Journal of Network and Computer Applications 88 (2017) 50-71

Contents lists available at ScienceDirect

NE g

COMPUTER
APPLICATIONS

Journal of Network and Computer Applications

journal homepage: www.elsevier.com/locate/jnca

Review
Load-balancing algorithms in cloud computing: A survey @chssMark

Einollah Jafarnejad Ghomi®, Amir Masoud Rahmani®* , Nooruldeen Nasih Qader”

2 Science and Research Branch, Islamic Azad University, Tehran, Iran
> Computer Science, University of Human Development, Sulaimanyah, Iraq

ARTICLE INFO ABSTRACT

Keywords: Cloud computing is a modern paradigm to provide services through the Internet. Load balancing is a key aspect
Cloud computing of cloud computing and avoids the situation in which some nodes become overloaded while the others are idle
Load balancing or have little work to do. Load balancing can improve the Quality of Service (QoS) metrics, including response

Task scheduling

time, cost, throughput, performance and resource utilization.
Hadoop MapReduce

In this paper, we study the literature on the task scheduling and load-balancing algorithms and present a new
classification of such algorithms, for example, Hadoop MapReduce load balancing category, Natural
Phenomena-based load balancing category, Agent-based load balancing category, General load balancing
category, application-oriented category, network-aware category, and workflow specific category. Furthermore,
we provide a review in each of these seven categories. Also. We provide insights into the identification of open
issues and guidelines for future research.

1. Introduction balancing algorithms and mechanisms in cloud environments:

Cloud computing is a modern technology in the computer field to e Milani and Navimipour (2016) have presented a systematic review
provide services to clients at any time. In a cloud computing system, of the existing load balancing techniques. They classified the existing
resources are distributed all around the world for faster servicing to techniques based on different parameters. The authors compared
clients (Dasgupta et al., 2013; Apostu et al., 2013). The clients can some popular load-balancing algorithms and presented their main
easily access information via various devices such as laptops, cell properties, including their advantages and disadvantages. They also
phones, PDAs, and tablets. Cloud computing has faced many chal- addressed the challenges of these algorithms and mentioned the
lenges, including security, efficient load balancing, resource scheduling, open issues. However, their work lacks a discussion regarding the
scaling, QoS management, data center energy consumption, data lock- load balancing and task scheduling techniques in Hadoop
in and service availability, and performance monitoring (Kaur et al., MapReduce that is an issue nowadays.

2014; Malladi et al., 2015). Load balancing is one of the main ® Mesbahi and Rahmani (2016) have studied state of the art load
challenges and concerns in cloud environments;(Jadeja and Modi, balancing techniques and the necessary requirements and consid-
2012) it is the process of assigning and reassigning the load among erations for designing and implementing suitable load-balancing
available resources in order to maximize throughput, while minimizing algorithms for cloud environments. They presented a new classifica-
the cost and response time, improving performance and resource tion of load balancing techniques, evaluated them based on suitable
utilization as well as energy saving (Singh et al., 2016; Goyal et al., metrics and discussed their pros and cons. They also found that the
2016). Service Level Agreement (SLA) and user satisfaction could be recent load balancing techniques are focusing on energy saving.
provided by excellent load balancing techniques. Therefore, providing However, their work suffers from the lack of simulating the load
the efficient load-balancing algorithms and mechanisms is a key to the balancing techniques by simulator tools; in addition, a discussion of
success of cloud computing environments. Several researches have open issues and future topics that researchers should focus on is also
been done in the field of load balancing and task scheduling in cloud missing.

environments. However, our studies showed that despite the key role of

load-balancing algorithms in cloud computing, especially in the advent e Kanakala et al. (2015a, 2015b) have analyzed the performance of
of big data, there are a few comprehensive reviews of these algorithms. load balancing techniques in cloud computing environments. They
First, we mention a few recent papers that have reviewed the load- studied several popular load-balancing algorithms and compared

* Corresponding author.
E-mail addresses: e jafarnejad @srbiau.ac.ir (E. Jafarnejad Ghomi), rahmani@srbiau.ac.ir (A. Masoud Rahmani), nooruldeen.qader@uhd.edu.iq (N. Nasih Qader).

http://dx.doi.org/10.1016/j.jnca.2017.04.007

Received 31 December 2016; Received in revised form 6 March 2017; Accepted 7 April 2017
Available online 08 April 2017

1084-8045/ © 2017 Elsevier Ltd. All rights reserved.

http://www.sciencedirect.com/science/journal/10848045
http://www.elsevier.com/locate/jnca
http://dx.doi.org/10.1016/j.jnca.2017.04.007
http://dx.doi.org/10.1016/j.jnca.2017.04.007
http://dx.doi.org/10.1016/j.jnca.2017.04.007
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jnca.2017.04.007&domain=pdf

E. Jafarnejad Ghomi et al.

them based on metrics such as throughput, speed, complexity, etc.
They concluded that none of the reviewed algorithms were able to
perform well in all the required areas of load balancing. However,
they did not mention the current trend, future works, and open
issues in the field of load balancing in cloud environments.

e [vanisenko and Radivilova (2015) have studied major load-balan-
cing algorithms in distributed systems. They classified the most used
load-balancing algorithms in distributed systems, including cloud
technology, cluster systems, and grid systems. They also presented a
comparative analysis of different load-balancing algorithms on
various efficiency indicators such as throughput, migration time,
response time, etc. In their work, a description of the main features
of load-balancing algorithms, analysis of their advantages, and
defaults of each type of algorithms is also presented. Nevertheless,
a discussion of challenges, open issues, and future trends is similarly
missing.

® Farrag and Mahmoud (2015) have reviewed intelligent cloud
algorithms for load balancing problems, including Genetic
Algorithms (GA), Ant Colony Optimization (ACO), Artificial Bee
Colony (ABC) and Particle Swarm Optimization (PSO). They also
proposed an implementation of Ant Lion Optimizer (ALO) based
cloud computing environment as an efficient algorithm, which was
expected to supply the outcomes in load balancing. The authors
found that these algorithms showed a better performance than
traditional ones in terms of QoS, response time, and makespan.
However, they did not evaluate their proposed algorithm in different
scales of cloud systems by comparing its results.

To help the future researchers in the field of load balancing in
designing novel algorithms and mechanisms, we surveyed the litera-
ture and analyzed state of the art mechanisms. Therefore, the purpose
of this paper is to survey the existing techniques, describe their
properties, and clarify their pros and cons. The main goals of this
paper are as follows:

e Studying the existing load balancing mechanisms

e Providing a new classification of load balancing mechanisms

e C(larifying the advantages and disadvantage of the load-balancing
algorithms in each class

e Outlining the key areas where new researches could be done to
improve the load-balancing algorithms

The rest of the paper is organized as follows. Section 2 provides a
literature review for the model, metrics, policies, and taxonomy of load-
balancing algorithms. Challenges in cloud-based load-balancing algo-
rithms are explained in Section 3. Section 4 provides a relatively
comprehensive review of literature on the existing load balancing
techniques and presents a new classification. Section 5 provides a
discussion of the mentioned techniques and some useful statistics.
Open issues are outlined in Section 6. Finally, in Section 7, we conclude
our survey and provide future topics.

