form
turning off the stepper.

The following stepper session will be used to explain the
next and quit features. They allow to stop the execution
only in designed symbols. It behaves like if we were adding

CL-USER(1): (require :asdf)
NIL
CL-USER(2): (require :abcl-contrib)
NIL
CL-USER(3): (require :abcl-stepper)
NIL
CL-USER(4): (defparameter *some-var* 1)
*SOME-VAR*
CL-USER(5): (defun test ()

(let ((*some-var* nil)
(x 3))

(list *some-var* 3)))
TEST
CL-USER(6): (stepper:step (test))
We are in the stepper mode
Evaluating step 1 -->
(TEST)
Type ':?' for a list of options
:i
Type the name of the symbol: *some-var*
1
Type ':?' for a list of options
:s
We are in the stepper mode
Evaluating step 2 -->
(BLOCK TEST

(LET ((*SOME-VAR* NIL) (X 3))
(LIST *SOME-VAR* 3)))

Type ':?' for a list of options
:s
We are in the stepper mode
Evaluating step 3 -->
(LET ((*SOME-VAR* NIL) (X 3))

(LIST *SOME-VAR* 3))
Type ':?' for a list of options
:s
We are in the stepper mode
Evaluating step 4 -->
(LIST *SOME-VAR* 3)
Type ':?' for a list of options
:i
Type the name of the symbol: x
3
Type ':?' for a list of options
:i
Type the name of the symbol: *some-var*
NIL
Type ':?' for a list of options
:c
step 4 ==> value: (NIL 3)
step 3 ==> value: (NIL 3)
step 2 ==> value: (NIL 3)
step 1 ==> value: (NIL 3)
(NIL 3)

Listing 5: Step and inspect features.

breakpoints for the stepping process. Let’s look at the stops
in this example. The stepper is stopping in the call with
the symbol 'step-next::loop-1 because it was added to
stepper::*stepper-stop-symbols*. It is also stopping in
the call with the symbol 'step-next::loop-3 because that
symbol was exported in the package next-step and the
symbol was added to stepper::*stepper-stop-packages*.
'step-next::loop-2 is skipped when using next because
it is not present in any of the lists of symbols mentioned
before.

We can observe as well the use of the feature quit. After the
use of it, the evaluation was stopped before the initialization
of the special variable step-next::*test-next-var* and
therefore it is not bound yet after complete the stepping
process. See Listing 7

If we observe the second stepper call in the test-next func-
tion, we can see the use of the :b and :r features. Using the :b
option adds a breakpoint to the symbol step-next::loop-2,
the breakpoint to step-next::loop-1 is removed using the

40 ELS 2023



ELS23, Apr 24–25 2023, Amsterdam, Netherlands Alejandro Zamora Fonseca

CL-USER(7): (stepper:step (flet ((flet1 (n) (+ n n)))
(let ((a 1))

(let ((a 2))
(+ (flet1 3) a)))))

We are in the stepper mode
Evaluating step 1 -->
(FLET ((FLET1 (N) (+ N N)))

(LET ((A 1))
(LET ((A 2))

(+ (FLET1 3) A))))
Type ':?' for a list of options
:s
We are in the stepper mode
Evaluating step 2 -->
(LET ((A 1))

(LET ((A 2))
(+ (FLET1 3) A)))

Type ':?' for a list of options
:s
We are in the stepper mode
Evaluating step 3 -->
(LET ((A 2))

(+ (FLET1 3) A))
Type ':?' for a list of options
:s
We are in the stepper mode
Evaluating step 4 -->
(+ (FLET1 3) A)
Type ':?' for a list of options
:l
Showing the values of variable bindings.
From inner to outer scopes:
A=2
A=1
Showing the values of function bindings.
From inner to outer scopes:
FLET1=#<FUNCTION #<(FLET FLET1) {238E109B}> {238E109B}>
Type ':?' for a list of options
:c
step 4 ==> value: 8
step 3 ==> value: 8
step 2 ==> value: 8
step 1 ==> value: 8
8
CL-USER(8):

Listing 6: Local bindings feature.

option :r and, after executing the command :n, the stepper
stops this time at step-next::loop-2 instead of
step-next::loop-1. See Listing 8.

The following example exhibits the use of the backtrace
feature. This option allows to visualize the full evaluation
path to the point of the program being analyzed by the
stepper. See Listing 9.

The last example presents the watch(:w) feature which per-
mits to monitor the values of a variable in the stepping
process. In the code sample it can be seen the succesive val-
ues of the variable x and how they are removed after the
unwatch(:u) option is applied. See Listing 10.

4 CONCLUSION

A first functional stepper for ABCL has been introduced. It
can help users to dig into the guts of every complex code to
help find the root cause of errors.

I think that even knowing that this is the first version, it can
be usable and offer an alternative to debug complex systems
built using ABCL or even portable CL code.

CL-USER(8): (defpackage step-next (:use :cl))
#<PACKAGE STEP-NEXT>
CL-USER(9): (in-package :step-next)
#<PACKAGE STEP-NEXT>
STEP-NEXT(10): (defun loop-1 (a b)

(loop :for i :below a
:collect (list a b)))

LOOP-1
STEP-NEXT(11): (defun loop-2 (a)

(loop :for i :below a
:collect i))

LOOP-2
STEP-NEXT(12): (defun loop-3 (n &optional (times 1))

(loop :for i :below times
:collect times))

LOOP-3
STEP-NEXT(13): (defun test-next (n)

(loop-1 (1+ n) n)
(loop-2 (1- n))
(loop-3 n 3)
;; quit (q) here
(defparameter *test-next-var* (loop :for i :below (expt 10 6)

:collect i)))
TEST-NEXT
STEP-NEXT(14): (push 'loop-1 stepper::*stepper-stop-symbols*)
(LOOP-1)
STEP-NEXT(15): (export 'loop-3)
T
STEP-NEXT(16): (push 'step-next stepper::*stepper-stop-packages*)
(STEP-NEXT)
STEP-NEXT(17): (stepper:step (test-next 7))
We are in the stepper mode
Evaluating step 1 -->
(TEST-NEXT 7)
Type ':?' for a list of options
:n
We are in the stepper mode
Evaluating step 2 -->
(LOOP-1 (1+ N) N)
Type ':?' for a list of options
:n
step 2 ==> value: ((8 7) (8 7) (8 7) (8 7) (8 7) (8 7) (8 7) (8 7))
We are in the stepper mode
Evaluating step 3 -->
(LOOP-3 N 3)
Type ':?' for a list of options
:q
NIL
STEP-NEXT(18): (assert (not (boundp '*test-next-var*)))
NIL
STEP-NEXT(19):

Listing 7: Next and quit features.

STEP-NEXT(19): (stepper:step (test-next 7))
We are in the stepper mode
Evaluating step 1 -->
(TEST-NEXT 7)
Type ':?' for a list of options
:b
Type the name of the symbol to use as a breakpoint with next (n): loop-2
Type ':?' for a list of options
:r
Type the name of the breakpoint symbol to remove: loop-1
Type ':?' for a list of options
:n
We are in the stepper mode
Evaluating step 2 -->
(LOOP-2 (1- N))
Type ':?' for a list of options
:n
step 2 ==> value: (0 1 2 3 4 5)
We are in the stepper mode
Evaluating step 3 -->
(LOOP-3 N 3)
Type ':?' for a list of options
:q
NIL
STEP-NEXT(20):

Listing 8: Next and quit features.

5 FURTHER WORK

The current stepper is implemented in a way that blocks any
remaining threads in the system until the stepping process

ELS 2023 41



Demonstration: A stepper for Armed Bear Common Lisp (ABCL) ELS23, Apr 24–25 2023, Amsterdam, Netherlands

STEP-NEXT(20): (defun test-backtrace (x)
(labels ((f1 (x) (f2 (1+ x)))

(f2 (x) (f3 (* x 3)))
(f3 (x) (+ x 10)))

(f1 x)))
TEST-BACKTRACE
STEP-NEXT(21): (stepper:step (test-backtrace 3))
We are in the stepper mode
Evaluating step 1 -->
(TEST-BACKTRACE 3)
Type ':?' for a list of options
:b
Type the name of the symbol to use as a breakpoint with next (n): +
Type ':?' for a list of options
:n
We are in the stepper mode
Evaluating step 2 -->
(+ X 10)
Type ':?' for a list of options
:bt

(#<LISP-STACK-FRAME ((LABELS F3) 12) {758EDEFD}>
#<LISP-STACK-FRAME ((LABELS F2) 4) {6CD6F8DD}>
#<LISP-STACK-FRAME ((LABELS F1) 3) {3B96D1EB}>
#<LISP-STACK-FRAME (TEST-BACKTRACE 3) {6D76BF34}>
#<LISP-STACK-FRAME (SYSTEM::%EVAL (ABCL-STEPPER:STEP

(TEST-BACKTRACE 3))) {64C522B}>
#<LISP-STACK-FRAME (EVAL (ABCL-STEPPER:STEP

(TEST-BACKTRACE 3))) {387EC7BA}>
#<LISP-STACK-FRAME (SYSTEM:INTERACTIVE-EVAL

(ABCL-STEPPER:STEP (TEST-BACKTRACE 3))) {356A40D7}>
#<LISP-STACK-FRAME (TOP-LEVEL::REPL) {6DBDC651}>
#<LISP-STACK-FRAME (TOP-LEVEL::TOP-LEVEL-LOOP) {9840CC7}>)

Type ':?' for a list of options
:c
step 2 ==> value: 22
step 1 ==> value: 22
22
STEP-NEXT(22):

Listing 9: Show backtrace feature

is finished. This was done by simplicity in the design and
to avoid unpleasant race conditions on the internal states.
Changing it to a non-blocking version, would be more flexi-
ble for users, especially when debugging systems in produc-
tion.

Include other well known step features in other implemen-
tations like step-out and step-next (move to the next form
avoiding step-into)

Implement the evaluation of custom expressions in the current
environment.

Find a way to integrate it with Sly/Slime. Currently, when
called inside Sly/Slime REPL it will only show print a mes-
sage and return the form without any stepping. Also find a
way to abstract the integration with any IDE.

6 ACKNOWLEDGEMENTS

I would like to thank my wife Valeria, who helped me in the
general design of the features and lovingly motivated me to
complete the implementation and this paper.

Also to the Common Lisp community for providing me all
the software, documentation and support to every doubt I
had in my learning all these years.

STEP-NEXT(22): (defun test-watch ()
(let ((x 1))

(setq x 3)
(setq x 7)
(setq x 21)
x))

TEST-WATCH
STEP-NEXT(23): (stepper:step (test-watch))
We are in the stepper mode
Evaluating step 1 -->
(TEST-WATCH)
Type ':?' for a list of options
:w
Type the name of the symbol to watch: x
Type ':?' for a list of options
Watched bindings:
Couldn't find a value for symbol X
:s
We are in the stepper mode
Evaluating step 2 -->
(BLOCK TEST-WATCH

(LET ((X 1))
(SETQ X 3)
(SETQ X 7)
(SETQ X 21)
X))

Type ':?' for a list of options
Watched bindings:
Couldn't find a value for symbol X
:s
We are in the stepper mode
Evaluating step 3 -->
(LET ((X 1))

(SETQ X 3)
(SETQ X 7)
(SETQ X 21)
X)

Type ':?' for a list of options
Watched bindings:
Couldn't find a value for symbol X
:s
We are in the stepper mode
Evaluating step 4 -->
(SETQ X 3)
Type ':?' for a list of options
Watched bindings:
X=1
:s
step 4 ==> value: 3
We are in the stepper mode
Evaluating step 5 -->
(SETQ X 7)
Type ':?' for a list of options
Watched bindings:
X=3
:u
Type the name of the symbol to (un)watch : x
Type ':?' for a list of options
:s
step 5 ==> value: 7
We are in the stepper mode
Evaluating step 6 -->
(SETQ X 21)
Type ':?' for a list of options
:s
step 6 ==> value: 21
step 3 ==> value: 21
step 2 ==> value: 21
step 1 ==> value: 21
21
STEP-NEXT(24):

Listing 10: Watch feature

REFERENCES
[1] Abcl manual. URL https://abcl.org/releases/1.9.0/abcl-1.9.0.pdf.
[2] Pr with the stepper code. URL https://github.com/armedbear/

abcl/pull/568.
[3] João Távora. A portable, annotation-based, visual stepper for

common lisp. 2020. URL https://zenodo.org/record/3742759.

42 ELS 2023



Experience Report: Kandria - A Game in Common Lisp

Nicolas “Shinmera” Hafner
shinmera@tymoon.eu

Shirakumo.org

Zürich, Switzerland

ABSTRACT
In this paper we outline the experience we’ve gathered while devel-
oping Kandria using Common Lisp. Kandria is a video game in the
“action RPG” genre and has been developed for Windows and Linux
with the SBCL implementation. Being a video game, the project
touches a unique combination of disciplines within computer sci-
ence, and as such provides an in-depth and comprehensive view of
the development process of a large-scale project in Lisp, and the
general language ecosystem.

CCS CONCEPTS
• Computing methodologies→ Computer graphics; • Computer
systems organization → Real-time system architecture; • Soft-
ware and its engineering→Application specific development
environments; Object oriented development; Error handling and
recovery; Software development methods.

KEYWORDS
Common Lisp, Games, Video Games, Computer Graphics, Experi-
ence Report

ACM Reference Format:

Nicolas “Shinmera” Hafner. 2023. Experience Report: Kandria - A Game
in Common Lisp. In Proceedings of the 16th European Lisp Symposium
(ELS’23). ACM, New York, NY, USA, 7 pages. https://doi.org/10.5281/zenodo.
7816871

1 INTRODUCTION
Kandria is a video game in the “action RPG” genre that was released
worldwide on the Valve Steam platform for Windows and Linux
in January of 2023, receiving very positive reviews. The game was
developed using the Trial engine and thus relies almost entirely
upon code and libraries written in Common Lisp – to our knowledge
the first commercial game like this to be released.

Games lie at an intersection of many different computer science dis-
ciplines such as audio, graphics, interfaces, soft real-time, artificial
intelligence, and more. As such games provide a unique challenge

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ELS’23, Apr 24–25 2023, Amsterdam, Netherlands
© 2023 Copyright held by the owner/author(s).
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM.
https://doi.org/10.5281/zenodo.7816871

Figure 1: A screenshot of Kandria

in combining all of these disciplines together into one product, and
ultimately shipping this product to paying customers.

In this paper we will outline the challenges we faced in realising
Kandria as related to Common Lisp, discuss advantages of our ap-
proach, and take a look at the work still ahead of us in expanding
the capabilities of our engine to better address the requirements
of even more complex games we would like to develop in the fu-
ture.

In particular we will note our own experiences with a few common
Boogeymen, such as the overhead of CLOS dispatch, the pause
times of GC, the maturity of the library ecosystem, and the stability
and size of deployed binaries.

