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ABSTRACT
Motion trajectories extracted from certain videos contain
sufficient spatio-temporal information which can be effec-
tively used to characterize those videos. But the task of
framing text-based queries for such videos in content-based
video retrieval systems is very complicated. Sketch based
query is an efficient tool to construct motion-based queries
but perceptual differences like spatial and temporal variabil-
ity pose serious challenges to query modelling.

In this work we propose a new method of modelling sketch
based queries which attempts to extract the qualitative fea-
tures of motion by minimizing the perceptual variability.
We also develop a multilevel filter for indexing a query, in
which the search results are refined at each stage using a
cumulative scoring mechanism. Finally, we show the effec-
tiveness of our algorithm on a dataset of real pool videos
and a synthetic dataset containing simulated videos having
very complex motion trajectories.

Keywords
Content Based Video Retrieval, Sketch, Motion, Trajecto-
ries

1. INTRODUCTION
Motion has intrigued researchers in science and technol-

ogy, sports, art, music, literature and films for ages. The
trajectory of a missile, Tiki-Taka of Spanish football, the
revolution of earth around the Sun, suspicious movements
in railway stations — all these activities can be represented
using a single or a combination of multiple motions. While
motion itself conveys a lot of information for describing an
event, depicting it (textually or pictorially) becomes a huge
challenge for us. Depiction of motion in art has been there
in five primary forms [1]- Dynamic balance, multiple images,
affine shear, blur, vectors. Dynamic balance or broken sym-
metry deals with the pose of an object in an image from
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Figure 1: Masterpieces of the past 2 (a) Vitruvian

Man by Leonardo Da Vinci (b)Flying Pelican by Éti-
enne Jules Marey (c) Bullet by Edgarton (d) Head-
spring by Muyibridge

which the activity or event is predicted. A video can be
summarized by overlaying key frames on one another and
creating stroboscopic images [2]. (Figure 1 (b)). Affine shear
and blur are two well known methods that are used to repre-
sent motion in graphic engines and comics. Vectors, on the
other hand, are closest to human perception when it comes
to representing motion [3].

In Computer Vision, motion has been used as the pri-
mary content of a video in Content Based Video Retrieval
Systems(CBVRS). The motion-based analysis of a video is
frequent in surveillance, human-machine interaction, auto-
matic target recognition and automotive applications [4].
Most existing approaches have primarily two phases in a
CBVRS pipeline. In the first phase, trajectories of different
objects are extracted from the videos and are stored. In
the next phase, when a query (example videos, keywords or
sketch) is presented to the system, it is matched with all the
stored trajectories in the database and the corresponding
video is retrieved. A serious drawback with example based
queries is that an example is not always available in real
time scenarios. Text based queries, on the other hand, are
not suitable to describe long and complicated motions. For
example, queries like “the first strike in carrom where three
or more carrom men or disks go to pockets” or “a particu-
lar diving style in swimming where the swimmer does three
somersaults before diving” are very difficult to frame. In ad-
dition to these problems, text based queries mainly look for
texts associated with the video in the form of metadata or
speech transcripts [5] instead of the visual content.



A user-sketch can be used as an effective tool in such sce-
narios. But it involves a different set of challenges. The
user perception (sketch) of a video is only an abstraction
of the same. All the properties of a trajectory like shape,
length and position are merely approximations of the trajec-
tory of the object in the video. A simple Euclidean distance
match is not bound to yield any meaningful result. Apart
from spatio-temporal variability, the different sketches of the
same trajectory by different users also suffer from perceptual
variability. In other words, humans perceive motion in a way
that is qualitatively similar but differ quantitatively. This is
further elucidated by Figure 2.

(a) (b)

(c) (d)

Figure 2: (a) Original Motion Trajectory. (b) - (d)
Interpretations of the same motion by different users

So, the essence of the problem addressed in this paper lies
in the question - Can we model the trajectories in a way such
that the perceptual variability among different users for the
same motion is reduced? In other words, can we define a
space where the different instances of the user-sketch of the
same trajectory are mapped similarly?

There has been a lot of work in trajectory extraction in the
last decade, but as compared to that, modelling the user’s
perspective, according to our knowledge, is effectively not
well explored. We have tried to study various aspects of
this problem. Our work is organized as follows.