2. The load balancing model, metrics, and policies in
literature

The model of load balancing is shown in Fig. 1 (Gupta et al., 2014),
where we can see the load balancer receives users’ requests and runs
load-balancing algorithms to distribute the requests among the Virtual
Machines (VMs). The load balancer decides which VM should be
assigned to the next request. The data center controller is in charge of
task management. Tasks are submitted to the load balancer, which
performs load-balancing algorithm to assign tasks to a suitable VM.
VM manager is in charge of VMs. Virtualization is a dominant
technology in cloud computing. The main objective of virtualization
is sharing expensive hardware among VMs. VM is a software imple-
mentation of a computer that operating systems and applications can

51

Journal of Network and Computer Applications 88 (2017) 50-71

| Data Center Controller |

Load Balancer
(load balancing algorithms)
| Virtual Machine Manager |
WistualiNEichine Il Virtual)N Iachin¢ WistualdVlachine
IVonitow Monitor IMonitor]
Physical Physical Physical
Server Server Server

Fig. 1. The model of load balancing (Gupta et al., 2014).

run on. VMs process the requests of the users. Users are located all
around the world and their requests are submitted randomly. Requests
have to be assigned to VMs for processing. Therefore, the task assign-
ment is a significant issue in cloud computing. If some VMs are
overloaded while others are idle or have a little work to do, QoS will
decrease. With the decreasing of QoS, users become unsatisfied and
may leave the system and never return. A hypervisor or Virtual
Machine Monitor (VMM) is used to create and manage the VMs.
VMM provides four operations: multiplexing, suspension (storage),
provision (resume), and life migration (Hwang et al., 2013). These
operations are necessary for load balancing. In Ivanisenko and
Radivilova (2015) it has been mentioned that load balancing has to
consider two tasks: resource allocation and task scheduling. The result
of these two tasks is the high availability of resources, energy saving,
increasing the utilization of resources, reduction of cost of using
resources, preserving the elasticity of cloud computing, and reduction
of carbon emission.

2.1. Load balancing metrics

In this subsection, we review the metrics for load balancing in cloud
computing. As mentioned before, researchers have proposed several
load-balancing algorithms. Literature in load balancing (e.g., Daraghmi
et al., 2015; Rastogi et al., 2015; Lua et al., 2011; Randles et al., 2010;
Abdolhamid et al., 2014; Abdullahi et al.,, 2015;, Kansal et al.,
2012;Milani and Navimipour, 2016) proposed metrics for applying
load-balancing algorithms and we summarize them as follows:

® Throughput: This metric is used to calculate the number of
processes completed per unit time.

® Response time: It measures the total time that the system takes to
serve a submitted task.

® Makespan: This metric is used to calculate the maximum comple-
tion time or the time when the resources are allocated to a user.

® Scalability: It is the ability of an algorithm to perform uniform load
balancing in the system according to the requirements upon
increasing the number of nodes. The preferred algorithm is highly
scalable.

® Fault tolerance: It determines the capability of the algorithm to
perform load balancing in the event of some failures in some nodes
or links.

® Migration time: The amount of time required to transfer a task from

E. Jafarnejad Ghomi et al.

an overloaded node to an under-loaded one.

® Degree of imbalance: This metric measures the imbalance among
VMs.

® Performance: It measures the system efficiency after performing a
load-balancing algorithm.

® Energy consumption: It calculates the amount of energy consumed
by all nodes. Load balancing helps to avoid overheating and there-
fore reducing energy usage by balancing the load across all the
nodes.

® Carbon emission: It calculates the amount of carbon produced by all
resources. Load balancing has a key role in minimizing this metric
by moving loads from underloaded nodes and shutting them down.

2.2. Taxonomy of load-balancing algorithms

In this subsection, we present the existing classification of load-
balancing algorithms. In some studies (Rastogi, 2015; Mishra et al.,
2015; Bhatia et al., 2012) load-balancing algorithms were classified
based on two factors: the state of the system and person who initiated
the process. Algorithms based on the state of the system are classified
as static and dynamic. Some static algorithms are Round Robin, Min-
Min and Max-Min Algorithms, and Opportunistic Load Balancing
(OLB) (Aditya et al., 2015). Some of the dynamic algorithms include
examples such as Ant Colony Optimization (ACO) (Nishant et al.,
2012), Honey Bee Foraging (Babu et al., 2013), and Throttled (Bhatia
et al., 2012). Nearly all dynamic algorithms follow four steps (Neeraj
et al., 2014; Rathore and Chana, 2013; Rathore et al., 2013):

® Load monitoring: In this step, the load and the state of the
resources are monitored

e Synchronization: In this step, the load and state information is
exchanged.

® Rebalancing Criteria: It is necessary to calculate a new work
distribution and then make load-balancing decisions based on this
new calculation.

e Task Migration: In this step, the actual movement of the data
occurs. When system decides to transfer a task or process, this step
will run.

The characteristics of static algorithms are:
1. They decide based on a fixed rule, for example, input load

. They are not flexible
3. They need prior knowledge about the system.

N

The characteristics of dynamic algorithms are:

1. They decide based on the current state of the system
2. They are flexible
3. They improve the performance of the system

Dynamic algorithms are divided into two classes: distributed and
non-distributed. In the distributed approach, all nodes execute the
dynamic load-balancing algorithm in the system and the task of load
balancing is shared among them (Rastogi et al., 2015). The interactions
of the system nodes take two forms: cooperative and non-cooperative.
In the cooperative form, the nodes work together to achieve a common
objective, for example, to decrease the response time of all tasks. In the
non-cooperative form, each node works independently to achieve a
local goal, for example, to decrease the response time of a local task.
Non-distributed algorithms are divided into two classes: centralized
and semi-distributed. In the centralized form, a single node called the
central node executes the load-balancing algorithms and it is comple-
tely responsible for load balancing. The other nodes interact with the
central node. In the semi-distributed approach, nodes in the system are
divided into clusters and each cluster is of centralized form. The central

52

Journal of Network and Computer Applications 88 (2017) 50-71

Load Balancing Algorithms

| Based on system state | | Based on who initiated the peocess |

| static | |[pynamic| |senderinitiated| [Reciever initiated| [symmetric|

[sub-optimal| [~ optimal |

|Appmximale| | Heuristic | | Distributedl |Non-Distributed|

|r‘ i I |Ilnr|.(‘ perati | |r' | |Semi-DistribuiEd

p

Fig. 2. State of the art classification of load balancing strategies.

nodes of the clusters achieve load balancing of the system. Static
algorithms are divided into two categories: optimal, and sub-optimal
(Neeraj et al., 2014). In optimal algorithms, the data center controller
determines information about the tasks and resources and the load
balancer can make an optimal allocation in a reasonable time. If the
load balancer could not calculate an optimal decision for any reason, a
sub-optimal allocation is calculated. In an approximate mechanism, the
load-balancing algorithm terminates after finding a good solution,
namely, it does not search the whole solution space. After that, the
solution is evaluated by an objective function. In a heuristic manner,
load-balancing algorithms make reasonable assumptions about tasks
and resources. In this way, these algorithms make more adaptive
decisions that are not limited by the assumptions. Algorithms in a
sender-initiated strategy make decisions on arrival or creation of tasks,
while algorithms in a receiver-initiated strategy make load-balancing
decisions on the departure of finished tasks. In a symmetric strategy,
either sender or receiver makes load-balancing decisions (Daraghmi
et al., 2015; Alakeel et al., 2010; Rathore and Channa, 2011). A state of
the art classification schema is shown in Fig. 2.

2.3. Policies in dynamic load-balancing algorithms

As mentioned before, dynamic load-balancing algorithms use the
current state of the system. For this purpose, they apply some policies
(Daraghmi et al., 2015; Kanakala et al., 2014; Alakeel et al., 2010;
Yahaya et al., 2011; Mukhopadhyay et al., 2010; Babu et al., 2013;
Kumar and Rana, 2015). These policies are:

Transfer Policy: This policy determines the conditions under
which a task should be transferred from one node to another.
Incoming tasks enter the transfer policy, which based on a rule
determines the transfer of the task or processes it locally. This rule
relies on the workload of each of the nodes. This policy includes task
re-scheduling and task migration.

Selection policy: This policy determines which task should be
transferred. It considers some factors for task selection, including
the amount of overhead required for migration, the number of non-
local system calls, and the execution time of the task.

Location Policy: This policy determines which nodes are under-
loaded, and transfers tasks to them. It checks the availability of
necessary services for task migration or task rescheduling in the
targeted node.