Since this is an experience report, we cannot present any specific
figures on performance characteristics, statistics on used projects,
or some sort of unified thesis. Instead we hope that this insight
will be valuable for readers to gain a better understanding of the
complexities involved, the benefits we have identified with Lisp
over other ecosystems, and, most importantly, the areas in which
work still needs to be done.

All of the work we’ve done, including Trial[15], and even Kan-
dria[10], is open source and available on our GitHub[6], in the
hopes that it will inspire others to create new projects based upon
them.

2 RELATEDWORK
In [20] we discussed many similar points that this paper touches
upon in a format more suitable for people unfamiliar with the
intricacies of lisp and especially Common Lisp.

Strandh[24] proposes a new approach to improve the performance
characteristics of generic function dispatch. Since we make heavy
use of CLOS in our game, such improvements are very relevant.

ELS 2023 43



ELS’23, Apr 24–25 2023, Amsterdam, Netherlands Nicolas “Shinmera” Hafner

Patton[23] are working on a new parallelisation of the SBCL[13]
garbage collector to allow for faster collection and thus reduced
pause times. GC pause times are a frequently reported issue in
games, as they can cause unexpected latency, and thus lead to
drops in the framerate.

Mäkelä[21] describe their experience in developing a game using
the open source game engine Godot[8] with C# in their BSc. thesis.
Godot is currently the leading open source game engine, and is
striving to be a viable alternative to commercial products like Unity
and Unreal.

Craighead et al.[18] cover a case study of using Unity[16], a pro-
prietary game engine, to build a small game. Unity is currently
most-used game engine for small to mid-sized games.

Nurminen[22] describe their experience developing and deploying
a Common Lisp application to users.

3 LIBRARY ECOSYSTEM
In this section we will outline our general experience working in
the Common Lisp ecosystem, and particularly the contributions
we’ve made to it in order to implement Kandria.

Out of the 110 libraries Kandria depends upon, 54 were written by
us. This does mean that we’ve spent a rather significant amount of
time “yak shaving” and creating libraries to fulfil a variety of needs
that were, prior to their creation, either completely unfulfilled, or
unsatisfactorily so. We will go into detail on some of the more
important ones in the following subsections.

While this is undeniably a lot of work, it has been done now and
is available to others. Furthermore, of the other half of libraries
that we were not authors of, the vast majority have been extremely
stable. We only needed to supply extremely minimal patches to
a select few libraries, most of which were reviewed and accepted
relatively swiftly.

Among this we also count the SBCL implementation itself. While
we strive to write implementation independent code in our separate
libraries, for Kandria itself we decided to only focus on SBCL in
order to reduce the development overhead. SBCL offers great native
code performance and is available for all platform configurations
that we require. And, perhaps most importantly, it is very actively
maintained. Most of the issues we’ve encountered in releases were
usually fixed within a few weeks, if not days.

We are also actively investigating the possibility of porting SBCL
and Kandria to the proprietary Nintendo Switch platform, though
due to non-disclosure agreements we are unfortunately not at lib-
erty to speak of the specifics involved in that at this time.

Overall while we certainly had to create a lot of libraries to fulfil
our needs, and those libraries presented a significant amount of
effort to implement, we remain convinced that we were only able
to implement these systems in a respectable amount of time due to
the convenience factors that Lisp offers us.

We’ll now touch on a few specific areas that we developed libraries
for. This is by no means exhaustive, but we consider these to be the
most relevant to the general community.

3.1 Math Libraries
While there is no shortage of math libraries available to Common
Lisp, especially linear algebra implementations, most of those li-
braries focus on large scale scientific computing, often by integrat-
ing with foreign libraries such as BLAS and LAPACK. For basic
computer graphics and especially games, this is overkill. Most of
the linear algebra stays within the confines of 2 × 2, 3 × 3, 4 × 4
matrices, and 2, 3, and 4 element vectors.

It is more important to provide a very convenient interface that
allows us to perform computations on these elements with adequate
speed. Back when Trial started out, no linear algebra libraries with
such a limited focus existed, and as such the 3d-Vectors and 3d-
Matrices libraries were born. We have since extended this set of
libraries to include 3d-Quaternions for common operations with
rotations, and 3d-Transforms, for the convenient encapsulation of
a “transform gizmo” that can represent rotation, translation, and
scaling without gimbal Lock.

All of these libraries rely very heavily on macros to reduce code
duplication and automatically generate code for loop unrolling and
other common tactics in linear algebra code. The current versions
of these libraries all work by emitting an etypecase for every
operation, which then handles dispatch based on the provided
argument types. The operation functions are inlined, such that the
compiler can eliminate the dispatch altogether if the argument types
are locally known. This allows us to provide a generic interface to
the user that’s quite convenient, while still staying competitive in
performance critical sections.

Unfortunately this approach, while portable, is also riddled with
issues: since every operation is inlined, this leads to explosive code
growth for the compiler before it can reduce the code back down
again by eliminating superfluous dispatch etypecases. Type in-
ference is also much more complicated, and stack allocation is
usually only possible via careful manual rewriting of the opera-
tions involved. The libraries are also limited to a single float type,
meaning you can by default only create vectors with single-floats
as elements.

In this case the lack of static typing facilities and lack of portable
compiler hooks for integrating with type inference really hurts the
compile speed, implementation clarity, and ultimate performance
of the resulting code.

We have started work on a full rewrite of all libraries that take a
fundamentally different approach: instead of emitting etypecases
and relying on inlining, we create a sort of “template mechanism”
by which we can generate all possible permutations of a singular
function for all involved argument types.This gives us very tiny, but
perfectly optimised base functions for all required operations. We
then create a dispatcher function on top which falls back to emitting
an etypecase on other implementations, but will hook into SBCL’s
deftransform and similar facilities to better handle expansion and
type propagation. Finally we create variadic functions on top of the
dispatchers which transform any possible variadic call into calls
to dispatched two-argument operation functions, while retaining
proper type propagation.

44 ELS 2023



Experience Report: Kandria - A Game in Common Lisp ELS’23, Apr 24–25 2023, Amsterdam, Netherlands

Ultimately this results in much more easily understandable and per-
forming code. However, it still comes at a cost: because we cannot
know ahead of time which type combinations and operations the
user will actually need, we must generate all possible combinations
ahead of time. This potentially results in thousands of functions be-
ing generated that are never used. We would like a compiler facility
that allows us to hook into the expansion process of a function call
to generate the required permutations on-demand.

While such a facility is conceivable, and making it work for un-
known runtime types by delayed compilation is, too, we currently
have no plans to implement such an advanced strategy. More im-
portantly, we hope that at some point in the future implementors
can come to some kind of consensus that would allow a portability
library to expose a similar mechanism to SBCL’s deftransform
for faster, more convenient, type-inference-informed call expan-
sion.

3.2 User Interfaces
When Trial initially began its development in 2016 it was directly in-
tegrated with the Qt4 UI toolkit (via CommonQt / Qtools). Since Qt4
is a rather large dependency that not only increases the deployed
package size, but also invites a lot of C and C++ interoperation that
can cause hard to debug issues, and has not been maintained in
many years, it was quickly abandoned, however. These days Trial
does not depend on a UI toolkit directly, or even a specific backend
for its OpenGL use.

Aside from CommonQt, the options for a user interface in Common
Lisp were, and remain, limited: GTK runs the same issues as Qt,
though with even worse deployment and support aspects, LTK is
far too limited and cannot integrate with OpenGL at all, McCLIM
similarly does not possess an OpenGL backend or method of inte-
gration and is still very limited in its theming capabilities, and the
newly established CLOG requires a browser to be shipped, which
is far too heavyweight.

As a result we decided to implement our own toolkit, called Alloy.
Alloy is separated into different protocols, with the core being
completely independent of any rendering or input method, instead
only handling the layout decisions, the input handling via a generic
event protocol, and a system to dynamically react to changes in the
represented data.

How visual elements can be rendered is then offloaded to several
other protocols: the “Simple Rendering Protocol” which provides
a basic text and shape rendering API, the “Presentations Proto-
col” which allows users to describe how to compose the look of
a visual element via the basic shapes from the Simple protocol,
and the “Animations Protocol” which allows users to describe
how shapes change over time as properties of a visual element
are changed.

Finally, the Simple protocol needs to be implemented by a backend,
such as the “OpenGL Renderer” to actually provide a way to draw
the shapes in some way, the Core protocol needs to receive input
events from the surrounding context to actually react to user input,
and some method of rendering and layouting text needs to be

provided. Text in particular is separated out as it is a very complex
topic in its own right.

This separation of concerns via protocols implemented in CLOS
allows us to make Alloy far more amenable to being ported to
different backends. In particular, it allows us to use Alloy in contexts
that are otherwise rather unusual for UI toolkits, such as within a
game where the actual operating system interaction and rendering
logic cannot be directly controlled by the toolkit itself, but is instead
handled by the game engine.

Usual desktop UI toolkits are rather cumbersome to style effectively,
as most desktop applications are expected to present themselves in
a “native look and feel”, while games are expected to have rather
elaborately customised and animated interfaces. Alloy’s presenta-
tions protocol allows us to style the UI quite extensively. Thanks to
macros we can present the user with a declarative style interface
to define these behaviours with relative ease.

This protocol separation would not be possible to implement with-
out the high degree of flexibility CLOS offers us in combining
behaviours, and even without advanced techniques such as shadow
mixins and metaclasses.

3.3 Audio Processing
Of the entire system, audio processing is where the toughest con-
straints apply, as audio is very sensitive to latency. We cannot
process audio in large buffers to smooth over processing hiccups,
as then sound effects would be desynchronised from their visual
counterparts. Audio processing can also often be very computation
intensive, and benefits greatly from vectorisation.

For these reasons we have decided to write the main bulk of our
processing as a C library, rather than Common Lisp, as at the time
it was the fastest way for us to get the kinds of performance con-
straints met and the kinds of capabilities we needed. Now with the
advent of the sb-simd contrib, writing a competitive alternative
(albeit constrained to SBCL) may be feasible.

In any case, our library, libmixed, follows a very strict C style and
is extensible and interoperable from Lisp. You can write “segments”
that process audio from Lisp as well, and integrate with the rest of
the processing system neatly.

This allows us to write the more hairy parts such as audio format
decoding, and audio playback in Lisp, instead, without sacrificing
the performance gains in the bulk of the processing. Libmixed then
takes care of unpacking and decoding audio streams, applying a
variety of effects, mixing multiple audio streams together, and even
resampling everything to fit into the expected, and often differing,
sample rates at the input and output points.

Libmixed also includes a full introspection API, allowing us to
not only put the audio processing pipeline together from Lisp, but
also to interactively inspect the state of the processing segments
and modify them at runtime. We can also use the extensibility to
prototype new effects from Lisp before lowering them down to C
should the performance requirements be strict enough.

ELS 2023 45



ELS’23, Apr 24–25 2023, Amsterdam, Netherlands Nicolas “Shinmera” Hafner

On the Lisp side we have also crafted a higher-level system called
Harmony, which makes it trivial to put together these processing
pipelines, and interactively play music and sound effects back. In
Kandria we use these pipelines for a variety of effects such as cross
fading multiple music layers (called “horizontal mixing”), ducking
the audio with a low pass filter when the player is underwater,
and slowing down audio playback when the player enters a slow
motion segment.

3.4 Operating System Interaction
In order to output sound and graphics, process input, and receive
user information we need to interact with the surrounding operat-
ing system. On all three targets we care about, this is done via calls
to a C API of some sort. Thanks to CFFI it is usually unnecessary
to actually rely on an external C library to do so, and we can in-
stead code the interaction directly in Lisp, retaining the interactive
implementation and debugging.

Despite this though, the interaction still involves C and the usual
memory safety perils, and depending on the interface the documen-
tation often leaves things to be desired, especially on MacOS. So
while our implementation definitely benefits from a much faster
retry cycle, it is still a very arduous process to write these OS
interoperation libraries.

Particularly we had to write libraries to do the following:

(1) Input handling for game controllers. This is rather involved,
especially on Windows, where multiple APIs need to be sup-
ported simultaneously.[1]

(2) Audio output. We’ve implemented several different output APIs
on both Linux and Windows, as both systems can differ on
their supported output interfaces depending on version and
setup.[11][2][9]

(3) Native dialog boxes. In order to show emergency error boxes
or prompt the user for files.[12][4]

(4) Font discovery. To search the available fonts for a matching set
we need to query operating system APIs.[5]

(5) Language querying. To ensure the game launches with the
user’s language (if supported of course), we again need to query
the environment for the preferred localisation.[14]

For graphics output and general window interaction we currently
rely on the GLFW[7] C library, as it has proven extremely stable and
portable. It is conceivable that we will replace this at some point to
reduce C dependencies, but given that we’ve had zero issues arising
from its use, this is rather low priority for us.

3.5 Service Integration
In order to publish a game on the Steam platform, you must inte-
grate with their SteamWorks SDK. The actually required amount
of integration is very minimal, and merely involves loading their
shared library and calling a single function. However, the Steam-
Works SDK offers a lot of other functionality that games can make
use of, like social networking features, user generated content shar-
ing, multiplayer systems, and more.

Unlike the prior OS interfaces, the default expected interaction
mode with the SteamWorks SDK is via C++, which is quite difficult
to talk with directly via CFFI. Fortunately, they also offer a raw C
API, but this API is not fully documented and fraught with strange
gotchas. The SDK does ship a “machine readable” description of
the endpoints, structures, and types in the form of a JSON file,
but as we have found this file is both incomplete and partially
incorrect.

In our implementation we analyse the JSON file along with a manu-
ally supplied file with the lacking data, and a couple of the shipped
static headers to automatically generate the CFFI wrapper data
structures, types, constants, and functions. Since the analysis of
these files is rather involved however, we have chosen not to use
macroexpansion, but rather provide a separate system which emits
Lisp code to a new file.

In addition to this generated interface, we also had to supply a
minimal “shim” C library that handles a few select API calls that
rely on structure-by-value passing, a feature which is not natively
supported on most Lisp implementations at this point. Another
workaround would be to use libffi, but libffi comes with its own
issue, and would be another C library to depend on anyhow, so we
opted for the much simpler and easier to understand alternative of
writing our own minimal shim library.

In Kandria we make use of the extended services to present the user
with an on-screen keyboard when they are using a controller, to
read out the username for default save file naming, and to integrate
with the Steam platform’s “achievements” system, which players
have come to expect.

4 COMMON LISP OBJECT SYSTEM
In both Trial and Kandria we make rather extensive use of CLOS,
both its basic features of classes, multiple dispatch, and deep hier-
archies via mixins, and the advanced features of metaclasses. For
instance, our entire event handling system is simply a singular
function (handle event receiver) which we define methods on
to receive events. A central “event loop” object then just calls the
handle function for every event it receives on every receiver it has
in its internal list.

As described in our prior paper [19] we use metaclasses to attach
“shader fragments” (code that is executed on the GPU during ren-
dering) to classes and inherit the behaviour of these fragments
together, allowing composition of rendering behaviour through
inheritance as well.