• In Section 3, a novel representation of a motion tra-
jectory has been proposed which tries to remove the
spatio-temporal variability among sketches of different
users. Qualitative features have been derived, whose
attributes tell us “how” rather than telling us “how
much” about the different aspects of a motion.

• In Section 4, we propose an efficient multilevel cas-
caded retrieval method with a cumulative scoring mech-
anism, which boosts the retrieval accuracy at each
stage of the cascade.

• In Section 5 we briefly describe our datasets and the
intuition behind choosing them. We have conducted
experiments on a real dataset of Pool videos and syn-
thetic dataset of simulated videos.

• In Section 6, we present the experimental results us-
ing Precision-Recall Curves, Top-k accuracy and Mean
Reciprocal Rank.

2. RELATED WORK
The existing research in this area can broadly be catego-

rized into two different modules of a pipeline — Trajectory
Extraction and Query Indexing.

In trajectory extraction, the objects are initially extracted
from a key frame and then tracked across successive frames.
Foreground segmentation in videos has been an extensively
researched problem and several algorithms have been pro-
posed for the cases of static [6], [7], [8] and dynamic back-
grounds [9], [10], [11]. For tracking, standard techniques like
Kalman Filters [12], Mean Shift Algorithm [13] and Double
Exponential Smoothing [14] have been proposed. Once the
trajectories are extracted, they are modelled by motion fea-
tures like velocity, acceleration, curvature and length.

VideoQ [15], which is one of the first Content Based Video
Retrieval Systems using sketch (sCBVRs), takes as an input
a sketch, containing colour and shape based features and
uses wavelet decomposition to model each trajectory. Al-
ternative approaches to process trajectories like statistical
modelling, Principal Component Analysis of sub-trajectories,
MPEG based motion flow extraction methods have also been
proposed. An exhaustive survey of these techniques can be
found in Hu et al. [5]. This paradigm has been applied to
the problem of event detection and activity classification as
well [16]. Bashir et al.[17] and Cuntoor et al. [18] proposed
HMM based approaches for trajectory based activity clas-
sification. Basharat et al. [19], Saleemi et al. [20] , Stauf-
fer et al. [21] have modeled traffic behavior using spatio-
temporal information from videos. Dyana et al. [22] have
used a multispectro-temporal curvature scale space (MST-
CSS) representation to describe a video object.

Inspite of the plethora of motion-trajectory based video
retrieval systems, according to our knowledge, there are
very few generic sCBVRs [15], [23], [24]. In [15], colour,
shape and appearance of the objects have also been used
for describing content of videos. These features work well
when the database consists of videos that vary widely in con-
tent. On the contrary, if the videos are similar e.g. Pool or
Billiards videos, ball trajectories have greater saliency than
colour, shape etc, in terms of representing the video. Un-
like surveillance videos, these trajectories are unconstrained
with respect to direction and position. Sub-trajectory based
matching as done by Chang et al. [15] is ideal for event
search where the trajectories are short and number of sub-
trajectories is limited. In case of longer trajectories, the
temporal information is also important alongside spatial in-
formation and cannot be ignored.

Our work is inspired and closely related to the work by
Bashir et al. [25]. They have represented trajectories as a
temporal ordering of the sub-trajectories by using Principal
Component Analysis, Spectral Clustering and String Match-
ing. Like theirs, our work also relies on a stable trajectory
extraction algorithm. But there are two fundamental dif-
ferences between the two. Firstly, they have used query by
example where the intention was to retrieve a similar set of
trajectories from the database. Our query is sketch based,
where the user intends to find an exact match. Since it is
sketch-based, different users interpret the same motion ac-
cording to their own perception, which differs quantitatively.
Secondly, we have introduced a novel scoring mechanism
that combines motion features like shape and direction in
an efficient manner to refine the results.



3. MOTION FEATURES
We first define a feature representation that captures the

constraints among dimensions rather than their quantitative
values [26]. In Sections 3.1 and 3.2, we explain our strategy
to model the sub-trajectories in user sketch and the origi-
nal videos respectively. At the end of Section 3.2, we show
how these sub-trajectories can be used to model the entire
trajectory. In Section 3.3, we derive another set of features
that represent directional characteristics of motion.