Information Policy: This policy collects all information regarding
the nodes in the system and the other policies use it for making their
decision. It also determines the time when the information should be
gathered. The relationships among different policies are as follows.
Incoming tasks are intercepted by the transfer policy, which decides
if they should be transferred to a remote node for the purpose of load
balancing. If the task is not eligible for transferring, it will be
processed locally. If the transfer policy decides that a task should be
transferred, the location policy is triggered in order to find a remote

E. Jafarnejad Ghomi et al.

Table 1
Summary of load balancing policies.

Journal of Network and Computer Applications 88 (2017) 50-71

Policy Transfer policy Selection policy Location policy Information policy
Description Includes: Factors for selection ataskto ® Find suitable partner for transfer task. ® Determine the time when the information
transfer: ® Checks the availability of the services about nodes has to gather.
necessary for migration within the Partner.
® task re-scheduling ® Overhead of migration. ® There of three types of information

® A number of the remote-
system calls.

® The execution time of the
task.

task migration
Based on thresholds in terms
of load units.

policy:
. Demand-driven policy.
Periodic policies.
State-change driven policy.

@ N

node for processing the task. If a remote partner is not found, the
task will be processed locally, otherwise, the task will be transferred
to the remote node. Information policy provides the necessary
information for both transfer and location policies to assist them
in making their decisions. These descriptions are summarized in
Table 1.

3. Challenges in cloud-based load balancing

Review of the literature shows that load balancing in cloud
computing has faced some challenges. Although the topic of load
balancing has been broadly studied, based on the load balancing
metrics, the current situation is far from an ideal one. In this section,
we review the challenges in load balancing with the aim of designing
typical load balancing strategies in the future. Some studies have
mentioned challenges for the cloud-based load balancing (Palta and
Jeet, 2014; Nuaimi et al., 2012; Kanakala and Reddy, 2015a, 2015b;
Khiyaita et al., 2012; Ray and Sarkar, 2012; Sidhu and Kinger, 2013),
including:

3.1. Virtual machine migration (time and security)

The service-on-demand nature of cloud computing implies that
when there is a service request, the resources should be provided.
Sometimes resources (often VMs) should be migrated from one
physical server to another, possibly on a far location. Designers of
load-balancing algorithms have to consider two issues in such cases:
Time of migration that affects the performance and the probability of
attacks (security issue).

3.2. Spatially distributed nodes in a cloud

Nodes in cloud computing are distributed geographically. The
challenge in this case is that the load balancing algorithms should be
designed so that they consider parameters such as the network
bandwidth, communication speeds, the distances among nodes, and
the distance between the client and resources.

3.3. Single point of failure

As mentioned in Section 2, some of the load-balancing algorithms
are centralized. In such cases, if the node executing the algorithm
(controller) fails, the whole system will crash because of that single
point of failure. The challenge here is to design distributed or
decentralized algorithms.

3.4. Algorithm complexity

The load-balancing algorithms should be simple in terms of
implementation and operation. Complex algorithms have negative
effects on the whole performance.

53

3.5. Emergence of small data centers in cloud computing

Small data centers are cheaper and consume less energy with
respect to large data centers. Therefore, computing resources are
distributed all around the world. The challenge here is to design
load-balancing algorithms for an adequate response time.

3.6. Energy management

Load-balancing algorithms should be designed to minimize the
amount of energy consumption. Therefore, they should follow the
energy-aware task scheduling methodology (Vasic et al., 2009).
Nowadays, the electricity used by Information Technology (IT) equip-
ment is a great concern. In 2005, the total energy consumed by IT
equipment was 1% of total power usage in the world (Koomey et al.,
2008). Google data centers have consumed 260 million Watts of energy
that is equal to 0.01% of the world's energy [37]. Research has shown
that on an average, 30% of cloud servers exploit 10-15% of the
resource capacity. Limited resource utilization increases the cost of
cloud center operations and power usage (Vasic et al., 2009; Koomey
et al., 2008). Due to the tendency of organizations and users to use
cloud services, in the future, the installations of cloud providers will
expand and thus the energy usage in this industry will increase rapidly.
This increase in energy usage not only increases the cost of energy but
also increases carbon-emission. If the number of servers in data centers
reaches a threshold, their power usage can be as much as that of a city.
High energy consumption has become a major concern for industry
and society (Kansal et al., 2012).

What is the role of load balancing mechanisms in energy efficiency?
In this section, we answer this question. Our survey of the literature
[Ahmad et al., 2015; Vasic et al., 2009; Koomey et al., 2008) clarified
that developing energy-saving approaches in load balancing is on the
way. Load-balancing algorithms can be designed in ways that maximize
the utilization of a physical server. For this purpose, they monitor the
permanent workload of servers and migrate VMs from under-loaded
physical servers to other servers and force some of the servers to enter
a sleep state (shrinking the set of active machines). In Vasic and
Barisits (2009) it has been shown that energy efficiency reaches a peak
in full utilization of a machine. Energy efficient load balancing
mechanisms have to make a certain contribution to power manage-
ment too. In this way, load-balancing mechanisms are necessary for
achieving green computing in a cloud. In green computing, two factors
are important: Energy usage reduction and carbon emission reduction.

4. Survey on existing load balancing mechanisms

In this section, we survey the literature on the existing mechanisms
for load balancing in cloud environments. For this purpose, we studied
a number of journals and conference proceedings to present a new
classification of them. We have classified the existing mechanisms into
seven categories:

o Hadoop MapReduce load balancing category (HMR-category in this

E. Jafarnejad Ghomi et al.

JobTracker

TaskTracker

TaskTracker

TaskTracker
Task
execution —|

slot

Data DataNodel
blocks

Rackl1

Fig. 3. The architecture of Hadoop.

paper)
e Natural Phenomena-based load balancing category (NPH-based in
this paper)
Agent-based load balancing category (Agent-based in this paper)
General load balancing category (GLB-category in this paper)
Application oriented load balancing (AOLB-category in the paper)
Network-aware task scheduling and load balancing (NATSLB-cate-
gory in the paper)
o Workflow specific scheduling algorithms (WFSA-category in the
paper)

In the next subsections, we will address each category.
4.1. An Introduction to Hadoop MapReduce

A large volume of data is produced daily, for example from,
Facebook, Twitter, Telegram, and WEB. These data sources together
form big data. Hadoop is an open source framework for the storage and
processing of big data on clusters of commodity machines (Hefny et al.,
2014; Chethana et al., 2016; Dsouza et al., 2015). We have summarized
the architecture of Hadoop in Fig. 3. Hadoop consists of two core
components, namely Hadoop Distributed File System (HDFS) for data
storage and MapReduce for data processing. HDFS and MapReduce
follow master/slave architecture. A master node in HDFS is called
NameNode and slaves or workers are called DataNodes. For storing a
file, HDFS splits it into fixed-size blocks (i.e., 64 MB per block) and
sends them to DataNodes. NameNode does mapping of blocks to
workers. In MapReduce, the master node is called a JobTracker and
slaves are called TaskTrakers. User's jobs are delivered to the
JobTracker that is responsible for managing the jobs over a cluster
and assigning tasks to TaskTrackers. MapReduce provides two inter-
faces called Map and Reduce for parallel processing. In general, the
Map and Reduce functions divide the data that they operate on for load
balancing purposes (Sui et al., 2011). TaskTracker executes each map
and reduce task in a corresponding slot. Nodes in Hadoop spread over
racks contained in one or several servers.