Overall the use of classes as an organisational structure lends itself
extremely well to games, especially in the presence of multiple
inheritance and mixins. We also often use this to introduce “marker
classes” that contain no behaviour or data of their own, but act as
type information that other parts of the system use, such as whether
a class can be instantiated by the editor, resized, should be treated
as solid during collision, should not be deleted when loading a prior
save state, etc.

46 ELS 2023



Experience Report: Kandria - A Game in Common Lisp ELS’23, Apr 24–25 2023, Amsterdam, Netherlands

We make use of structures over standard objects only in very se-
lect cases where the impact of the increased verbosity can be con-
tained, and the performance requirements actually indicated that
we needed to optimise. Specifically this is for the hit information
during collision resolution, for the node graph that powers the
pathing AI, and the glyph information used for text layouting and
rendering. In those cases the initial class approach produced too
much overhead with repeated slot access dispatch, so we switched
to a few specific structures.

Especially with regards to propagating type information CLOS can
be a hindrance, as you are prevented from declaring the argument
and return types. Structures give us the advantage of fixing a return
type on their accessors, propagating type information more easily
and thus leading to better performing code at their call sites. There
are projects that allow inlining method dispatch as well, eliminating
some of the type ambiguity, but we have not seriously investigated
these approaches yet.

Overall the dispatch overhead of CLOS has never been a real prob-
lem for us. Even with thousands of objects that receive events
through our handle function, hundreds of methods attached to it,
and tens of events every frame, not to mention all the other parts
in the game that use CLOS, we still manage to easily hit a steady
120 frames per second on a ten year old machine.

5 PERFORMANCE & GARBAGE
COLLECTION

Overall we have needed to do surprisingly little actual performance
analysis and optimisation work to make Kandria run well. This is
definitely in large part thanks to SBCL’s quite good native code
compiler and type inference systems, and the prior work we’ve
done to design critical libraries to not be completely obscene in
terms of their performance characteristics.

We have done larger scale rewrites of several subsystems in Trial,
which have provided uswith general performance increases, though
these rewrites were primarily done to increase the code clarity and
usability, with the performance being a nice bonus.

As usual, far more important than constant factor improvements
like those has been reducing the asymptotic behaviour. Introducing
a Bounding Volume Hierarchy to speed up spatial queries and
especially collision detection from a primitive linear search per
object down to a logarithmic one has definitely provided the most
significant performance improvement.

While asymptotic behaviour improvements will be applicable for
projects in any language, with SBCL we’ve had the definite advan-
tage of being able to rely on the statistical profiler to determine hot
spots in the code. This is especially advantageous in Lisp as we can
turn the profiler on and off at any time, to capture exact segments
that we are interested in, rather than having to capture the full run
of a program and then massaging the data manually.

Newly developed tools to better visualise the data gathered by the
statistical profiler, such as the “flamegraph” visualiser developed
by Jan Moringen have also been invaluable in gaining a better un-
derstanding of the performance characteristics of the code.

As outlined in subsection 3.1 above, there are still areas in which
Lisp struggles to be truly competitive, largely in part due to its very
dynamic typing, an aspect that is otherwise very advantageous
for development. We’ve also encountered issues in eliminating
superfluous consing, as many convenient styles of writing code
will prevent stack allocation and other garbage elimination.

We have managed to keep our garbage production down largely
with two tricks:

• Pooling and preallocation. By storing objects in a pool and
manually allocating and freeing them we can avoid allocating
them at runtime, leaving less work for the GC to deal with. Since
the objects are long lived, they will also be quickly promoted to
later generations, lessening the work to scan other generations.
The obvious downside is that we lose automatic freeing andmay
introduce double-use cases, but for many cases the lifetimes
of the objects can be predetermined and managed relatively
painlessly.

• Using load-time-value in lieu of stack allocation. With this
trick we can allocate a “local object” that will be modified at
runtime rather than allocated fresh. The downside of this ap-
proach is that whichever function provides the load-time-value
object cannot be called concurrently, and the programmer must
be vigilant in tracking the lifetime of the load-time-value object
should it escape the dynamic extent of the function.

We are also very interested in a recent proposal to add memory
arenas to SBCL, which would allow us to capture all of the objects
allocated within a dynamic extent and free them immediately on
exit, further lessening the burden of the global GC in cases where
we know the exact lifetimes.

Aside from memory arenas, we’re also very interested in recent
work by Hayley Patton to parallelise SBCL’s garbage collector,
though it is currently unknown when this feature will become
mature and be merged into mainline SBCL.

In general we have not felt that we’ve had to do a lot of work to
keep garbage production down. On a usual system the GC seems to
trigger every ten seconds or so, with no noticeable stutters caused
by the pause time. We have been made aware of some rare systems
on which the GC pause does cause visible stutters, but have not
been able to identify why that should happen or what to do about
it. Completely eliminating all runtime garbage production does not
seem like an effective way to spend our time, however.

6 DEPLOYMENT
Finally we would like to talk about our experience actually deliver-
ing Kandria to users and the process we have developed for doing
so.

The first step in the deployment pipeline is the build of the ac-
tual game binary, for which we use the ASDF build system and
the Deploy[3] library. With these all game code is compiled fresh,
dumped into an executable suitable for the local platform, and bun-
dled together with the depended-upon shared libraries, producing
an executable ready for deployment to target machines.

ELS 2023 47



ELS’23, Apr 24–25 2023, Amsterdam, Netherlands Nicolas “Shinmera” Hafner

However, since the build does not happen from scratch via a plat-
form independent compiler, we have to ensure that we use an SBCL
version that has been compiled on our minimal target platform
version. For instance, we build the SBCL we use for deployment in
a virtual machine on an old Linux version to ensure that internal
symbol version dependencies in glibc can be satisfied on target ma-
chines. We have to take similar care for all required shared libraries
that are shipped. Once this version has been compiled however, we
can simply invoke it on any Linux version we like to use, and don’t
have to build the entire system inside a VM.

We can also directly buildWindows version of the game on Linux by
using WINE[17]. This has worked flawlessly for us, and we imagine
that it would also be possible to do the inverse on Windows by
using the Windows Subsystem for Linux to build Linux versions of
the games. We’ve also investigated the possibility of using Darling
to build MacOS versions. Unfortunately Darling is not able to run
SBCL as of the writing of this paper.

For all generated binaries we also make use of SBCL’s core com-
pression to reduce the binary size to about 35MB per platform. The
newly introduced support for zstd also brings improved compres-
sion rates and startup speeds over the older zlib. This binary size
is more than acceptable to us and is completely dwarfed by the
resource files for sound and graphics.

We also make use of hooks in the Deploy library to extract these
resource files from their source directory and bundle them alongside
the binary when building. Paths to resource files are resolved at
runtime in the engine, and are thus trivial to redirect to binary-
relative paths when deployed.

Finally we have created a release system that invokes the necessary
SBCL subprocesses to kick off a build, prunes out unnecessary files
from the generated release, then bundles it all into a ZIP for easy
delivery to testers.The system can also upload the release directly to
a variety of distribution platforms including Steam, Itch.io, Keygen,
and generic HTTP or FTP servers. Ultimately this allows us to
compile, bundle, package, and upload new builds with a single
command, drastically reducing the time and complexity involved
in supplying testers and users with bugfixes.

Another aspect that is advantageous to Lisp’s dynamic nature is
that when an unhandled condition occurs on a target system we
can, in almost all cases, still use the system well enough to gather
telemetry and submit an automated crash report. This has been
invaluable for us to detect rare bugs, especially ones related to
uncommon system configurations that we would otherwise never
have been able to catch.

7 CONCLUSION
Overall the biggest hurdle we have had in our development of
Kandria has nothing to do with the language itself, but rather with
the general lack of manpower behind the community. We have
had to spend large amounts of time implementing, testing, and
documenting auxiliary systems that have often close to nothing
to do with the core process of implementing a game. This is also
why we have been extremely light on topics that concern the actual
game implementation process in this paper.

On the other hand, it is very clear to us that interactive development
is an immense boon to the development of a game. Being able to
redefine game behaviour at runtime to quickly iterate on the game
content and feel is invaluable. So much so that almost every engine
in use will have some form of scripting language available for game
logic specifically, such that designers can iterate quickly. However,
having the full stack of code available, debuggable, and performing
just as well as any other part of the system is undeniably far more
convenient.

We also fully recognise that while Kandria is a full game project, it
is by its nature rather limited in the required processing capabilities.
A lot more work is needed to support more complex games, which
we intend on focusing on in the near future. However, we do not
at present see any deal-breakers that would make it unfeasible to
create such games using Common Lisp and the base ecosystem we
have helped establish so far.

If anything the recent advances in SBCL’s capabilities show us a
very promising future and we are excited to make use of them to
further improve the situation, and with much of the “grunt work”
now done we should be able to focus our efforts onto problems
more directly associated with game development instead.

8 FURTHERWORK
Currently a sizable amount of work in Kandria has not been back-
ported into Trial for more general purpose use. We would like to
extract a few of the systems and generalise them to make them
available for other users.

We are also working on implementing several new subsystems in
Trial to allow creating 3D games, as well. A skeletal animation sys-
tem has been completed, and we’re currently working on a physics
subsystem. Also needed will be several spatial query structures
to speed up collision testing, along with a more unified rendering
subsystem to support Physics Based Rendering pipelines.

Finally we are also exploring the possibility of porting the engine
to work on closed platforms such as the Nintendo Switch. This
presents several challenges that we unfortunately cannot elaborate
on here due to non-disclosure agreements.

9 ACKNOWLEDGEMENTS
Wewould like to thank the various contributors to all of the projects
that have made it possible to make Kandria in the first place, and
we would like to thank you for being beautiful and nice.

Kandria was funded in part by the Pro Helvetia Interactive Me-
dia Grant and the KPT Poland Prize Digital Dragons Accelera-
tor.

REFERENCES
[1] A library to handle gamepad input devices, . URL https://shirakumo.org/projects/

cl-gamepad.
[2] A library for audio processing and output, . URL https://shirakumo.org/projects/

cl-mixed.
[3] A library to ease the deployment of common lisp binaries. URL https://github.

com/shinmera/deploy.
[4] A library for file selection dialogs. URL https://github.com/shinmera/file-select.
[5] A library to search and query system fonts. URL https://github.com/shinmera/

font-discovery.

48 ELS 2023



Experience Report: Kandria - A Game in Common Lisp ELS’23, Apr 24–25 2023, Amsterdam, Netherlands

Figure 2: A flamegraph of the game’s main thread. Due to the high nesting not much is visible at this scale. We’ve identified two specific
blocks belonging to collision resolution and rendering. The graph of a release build would look slightly different, as several things are
optimised away for a release build.

[6] Shirakumo github. URL https://github.com/shirakumo.
[7] The glfw opengl portability library. URL https://glfw.org.
[8] The godot game engine. URL https://godotengine.org.
[9] A high-level audio processing server. URL https://shirakumo.org/projects/

harmony.
[10] Kandria, an open world action rpg. URL https://shirakumo.org/projects/kandria.
[11] A c library for audio processing pipelines. URL https://shirakumo.org/projects/

libmixed.
[12] A library for native message box display. URL https://github.com/shinmera/

messagebox.
[13] The steel bank common lisp implementation. URL https://sbcl.org.
[14] A library to query the system for locale information. URL https://github.com/

shinmera/system-locale.
[15] The trial game engine. URL https://shirakumo.org/projects/trial.
[16] The unity game engine. URL https://unity.com.
[17] The wine project. URL https://winehq.org.
[18] Jeff Craighead, Jennifer Burke, and Robin Murphy. Using the unity game engine

to develop sarge: a aase study. In Proceedings of the 2008 Simulation Workshop at
the International Conference on Intelligent Robots and Systems (IROS 2008), volume
4552, 2008.

[19] Nicolas Hafner. Object oriented shader composition using clos. In ELS, pages
80–83. Shirakumo.org, 2018.

[20] Nicolas Hafner. Using a highly dynamic language for development. 2021.
URL https://github.com/Shinmera/talks/blob/master/gic2021-highly-dynamic/
paper.pdf.

[21] Henri Mäkelä. Development of a 3d mahjong video game in godot engine. 2021.
[22] Jukka K Nurminen. Rft design system-experiences in the development and

deployment of a lisp application. In Proceedings of the First European Conference
on the Practical Application of Lisp, 1990.

[23] Hayley Patton. Parallel garbage collection for SBCL. 2023.
[24] Robert Strandh. Fast generic dispatch for common lisp. In Proceedings of ILC

2014 on 8th International Lisp Conference, pages 89–96, 2014.

ELS 2023 49



Parallel garbage collection for SBCL
Hayley Patton

hayley@applied-langua.ge

ABSTRACT
We describe a parallel garbage collector which we are implementing
for Steel Bank Common Lisp. The collector reclaims memory and
allows for bump allocation without the collector needing to move
objects, using a mark-region heap based on Immix [8]. The heap is
comprised of pages, and pages are comprised of lines. We exploit
the design of Immix in two ways: (i) generations are implemented
without the collector moving objects or recording the generation
in each object, by associating generations with lines; and (ii) con-
servative root finding is implemented by updating an object map
only on demand, based on recording runs of contiguously allocated
objects. The parallel garbage collector using one core usually is
slower than the copying collector of SBCL, outperforms copying
with two cores, and continues to scale with more cores.

CCS CONCEPTS
• Software and its engineering→ Garbage collection.
ACM Reference Format:
Hayley Patton. 2023. Parallel garbage collection for SBCL. In Proceedings
of the 16th European Lisp Symposium (ELS’23). ACM, New York, NY, USA,
8 pages. https://doi.org/10.5281/zenodo.7816398

1 INTRODUCTION
Steel BankCommon Lisp (SBCL) uses a generationalmostly-copying
collector named gencgc. The collector also must conservatively scan
the registers and stacks of the mutator when using the x86 and
x86-64 instruction sets (similar to Barlett’s mostly-copying collector
[4]). The heap is first split into the static, dynamic and immobile
spaces (the last only when using the x86-64 instruction set), with
only the dynamic and immobile spaces ever garbage collected. Al-
most all objects are allocated into the dynamic space. The dynamic
space is split into 32 kibibyte pages; a page may either be used for
storing many small objects, or for storing part of a large object.
Small objects are stored contiguously in pages. gencgc reclaims
memory by copying small objects into empty pages, which causes
the live objects to occupy fewer pages, and by marking large objects
and pages encountered as live without copying.

There are two main inefficiencies with this approach: copying
objects may require more time than marking, and the collector only
uses a single core. The latter can lead to Common Lisp programs
exhibiting poor scalability, to no fault of the programmer. For ex-
ample, one parallel fuzz tester is embarrassingly parallel as tasks
do not share any resources; in a tight heap, the fuzz tester runs
55 seconds of processor time over 12 cores in 5.0 seconds of real

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ELS’23, Apr 24–25 2023, Amsterdam, Netherlands
© 2023 Copyright held by the owner/author(s).
https://doi.org/10.5281/zenodo.7816398

time, but the collector runs for 10.5 seconds of real time, causing
the program to run for 15.5 seconds of real time, with only a 4.5×
speedup.