3.1 User Sketch
Query or sketch is obtained as a collection of (x, y, t)

points where x, y and t represent x coordinate, y coordinate
and time respectively. While collecting data, the users were
shown some videos, randomly sampled from the dataset and
then asked to recollect as many motion trajectories from the
videos as they can. But the match was carried out with the
longest one among all the trajectories in a given video. In
our case, longer trajectories were assumed to be more salient
than shorter ones. In a different scenario, there could be
other metrics to measure saliency.

The trajectory is first de-noised, freed from outliers and
smoothened using the conventional spline interpolation [27].
A video may contain multiple motions. The trajectories are
then normalized (empirical results showed that height, nor-
malized to 100 gave best results) in such a way that the
relative position and size of the trajectories remain intact.
The aspect ratio of each trajectory is preserved. This rel-
ative normalization strategy gives the sketch translational
invariance and also preserves their relative attributes. The
trajectories are subsequently segmented based on curvature.
We call each segment a motion segment (m-segment), a
term inspired from ballistic segment, frequently used in mod-
elling handwriting [28] (see Figure 3). Here, we assume that
a motion can be random and unconstrained but the sub-
trajectories follow a strict pattern. Our assumption is based
on some fundamental principles of rigid body mechanics and
handwriting. Unless interrupted by some external force,
the m-segments are either linear or circular or parabolic in
shape. If we consider each m-segment as an arc of a circle,
then the corresponding centre and radius can be used to
represent the arcs.

Eachm-segment has the form: S = {[xi, yi] | i = 1, 2, . . . n}.
A circle is fit by minimizing the squared radial deviations,
expressed as

J = min
x0,y0,r

n∑
i

x2i + y2i − 2x0xi − 2y0yi + x20 + y20 + r2

(1)
where [x0, y0] and r is the centre and radius of the circle,
respectively.

Let, −2x0 = a1,−2y0 = a2 and x20 + y20 + r2 = a3. Then
Equation 1 can be expressed in matrix form as

(X Y 1)(a1 a2 a3)T = −(X ∗X + Y ∗ Y ) (2)

where ∗ is the Hadamard product of two matrices and XT =
[x1 x2 . . . xn] and Y T = [y1 y2 . . . yn] and [xi, yi] ∈ S.
Solving Equation 2, we get

(a1 a2 a3) = −(X Y 1)+ × (X ∗X + Y ∗ Y ) (3)

where P+ denotes the Moore Penrose Pseudo-Inverse of ma-
trix P. Thus from the solution of equation 2, we can find our
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Figure 3: A sample motion with the corresponding
m-segments: (a) Original (b) Smooth and Normal-
ized (c) m-segments (d) Circle-Based Representa-
tion

desired circle parameters as

x0 = −a1
2

y0 = −a2
2

r =

√
a21 + a22

4
− a3

(4)

It is interesting to note that small, medium and large val-
ues for radius indicate circular, parabolic and linear motion
respectively and giving us a qualitative understanding of the
m-segment. The radius is mapped to [0, 1] using a hyper-
bolic tan function. The notion of approximate position of
segment S can be represented using the mean [xµ, yµ], which
was experimentally found to be less variant than the centre
of the circle. Subsequently, S is represented as,

S = ( xµ, yµ, r, m, s )

where m is the slope of the best line fitting to the points
in each segment. The parameters are estimated using a least
squares approximation. The slope has been experimentally
quantized to 8 directions (N,S,E,W,NW,NE,SW,SE) to min-
imize the perceptual variability. s represents the normalized
length of the arc.

3.2 Original Trajectory
In this work, our focus has been more on modelling user

perception rather than trajectory extraction from videos.
So we have used a set of 100 artificially simulated simple
videos (Section 5) where the background is static and there
are only a few objects. But the motion paths have been
made very complex. We have also collected a set of 100 Pool
Shot videos from many international matches, uploaded on
YouTube. Motion trajectories were extracted from the real
dataset in the following manner (Figure 4).