4.1.1. Load balancing schedulers in Hadoop

Hadoop simplifies cluster programming as it takes care of load
balancing, parallelization, task scheduling, and fault tolerance auto-
matically (Chethana et al., 2016; Vaidya et al., 2012; Rao et al., 2011).
In other words, MapReduce, as the Google privacy strategy, hides the
details of parallelization and distribution. Scheduling in Hadoop
MapReduce is achieved at two levels: job level and task level (Dsouza
et al., 2015). In job level scheduling, jobs are selected from a job queue
(based on a scheduling strategy); in task-level scheduling, tasks of the
job are scheduled. Scheduling strategies decide when and which
machine a task is to be transferred for processing (load balancing).
Hadoop uses First-In-First-Out (FIFO) strategy as its default schedul-
ing, but it is pluggable for new scheduling algorithms. The scheduler is

54

Journal of Network and Computer Applications 88 (2017) 50-71

a pluggable module in Hadoop, and users can design their own
dispatchers according to their actual application requirements (Khalil
et al.,, 2013). Researchers have developed several scheduling algo-
rithms for the MapReduce environment that contribute to the load
balancing (Manjaly et al., 2013; Patel et al., 2015; Dagli et al., 2014;
Selv et al., 2016). In addition, several load-balancing algorithms are
developed as a plugin to standard MapReduce component of Hadoop.
As mentioned before, any strategy used for an even load distribution
among processing nodes is called load balancing. The main purpose of
load balancing is to keep all processing nodes in use as much as
possible, and not to leave any resources in an idle state while some
other resources are being overloaded. Conceptually, a load-balancing
algorithm implements a mapping function between the tasks and
processing nodes (Destanoglu et al., 2008). According to this definition
of load balancing, scheduling algorithms do the task of load balancing.
For this reason, we first surveyed and analyzed the load balancing
schedulers in Hadoop.

4.1.1.1. FIFO scheduling. FIFO is the default scheduler in Hadoop
that operates on a queue of jobs. In this scheduler, each job is divided
into individual tasks that are assigned to a free slot for processing
(Shaikh et al., 2017; Li et al., 2015). A job dominates the whole cluster
and only after finishing a job, the next job can be processed. Therefore,
in this scheduler job wait time, especially for short jobs, increases and
no jobs could be preempted. The default FIFO job scheduler in Hadoop
assumes that the submitted jobs are executed sequentially under a
homogeneous cluster. However, it is very common that MapReduce is
being deployed in a heterogeneous environment; the computing and
data resources are shared for multiple users and applications.

4.1.1.2. Fair scheduler. Facebook developed the fair scheduler
(Zaharia et al., 2009). In this algorithm, jobs are entered into pools
(multiple queues) and in the case of multiple users; one pool is
assigned to each user. Fair scheduler distributes the available
resources among the pools and tries to give each user a fair share of
the cluster over time, with each pool allocated a minimum number of
Map and Reduce slots. If there are free slots in an idle pool, they may
be allocated to other pools, while extra capacity in a pool is shared
among the jobs. In contrast to FIFO, the fair scheduler supports
preemption, therefore if a pool has not received its fair share for a long
time, then the scheduler will preempt tasks in pools running over
capacity in order to give the slots to the pool running under capacity. In
this way, a long batch job cannot block short jobs for a long time
(Polato et al., 2014; Xia et al., 2011; Zaharia et al., 2008).

4.1.1.3. Capacity scheduler. Yahoo! developed the Capacity scheduler
to guarantee a fair allocation of resources among a large number of
cluster users (Zaharia et al., 2009). For this purpose, it uses queues
with a configurable number of task slots (Map or Reduce). Available
resources are assigned to queues according to the priorities. If there are
free resources in some queues, they are allocated to other queues
(Hefny et al., 2014; Chethana et al., 2016; Polato et al., 2014). Within a
queue, the priority of jobs is determined based on the job arrival time,
class of the job, and priority settings for users according to the Service
Level Agreement (SLA). When a slot in a TaskTracker becomes free, the
scheduler chooses a job with the longest waiting time from a queue
with the lowest load. Therefore, the capacity scheduler enforces cluster
sharing among users, rather than among jobs, as is the case in the fair
scheduler (Dsouza et al., 2015; Gautam et al., 2015).

4.1.1.4. Delay scheduler. The delay scheduler is an optimization of the
fair scheduler, which eliminates the locality issues of the latter (Zaharia

E. Jafarnejad Ghomi et al. Journal of Network and Computer Applications 88 (2017) 50-71

et al., 2010). We consider a scenario in which a slot becomes free and i 8 2
we have to select a task of the job in front of a queue to process. It is :5 LE’ i
possible that the data needed by this task does not exist on the node £ S E g
with a free slot. This is a locality problem. In the delay scheduler, this _;) E: ’F; §
task is temporarily delayed until a slot in a node with the needed data g *f ® = = §
becomes free. If the delayed time becomes long enough, to avoid Ei “3 ?3 é é % <
starvation, the non-local task is allowed to schedule (Manjaly et al., n 5 '§ e £ = ‘é 2
2013). =8 2 § & & 5%
4.1.1.5. Longest Approximate Time to End (LATE). The LATE ég% §_§ g é *2 § § §§
scheduler was developed to improve the job response time on] RS g g g g g;? % 2 £pd :g
Hadoop in heterogeneous environments (Lee et al., 2011). Some ssz0 ;‘;_TE g R 222 5 § g
tasks may progress slowly due to CPU high load, race condition, £ - 2= S § E % s f@ 8 % g
temporary slowdown due to background processes, or slow background 2 £ &2 é :g E f 5 ¢ % é £ E 2 g
processes. These tasks are called speculative tasks. The LATE scheduler 2 ﬁg g E g i i% § 2 Q :‘sﬁ g g5] ;
tries to find a slow task and execute an equivalent backup task on g1 gg E é‘g g 23 § 4’: g && g ?.,é E
another node. This execution is called speculative execution. If the new § ;: 82273 - - EED Eo 2 8 E.Q,
copy of the task executes faster, the whole job performance will E §32245% =2=2% BE2R25%
improve. The LATE Scheduler assigns priorities to slow or failed Rleeeeoe Sooe LA
tasks for speculative execution and then selects the fastest nodes for g 8 _F =
that speculative execution. LATE scheduling improves the response %:S B E g %
time of Hadoop in heterogeneous environments. & E Ea g = 75
"8 S 2 E z 0 3 z:/:
FERE B PR | B
I 1 3 3 g E © g g E = '% S = ’“‘%
4.1.1.6. Deadline constraint scheduler. The deadline constraint g AT % g E8 g% 2)
scheduler was designed to satisfy the user constraints (Kc et al., é 8% é*"g @% K] E g
2010). The goals of this scheduler are: (1) to be able to give users g g g 2 3 : o 22 5 £ g8
immediate feedback on whether the job can be completed within the = q;) g g g s E g ; g2 E g
given deadline or not and proceed with the execution if the deadline g E z E ? § E :%3 g 2 % E 2 % g -°-i
can be met. Otherwise, users have the option to resubmit with modified g 23 gz RYEEI g & 2 2
deadline requirements, (2) to maximize the number of jobs that can be E @ & BEESE<aEE8EE="S £ =
run in a cluster while satisfying the time requirements of all jobs <|ee 66 o o0 o000 oo
[Dsouza et al., 2015, 2015). Experiment results showed that when 72
deadlines for the job is different, then the scheduler assigns a different Y ?é
number of tasks to Tasktracker and makes sure that the specified 3 =
deadline is met. g j‘;
] o 3 9]) 3 3
& |z > > Z > >
We have thoroughly investigated and analyzed the scheduling 5
algorithms in Hadoop. Our observations are summarized in Table 2. {:‘;
The analysis table contains the names of the algorithms proposed by gl - 5 5 5 5 5
researchers, parameters that they have tried to improve, advantages =R g = = = 5
and disadvantages, and the tools through which they have simulated £
their experiments. g .
s | =2 E
L. . S| 2|8 g 2 2 2 !
4.1.2. MapReduce optimization for load balancing 22|z 3 3 3 3 £
In this subsection, we review some of the algorithms proposed for °§ S g ? @ ? =
MapReduce load balancing. In the standard Hadoop MapReduce, each i faj
data file is divided into fixed-sized blocks and each block has three 8 E‘ - 8 2 2 2 g
replicas on three different DataNodes with two rules: (1) no two copies E < - - s
are on the same DataNode, (2) no two copies are on the same rack, E| 8
provided that there are enough racks. However, in replica placement, ;S §
the current load of DataNodes is irrelevant. A built-in tool called the E g8 2 2 2 S 2
balancer executes repeatedly, the balancer moving data blocks from i -
the overloaded DataNodes to under-loaded ones (Lin et al., 2015). The £ %
balancer tool is used to balance an imbalanced cluster, but it would be T% = z =) 3 3 3 3
better if we could keep the cluster as balanced as possible from scratch. ol B = = = = =
Furthermore, using the balancer tool to load migration consumes a lot 2 E
of system resources. Therefore, several researches have tried to provide :5 E >
load-balancing techniques in the Hadoop environment; we have E 5 E
. ° 3
reviewed some of them here. fo g 2 e é 3 é 3
e Valvag et al. (2011, 2009)) proposed Cogset, a unified engine, for Z E = Q
static load balancing. The authors have found that the loose coupling o é B o P = g & ?5
between HDFS and MapReduce engine is the cause of poor data 2;, 5 2| E & 5 3 A a