While it is possible to improve the throughput of tracing garbage
collection by increasing the size of the heap [1], it can be unde-
sirable to use a heap much larger than the live objects, and it is
not sustainable to need to use more memory in order to maintain
scalability. In order to hold the impact of a serial garbage collector
constant, the heap size may need to grow quadratically with regards
to the number of cores used. Suppose a program processes 𝑛 tasks
in parallel, each task allocating 𝑟 words per second and keeping𝑚
words live at any time. The system performs a garbage collection
after allocating 𝑡 words. A full tracing garbage collection1 thus
requires tracing 𝑛𝑚 words, and a garbage collection occurs 𝑛𝑟𝑡−1
times per second. The overall cost of tracing (which often domi-
nates) is thus proportional to 𝑛2𝑚𝑟𝑡−1. Maintaining a constant cost
of collection while increasing 𝑛 requires increasing 𝑡 by a factor of
𝑛2, i.e. allowing the collector to use space proportional to the square
of the number of tasks to run. Assuming perfect scalability of the
collector, a parallel collector can instead use 𝑛 cores for tracing and
a heap only 𝑛 times larger, to achieve the same effect.

Increasing the heap or nursery size also decreases locality of ref-
erence, which can decrease the performance of functional programs
overall [12]. However, Common Lisp programmers vary in their
use of functional or in-place algorithms, and thus the significance
of locality of reference may not be as large as with more functional
languages.

We can also use parallelism to improve the latency of garbage
collection. While our collector still stops the world in order to
perform a collection, parallel garbage collectors take less real time
to collect than non-parallel collectors, thus decreasing pause times.

A reader unfamiliar with garbage collection may want to consult
the Memory Management Reference2 for definitions of unfamiliar
terms in this paper.

2 PRIORWORK
Luís Oliveira parallelised gencgc [18], using an approach like that
used by Marlow et al for the Glasgow Haskell Compiler [16]. In
both collectors, worker threads claim pages to scan for references
to objects which need to be copied. Oliveira did not achieve a large
speedup by parallelising garbage collection, but he was only able to
test on a dual-core machine. We suspected greater speedups could
be achieved with more cores, as processors with more cores are
much more accessible than at the time of development of either
collector; the Steam hardware and software survey results3 indicate
that more than half of participants now have 6 or 8 cores.

1We believe the same relation would hold for a generational collector, but the cost
model would be more complicated.
2https://www.memorymanagement.org/
3The survey results are accessible at https://store.steampowered.com/hwsurvey; the
participants are users of the Steam game distribution service, so it is possible that the
results are biased towards more powerful computers.

50 ELS 2023



ELS’23, Apr 24–25 2023, Amsterdam, Netherlands Hayley Patton

We attempted to replicate Oliveira’s collector in 2022, but the
collector did not work reliably, nor did it achieve any substantial
speedup when it did work. Collector threads contended heavily on
a lock while acquiring new pages to copy objects into; Marlow et
al had experienced similar behaviour, and reduced the frequency
of locking by having collector threads acquire more pages at once.
We instead opted to implement a non-moving collector, eliminating
altogether the need to support fast allocation by many threads.

3 MARK-REGION COLLECTION
3.1 Heap structure
The heap structure is based on the two-layer structure of Immix [8],
consisting of 32 kibibyte pages consisting of 128 byte (or 16 word)
lines. The page size may be changed, but the scavenging algorithm
constrains the line size, as described in Section 4. As with gencgc,
pages may either store small objects or part of a large object, but
objects larger than three quarters of a page may reside on a single
“large” page, to prevent the allocator from trying to search for large
holes in small pages.

The collector reclaims memory at the granularity of lines; a
line is considered either entirely live and not reusable, or entirely
dead and reusable. The collector also marks all lines that an ob-
ject occupies when tracing the object, ensuring live lines are not
reclaimed later. As objects allocated together tend to die together
[24], the garbage collector is still effective at reclaiming memory
despite this inaccuracy, and the heap produces little internal frag-
mentation. The mutator allocates objects contiguously into unused
lines, providing for locality of reference between objects allocated
contemporaneously.

The collector relies on four additional tables stored outside of
the heap: object map and mark bitmaps, and line metadata and card
table bytemaps, each 1

128 of the heap size on 64-bit platforms, lead-
ing to approximately 3.1% space overhead. As objects are aligned
to two words (or 16 bytes), it is only necessary to store a bit for
locations spaced 16 bytes apart. A byte consists of eight bits, so
the locations for 128 bytes of heap fit in one byte of bitmap. The
bytemaps are sized to have the same scale (of metadata bytes to
heap bytes) as the bitmap, to simplify traversals of the heap, as
described in Section 4.

3.2 Tracing
The collector has four stages. The collector first marks the roots,
such as local and global variables. Then the collector scavenges
objects in older generations to find references to new objects; such
references require the collector to retain those new objects. The
collector then traces the heap, marking every object which is transi-
tively reachable from a marked object. The collector finally sweeps
the heap, resetting the internal state of the collector and allowing
the memory used by dead objects to be reused. The scavenging
and sweeping passes can be parallelised by giving each collector
thread its own section of the heap to process, but it is not as trivial
to parallelise the tracing pass.

Parallel tracing is performed using the design by Ossia et al
[19]. Grey objects (which have already been marked, but need to
be traced by the collector) are stored in a set of grey packets, with
each packet storing a sequence of references to grey objects. Each

worker thread has an input packet of objects that the thread is
going to trace, and an output packet of objects that were discovered
by the thread during tracing. As collector threads read and write
packets entirely sequentially, threads may use software prefetching
to avoid waiting for objects to be loaded from main memory. We
store packets in a stack, using a lock to protect the stack; Ossia et al
used a lock-free list, but we did not observe a significant decrease
in performance by using a lock. Locking has been also used in other
well-used collectors; the Garbage-First collector for Java4 used a
lock, suggesting that locking the stack does not impact performance
in Java.

The collector allocates packets outside the heap, directly ac-
quiring memory using the mmap system call.5 In order to avoid
serialisation induced by the kernel updating the memory map, we
implemented an arena allocator, which allocates chunks of packets
sized to increasing powers in two. At the end of the collection,
the entire contents of the arena are considered unused. In order
to avoid allocations in subsequent collections, we retain chunks
which have been used recently, but we munmap chunks which have
not been used recently, so that the collector does not needlessly
retain chunks which are seldom used. To avoid having to protect a
global free list from concurrent access, packets are reused in thread-
local lists. We confirmed Ossia et al’s observation that packets use
little memory, at most using 3.7MB while running the boehm-gc
benchmark in a 4GB heap (as described in Section 6).

4 NON-MOVING GENERATIONAL
COLLECTION

Many approaches to generational garbage collection rely on rep-
resenting generations using ranges of addresses in the heap. For
example, gencgc associates a generation with each page in the heap.
We avoid moving objects where possible, so attempting to partition
the heap using addresses prevents the collector from reclaiming
much memory; if a page were promoted to an older generation, any
free space on the page could not be used for allocating new objects
(which necessarily are in the youngest generation), and could not
be reused until the page is entirely unused.

Demers et al suggested that it is not necessary to represent
generations this way, however, and that associating a generation
with each object suffices [9]. We are left with the problem of where
to store the generations associated with each object. All types
of objects that are not cons cells have a header word in SBCL,
which can store a generation number6, but there is no free space
in a cons cell to store a generation number. We may instead store
generation numbers in a table external to the heap, as we dowith the
mark bitmap. Using a table separate from the heap also reduces the
amount of memory which must be scanned, as generation numbers
are stored compactly, instead of being mixed with other data in
the heap. Scanning the table also eliminates the need to walk most
objects in the heap.

4See https://github.com/openjdk/jdk/blob/jdk-21+8/src/hotspot/share/gc/g1/
g1ConcurrentMark.cpp#L175-L211
5As the collector runs in a signal handler, it is necessary to avoid using libc functions,
and SBCL generates a “raw” system call when possible.
6Indeed this is how the immobile space in SBCL works, as it does not need to store
cons cells.

ELS 2023 51



Parallel garbage collection for SBCL ELS’23, Apr 24–25 2023, Amsterdam, Netherlands

Making such a table space-efficient would be difficult, however,
as a generation number would be required for every location that
an object could reside at. SBCL uses eight generations by default, re-
quiring three bits of storage per location. If a full byte were reserved
for each generation number, the generation table would require a
1
16 space overhead. Immix peculiarly used a table of bytes (which
we will call a bytemap) for storing marks for lines, rather than a
table of bits (a bitmap), in order to avoid using atomic operations
to mark lines as live. We may instead use the bytes in the bytemap
to store generations and line marks; as we only collect whole lines,
parts of a line cannot be reused, so all objects on a line must share
the same generation. To implement conservative root finding, the
line bytemap is also used to record which lines have been freshly
allocated.

Demers et al also raised the issue of card pollution. Generational
collectors often use a card map [23] in order to find old objects
which have been updated, and may now contain references to new
objects. Cards are segments of the heap, similar to pages, although
cards are usually smaller than pages. The compiler inserts write
barriers into mutator code, which cause the mutator to mark a card
as dirty when the mutator stores a reference in that card. If cards
are larger than lines, then newer and older objects may exist in
the same card. It is not possible for the collector to discern writes
to newer and older objects on the same card, so writes to newer
objects in a card may cause the collector to needlessly scavenge
older objects in the same card. We avoid this imprecision by making
cards the same size as lines, so that cards can only store objects in
the same generation.

Another benefit to making cards the same size as lines is that
various operations on all the bitmaps can be performed more ef-
ficiently using single instruction-multiple data instructions, which
many instruction sets have. It is convenient to use SIMD com-
parison instructions on the bytemaps, as true is represented as
all bits set in a byte, and false as all bits cleared7. Such results
can be treated as sets of object locations where tests on the line
and card bytemaps succeed, and bitwise-and may be used to per-
form logical conjunction of tests. For example, code computing
map ∧ (generation > 𝑔) ∧ (card = dirty) for every byte of the ob-
ject map, line bytemap and card bytemap will correctly compute a
bitmap with bits set where objects which are dirty and are older
than generation 𝑔 reside.

5 CONSERVATIVE ROOT FINDING
The SBCL compiler does not record which registers and stack loca-
tions are used for tagged and untagged values, when targeting the
x86 and x86-64 instruction sets, so a collector must be conservative
when scanning the stack and registers to find root references into
the heap; the collector must be able to identify which values iden-
tify objects in the heap, and which do not. While SBCL does not
use interior pointers, which keep an object live without pointing to
the start of the object, we implemented interior pointers to see how
complicated implementing interior pointers would be.

7For example, the SSE2 instruction pcmpeqb effectively computes
(map 'vector (lambda (a b) (if (= a b) #xFF #x00)) A B) for two vec-
tors A and B. In practise we rely on the auto-vectorisation of C compilers for
portability; GCC and Clang successfully generate vectorised code for x86-64 (with
SSE2 and AVX2), ARM (with SVE) and RISC-V (with the Vector extension).

Lines

Map

Heap

Figure 1: Most objects are not contiguous in memory, but
objects allocated after the last collection are contiguous in
fresh lines (light green).

If objects are stored sequentially in pages, the collector can scan
a page of memory sequentially to find the object which a pointer
references [5]; SBCL currently uses this approach. We cannot use
this approach, however, because objects are not stored sequentially
in pages, and so attempting to scan sequentially will likely read
garbage data.

Another approach is to record positions of objects into an object
map bitmap when allocating, as suggested by Shahriyar et al [21].
Without interior pointers, it suffices to check the bit in the object
map corresponding to a pointer, to determine if the pointer points
to an object in the heap. With interior pointers, the bitmap must
be scanned backwards to find a set bit, and then the size of the
corresponding object found may additionally be checked, in order
to confirm that the pointer does indeed point inside the object. The
scan is rather fast when employing bit parallelism and checking
entire words of bits at a time. However, setting bits in the bitmap
slows down the mutator, and it is also difficult to update the bitmap
without dedicated instructions; Shahriyar et al use the x86 bts
instruction to set a bit in a bitmap, but many other instruction sets
such as ARM and RISC-V do not have a similar instruction.

We instead use a hybrid of the two approaches, where an object
map is used, but it is not updated by the mutator directly. While
Immix does not store objects contiguously on pages, objects are al-
located contiguously in smaller runs. An example of this behaviour
is depicted in Figure 1. Our allocator marks lines it uses for allo-
cation as fresh, and when the collector encounters a conservative
reference into a fresh line, the collector finds the start and end of
the enclosing run, and computes the object map for that run of
objects. As most objects die young [22] and few objects are ref-
erenced from the stack, the collector does not have to compute
much of the object map. It is also thus not necessary to produce a
fast instruction sequence to update the object map, as the object
map is seldom written into, and the object map is not written into
by the mutator. We have observed that, at most, the parallel fuzz
tester requires the collector to compute the object map for about
600 kilobytes of heap on average.

This approach might increase pause times, as object map compu-
tation is done all at once, rather than spread out across the execution
of the application. We have not observed any effect on pause time in
practise, but a concurrent collector may opt to process conservative
roots concurrently with the mutator.

6 PERFORMANCE
We improve performance by usingmultiple cores to perform garbage
collection work, but it is also important that the performance with
a single core is not made much worse by the use of a more scalable

52 ELS 2023



ELS’23, Apr 24–25 2023, Amsterdam, Netherlands Hayley Patton

parallel algorithm. Using many more cores for a small performance
gain would lead to very poor efficiency, which is usually undesir-
able. Focusing on only using more cores to achieve performance is
likely futile in any case, as the scalability of tracing is often limited
by the shape of the heap being collected [3]. Thus we report results
for a variety of thread counts: we test the baseline performance
of the collector with only one thread, realistic configurations with
2 and 4 threads, and the limit with 12 collector threads. We test
with a Ryzen 1950X processor, with 12 cores provided to the virtual
machine used. Each configuration of each benchmark was run 30
times, and we report the average of all the runs.

We test with commit 4e71abc577180c0276cb14b31a69dc0d2eb84694
of our fork of SBCL accessible at https://github.com/no-defun-
allowed/swcl, with the immobile space disabled for both collectors,
as we currently cannot use it with the parallel collector. Enabling
the immobile space makes the mutator much faster running Re-
grind; we expect a similar speedup would be achieved when the
immobile space works with the parallel collector.

We use our own benchmark suite as we could not find any other
suite which was appropriate. In particular, the cl-bench suite is
popular, but does not generate much of a load for the garbage
collector. We could decrease the size of the heap in order to cause
more frequent garbage collections, but more of the heap would
still fit in the large caches of modern processors. There are also
no latency-sensitive benchmarks in cl-bench, nor any benchmarks
which use multiple threads. The benchmark suite itself is accessible
at https://github.com/no-defun-allowed/gc-benchmarks/tree/v1.