Firstly, we have denoised each frame using a median fil-
ter. Then we have extracted only the board region from each
frame using a mask selected from the average frame. Next,



(a) (b) (c)

Figure 4: (a) A Background Extracted Frame (b) Trajectory Extracted from a Video (c) Trajectory after
smoothing and segmentation

we have done background extraction using a thresholding
based method. The moving components were tracked in the
video using a Gaussian Mixture Model [8] over the binarized
frames. The trajectories were extracted from the video using
a Kalman Filter [12]. Multiple object tracking was imple-
mented using a variant of Hungarian Algorithm [29]. The
raw trajectories were pre-processed and the qualitative fea-
tures for a segment i.e S =< xµ, yµ, r, m, s > are ob-
tained in a similar manner, as discussed in the previous sec-
tions. The m-segments extracted from all the trajectories in
the database are clustered using the k − means algorithm
to obtain a codebook containing k cluster centers.

The complete trajectory is modelled as a histogram of m-
segments, with each bin of the histogram corresponding to
each cluster center in the codebook. So, for each trajectory
in the database we create a bag-of-motions representation,
similar to the bag-of-visual words representation used to rep-
resent images with SIFT features [30]. This same codebook
is used to generate the bag-of-motions representation for the
query as well.

3.3 Order, Direction and Scale
Histogram based features proposed until now do not cap-

ture the important motion properties: Temporal order, Di-
rection and Scale. As mentioned in Section 2, the order in
which the sub-trajectories appear, plays a very important
role in representing the motion. But it is difficult to com-
pare two motion trajectories having unequal length. Dy-
namic Time Warping (DTW) [31] is an efficient tool which
is used to compare time-series data having unequal length.
We use DTW to compare the motion trajectories.

We find the change of direction across time. First we re-
sample the trajectory to remove the variability in the density
of points due to varying speed of the hand movements (Fig-
ure 3.3). Next, we divide a trajectory into equipoint seg-
ments (segments having equal number of points), and the
distribution of direction across time has been approximated
by fitting a line to each of the equipoint segments. The angle
made by each equipoint segment with the horizontal X-axis
has been mapped to [−1, 1] using a sine function. (Figure
5(c)).

Similarly, scale of motion is an important factor for identi-
fying motion trajectories. The scale is defined as the change
of the current position with respect to the starting point.
For example, a counter-clockwise spiral motion can be con-
verging or diverging. Shape histogram or change of direction
across time cannot differentiate between such motions. But
the change of scale across time distinguishes the two.
Summarizing the previous discussions, it can be said that in

our query we have conveyed four fold information. Firstly,
we have conveyed shape information and the approximate
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Figure 5: A Spiral Motion from our synthetic
dataset (a) Points sampled equidistantly in each seg-
ment (b) Directions tracked for each equipoint seg-
ment (c) Temporal Change of Direction (d) Tempo-
ral Change of scale

position of each segment in the trajectory in the bag-of-
motions representation. Secondly, we have features that
represent the change of direction and scale of the trajec-
tory across time. Notably, none of the features we derive
here use any absolute information. All the features approx-
imate the overall motion, which is intended, to remove the
perceptual variability among different users. These features
give us a qualitative understanding of the motion trajectory.

4. RETRIEVAL
In this section, we propose our multilevel search strat-

egy. Once a query is given, four sets of features described in
the previous sections are extracted and the query is passed
through a cascaded filter having four stages.

In the first stage the query histogram is matched with
the database of bag-of-motions. Each sample Xi in the

database is assigned a score α
(1)
i . This level of filtering finds

the trajectories that have similar sub-trajectories. At the
next level, a Dynamic Time Warping (DTW) [31] match is
performed between the query Q = [S1, S2, . . .SM ] and each
sample in database Ti = [S1, S2, . . .SN ], where each Si is
the feature derived in Section 3.1 and 3.2. A new score
α
(2)
i is obtained at this level. Apart from preserving the

order, the match at this level also facilitates partial trajec-
tory match. At the next two levels DTW match is carried
out between the features derived in Section 3.3 and scores



ResultsFilters

1. Bag Of Motions

2. Ordered BoM

3. Direction

4.  Scale

1 2 3 44 3 2 1

Query Database

1

2

3

4

Update Score

Figure 6: Multilevel Retrieval Strategy : The query and original videos in the database ( top-left and top-
right ) are processed and four sets of features are derived in each case. There are four different levels of
filtering ( four blocks vertically arranged at the center ). The functionality of each filter has been shown in
the table ( bottom-left ). After each level of filtering, the score is updated by the score update module (
bottom-right ). The videos are retrieved based on the final score.