55

E. Jafarnejad Ghomi et al.

locality for many applications. Rather than viewing the file system
and execution engine as separate and loosely coupled components,
Cogset combines them closely into a distributed storage system that
supports parallel processing of data at the actual storage nodes.
Cogset consists of two stages: (1) data storage is distributed over the
cluster through partitioning and replications stage, (2) data access is
achieved through a traversal stage. Due to the importance of load
balancing and fault tolerance, the replication mechanism is an
integral part of Cogset. The work provided a system with signifi-
cantly better performance than Hadoop, in particular for small and
moderate data volumes; it is not fully scalable.

Ahmad et al. (2012) proposed Tarazu, a suite of optimizations of
MapReduce, to address the problem of poor performance of
MapReduce in heterogeneous clusters. The authors believe that
the poor performance of MapReduce is due to two factors: (1)
MapReduce causes excessive and burst network communication, (2)
heterogeneity amplifies the Reduce load imbalance (Fadika et al.,
2011). Tarazu consists of (1) Communication-Aware Load
Balancing of Map computation (CALB) across the nodes, (2)
Communication-Aware Scheduling of Map computation (CAS) to
avoid burst network traffic, and (3) Predictive Load Balancing of
Reduce computation (PLB) across the nodes. Authors showed by
simulation that using Tarazu significantly improves the performance
over a traditional Hadoop MapReduce in heterogeneous clusters.
Kolb et al. (2011) proposed a block-based load-balancing algorithm,
BlockSplit, to reduce search space of Entity Resolution (ER). ER is
the task of identifying entities referring to the same real-world
object. ER techniques usually compare pairs of entities by evaluating
multiple similarity measures. They utilize a blocking key based on
the values of one or several entity attributes to divide the input data
into multiple partitions (blocks) and restrict the subsequent match-
ing to entities of the same block. For example, it is sufficient to
compare entities of the same manufacturer when matching product
offers. The BlockSplit approach takes the size of the blocks into
account and assigns entire blocks to reduce tasks if this does not
violate the load balancing constraints. Larger blocks are split into
smaller chunks based on the input partitions to enable their parallel
matching within multiple Reduce tasks (Kolb et al., 2012). The
evaluation in a real cloud environment demonstrated that the
proposed algorithm was robust against data skew and scaled with
the number of available nodes.

Hsueh et al. (2014) proposed a block-based load-balancing algo-
rithm for Entity Resolution with multiple keys in MapReduce.
Actually, the authors extended the BlockSplit algorithm presented
in Kolb et al. (2011) by considering more than one blocking key. In
their algorithm, the load distribution in the Reduce phase is more
precise because an entity pair may exist in a block only when the
number of common blocking keys between the pair exceeds a certain
threshold (i.e., kc). Since an entity may have more than one kc key, it
needs to generate all the combinations of kc keys for potential key
comparisons. The proposed algorithm features in the combination-
based blocking and load-balanced matching. Experiments using the
well-known CiteSeerX digital library showed that the proposed
algorithm was both scalable and efficient.

Hou et al. (2014) proposed a dynamic load-balancing algorithm for
Hadoop MapReduce. Their algorithm balances the workload on a
rack, while previous works tried to load balance between individual
DataNodes. In the standard MapReduce and its optimizations, there
was no way for Hadoop to guarantee that higher capability racks
have more workload than lower capability racks. In other words,
when assigning workload to DataNodes, the processing capacity was
irrelevant. Their work has two novelties: (1) They concentrate on
load balancing between racks; (2) They use Software Defined
Network (SDN) to improve the data transfer. The results of
simulation experiments showed that by moving the tasks from the
busiest rack to a less busy one, the finished time of these tasks

56

Journal of Network and Computer Applications 88 (2017) 50-71

decreased substantially by adopting the algorithm.

Vernica et al. (2012) proposed a suite of adaptive techniques to
improve the MapReduce performance. The authors have ignored the
key assumption of MapReduce that mappers run in isolation. They
used an asynchronous channel called the Distributed Meta Data
Store (DMDS) to share the situation information between mappers.
They used these mappers, called Situation-Aware-Mappers (SAMs),
to make traditional MapReduce more dynamic: (1) Adaptive
Mappers, (2) Adaptive Combiners, (3) Adaptive Sampling and
Partitioning. Adaptive Mappers merge small partitions into a virtual
split thus making more splits that avoid frequent check pointing and
load imbalance (Doulkeridis et al., 2013). Adaptive Combiners
perform a hash-based aggregation instead of sort-based ones. In
contrast to standard MapReduce, Adaptive Sampling creates local
sampling dynamically, aggregates them, and produces a histogram.
Adaptive Partitioning can exploit the global histogram to produce
partitions of the same size for better load balancing. Although SAMs
can solve the data skew problem, they cannot solve the computa-
tional skew in reducers (Shadkam et al., 2014). Experimental
evaluation showed that the adaptive techniques dramatically im-
prove the MapReduce performance and especially performance
stability.

Yang and Chen (2015) proposed an adaptive task allocation
scheduler to improve MapReduce performance in heterogeneous
clouds. The paper makes improvements on the original speculative
execution method of Hadoop (called Hadoop Speculative) and LATE
Scheduler by proposing a new scheduling scheme known as
Adaptive Task Allocation Scheduler (ATAS). The ATAS adopts more
accurate methods to determine the response time and backup tasks
that affect the system, which is expected to enhance the success ratio
of backup tasks and thereby effectively increase the system's ability
to respond. Simulation experiments showed that the proposed ATAS
scheme could effectively enhance the processing performance of
MapReduce.

Bok et al. (2016) proposed a scheduling scheme to minimize the
deadline miss of jobs to which deadlines are assigned when
processing large multimedia data such as video and image in
MapReduce frameworks. The proposed scheme improves job task
processing speed by utilizing a replica node of the same data
required to process jobs if a node where I/0 load is excessive is
about to process the jobs. A replica node refers to another node that
has the data block required to process jobs at available nodes. If
available nodes are not found despite the expected job completion
time exceeding the deadline, the most non-urgent job is searched
and the corresponding job task is temporarily suspended to fasten
the job completion time. The performance evaluation result showed
that the proposed scheme reduced completion time and improved
the deadline success ratio.

Ghoneem and Kulkarni (2016) introduced an adaptive scheduling
technique for MapReduce scheduler to increase efficiency and
performance when it is used in the heterogeneous environment. In
this model, we make the scheduler aware of cluster resources and
job requirement by providing the scheduler with a classification
algorithm. This algorithm classifies jobs into two categories execu-
table and non-executable. Then the executable jobs are assigned to
the proper nodes to be executed successfully without failures, which
increase the execution time of the job. This scheduler overcomes the
problems of previous schedulers such as small job starvation, a
sticky node in fair scheduler, and the mismatch between resource
and job. The adaptive scheduler increase performance of
MapReduce model in the heterogeneous environment while mini-
mizing master node overhead and network traffic.