6.1 Throughput benchmarks
Figure 2 contains the results of the throughput benchmarks. The
benchmarks are:

• boehm-gc: A benchmark from cl-bench8 which allocates
many binary trees of various sizes, with the 𝑘 parameter
(which affects the size of trees allocated) increased to 24
from the original default of 18. Binary trees of each stage
of the benchmark die simultaneously, and fragmentation is
negligible. Serial mark-region collection lags copying col-
lection somewhat, and any parallel collection out-performs
gencgc. The benchmark also runs in a smaller heap when
using the mark-region collector.
Despite the formerly discussed efforts to reduce mutator
overhead, some overhead still exists when using the mark-
region collector. We suspect that the smaller cards cause
more cache misses, slowing down the mutator.
• regrind-interpret: The parallel fuzz tester for the one-more-
re-nightmare regular expression compiler9, running using
12 worker threads. In order to make the benchmark more
reproducible, it was modified to generate the same sequence
of regular expressions to test, and to use static load balancing.
It allocates lots of very short-lived objects. gencgc is compa-
rable in performance to parallel mark-region collection with

8https://gitlab.common-lisp.net/ansi-test/cl-bench/-/blob/master/files/boehm-
gc.lisp
9https://github.com/telekons/one-more-re-nightmare/blob/master/Tests/regrind.
lisp

two threads, owing to the lower mutator time. The mark-
region does not perform well with a heap smaller than 5GB,
and all but the 12-thread configuration are outperformed
by gencgc with a heap larger than 5GB. Very few objects
survive a nursery collection, causing the scavenging and
sweeping passes of the mark-region collector to take most
of collection time.
This benchmark exhibits a more asymptotic mutator per-
formance than boehm-gc, with the mutator performance
varying with the heap size when using mark-region collec-
tion. The performance appears to vary due to the mutator
needing to acquire more pages in tight heaps (as in Figure 3).
A partly used page fits fewer new objects than an entirely
free page, so more partly filled pages must be acquired to
allocate; boehm-gc does not produce any partly used pages.
While the collector can reuse partly used pages without mov-
ing, it incurs some time overhead in doing so. (We thus have
lost some scalability to the allocator, but it is not as bad as if
we had used a parallel copying collector.)
• regrind-compile: The same fuzz tester, with the same mod-
ifications made as with regrind-interpret, but using the com-
piler of SBCL rather than the interpreter. (Using the compiler
is much slower than the interpreter, so the fuzz tester is con-
figured to perform much less work.) It allocates longer-lived
objects, requiring much more time to trace. The variation of
mutator time is greater than in regrind-interpret.

6.2 Latency benchmarks
One benchmark we test, named ring-buffer is pathological for
copying collectors [13], demonstrating a substantial difference in
work performed by non-moving and copying collector algorithms.
The benchmark involves a ring buffer of small unboxed arrays, each
array containing a one kilobyte “message”, with each new message
being a new allocation from the heap. Each live message must be
copied by a copying collector, although no pointers to trace are
discovered in doing so.

As depicted in Figure 4, themark-region collector performsmuch
better by not having to copy messages, and also allows running in
smaller heaps. When running in a 2GB heap and with gencgc, the
program spends 50% of processor cycles in the C memcpy function.
While the benchmark is derived from a real program which had
this pathological behaviour, we do not think it is a good model
of most programs. Almost all objects allocated in the benchmark
have no pointers, are somewhat large, and survive several nursery
collections.

Kandria, a commercial game written in Common Lisp [14], is
used in a more complex benchmark. The game uses a mixture of
object-oriented code and numerical code with unboxed arrays. The
game is configured identically to the retail version, using a 4GB
heap. We played the same part of the game for a few minutes
with each collector configuration10, and record the distribution of
how long it takes to produce each frame (frame times), and the
distribution of pause times in the kandria benchmark. As the game

10We would prefer to be able to replay a capture of inputs to the game, in order to have
the game run more deterministically, but we were not able to get the capture to be
replayed reliably.

ELS 2023 53



Parallel garbage collection for SBCL ELS’23, Apr 24–25 2023, Amsterdam, Netherlands

2 3 4 5 6 7 8

30

35

40

45

Heap size (GB)

Re
al
tim

e
(s)

boehm-gc real time

2 3 4 5 6 7 8

5

10

15

20

Heap size (GB)

GC
re
al
tim

e
(s)

boehm-gc GC

gencgc mark-region, 1 thread mark-region, 2 threads
mark-region, 4 threads mark-region, 12 threads

2 3 4 5 6 7 8
24

25

26

Heap size (GB)

M
ut
at
or

ru
n
tim

e
(s)

boehm-gc mutator

1 2 3 4 5 6 7 8
20

22

24

26

28

Heap size (GB)

Re
al
tim

e
(s)

regrind-interpret real time

1 2 3 4 5 6 7 8

2

4

6

Heap size (GB)

GC
re
al
tim

e
(s)

regrind-interpret GC

1 2 3 4 5 6 7 8

220

230

240

Heap size (GB)

M
ut
at
or

ru
n
tim

e
(s)

regrind-interpret mutator

1 2 3 4 5 6 7 8

10

20

30

Heap size (GB)

Re
al
tim

e
(s)

regrind-compile real time

1 2 3 4 5 6 7 8
0

10

20

Heap size (GB)

GC
re
al
tim

e
(s)

regrind-compile GC

1 2 3 4 5 6 7 8
70

80

90

100

Heap size (GB)

M
ut
at
or

ru
n
tim

e
(s)

regrind-compile mutator

Figure 2: Results of the throughput-oriented benchmarks.

1 2 3 4 5 6 7 8
6 · 105
8 · 105
1 · 106

1.2 · 106
1.4 · 106

Heap size (GB)

Pa
ge
sa

llo
ca
te
d

regrind-compile pages allocated

1 2 3 4 5 6 7 8

1 · 106

1.2 · 106

Heap size (GB)

Pa
ge
sa

llo
ca
te
d

regrind-interpret pages allocated

Figure 3: The number of pages acquired in order to allocate small objects.

requires low-latency graphical input and output, Kandria was run
on the author’s desktop computer, with a Ryzen 5900X processor
and RX 580 graphics card.

As depicted in Figure 5, parallel garbage collection slightly re-
duces the size of the tail of pause times. However, the parallel

collector does not improve pause times substantially. We also com-
pared frame times to some time limits (in Table 1): the 16ms time
limit tests if the game can run smoothly at 60 frames per second,
and shorter time limits approximate the same target while using a

54 ELS 2023



ELS’23, Apr 24–25 2023, Amsterdam, Netherlands Hayley Patton

0 1 2 3 4 5 6 7 8
0

100

200

300

Heap size (GB)

W
or
st
pa
us
e
tim

e
(m

s)

Figure 4: Worst pause times running ring-buffer.

Table 1: The percentages of frame timeswhich exceed various
time limits, for varying collectors and thread counts. (Mark-
region is abbreviated to MR.)

Limit gencgc MR MR MR
1 thread 1 thread 2 threads 4 threads

16ms 0.22% 0.28% 0.27% 0.26%
12ms 0.28% 0.38% 0.35% 0.34%
8ms 0.43% 0.52% 0.50% 0.51%
6ms 2.15% 2.30% 2.21% 2.23%

slower computer. The mark-region collector violates the time limits
more often than gencgc, regardless of the number of threads used.

Very few objects survive garbage collection in Kandria, with
less than a megabyte surviving out of a 200 megabyte nursery. The
scavenging and sweeping passes dominate collection time, due to
doing work proportional to the number of used pages. We observed
at one point that there were older objects occupying 160MB of
memory spread across lines occupying 310MB of memory, in turn
spread across pages occupying 660MB of memory. This fragmen-
tation causes the collector to scan much more metadata than is
strictly necessary. As a result, scavenging took 2.9 milliseconds
on average, tracing took 1.9 milliseconds, and sweeping took 1.6
milliseconds. Kandria thus appears to represent a pathological case
for non-copying collectors.

7 CONCLUSIONS AND FUTUREWORK
When using a single core, our mark-region garbage collector is
only somewhat slower than the copying collector of SBCL, despite
our collector never moving any objects. Using additional cores to
collect in parallel allows our collector to significantly outperform
the copying collector, and non-moving collection appears to be
simpler to correctly parallelise than copying collection.

The collector is not ready to be used in production yet, lacking
support for the immobile space of SBCL, and lacking any kind of
compaction. We are also considering extending the collector to
operate concurrently with the mutator, which is simpler without
needing to copy objects.

7.1 Immobile space
SBCL has an additional immobile space which resides in the lowest
232 bytes of the address space, and does not move. The immobile
space stores layouts of “instance” objects to reduce the size of

the headers of instance objects, and stores symbols to reduce the
size of code referencing symbols. The immobile space is managed
by a different marking algorithm, and by the TLSF allocator [17]
rather than a bump allocator. We haven’t succeeded in getting the
immobile space collector to work with the mark-region collector
yet, but it should be used in a garbage collector used in production.

As the parallel collector used for most of the heap (in dynamic
space) does not move, it is tempting to simplify the heap and use the
same collector for immobile space. But allocations into immobile
space are infrequent, and objects in immobile space can never be
compacted (except when saving a core file), so it is worthwhile to
proactively avoid fragmentation by using the more complex TLSF
allocator.

7.2 Compaction
Heap fragmentation, due to our collector not moving objects, leads
to more pages being used than necessary. While the SBCL process
can effectively reuse holes in pages, the space is unusable by other
processes on the same computer. The lack of compaction also affects
the size of core files; for example, the sbcl.core core file using the
copying collector is 36megabytes large, but the file is 248megabytes
large using the mark-region collector, as the mark-region collector
never compacted the heap during bootstrapping. Compaction can
also coalesce free space into full pages, reducing the number of
pages that the mutator must acquire. Compaction may help to
regain some locality of reference, if objects are compacted into fewer
pages. Compaction can also reduce the amount of metadata that
scavenging and sweeping need to scan, which may be particularly
useful for Kandria.

We have begun to implement an algorithm for incremental com-
paction [6] which only moves part of the heap at the time. We select
pages with few lines used starting from the end of the heap, and
copy their contents into holes in the start of the heap. Collector
threads record references to the selected pages while tracing, so
that those references can be fixed up after copying has been per-
formed. Unlike the mixture of marking and copying that Immix
performs in one pass, having separate passes allows marking to be
performed concurrently, while compacting is done in a (hopefully
shorter) stop-the-world pause.

The algorithm may not perform well with many generations,
however, as we cannot identify all references to older objects when
performing a collection of a younger generation, and so we cannot
move older objects correctly. It may be helpful to analyse if the
many generations used by SBCL are beneficial; many generational
garbage collectors with good performance only use a young gener-
ation and an old generation, and all objects could be moved when
collecting the old generation with just two generations.

7.3 Concurrent tracing
The collector could be made concurrent by following the Ossia et
al design. The Ossia et al collector did not support generations, but
used the card map to detect modifications of any object while the
collector is tracing. In order to support generations, another card
table storing only the locations of old-to-new references would
need to be maintained by the collector. Both card tables would need

ELS 2023 55



Parallel garbage collection for SBCL ELS’23, Apr 24–25 2023, Amsterdam, Netherlands

0 20 40 60 80 100 120 140 160

10−4

10−2

100

Frame time (ms)

D
en
sit
y

Frame times

gencgc mark-region, 1 thread mark-region, 2 threads
mark-region, 4 threads

0 20 40 60 80 100 120 140 16010−2

10−1

100

Pause time (ms)

D
en
sit
y

Collector pause times

Figure 5: Frame times and collector pause times running Kandria.

to be consulted to find all old-to-new references for collection of
younger generations.

It is possible to make compaction concurrent, typically by using a
read barrier [2], which allows for ensuring themutator only accesses
pointers to copied objects, but using a read barrier induces more
time overhead on the mutator. Recently Zhao et al have suggested
that the latency which a user of the application experiences is better
served by improving throughput, rather than focusing on further
minimising pause times [25]. As we intend to compact infrequently,
application latency may not be greatly affected by compaction
pauses.

7.4 Other ways to collect
There are other approaches to make garbage collection more per-
formant on multi-core computers, which we believe should be
reconsidered. For brevity we will only discuss reference counting
and thread-local garbage collection in some depth.

While reference counting has been seen as inferior in perfor-
mance to tracing, it has been optimised with coalescing [15] to
greatly reduce the number of updates to reference counts, com-
bined with the Immix heap layout to provide better locality of
reference [20], and recently the LXR collector [25] has been shown
to outperform other garbage collectors for Java in both throughput
and latency. Updating reference counts in a coalescing reference
counting collector can be embarrassingly parallel, unlike tracing.
Reference counting cannot collect cycles however, so infrequent
tracing to collect cycles is necessary; but if tracing is infrequent, it
will not harm scalability too much. It has also been observed that
old objects are less often modified than young objects in Java [7];

if a similar observation holds for Common Lisp programs, using
coalesced reference counting to reclaim old objects may work well,
with fewer updates to reference counts contributing to a stop-the-
world pause.

Another approach to improving the scalability of tracing is to use
thread-local garbage collection, for which designs for immutable ob-
jects in ML [10] and mutable objects in Java [11] exist. Each thread
has its own private nursery, which may be collected independently
and without synchronisation, allowing for high scalability. Thread-
local collections also may improve latency, as global collections
which require all threads to be stopped are less frequent. Locality
of reference may also be improved, as thread-local nurseries can be
small; and cache ping-pong effects are minimised, as threads never
need to access cache lines for the nurseries of other threads.

The latter design, which does not require objects to be moved,
could benefit from a mark-region heap as described in this paper; in
particular, the mutator can still utilise bump allocation, even though
global objects cannot be moved out of partly used pages without
performing a global collection. A similar kind of sweeping can be
used for sweeping during a local collection, by copying the mark
bitmap to the object bitmap only for local objects, thus preserving
global objects which are not collected.

ACKNOWLEDGMENTS
We would like to thank Stas Boukarev and Douglas Katzman for
helping us get up to speedwith the interactions between the garbage
collector and the rest of SBCL. Steve Blackburn and Kunal Sareen
had discussed Immix with us, leading to the approaches to imple-
menting generations and conservative root finding described in

56 ELS 2023



ELS’23, Apr 24–25 2023, Amsterdam, Netherlands Hayley Patton

this paper. Nicolas Hafner helped us get auto-vectorisation to work,
and helped us navigate the Kandria source code. Paul Khuong and
LarryMasinter helped us design the internal memory manager used
by the garbage collector. Cliff Click helped us make sense of our
benchmark results with parallel programs. Grindwork Corporation
provided us with access to a virtual machine for benchmarking. Jan
Moringen, Kunal Sareen, Elijah Stone, and Robert Strandh provided
comments on early versions of this paper.

REFERENCES
[1] Andrew W. Appel. Garbage collection can be faster than stack allocation. Inf.

Process. Lett., 25(4):275–279, June 1987. ISSN 0020-0190. doi: 10.1016/0020-
0190(87)90175-X.

[2] Henry G. Baker. List processing in real time on a serial computer. Commun.
ACM, 21(4):280–294, April 1978. ISSN 0001-0782. doi: 10.1145/359460.359470.