α
(3)
i and α

(4)
i are obtained. The final score α =

∑
α(i) is

calculated. Each of the scores are calculated as a function
of the distance of the query from each sample, computed
at each level i.e α(i) = f(d(i)). The value of α is updated
after every stage in a cumulative fashion. The final results
are retrieved based on the value of α after the fourth stage.
The algorithm has been explained using a block diagram in
Figure 6.

Two important aspects should be considered here. Firstly,
although multiple trajectories were extracted from a video,
our current system uses only one trajectory sketch to search
for the video. Chance of choosing a particular trajectory
depends entirely on the user. But in our database we store
all the trajectories. However, extending the system to allow
a user to specify multiple trajectories in a video can further
refine the results. We have not implemented this in our
query interface as of now, but we intend to do this in our
future work.

Secondly, our current system does not behave like a regu-
lar cascade and it differs from traditional cascaded systems.
Currently, the search-space is not reduced at each level in
our algorithm as it happens in cascaded detectors such as
[32]. But please note that with successive stages, our fea-
tures and matching go from weak and efficient to discern-
ing and complex. We can discard samples with the lowest
matching scores at each stage, making it a regular cascade.

5. DATASET
We have synthesized a dataset, which contains 100 videos

of one, two and three body motions. The videos are divided
into five sets : (a) a set with linear motions resembling Pool
shots (b) a set with mixture of linear and exponential curves
as trajectories that resemble moving cars and (c) a third set

with respective motions like circular (clockwise and counter
clockwise), sinusoidal and spiral. (d) a set of motions that
resemble typical motions like sea-saw ride, people jumping
side by side, divers diving etc. (e) where the motion trajec-
tories are regular geometric shapes like square and triangle.
It was found that in animation videos, most of the motion
trajectories have regular geometric shapes. The synthetic
dataset was created keeping in mind all the different kinds
of videos which later can be explored with this kind of re-
trieval strategy.

We also tested our method on real pool videos. Full match
pool videos were segmented into shots using a histogram
based approach [33]. Then a dataset of 100 clean videos
having a top view of the pool board was created. Each
video was shown to different users and they were asked to
group the videos which they found perceptually similar.

It was difficult to divide the pool shots into a specific num-
ber of classes. To achieve this, we asked multiple users to
cluster/group the videos based on their similarity. Pairs of
videos within a group were assigned a high similarity score
and in different group were given a lower similarity. The
similarity scores from multiple users were integrated into a
single score matrix and an automatic clustering was per-
formed to arrive at the final class divisions. It was found
that the users could identify five different groups from the
dataset. The distinction between different classes were done
mainly based on shape, direction and position of the shots.
The dataset is available for download and can be found on-
line on our website3.

For collecting query sketches, we sampled 50 videos from
each of the datasets and then showed 20 videos (10 from each
set) to a user. The user was asked to watch the videos care-

3http://cvit.iiit.ac.in/projects/sketchbasedretrieval/



0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

Simple DTW
First Level
Second Level
Third Level
Fourth Level

(a) Pool Videos dataset
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(b) Synthetic Motion dataset

Figure 7: Precision Recall Curves (view in colour)

fully and then sketch two most salient motions that he/she
could remember from each video. The (x, y, t) coordinates
of the sketches were recorded. The experiment was carried
with 25 users. Each video had 5 sample queries.