Benifa and Dejey (2017) proposed a scheduling strategy named
efficient locality and replica-aware scheduling (ELRAS) integrated
with an autonomous replication scheme (ARS) to enhance the data
locality and performs consistently in the heterogeneous environ-

Journal of Network and Computer Applications 88 (2017) 50-71

(abvd 1xau uo panuyuod)

57

E. Jafarnejad Ghomi et al.

SUIPULIXY U0 J0USIDJUOD Xa[dereq! X walsAs N[9pou 31} JONUOW A[SNONUIIUOD pue doopey o3 suondo qof Ayrduits pue soueurIogrod uorje[ost jo uondumsse (c102)
[euonEUIU] ‘WOV -gf B U0 sjuswiLradxs Suruuny stoddey QIeMy-UONENNS @ OSWIUNI MdU Sulppy @ JIalsnp Sunoxrdwy @ Aoy Elii} Sunfearg @ OmueUAQ [10 BOIWIBA ZTOT
apIS-donpey SI9ISN snoweSo19197
(NDV) swe1sAs ur Supueeq peo] e ur sonpaydey [euonipen
Suneradp pue saSenSue] doueuriojrod pajeaI-A[so[d apIs JO PESYISA0 UONEIIUNUINIOD
Surrwreadoaq 10y 11oddng sapou SB[SIOISTD Ul dIeMpIey 1By} -dey ur Sunuereq peo] @ oY} Suneuruy ¢
[2IN1091IYDIY UO 90USISJUOD IDAISS PISB(-WO1Y () PUe paseq PaMOYS 2INIBId] d[IYM ‘U0SY aseyd sonpay-dey [euonipen Qonpey
[PUONBUINUI [IUSIIUIAIS -U0IX (T SulsLIduroo SI9AISS 06 ‘WIOTY :9IBMPIET] JO SISSB[D OM] depy 1o apgnys 03 anp Jo wayqoxd Surouereq -depy 1oy uonezrumdo (2102)
a1} Jo sSuIPaa0Id JO 191SN[O SN0dUAS0I9IRY B SUIs() M SI2ISN[D SIOPISUOD NZRIB], @ IOUS[0] I} dJBUTWI[] @ PEO[am Suneuruy @ Jjo oyms e Suisodol] @ OIWRUAQ [19 PRWIY gT0Z
SOPON ele(] UBY]
RCILARS ALARIEEIVEL] soueuLojed
Suwueeq peo] og e oonpay-dely oyy Suiseaou] @ sIpPoNeIe(jo Aiqedes
Iipmpueq aun uonaduwod s1a1sn oY) SuLIepISU0d
Sunndwo) pnopy }10M19U SAWNSUOD pue ysel Suisearoeq @ Jo Supue[eq peo| urelulely @ £q Ieisnp doopeH e uo
pue ereq Sig Uo dousIBJUO) Ioje[nuurs sonpay-dejy doopeH PEOTIOA0 UOTEOTUNUITIOD SYBUI doopey jo souewIored *syse} qol Jo awn SYORI JUSISJIP USAMI(($102)
[euOnRUISIUL YN0 ‘HHHAI S,2yoedy ST yorym Yewnjy Suisp) syoel ueamlaq elep SUMMON @ IMud oy} Suiseadu] @ uonsdwiod oy} SuiseaIdd[@ PeROPIOM dY) Juueeg @ - dweUAQ ‘219 N0H $10T
wopqoid
WA 9y} seA[0s Apusoyy e sAay Sunpooq
pareIa[aooe aq ued days qofe srdnnur ym sennus
‘sopou Jo sodA) 91t} uryolew a1} 0s ‘senrud Jo awn asuodsai o) SuNPaY @ JO uonoarod a8ny e
wnisodwAs SUTRIU0D [IIYM IS1ISTD S9pou uostredwod 91 10S 0} pasn SI90onpal 10 waqoad uonnjosay [(+102)
uelensny YPPEM]I, -0€ B ul pauriojrad syusurLiadxy poreordnp 01 pes] Aewr 1] @ SI sAoy opdnmu Suis) ¢ Suowre Supuereq peo] ¢ Anuy o SumpoS @ JmweuAg [® 12 YensH 10T
Apponb sysel dnypoeg o
PaI9pISu0d
axe souerrodu qol pue
‘sad£y qol ‘Aypeco] erleq o
A1ouagorsioy
sapou SuLepisuo) e
Suideuewr 10j arMINA Suisn soueuriojrad sjowold @
(1010081q) SOUIYDRW [BNLIA Kouare|
suoneorjdde 1enduwo) pue [eorsAyd £q juewuoIAuS sysel syse]l Ueow SupNpay @ JI9[NPAYDIS UONBIO[[R YSk] B Aq I9[Npatds (S10T) uayD
PUE YIOM}ON JO [euInof pnopd snosudSorajey Surpreisur Qwn-uni jo elep 109[[00 ‘ON ¢ IndySnomp Suiseerou] @ [epow sonpaydely Sunueyuy ¢ HIVT [euiSuo Sumoidw] @ - orureuiq pue Suex GI0g
Anpeoog
BJep pUB SSpOU Ul SpPeo]
O/1 oq SuLwpisuo) e Blep elpawnnu
£ SMOPUTM OT]BI $S900NS 90] ewIAYS Surmpats SSTUI SUI[PEAP
sem SO asoym s1omnduwod auipesp Sumoidw] @ osonpaydey Suipnold e proae 01 uoneorjdax
(198uridg) suornjeorddy [euosiad yam pajonpuod JUSWUOIIAUS donpaygdey aun sqol)00[q pue syse} (9102)
PUE S[00] RIPAWINN]\ SeM UONEN[RAD QOURULIONDJ [ed1 e ur uoneywdun[dun oN ¢ uonadwod Suwnpey @ Jo ssiw dulpesp Suiznwiully ¢ dAnemoads Surkoldwy @ - orwrRuiq ‘Te1Yod 9102
suoneorjdde jo s8uex
opw e 10y d[quidepy e
swn
UOINOIXD Sunpay e
Ay1peoof erep rewndo
paqusar JUSWUOIIAUS PNO[D JARLELS Surpuoid o UOTILITUNUIUIOD
(198ur1dg) uonEIIUNWIWOD B SB JUSWIUOIIAUY gOH UOZRUWY [erIoWI0d 10} suonedrjdde $90IN0SAI YorI-sso1d Suronpal I9[NPaYRs (L102)
[euosiad SSI[IIA Ul I[ING I91SN[D SNOJUAZ0I0Y V @ Sul[edos-olne JULIOPISUOD ON @ JO uonezinn oAnoRyd e pue ndySnoryy Sumoidw] @ ul ANedo] eep Juis)) @ OlweuAq ‘R eYUdg LIOC
Slqe[®S @
(198ur1dg) UOIIBAIRIS ON @
A3ojouypa], uonEIIUNUWIWO) uedsoyew 3uonpey e
pue Suuesuiduy eieq sapou Gurumsuod-awn seniqiqeded Surnpsyos sonpaydey doopey (9102)
UO 9DUDISJUO) [PUOTIRUIAIUT 93T} JO PIISISUOO TSN B pue aarsuadxa AJreuoneinduwod 9pou pue sjuswaImbax JuenYJe we Sutsn donpayde Jo AyIiqereds pue TwIe[y pue
91 JO SSUIPasdoId U0 JIMPAYPs oY) Sunuowd[dw] @ SI uonewLojul jusjuod Surpui] @ qof Suuepisuo) @ Jo doueuniojrad oYy Suisearou] @ Ajousdordey SulpueH @ - OlWRUAQ waduoyyH) L102
orwreudq
90ULIAJUO) /[euInop senbruta) uonenyeAy saSejueapesiq seSejueApy 9ATR(qO urely Bap] Aoy /one1s sIoymy Iesax