[3] Katherine Barabash and Erez Petrank. Tracing garbage collection on highly
parallel platforms. In Proceedings of the 2010 International Symposium on Memory
Management, ISMM ’10, page 1–10, New York, NY, USA, 2010. Association for
Computing Machinery. ISBN 9781450300544. doi: 10.1145/1806651.1806653.

[4] Joel F. Barlett. Mostly-copying garbage collection picks up generations and C++.
Technical report, Digital Western Research Laboratory, 1989.

[5] Joel F. Bartlett. Compacting garbage collection with ambiguous roots. SIGPLAN
Lisp Pointers, 1(6):3–12, April 1988. ISSN 1045-3563. doi: 10.1145/1317224.1317225.

[6] Ori Ben-Yitzhak, Irit Goft, Elliot K. Kolodner, Kean Kuiper, and Victor Leikehman.
An algorithm for parallel incremental compaction. In Proceedings of the 3rd
International Symposium on Memory Management, ISMM ’02, page 100–105, New
York, NY, USA, 2002. Association for Computing Machinery. ISBN 1581135394.
doi: 10.1145/512429.512442.

[7] Stephen M. Blackburn and Kathryn S. McKinley. Ulterior reference counting: Fast
garbage collection without a long wait. In Proceedings of the 18th Annual ACM
SIGPLAN Conference on Object-Oriented Programing, Systems, Languages, and
Applications, OOPSLA ’03, page 344–358, New York, NY, USA, 2003. Association
for Computing Machinery. ISBN 1581137125. doi: 10.1145/949343.949336.

[8] Stephen M. Blackburn and Kathryn S. McKinley. Immix: A mark-region garbage
collector with space efficiency, fast collection, and mutator performance. In
Proceedings of the 29th ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI ’08, page 22–32, New York, NY, USA, 2008.
Association for Computing Machinery. ISBN 9781595938602. doi: 10.1145/
1375581.1375586.

[9] Alan Demers, Mark Weiser, Barry Hayes, Hans Boehm, Daniel Bobrow, and
Scott Shenker. Combining generational and conservative garbage collection:
Framework and implementations. In Proceedings of the 17th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL ’90, page
261–269, New York, NY, USA, 1989. Association for Computing Machinery. ISBN
0897913434. doi: 10.1145/96709.96735.

[10] Damien Doligez and Xavier Leroy. A concurrent, generational garbage collector
for a multithreaded implementation of ML. In POPL 1993: 20th symposium
Principles of Programming Languages, pages 113–123. ACM, 1993. doi: 10.1145/
158511.158611.

[11] Tamar Domani, Gal Goldshtein, Elliot K. Kolodner, Ethan Lewis, Erez Petrank, and
Dafna Sheinwald. Thread-local heaps for Java. SIGPLAN Not., 38(2 supplement):
76–87, Jun 2002. ISSN 0362-1340. doi: 10.1145/773039.512439.

[12] Henrique Ferreiro, Laura Castro, Vladimir Janjic, and Kevin Hammond. Kinder-
garten cop: Dynamic nursery resizing for GHC. In Proceedings of the 25th Inter-
national Conference on Compiler Construction, CC 2016, page 56–66, New York,
NY, USA, 2016. Association for Computing Machinery. ISBN 9781450342414. doi:
10.1145/2892208.2892223.

[13] Jim Fisher. Low latency, large working set, and GHC’s garbage collector: pick
two of three, 2016.

[14] Nicolas “Shinmera” Hafner. Experience report: Kandria - a game in Common
Lisp. The 16th European Lisp Symposium (ELS’23), 2023.

[15] Yossi Levanoni and Erez Petrank. An on-the-fly reference-counting garbage
collector for Java. ACM Trans. Program. Lang. Syst., 28(1):1–69, jan 2006. ISSN
0164-0925. doi: 10.1145/1111596.1111597.

[16] Simon Marlow, Tim Harris, Roshan P. James, and Simon Peyton Jones. Parallel
generational-copying garbage collection with a block-structured heap. In Pro-
ceedings of the 7th International Symposium on Memory Management, ISMM ’08,
page 11–20, New York, NY, USA, 2008. Association for Computing Machinery.
ISBN 9781605581347. doi: 10.1145/1375634.1375637.

[17] M. Masmano, I. Ripoll, A. Crespo, and J. Real. TLSF: A new dynamic memory
allocator for real-time systems. In Proceedings of the 16th Euromicro Conference
on Real-Time Systems, ECRTS ’04, page 79–86, USA, 2004. IEEE Computer Society.
ISBN 0769521762.

[18] Luís Oliveira. SBCL garbage collection. Master’s thesis, Universidade de Coimbra,
2009.

[19] Yoav Ossia, Ori Ben-Yitzhak, Irit Goft, Elliot K. Kolodner, Victor Leikehman, and
Avi Owshanko. A parallel, incremental and concurrent GC for servers. SIGPLAN
Not., 37(5):129–140, May 2002. ISSN 0362-1340. doi: 10.1145/543552.512546.

[20] Rifat Shahriyar, Stephen Michael Blackburn, Xi Yang, and Kathryn S. McKinley.
Taking off the gloves with reference counting Immix. In Proceedings of the
2013 ACM SIGPLAN International Conference on Object Oriented Programming
Systems Languages & Applications, OOPSLA ’13, page 93–110, New York, NY,
USA, 2013. Association for Computing Machinery. ISBN 9781450323741. doi:
10.1145/2509136.2509527.

[21] Rifat Shahriyar, Stephen M. Blackburn, and Kathryn S. McKinley. Fast conser-
vative garbage collection. SIGPLAN Not., 49(10):121–139, October 2014. ISSN
0362-1340. doi: 10.1145/2714064.2660198.

[22] David Ungar. Generation scavenging: A non-disruptive high performance storage
reclamation algorithm. SIGPLAN Not., 19(5):157–167, April 1984. ISSN 0362-1340.
doi: 10.1145/390011.808261.

[23] P. R. Wilson and T. G. Moher. A “card-marking” scheme for controlling intergen-
erational references in generation-based garbage collection on stock hardware.
SIGPLAN Not., 24(5):87–92, May 1989. ISSN 0362-1340. doi: 10.1145/66068.66077.

[24] Paul R. Wilson, Mark S. Johnstone, Michael Neely, and David Boles. Dynamic
storage allocation: A survey and critical review. In Proceedings of the International
Workshop on Memory Management, IWMM ’95, page 1–116, Berlin, Heidelberg,
1995. Springer-Verlag. ISBN 3540603689.

[25] Wenyu Zhao, Stephen M. Blackburn, and Kathryn S. McKinley. Low-latency,
high-throughput garbage collection. In Proceedings of the 43rd ACM SIGPLAN
International Conference on Programming Language Design and Implementation,
PLDI 2022, page 76–91, New York, NY, USA, 2022. Association for Computing
Machinery. ISBN 9781450392655. doi: 10.1145/3519939.3523440.

ELS 2023 57



Design of an Efficient Lisp Bytecode Machine and Compiler
Alex Wood

ThirdLaw Molecular
Blue Bell, PA, USA

alex.wood@thirdlaw.tech

Charles Zhang
karlos@berkeley.edu

Christian Schafmeister
Temple University

Department of Chemistry
Philadelphia, PA, USA
meister@temple.edu

ABSTRACT
We present a new virtual machine for Common Lisp, focused on
efficiency of compiled code as well as efficiency of the compilation
process itself. An extended fix-up mechanism is used to apply some
important optimizations without requiring an intermediate repre-
sentation. The new system performs comparably to or better than
existing systems with similar design goals.

CCS CONCEPTS
• Software and its engineering→ Compilers; Interpreters; Just-
in-time compilers.

KEYWORDS
virtual machine, compiler, bytecode

ACM Reference Format:
Alex Wood, Charles Zhang, and Christian Schafmeister. 2023. Design of an
Efficient Lisp Bytecode Machine and Compiler. In Proceedings of the 16th
European Lisp Symposium (ELS ’23). ACM, New York, NY, USA, 8 pages.
https://doi.org/10.5281/zenodo.7818216

1 INTRODUCTION
We have developed a new virtual machine (VM) for Common Lisp,
as well as a compiler targeting it. This design balances the axes of
execution speed, compilation speed, and simplicity: the bytecode
compiler runs quickly, but performs enough optimization during
its one pass translation to let the code execute quickly as well. It is
suitable for code that does not need to run often or which does not
need special optimization, or as the first pass of a more heavy-duty
optimizing compiler.

The compiler constitutes 1600 lines of Lisp, which was simple
enough to be ported to 3000 lines of C++. The VM itself is only 500
lines of Lisp or 1500 of C++.

In tests, we have found the VM to meet our needs for speed
and compilation speed, It outperforms CLISP’s VM and performs
comparably to ECL’s, and we believe that further optimization work
built on the general design here could make it even faster.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ELS ’23, April 24–25 2023, Amsterdam, Netherlands
© 2023 Copyright held by the owner/author(s).
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM.
https://doi.org/10.5281/zenodo.7818216

2 MOTIVATION
Our original motivation was to simplify the bootstrapping proce-
dure of Clasp Common Lisp[6], as well as to provide faster defi-
nitions of eval, compile, etc. Clasp builds itself up from a basic
C++ core, which has historically meant having to implement the
Lisp standard library in a simplified, “pidgin” Common Lisp. This is
difficult to do, and has been a perennial source of bugs. A compiler
for all of Common Lisp, simple enough to be written in C++, sim-
plifies the situation considerably, as now at least all of CL’s basic
semantics are available for Lisp code.

This goal also led to the idea of writing a version of the bytecode
compiler in portable Lisp. If the compiler is not reliant on the run-
time, it can be run from other Lisps as a cross-compiler, simplifying
the build process even further.

The other motivation was speed. Before the introduction of the
bytecode compiler described here, Clasp had two ways to run Lisp
code:1 First, a conventionally designed interpreter written in C++.
This could execute most code, but did so quite slowly, due to e.g.
re-expanding macro forms every time they were encountered. Sec-
ondly, the primary compiler. This uses the Cleavir2 Lisp compiler
frontend, which then has its intermediate representation (IR) passed
to LLVM[3], which produces machine code. As optimizing com-
pilers, Cleavir and LLVM cons quite a lot of IR, and take time to
simplify code, making Clasp’s primary compiler noticeably slow.

Repeated profiling of compilation has shown that Clasp’s com-
piler is slow in part because it is slow: It calls itself recursively,
for example for macrolet. This means performing this slow com-
pilation, even on code that only runs once, or only runs during
compilation.

The design goals for a compiler are in conflict for code that runs
once or not often. A more sophisticated compiler can generate code
that runs more quickly, but the sophistication generally causes the
compiler itself to take more time. Conversely, a simpler compiler
can save compile time, but the generated code will take longer to
run. We weighed these goals and developed a design that works
well for our purposes. A simpler bytecode compiler neatly fits in
the space between an interpreter and the optimizing compiler.

3 PREVIOUS WORK
Several Lisp implementations have used virtual machines, either as
their primary means of executing Lisp code (CLISP) or to supple-
ment a primary compiler (ECL, CMUCL).

CMUCL’s bytecode compiler is primarily intended to reduce
code size[4, § 5.9], although it does compile faster than the primary

1An additional compiler written in pidgin Lisp was used only during bootstrapping.
2https://s-expressionists.github.io/Cleavir/

58 ELS 2023



ELS ’23, April 24–25 2023, Amsterdam, Netherlands Alex Wood, Charles Zhang, and Christian Schafmeister

(native code) compiler, Python. Furthermore, it uses multiple com-
ponents from Python – the initial source-to-IR phase as well as
the later assembler phase, neither of which were designed with
portability or fast compilation in mind. Hence, CMUCL VM’s design
goals are distinct from ours, as reflected in its design, so it is not
directly comparable to this work.

CLISP and ECL, on the other hand, designed their VMs with
similar goals in mind to ours. CLISP’s bytecode is its main means
of evaluation[1, § 37.1]. ECL’s exists to execute code without going
through the more expensive process of C compilation. Both imple-
mentations’ bytecode are commonly used for evaluation through
cl:eval.

In the following, wewill make frequent comparisons to the VM in
CLISP, and occasionally to the VM used in ECL. Many of our design
choices were informed by one of the authors’ experience writing a
compiler targeting the CLISP VM, where it was noticed that certain
parts of the instruction set could be substantially simplified and/or
made more efficient. In particular, we have substantially simplified
the design of closures, instruction encoding and decoding, and
non-local exits.

4 DESIGN
The bytecode is organized into bytecode modules, each of which
contains a code vector and a literal vector. The code vector is an
array of octets encoding bytecode instructions to be interpreted
by the virtual machine. The literal vector is an array of literals
referenced in the code with the instruction CONSTANT. Code for
functions go in the same module if they are compiled together, as
is the case with local functions defined with flet, labels, and
lambda. This way, branches can relative-offset within the same
code vector, as Lisp functions always go to or return-from exit
points which are in functions in the same module.

In addition, we have bytecode functions and closure objects.
Bytecode functions are funcallable objects which point at the ap-
propriate entry point in the code vector. Bytecode closures are byte-
code functions with an extra environment vector which bytecode
can reference with the instruction CLOSURE. The representation of
closures is explained in more detail in section 4.3.

Each instruction consists of an opcode byte, followed by zero or
more operands. The number of operands depends on the opcode.
Usually operands are encodable with a single byte, but if that isn’t
sufficient, the LONG prefix byte is placed before the opcode byte.
The rationale for this encoding scheme is explained in section 4.4.

The virtual machine itself operates as a stack machine. Each
function call reserves a fixed number (determined by the compiler)
of slots on the stack, usually corresponding to lexical variables in
the source code; these can be referenced by the instruction REF. On
top of this, a function can use a variable amount of stack space, usu-
ally for temporaries resulting from the evaluation of intermediate
expressions, but also to store multiple values. The virtual machine
also contains a program counter and a multiple values vector. Each
thread of execution has its own independent virtual machine with
its own stack.

4.1 Interoperability
We ensured that the design of the virtual machine would allow
bytecode functions to call and be called by non-bytecode functions.
This allows the bytecode to be only one of several ways a Lisp
implementation can evaluate code. In Clasp, bytecode function
objects are equipped with a (shared) machine code entry point that
invokes the VM, so that they can be called exactly like machine code
compiled functions; similarly, in the portable Lisp version of the
VM, bytecode functions are funcallable-standard-object, and
dynamic and lexical exit tags can operate seamlessly. The bytecode
does not have any special way of calling bytecode vs. non-bytecode
functions, so a function being compiled to machine code does not
necessitate its bytecoded callers to be recompiled.

4.2 Instruction set design
The design of the instruction set aims to translate the semantics
of Common Lisp into a small, simple, orthogonal set of instruc-
tions in order to simplify the construction of virtual machines and
compilers targeting the instructions set. At present, there are no
instructions for inlining common functions (car, aref, etc.). There
are 58 instructions, which plus the LONG prefix (below) means only
59 of 256 possible opcodes are used.