6. EXPERIMENTS AND RESULTS
We have evaluated the effectiveness of our representation

using three different standard evaluation metrics as follows.
Precision Recall : The PR curves generated from our
experiments with real and synthetic datasets are shown in
Figures 7 (a) and 7 (b) respectively. It can be seen that the
area under the curve gradually increases as the query score
gets updated with each filter. Simple DTW of the points
performs worst. Only Bag-of-Motions based nearest neigh-
bour search performs poorly (red curve). But the results
improve significantly as soon as the temporal information is
also used and the scores are updated in the next filter (blue
curve). The precision is further tuned using the next filters
and the best curve is obtained after the final stage of filtering
is completed. There is a significant improvement after the
second level than in third and fourth levels. This is because
the order in which the sub-trajectories appear play a vital
role in distinguishing motion trajectories. We believe the
improvement reflects the importance of temporal ordering
in modelling long trajectories. Also precision-recall curves
in case of the synthetic dataset are better than those in case
of the real dataset. This is mainly because, the synthetic
dataset has more inter-class variance. The motions have
fundamental differences with respect to shape and spatio-
temporal properties. But in case of Pool Videos, the tra-
jectories are mostly linear (except the trick shots) and have
very little inter-class variance.
Mean Reciprocal Rank : We mentioned in Section 2 that
our retrieval strategy is intended to find the exact match
instead of a class of matches. We found Mean Reciprocal
Rank as a good measure to test such an algorithm. The
multiplicative inverse of the rank of the first correct answer
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(a)Pool Videos dataset
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(b) Synthetic Motion dataset

Figure 8: Reciprocal Ranks : A high value near one
indicates that most of the queries retrieved the exact
match as the first result. A value of 0.5 indicates
that the second result was the correct match and so
on.

in a set of retrieval results is obtained. The mean reciprocal
rank is the average of the reciprocal ranks of results for a
sample of queries.

MRR =
1

|Q|

|Q|∑
i=1

1

ranki

We calculated the MRR with the same set of queries. It
was found to be 0.5 and 0.4 on the real and synthetic videos
respectively. It indicates that with this approach, the chance
of finding an exact match within the top few results is high,
which is desirable in our case. Figure 8 demonstrates the
histogram of reciprocal ranks of all the queries.
Accuracy : We defined accuracy in the following manner.
A search was considered successful, if the exact match ap-
peared in the top k results. Figure 9 demonstrates the ac-
curacy values on the real and synthetic dataset for k values
ranging from 1 to 15. Figure 10 shows an example query
with the top k retrieved videos.

7. CONCLUSIONS AND FUTURE WORK
In this work, we have addressed a lesser explored aspect of

an extensively explored problem of motion trajectory based
video retrieval.

One of the limitations of our algorithm is that it relies on
strong foreground segmentation and trajectory extraction
algorithms which are themselves unsolved problems in com-
plicated videos. Challenges like dynamic background, cam-
era shakes, shadow, camouflage etc. [34, 35] are active ar-
eas of research in Computer Vision. Moreover, this method
cannot be used for retrieving videos where motion is not the
most salient feature. The problem can also become very ill
posed and difficult when the query is so complicated that it
cannot be described in any unimodal format.



Figure 10: The figure on the left is the query. On the right, the four rows correspond to the four stages of
our filter. Elements in each row correspond to the top 5 results at each iteration, after the score is updated.
The exact match is highlighted in green. At the first level, the exact match is not found in top 5. But it
appears after Stage 2 and maintains its position within the top 5 results till stage 4
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(a) Pool Videos dataset
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Figure 9: Accuracy at different top K retrievals. Ex-
act accuracy values at different k are annotated on
the curve. It can be observed that the accuracy
reaches 70% within top-10 results for both the real
and synthetic dataset.

However, it is different from most of the existing sketch
based systems because the query is unconstrained. No ini-
tial frame is supplied to the user. We have proposed a new
representation for the trajectories of objects in videos and
the sketch-based query. The features, which depend on per-
ceptual similarity, are qualitative in nature and robust to
user-level variations. Moreover, instead of using only spa-
tial or temporal features the technique uses a combination
of those by implementing a novel cumulative scoring mech-
anism.

A better understanding of the motion perception in hu-
mans will enable us to develop more robust features. But,
our method can be applied on top of any trajectory estima-
tion method. Also, it can be refined further with object level
features like shape, colour and size. Also the fact, that we
have shown that our method can be used on real Pool videos

with satisfactory results, gives us hope that this approach
can be extended to more complicated videos and used to
develop accurate and robust multi-modal systems in future.
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