-gonpaydefy doopey 10J sarSerens SuUERR(Q PLO[JUSLIND I} JO MITAISAO Uy
€ dIqeL

Journal of Network and Computer Applications 88 (2017) 50-71

E. Jafarnejad Ghomi et al.

(Fadr) Sunnduio) [d[[ered
@EN &poguwz uo woﬁwhu.wﬁoo
[euoneuIU] dLAT PIXIS

Juauageurl
98pamouy| pue UoOnRULIOJU]
UO 90USISJUOD [RUOTIEULISIUI

WOV 0T A3 Jo s3urpasdoig

A3orouyoag, aseqereq

s[mpowr
JouIyg paydms sdqo 1
wod-pg B YIm TA0CH 2AIM)0Id
dH ue %n— PoldaUUOdISUT
SOUIYDBW G66T 95PH

I9MO(d [P ZT JO I91snpo e Juisn

doopey

Suisn Sunndwod pnop zod
UOZBUIY 9T[} UO S}OSLIEP P[IOM
-[ea1 yum syudwLadxa Suruuny

‘SYSIp 891 pue

S3I00 9G¢ MO U@wwmmEOO kwum—:o
Ay, 'SYSIP V.LVS Inoj pue ‘Wvy
qo gg ‘s1ossaooad zZHO £8°C

Nq $9 ObGSH UOSX [IU] 210D
-penb om) pey apou yoey ‘OyEXp

K1ousgorsiay

9y} IpISU0d jou seo(
SOpOU U9OM]D(BIED JO JUNOWE
o31e[e SuiAdoo [rejus ‘einjrey
Jo doussaid ary ur suonmred

Jo Jusweoeld oy Sunndyuodey
Surumnsuoo

-own ST Jet]} 4oy Sun{oo[q
[enpiatpur Auewr se A3y
unpolq srdnmuw I9pIsuod 1|
YP0[q-qNS PAZIS-1USISIP

Sursn 03 anp aseyd sonpax

ur soue[equil 0} ped] Aew 1|
Amus Aue

10J A9y Yoo[q duo SULIBPISUO)

*SI9IMPAI A} 18 MAS
[euonendwod S[puey J0UULD
s1addepy aremy-uonens
‘1oromoH ‘siaddeur Jo uonnoaxa

sonpay-dey

a1} jo doy uo Suruuni
9IBMIJOS JO PBAYIDA0
Guuede] oy} Sunnpey
YOOUS[10q PIOAY

ooeds aureu e ul Sa[y
3uneep pue ssurpeas
‘0} Surpuadde syroddng
uonejuawadwr Jo asey

uostredwoo apIe

se yons uonendwod
Aurequts asm-paared
Jo pupy [[B I0J poesn ST
19)SN[O SNoauaS0119Y
10} d[qeans
sonpay-dey

ur Mays eyep Surpuey
awnunt

18 UOTINJ9XD 1Y) 9.
ueo sroddewr aremy
-uonen)is ur - SYseJ,
aonpay-dey d[qIxa[]
aIEMY

UOTeN)IS WA} dpeut

awn asuodsal 3senbaix
91} SuIsea109AouanIye

WISAS am Guisearou] ¢

uonN[0saI ANus d)eI[Ioe]
01 sanbruypa-3unpolq Suis e
sonpay-dey Jo A[iqeeds pue
SSOUAATIORJJe oy} Sulsealou] ¢

sotureuAp
sonpay-dejy oYeIN e
Suruny

aJowr

suonn.red
suros 0} jasejep ndur
JNSIUIULINR(@

jo wds

sy[s®) 90npal
pue dewr usamiaq elep
JO UONNQLISIPAI UAAY

sonpay-dey prepuels
ut szoddey jo uonnoexa

onels

Jrwreuiq

90USIAJUO) /[euInop

sanbruta) uonenyeAy

sagejueApesiq

sagejueApy

aA13(qO UreIy

BIpP] A

orwreudq
Yolstaly

(6002)

‘e 10 SgA[BA 600C
(T102)

210 qod 1102
sioyny Ieax

(ponuyuod) g S[qeL

58

E. Jafarnejad Ghomi et al.

Table 4

An overview of the current NPH-based category load balancing techniques.

Publication/ Presentation

Evaluation techniques

Disadvantages

Advantages

Main objectives

Key Idea

Authors

Year

on IEEE 6th International

©® Simulation

energy ® Simple policy for detecting over-/ ® Does not provide any security policy for

Cuckoo @ Reducing

® Using

2015 Yakhchi et al.

Conference on Modeling,
Simulation, and Applied

Optimization

CloudSim toolkit

VM migration
® It does not clear live/dead VM migration

under-utilized hosts
® s suitable for green computing

consumption
® Maximizing

Optimization Algorithm
for load balancing in
cloud computing

(2015)

resource

® Using MMT Minimum Migration Time ® VM migration can increase response time

utilization

® SLA Avoidance

for VM migration

® No guaranty for QoS

International Conference on
Intelligence: Modeling

Techniques and

on

® Simulation

® Does not consider job priorities

® Low throughput
® No power saving

® Using Genetic Algorithm @ Load balancing of cloud ® Improving system performance

2013 Dasgupta

CloudAnalyst
toolkit

® Reducing job time span

infrastructure
® Minimizing the completion ® Improve resource utilization

(GA) for load balancing
in cloud computing

et al. (2013)

Applications(Elsevier)
on Applied Soft Computing

® Lack of scalability

time of a given tasks set

foraging ® Load balancing VMS for

©® Simulation

® Starvation for lower priority load

® Maximizing the throughput

the
behavior of honey bee for
load balancing VMS

® Inspiring

2013 Babu et al.

(Elsevier)

CloudSim toolkit

©® Waiting time of tasks become minimum ® Lack of scalability

maximizing throughput
® Minimizing waiting time of

(2013)

® Single point of failure due to producing

bees from single source

tasks in queue
Load balancing of nodes in cloud There is a single result set The task of each Lack of scalabilityLack of throughputHead

IEEE 14st International
Conference on Modeling

and Simulation

No simulation or
implementation

Using Ant Colony

2012 Nishant et al.

node make a bottleneck Lake of a mechanism
for head node selectionlt is not clear the
evaluation method It might cause data

transmission break

ant is specialized To avoid overloads due to
ant creation, it uses a timer to suicide.

or grid systemsFinding optimal
resources to process the

submitted jobs

Optimization (ACO) for load

balancing in cloud

computing

(2012)

Detection of over-/ under-loaded nodes

and doing operations accordingly

59

Journal of Network and Computer Applications 88 (2017) 50-71

ment. ARS autonomously decides the data object be replicated by
considering its popularity and removes the replica as it is idle. The
results proved the efficiency of the algorithm for heterogeneous
clusters and workloads.

Now that we have reviewed some approaches to load balancing in
MapReduce, it is time to investigate and analyze them. In Table 3, we
have summarized our analysis. The analysis table contains article year,
authors, key ideas, main objectives, advantages and disadvantages,
evaluation techniques, and the journal or conference that the article
presented. We also showed the name of the publisher.

4.2. Natural phenomena-based load balancing category

In this section, we have surveyed several load balancing strategies
that are inspired by natural phenomena or biological behavior, for
example, Ant-Colony, Honey-Bee, and Genetic algorithms.

® Yakhchi et al. (2015) proposed a load balancing method in cloud
computing for energy saving by simulating the life of a family of
birds called cuckoos. They have used Cuckoo Optimization
Algorithm (COA). The cuckoos are species of birds that do not
make nests for themselves. Cuckoos lay eggs in the nests of other
birds with similar eggs to raise their young. For this, cuckoos search
for the most suitable nests to lay eggs in order to maximize their
eggs survival rate (Rajabioun et al., 2011). The load balancing
method proposed in the paper consists of three different steps. In
the first step, the COA is applied to detect over-utilized hosts. In the
second step, one or more VMs are selected to migrate from the over-
utilized host to other hosts. For this, they considered all the hosts
except the over-utilized ones as under-utilized hosts and attempted
to migrate all their VMs to the other host and switch them to sleep
mode. It must be noted that if this process could not be completed,
the under-utilized host is kept active. Finally, Minimum Migration
Time (MMT) policy is used for selecting VMs from over-utilized and
under-utilized hosts. The Simulation results demonstrated that the
proposed approach reduced energy consumption. However, the
method may cause SLA violation.