4.3 Flat closures
We designed the virtual machine to support a “flat closure” repre-
sentation, as opposed to the more common “linked” closure repre-
sentation used in many simple interpreters and bytecode compilers.
This means the environment part of a closure is “flat”: it is simply
a vector of all values needed by the function and does not contain
links to other environments.

However, one particularity in Lisp that complicates the flat clo-
sure strategy is the fact that variables can be mutated with setq.
This requires closed-over variables that are setq’d to be represented
with an indirect value cell. The cell is then closed over, allowing
assignments to the variable to take effect in each flat closure closing
over that variable, as references to the variable indirect through the
value cell. The linked environment strategy does not require value
cells, because an assignment can simply modify “the” environment
vector containing the variable’s binding directly.

Nonetheless, the flat closure approach has many desirable fea-
tures:

(1) The representation is safe for space[5]: bindings that are
lexically apparent but not actually used by any live closure
are not kept alive. This is in contrast to the linked environ-
ment representation, where all bindings in an outer scope
are kept alive even if the only bindings actually used by a
live closure are in an inner scope, causing a memory leak.

(2) Closure variable access is constant-time, since it entails only
one lookup in the flat environment. There is no need to crawl
up through nested environments to find the one containing
a given variable’s value.

(3) The instructions used in the virtual machine to support flat
closures are substantially simpler: We only need to support
a single CLOSURE instruction taking a single operand (the in-
dex into the environment) to reference a closed-over variable
or exit tag, and three operand-less instructions MAKE-CELL,

ELS 2023 59



Design of an Efficient Lisp Bytecode Machine and Compiler ELS ’23, April 24–25 2023, Amsterdam, Netherlands

CELL-REF, and CELL-SET to support variable assignment by
manipulating value cells. This is in contrast, for example, to
the plethora of closure access and non-local exit instructions
used in CLISP[1], which must specify at least two indices:
one to specify the scope depth and one to index into the envi-
ronment. Hence, flat closure instructions are more compact
and take up less opcode space in comparison to equivalent
instructions used to support linked closures.

ECL’s bytecode system uses yet another approach. The virtual
machine maintains the current lexical environment as a simple
linked list of values at runtime.[2, § 4.6.3] When a closure is created,
it simply includes the state of that list at the time the function
is closed over. An advantage is that instructions only require a
single operand to index into the environment, as with flat closures.
However, it is not safe for space, as all bindings in the lexical scope
are closed over and kept alive, like with the “linked” environment
strategy. Additionally, accessing closure values is even slower than
with the linked environment strategy used by CLISP. A variable
access entails traversing the environment represented as a linked
list, which takes linear time with respect to the number of total
bindings in the environment. This is in contrast to linked closures,
where a linked list of only scopes is traversed followed by a fast
vector reference of the found environment.

We see then that from the perspective of run-time representa-
tion, the flat closure strategy is the clear winner: It allows for the
simplest instructions, avoids memory leakage, and accesses values
the fastest. However, its use is usually avoided in simpler compil-
ers with fewer or no optimization passes. The problem is that, as
explained, the flat closure strategy in Lisp sometimes requires indi-
rect value cells. Avoiding value cells when possible is crucial for
performance: choosing the value cell representation for a variable
entails a cell allocation when the variable is bound, and an extra
indirection for every reference and assignment to the variable. For
a sophisticated compiler, a separate environment analysis pass can
be done on IR to figure out exactly which variables are closed-over
and mutable, so that the decision to use value cell representations
is made before any code is emitted. In contrast, a one-pass compiler
does not have that luxury: by the time the compiler recognizes that
a variable is setq’d and closed over, it may have already emitted
references or assignments to that variable. Thus, the only choice is
to assume every variable needs a value cell, even those which end
up being local and never setq’d!

Despite this issue, we were nonetheless able to choose the flat
closure representation while solving the main drawback for our
one-pass compilation strategy. The compiler optimistically emits in-
structions for the best (andmost common) case scenario of not need-
ing cells at all into the assembly, while noting fix-ups in the stream.
During the final link step, by which time it is known whether the
variable in question needs a value cell or not, the necessary indirec-
tion instructions are then emitted. The fix-up annotations are used
to ensure no “holes” and “gaps” result in the final assembly. These
steps are needed anyway to do necessary things like resolving labels
for assembly, so the overall compilation strategy is not complicated.
We describe the fix-up algorithm and the way we generalized the
data-structures used to achieve this in more detail in section 4.6.

To illustrate the difference between the flat environment and linked envi-
ronment strategies, consider the following closures:
(lambda (a b)
(print b)
(lambda (c) ; env_1
(setq c 9)
(lambda (d e) ; env_2

(print e)
(print c)
(lambda () ; env_3
(+ a d)))))

Figure 1: Linked closure strategy (used in CLISP)

#(d e)

env_3

#(c)

env_2

#(a b)

NIL

env_1

Figure 2: Flat closure strategy

#(a d)

env_3

#(a d #<cell c>)

env_2

#(a)

env_1

With linked environments, we see that all bindings in the lexical envi-
ronment are kept alive, even those which are never used by the innermost
lambda. Hence, an unbounded amount of garbage could be retained.

4.4 long instruction prefix
Since we target a bytecode machine, it is important to make the
actual encoding of instructions into bytes compact and fast. Because
of the small number of opcodes, it is possible to represent all of
them in a single byte.3 However, operands for some instructions
may exceed the size of a single byte, especially for control flow
instructions.

We chose to use different-sized versions of each control flow
instruction and a LONG prefix scheme for the other instructions: An
instruction whose operand exceeds the size of one byte has the
opcode prepended with a LONG prefix byte. This prefix indicates
that the instruction’s operand is instead two bytes wide, allowing
indexing from 0-65535, which seems to be enough for all “reason-
able” code. 4 Instructions with more than one operand that require a
long version each have special interpretations as to which operand
receives a wider interpretation according to what makes sense. This
scheme allows the common case of few variables/constants/etc to
be encoded compactly and decoded trivially, while only the rarer
extended case entails overhead.

A simpler way of dealing with longer operands is to use a 16-bit
code rather than an 8-bit code as we do here, so that all opcodes
as well as all operands are 16 bits long rather than 8. This is the

3There is quite a bit of opcode space left over as well, which could be used for com-
pressed instructions, as in CLISP. No decision has been made as to which compressions
would be most profitiable yet.
4To exceed this limit for the ref instruction, for example, a function needs to bind
65536 lexical variables live at the same time.

60 ELS 2023



ELS ’23, April 24–25 2023, Amsterdam, Netherlands Alex Wood, Charles Zhang, and Christian Schafmeister

approach taken by ECL. While it is simpler to encode and decode
than our scheme, it nearly doubles code size in the common case.

An alternate scheme is used by CLISP’s virtual machine. It uses
a variable length encoding scheme for instruction operands: If the
most significant bit of an operand byte is set, the operand continues
into the next byte. This may save some space in cases where only
one operand of several needs to be long, but considerably compli-
cates encoding and decoding, and reduces the range of the simple
one-byte case to 0-127.

This last aspect makes the long prefix scheme almost always
more compact in practice compared to the variable-length encoding
scheme, as functions typically have less than 255 live locals or 255
constants. In fact, for instructions with single operands, our scheme
is more compact than the variable-length encoding scheme up to
383 locals or constants, since one extra byte is already needed for
values 128-255 in the variable-length encoding scheme.

The design of the instruction set as a whole also makes the
LONG encoding scheme more attractive. As alluded to already, the
presence of many instructions with multiple operands can make the
variable-length encoding option more uniform and simple for the
decoder. In CLISP, a variable reference may require an instruction
with several operands. For example, LOADIC, Load Indirect Closure,
has four operands. Under the LONG prefix scheme, choosing to
extend all operands would waste space if only one operand needs
an extension, and on the other hand only selectively choosingwhich
operand to extend would complicate the virtual machine decoding
step, sacrificing speed. However, this is not a real drawback given
the rest of our instruction set design: thanks in part to our choice
of flat closure representation, all instructions but one take at most
two operands.5 If an instruction has only one operand, the variable-
length encoding scheme’s advantage is completely negated, and
with two operands we are wasting one byte at most.

Control flow instructions have operands which represent signed-
relative offsets into the code. As multi-byte relative offsets are very
common and there are very few control flow instructions, they are
not handled using the prefix scheme: Each branch instruction has
1-, 2-, and possibly 3-byte offset variants. This is much faster for
branching and jumps than the variable length encoding scheme,
while only having a small impact on opcode space given the small
number of control flow instructions.

4.5 Non-local exits
One of the trickiest parts of implementing Common Lisp is the
correct and efficient handling of the dynamic and lexical exit con-
structs, namely catch, throw, block, return-from, tagbody, go,
and unwind-protect. Used within a function, lexical exits can usu-
ally be implemented simply by restoring the dynamic environment
(containing e.g. special variable bindings and unwind-protect han-
dlers) that was in effect before the execution of the corresponding
block or tagbody form, and then doing a normal control transfer.
However, lexical exit tags in Common Lisp can be closed over as
well, although they still have only dynamic extent. Implementing a
non-local exit to a closed over tag requires some coordination with
the closure strategy: the non-local exit needs information about

5The exception, PARSE-KEY-ARGS, is only used in handling lambda lists with &key
arguments, and so is not a performance bottleneck.

how to restore the dynamic environment from a different stack
frame, and this information needs to be invalidated in safe code as
well so that out-of-extent exits can be checked.

At first, we based our instructions for non-local lexical exits on
the design of the instructions used in CLISP. In CLISP, there are
separate instructions to handle block and tagbody: BLOCK-OPEN
and TAGBODY-OPEN save the current dynamic environment and the
program counter(s) to return to. BLOCK-CLOSE and TAGBODY-CLOSE
invalidate the information required to restore the dynamic envi-
ronment. RETURN-FROM and GO are each responsible for unwind-
ing and restoring the saved dynamic environment and transfer-
ring control to the saved program counter. Finally, there are also
RETURN-FROM-I and GO-I instructions which do the same thing
but for saved dynamic environment information only accessible in
an outer lexical environment. In particular, TAGBODY-OPEN takes a
variable number of operands, one for each label corresponding to a
GO tag, and one for the number of labels. The corresponding exit
instructions then encode an index of which label to go to, which
the virtual machine must then resolve to the actual label before
actually jumping to it. ECL uses a similar scheme as well.

We moved away from this strategy because our decision to use
flat closures and our decision to put all code compiled together into
the same module enables a much simpler, more efficient, and more
elegant design for the lexical exit instructions. First, flat closures
allow us to simply use a CLOSURE instruction to reference any closed
over dynamic environment information, so there is no need to have
separate instructions to do closure indirection. Second, we can avoid
closing over program counters altogether since the place to transfer
control to is lexically known at each lexical exit. Because functions
compiled together share the same code vector, we only need to
encode a relative offset to the place to return-from or go to in
the exit instruction, exactly as with an ordinary JUMP instruction.
Finally, we see that after the above changes, tagbody and go can
now be handled exactly the same as block and return-from, so
we obliterate the distinction. We are then left with three simple
fixed operand instructions:

(1) ENTRY: Allocates and pushes an object with information
about the current dynamic environment onto the stack.

(2) EXIT 𝑙 : Pops an object off the top of the stack and unwinds
to the dynamic environment in that object, exiting to label 𝑙 .

(3) ENTRY-CLOSE: Pops an object off the top of the stack and
invalidates the dynamic environment information in that
object, preventing future (out-of-extent) unwinds.

This is a clear improvement over the eight instructions used in
CLISP, in both opcode space usage and performance. Note that the
value returning semantics of return-from are handled orthogo-
nally by instructions pertaining to multiple values.

However, when a lexical exit is to a tag defined in the same
function, we can avoid consing an object which saves the dynamic
environment altogether, since the actions needed to restore the
dynamic environment can be determined statically. We can then
also avoid the cost associated with dynamically unwinding the stack
on exit, so that we can use a simple JUMP instruction instead. Most
Lisp functions implicitly define blocks, which are usually unused
or only used within the same function, so making this case fast is
important. Allowing the compiler to recognize when doing such an

ELS 2023 61



Design of an Efficient Lisp Bytecode Machine and Compiler ELS ’23, April 24–25 2023, Amsterdam, Netherlands

optimization is possible is quite similar to the logic for eliding value
cells for mutable closure bindings, so we again fold this optimization
into the fix-up process described in the next section.

4.6 Fix-ups
Compilers and assemblers which emit to machine code or bytecode
need to deal with the fix-up problem: How do you emit labels, which
represent other locations in code, as offsets in the byte stream,
before the position of those locations are known? The problem is
further complicated by the fact that the labels instructions refer to
can take up variable amounts of space, which can in turn affect the
offsets of other labels! The label’s offset can even be affected by its
own size, in the case of backward branches.

The standard solution for sophisticated compilers and assemblers
is to use fix-ups and resizer data structures. Fix-up annotations are
accumulated when instructions are first emitted. These annotations
include information such as best-case/worst-case size, current size,
original position, and current position. As more instructions are
emitted, the fix-ups are continually updated, until a final linking
step creates the final vector of bytes.

We chose to use the optimistic version of this solution, where
the smallest possible label sizes are assumed at first, as opposed to
some assembly algorithms which work pessimistically, perhaps for
faster convergence. Furthermore, because we compile and assemble
in the same single pass, there is no rigid distinction between the
two concepts, in contrast to many other compilers. This facilitates
generalizing the fix-up data structures to handle other simple cases
of “variable-length group of bytes”. For example, fix-ups can ade-
quately represent the decision to use a value cell or not, which in a
heavier duty compiler is handled as part of optimizations on a dis-
tinct IR. This way we can avoid building and constructing separate
IRs, and spending time in multiple passes. Because we need to emit
and resolve labels using fix-ups anyway, we can save a significant
amount of memory and time (as well as compiler complexity) by
folding such optimizations into the fix-up step.

Most instructions can be emitted with fixed-size operands right
off the bat. Conceptually, we can think of labels as a temporarily
variable-length operand, and this is what fix-ups usually deal with.
However, by generalizing the idea to variable-length sequences of
bytes to be emitted, we can use fix-ups to emit or not emit entire
instructions. When the compiler encounters a lexical variable or
exit tag, it optimistically assumes that a cell is not needed, and
generates bytecode that does not generate a cell. It also creates
a “fixup” object, which is stored along with the bytecode being
generated. Once the compiler finally resolves all fix-ups, it can
now decide which variables or tags do need a cell, and treats this
“variable-length group of bytes to be emitted” like a label and adjusts
all other fixups by the appropriate number of bytes. The final link
step, responsible for concatenating the bytecode for individual
functions into a module, then copies the right bytes into the final
module.

The generalized algorithm is also optimistic, so it always pro-
duces the best possible code. Labels are as small as possible, and no
NOPs need to be left in the assembly stream to support the emission
or non-emission of cell allocation and accesses.

5 RESULTS
5.1 Clasp build performance
Integration of the VM into Clasp allowed for Clasp’s build procedure
to be simplified substantially. Before the VM was used, a compiler
in “pidgin” Common Lisp was interpreted, and this compiler was
used to compile the Cleavir-based compiler. With the VM, the
Cleavir-based compiler could be built directly by the C++ core. This
simplification greatly improved build times: Clasp from just before
the new VM build system was merged in took 150 minutes of CPU
time to build, while the 2.0 release with the new system took 85
minutes.

5.2 VM Performance
In order to check the performance of the system, we used the
cl-bench system6, modified so as to avoid file compilation, and
with extra machinery to test compile times. The results are dis-
played in Table 1. The benchmarks named with “CMP” prefixes
represent the time taken to compile all the other benchmarking
code in that group, five hundred times.

“VM” is the version of the system described here used in Clasp;
that is, the C++ implementations of the bytecode VM and compiler.
The results for CLISP and ECL were measured using their bytecode
systems as well.

We also measure the performance of SBCL with its native com-
piler. SBCL, having an optimizing native code compiler, is not
closely comparable to any of the three virtual machine systems
exhibited here. It is included only to demonstrate the difference
between such a compiler and VM systems generally. SBCL strongly
outperforms the VMs on almost all runtime benchmarks, while
exhibiting much longer compile times in the CMPARRAY and CM-
PCRC40 benchmarks.

Interpretation of these data is complicated by the fact that the
virtual machines and compilers could not be compared in isolation.
Each implementation’s library influences its timing; a more tightly
written gensym can influence macroexpansion and thus compile
time, while other functions like + and aref play an important role
in run times. Still, we believe these results indicate something about
our system’s efficiency.7

Our system outperforms CLISP in almost all tests. Comparison
to ECL is more ambiguous: we do worse on some metrics, but
better on others. Part of this is probably attributable to the differing
implementations of the standard library functions rather than the
operation of the virtual machines themselves, but this is difficult to
determine as it is not possible to run ECL with Clasp’s functions or
vice versa.

It is clear that our system exhibits performance comparable
to ECL and better than CLISP in most instances. Compile times,
while still much better than those of a native code compiler, are
generallyworse than ECL’s or CLISP’s.While we believe the general
organization of the compiler described here is efficient, more work
could be done on optimizing its performance.

6https://gitlab.common-lisp.net/ansi-test/cl-bench
7While an implementation of our VM in portable Lisp exists, it cannot use low-level
runtime tricks that C++ and C code integrated into these implementations can, and so
is much slower. We do not compare it here.

62 ELS 2023



ELS ’23, April 24–25 2023, Amsterdam, Netherlands Alex Wood, Charles Zhang, and Christian Schafmeister

Benchmark VM Clisp ECL SBCL
CMPARRAY 0.560 0.426 0.222 22.659
1DARRAYS 0.254 0.648 0.232 0.0108
2DARRAYS 9.535 27.527 7.330 0.0765
3DARRAYS 21.484 64.128 15.408 0.281
BITVECTORS 0.0118 0.566 0.467 0.0184
STRINGS 0.136 2.865 1.250 0.512
STRINGS/ADJ 13.987 41.333 20.253 0.613
STRING-CONCAT 30.738 * 42.021 5.940
SEARCH-SEQ 3.997 5.945 1.978 0.383
CMPCRC40 0.0637 0.0839 0.0310 1.111
CRC40 5.279 21.927 12.377 0.152
CMPGABRIEL 8.555 3.670 3.400 61.627
BOYER * * 172.960 0.543
BROWSE 1.091 2.181 1.149 0.0359
DDERIV 1.444 3.909 2.629 0.0626
DERIV 2.908 3.146 2.311 0.0493
DESTRUCTIVE 1.315 4.322 1.188 0.0401
DIV2-TEST1 0.972 3.778 0.924 0.0274
DIV2-TEST2 2.558 3.180 2.197 0.0420
FFT 5.210 12.973 3.619 0.0185
FRPOLY/FIX 1.701 5.336 4.155 0.0547
FRPOLY/BIG 1.928 5.974 5.033 0.148
FRPOLY/FLOAT 1.699 5.716 3.964 0.0825
PUZZLE 8.417 28.327 6.134 0.101
TAK 0.404 2.380 1.861 0.0122
CTAK 1.998 0.800 0.621 0.0100
TRTAK 0.401 2.398 1.886 0.0122
TAKL 2.941 11.180 11.633 0.0840
STAK * 5.917 0.378 0.0523
FPRINT/UGLY 0.481 0.117 0.179 0.627
FPRINT/PRETTY 5.354 0.530 2.876 0.212
TRIANGLE 1.541 5.367 1.850 0.0518

Table 1: Benchmark results (times in seconds). “*” indicates
that the Lisp could not run the benchmark due to control
stack exhaustion.

6 EXAMPLE OF COMPILED CODE
6.1 Basic code
To illustrate how the bytecode looks in practice, here is what our
system compiles the Common Lisp function

(lambda (x)
(let ((y 5))

(print y)
(lambda () (+ y x))))

into:
check-arg-count-= 1
bind-required-args 1

First the function checks that it was provided exactly one ar-
gument. Then it binds that one argument into the register file at
positions starting at 0 and below 1, i.e. just 0.

const 0 ; '5
set 1

To bind y, the constant 5 is pushed to the stack, then popped
from the stack and placed in register 1.

fdefinition 1 ; 'PRINT
ref 1
call 1

This is the (print y) call. The definition of print is looked up
and called on the value we just placed in register 1, i.e. y.

ref 1
ref 0
make-closure 2 ; '#<BYTECODE-FUNCTION {100C2D803B}>

A closure over x and y is allocated for (lambda () (+ y x)),
and pushed to the stack. Note that 2 is just the index in the constants
vector for the closure’s code; the number of values being closed
over is not encoded in the instruction, since that information is
encoded in the function object.

pop
return

The closure just allocated is popped from the stack into the
multiple values vector. The multiple values are then returned.

6.2 Non-local exit example
We can demonstrate our non-local exit and dynamic environment
instructions with the bytecode for a loop. This code binds a dynamic
variable, calls a global function, then calls another global function
with a closure that can initiate a non-local exit. If this closure is
called, the loop exits. Otherwise, the dynamic variable binding is
undone, and then the loop repeats.

(lambda (x y)
(block nil

(tagbody
loop

(f)
(let ((*z* x))

(g (lambda () (return y)))
(go loop)))))

The outer function compiles to the following:
check-arg-count-EQ 2
bind-required-args 2
ref 1
make-cell
set 1
entry 2
save-sp 3

In the prologue, the outer function processes its arguments and
makes a cell for y, which is referenced from the closure. Then, it
both creates and saves an “entry” object (containing information to
restore the dynamic environment at that point in time) at location
2 and saves the stack pointer at location 3. The entry is used for
restoring the dynamic environment in a real non-local exit, while
the stack pointer is used when no function boundary needs to be
crossed, since the action of restoring the dynamic environment can
be done statically.

ELS 2023 63



Design of an Efficient Lisp Bytecode Machine and Compiler ELS ’23, April 24–25 2023, Amsterdam, Netherlands

L0:
fdefinition 'F
call 0
ref 0
special-bind '*Z*
fdefinition 'G
ref 1
ref 2
make-closure '#<BYTECODE-FUNCTION {1004100D1B}>
call 1
unbind
restore-sp 3
jump-8 L0

This is the body of the loop. The variable is bound by special-bind,
and the closure is created and passed to g. Note that the closure
references both stack slots 1 and 2. 1 is the cell for y, but 2 is the
entry created by the earlier entry instruction.

After the call, the loop continues. Rather than execute a true
non-local exit with dynamic unwinding, the compiler has statically
determined what part of the dynamic environment needs to be
undone - the special variable binding - and inserts an instruction
to do that. restore-sp then sets the stack pointer back to where it
was, and jump-8 L0 transfers control back to the top of the loop.

unbind
nil
pop

These instructions would be executed when the tagbody form’s
end is reached normally. This cannot occur in the example code,
but our compiler is not smart enough to determine this.
L1:

entry-close
return

Finally, upon an abnormal return, the non-local entry object for
the block is invalidated, and the outer function finally returns.

The label L1 is not used in this function’s code; it is referenced
in the inner closure’s code, but the label is still assembled into a
relative offset due to the fact that functions compiled together share
the same bytecode vector. This means the destination does not need
to be recorded in the entry object, or determined dynamically by
the unwinder. The code of the lambda is disassembled here:

check-arg-count-LE 0
closure 0
cell-ref
pop
closure 1
exit-8 L1
return

The function loads y from its cell, in location 0 of the closure
vector, and prepares to return it. Then, it loads the entry object
for the non-local exit from closure slot 1, and exit-8 L1 transfers
control to label L1 of the outer function using the information
in that object. exit-8 is responsible for dynamically determining
what actions need to be taken to unwind correctly; in that case that
will include unbinding *z*, and also undoing any dynamic binding
established by the function g, which cannot be statically determined

by the compiler. If the entry object is found to have been already
invalidated, the unwinder throws an appropriate error.

7 FUTURE DIRECTIONS
7.1 Trucler integration
The Lisp implementation of the compiler uses the Trucler envi-
ronment protocol, a CLOS based update and expansion of the
environment-related operators described in CLTL2.[7] This allows
it to access functions and macros from the host implementation’s
global environment, or to use an alternate first-class global envi-
ronment. First class environments facilitate using the VM for cross-
compilation or for sandboxing - for example, untrusted “script” code
could be byte-compiled in an environment in which dangerous op-
erators like (setf fdefinition) and read are not available, or
have restricted definitions.

However, the compiler uses its own environment structures inter-
nally rather than host environments, so host definitions of complex
macros like ‘loop‘ that use cl:macroexpand do not work. If the
compiler was rewritten to use Trucler internally rather than its
own environments, and if Trucler support on the Lisp implementa-
tion is sufficient, it would be possible for the VM to be smoothly
usable within an implementation as a drop-in replacement for the
implementation’s cl:compile and/or cl:eval.

7.2 File compilation
The bytecode compiler itself works as cl:compile or cl:eval, not
implementing the complex semantics of file compilation. However,
it can be run in such a way that it doesn’t actually produce a module
or functions, or resolve ‘load-time-value‘, etc., and instead simply
returns enough information to construct a module. This can be
used by a suitable file compilation mechanism.

We are working on such a file compiler, and accompanying
FASL format. The ultimate goal of this project, besides providing
a drop-in cl:compile-file implementation, is to allow one Lisp
implementation to produce portable FASLs that can then be loaded
successfully in a completely different Lisp implementation. Our
main motivation is to use this for bootstrapping a primitive Lisp
with FASLs produced by a full Lisp, but we believe it could be more
generally useful.

7.3 Conversion to IR
The bytecode produced by the compiler is a fairly direct reflection
of the source code, but with macros expanded, and no internal
reliance on environment information. These properties make it
suitable for conversion to IR for an optimizing compiler. We are
planning to write a system to convert the bytecode into Cleavir’s
IR. This would allow the bytecode compiler to act as a frontend to
a smarter compiler.

One change that would need to be made is having the compiler
record more information about the code. For example, it would be
important to record source information for debugging, and various
declarations such as of types for optimization (as the bytecode
compiler is too simple to use them itself).

With this system set up, it would be possible to use the VM to
facilitate just-in-time compilation of Lisp code. Code could be at

64 ELS 2023



ELS ’23, April 24–25 2023, Amsterdam, Netherlands Alex Wood, Charles Zhang, and Christian Schafmeister

first compiled quickly into bytecode, and then only if necessary,
compiled further into optimized machine code.

In conjunction with a portable FASL format, this would allow
the bytecode to serve as a portable post-read code interchange
format, somewhat like Java VM bytecode. Optimizations depend on
the specific nature of the target machine, such as those relating to
arithmetic, can be done by a specific implementation. There would
be a separation of concerns between the frontend and the backend
of the language system, and it would be possible to distribute code
without either dumping an entire monolithic Lisp image or relying
on the end user to deal with all the complexity of compiling Lisp
source.

8 CONCLUSION
Our bytecode system can compile Common Lisp code quickly, and
run it with reasonable efficiency. Performance is comparable or

superior to that of other Lisp virtual machines. The fix-up mecha-
nism allows the compiler to apply several important optimizations
without requiring a complex and slower IR.

REFERENCES
[1] Bruno Haible, Michael Stoll, and Sam Steingold. Implementation notes for gnu

clisp, 2010. URL https://clisp.sourceforge.io/impnotes/index.html. Last accessed
14 February 2023.

[2] Daniel Kochmański, Marius Gerbershagen, Tomasz Kurcz, and Juan Jose Garcia
Ripoll. Ecl manual, 2016. URL https://ecl.common-lisp.dev/static/manual/. Last
accessed 18 February 2023.

[3] Chris Lattner and Vikram Adve. LLVM: A compilation framework for lifelong
program analysis and transformation. In CGO, pages 75–88, San Jose, CA, USA,
Mar 2004.

[4] Robert A. MacLachlan. Cmucl user’s manual, 2016. URL https://cmucl.org/
downloads/doc/cmu-user/. Last accessed 18 February 2023.

[5] Zoe Paraskevopoulou and Andrew W. Appel. Closure conversion is safe for
space. Proc. ACM Program. Lang., 3(ICFP), jul 2019. doi: 10.1145/3341687. URL
https://doi.org/10.1145/3341687.

[6] Christian A Schafmeister and Alex Wood. Clasp common lisp implementation
and optimization. In Proceedings of the 11th European Lisp Symposium on European
Lisp Symposium, pages 59–64, 2018.

[7] Robert Strandh and Irène Durand. A clos protocol for lexical environments. In
Proceedings of the 15th European Lisp Symposium, ELS ’22, pages 20–26, 2022.

ELS 2023 65



66 ELS 2023



ELS 2023 67


	Preface
	Message from the Program Chair

	Organization
	Symposium Organizer
	Programme Chair
	Local Chair
	Virtualization Team
	Programme Committee
	Sponsors

	Invited Contributions
	Run-Time Verification of Communication Protocols in Clojure – Sung-Shik Jongmans
	Hedy: Gradual, Multi-Lingual, and Teacher-Centric Programming Education – Felienne Hermans
	A Language-Based Approach to Programming with Serialized Data – Michael Vollmer
	Artificial Intelligence: a Problem of Plumbing? – Gerald J. Sussman

	Program overview
	Monday, 24 April 2023
	A MOP-Based Implementation for Method Combinations  Didier Verna
	A Minimal Run-Time Overhead Metaobject Protocol for Julia  Marcelo Santos and Antonio Leitao
	An Elegant and Fast Algorithm for Partitioning Types  Jim Newton
	GRASP: An Extensible Tactile Interface for Editing S-expressions  Panicz Maciej Godek

	Tuesday, 25 April 2023
	A stepper for Armed Bear Common Lisp (ABCL)  Alejandro Zamora Fonseca
	Kandria - A Game in Common Lisp  Nicolas Hafner
	Parallel Garbage Collection for SBCL  Hayley Patton
	Design of an Efficient Lisp Bytecode Machine and Compiler  Alexander Wood, Charles Zhang, and Christian Schafmeister