® Dasgupta et al. (2013) proposed a novel load-balancing strategy
using a genetic algorithm (GA). The algorithm tries to balance the
load of the cloud infrastructure while trying to minimize the
completion time of a given task set. In the paper, a GA has been
used as a soft computing approach, which uses the mechanism of
natural selection strategy. It is a stochastic searching algorithm
based on the mechanisms of natural selection and genetics. A simple
GA is composed of three operations: (1) selection, (2) genetic
operation, and (3) replacement. The algorithm creates a “popula-
tion” of possible solutions to the problem and lets them “evolve”
over multiple generations to find better and better solutions. The
authors have tried to eliminate the challenge of the inappropriate
distribution of the execution time, which is used to create the traffic
on the server. Simulation results showed that the proposed algo-
rithm outperformed the existing approaches like First Come First
Serve (FCFS).

e Nishant et al. (2012) proposed a load-balancing algorithm using the
Ant Colony Optimization (ACO). ACO is inspired from the ant
colonies that work together in a foraging behavior. Inspired by this
behavior, authors of Kabir et al. (2015) have used ACO for load
balancing. In this algorithm, there is a head node that is chosen in
such a way that it has the highest number of neighbor nodes. Ants
move in two directions: (1) Forward movement; where ants move
forward in a cloud to gather information about the nodes’ loads, (2)
Backward movement; if an ant finds an under-loaded node (over-
loaded node) on its path, it goes backward and redistributes the load
among the cloud nodes. The main benefit of this approach lies in its
detections of over-loaded and under-loaded nodes and thereby

E. Jafarnejad Ghomi et al.

performing operations based on the identified nodes.

® Babu et al. (2013) proposed a honeybee-based load balancing
technique called HBB-LB that is nature-inspired; it is inspired by
the honeybee foraging behavior. This technique takes into account
the priorities of tasks to minimize the waiting time of tasks in the
queue. This algorithm has modeled the behavior of honeybees in
finding and reaping food. In cloud computing environments, when-
ever a VM is overloaded with multiple tasks, these tasks have to be
removed and submitted to the under-loaded VMs of the same data
center. Inspired by this natural phenomenon, the authors consid-
ered the removal of tasks from overloaded nodes as the honeybees
do. When a task is submitted to a VM, it updates the number of
priority tasks and the load of that VM and informs other tasks to
help them in choosing a VM. Actually, in this scenario, the tasks are
the honeybees and the VMs are the food sources. The experimental
results showed that the algorithm improved the execution time and
reduced the waiting time of tasks on the queue.

We investigated and analyzed the NPH-based category of load-
balancing algorithms. The results are presented in Table 4. The analysis
table contains article year, authors, key ideas, main objectives, ad-
vantages and disadvantages, evaluation techniques, and the journal or
conference that the article presented. We also showed the name of the
publisher.

4.3. Agent-based load balancing techniques

In this section, we have reviewed the literature that proposed agent-
based techniques for load balancing in cloud nodes. The dynamic
nature of cloud computing is suitable for agent-based techniques. An
agent is a piece of software that functions automatically and continu-
ously decides for itself and figures out what needs to be done to satisfy
its design objectives. A multi-agent system comprises a number of
agents, which interact with each other. To be successful, the agents
have to able to cooperate, coordinate and negotiate with each other.
Cooperation is the process of working together, coordination is the
process of reaching a state in which their actions are well suited, and in
negotiation process, they agree on some parameters (Singha et al.,
2015; Sim et al., 2011).

e Singh et al. (2015) proposed a novel autonomous agent-based load-
balancing algorithm called A2LB for cloud environments. Their
algorithm tries to balance the load among VMs through three
agents: load agent, channel agent, and migration agent. Load and
channel agents are static agents whereas migration agent is an ant,
which is a special category of mobile agents. Load agent controls the
information policy and calculates a load of VMs after allocating a
job. A VM Load Fitness table supports the load agent. The fitness
table maintains the list of all details of the VM properties in a data
center such as id, memory, a fitness value, and load status of all
VMs. Channel agent controls the transfer policy, selection policy,
and location policy. Finally, the channel agent initiates the migration
agents. They move to other data centers and communicate with the
load agent of that data center to acquire the status of VMs present
there, looking for the desired configuration. Result obtained through
implementation proved that this algorithm works satisfactorily.

® Gutierrez-Garcia and Ramirez-Nafarrate (2015) proposed an agent-
based load balancing technique for cloud data centers. The authors
proposed a collaborative agent-based problem-solving technique
capable of balancing workloads across commodity and heteroge-
neous servers by making use of VM live migration. They proposed an
agent-based load balancing architecture composed of VM agents,
server manager agents, and a front-end agent. They also proposed
an agent-based load balancing mechanism for cloud environments
composed of (1) migration heuristics that determines which VM
should be migrated and its destination, (2) migration policies to

60

Journal of Network and Computer Applications 88 (2017) 50-71

select an AM for migration, (3) acceptance policies which determine
which VMs should be accepted, and (4) a set of load balancing
heuristics of the front-end to select the initial hosts of VMs.
Simulation experiments showed that agents, through autonomous
and dynamic collaboration, could efficiently balance loads in a
distributed manner outperforming centralized approaches.

® Keshvadi and Faghih (2016) proposed a multi-agent load balancing
system in an IaaS cloud environment. Their mechanism performs
both receiver-initiated and sender-initiated approach to balance the
TaaS load to minimize the waiting time of the tasks and guarantee
the Service Level Agreement (SLA). The mechanism presented in the
paper comprises of three agents: (1) VMM Agent, (2) Datacenter
Monitor (DM), and (3) Negotiator Ant (NA). The VMM agent
collects the CPU, memory and bandwidth utilization of the indivi-
dual VM hosted by different types of tasks to monitor the load. A
table for storing the state of the VMs supports this agent. The DM
agent performs information policy in a datacenter by monitoring the
VMM's information. This agent is supported by a table that
maintains all information about the status and characteristics of
all VMs in a datacenter. It categorizes the VMs based on their
characteristics. DCM agents initiate NA agents. They move to other
datacenters and communicate with the DCM agent of those data-
centers to acquire the status of VMs there, searching for the desired
configuration. Simulation results showed that the proposed algo-
rithm was more efficient and there was a good improvement in the
load-balance, response time, and makespan.

® Tasquier (2015) proposed an agent-based load balancer for multi-
cloud environments. The author proposed an application-aware,
multi-cloud, and load-balancer based on a mobile agent paradigm.
The proposed architecture uses agents to monitor the status of the
cloud infrastructure and detects the overload and/or under-utiliza-
tion conditions. The multi-agent framework provides provisioning
facilities to scale the application automatically to the under-loaded
resources and/or to new resources acquired from other cloud
providers. Furthermore, the agents are able to deallocate unused
resources, thus leading to cost saving. The proposed architecture
consists of three agents: (1) an executor agent, which represents the
application running in multi-cloud environments, (2) a provisioner
agent, which is responsible for managing the cloud infrastructure
through adding and removing resources, (3) a monitor agent, which
is responsible for monitoring the overload and/or under-utilization
conditions. Users can overview the current state of the cloud
environment through an additional agent called controllers.
Moreover, each agent has mobility capabilities in order to migrate
themselves autonomously on the multi-cloud infrastructure. The
proposed algorithm overcame the provider lock-in challenge in the
cloud and it was flexible to exploit the extreme elasticity.

We investigated and analyzed the agent-based load balancing
techniques. The results are presented in Table 5. The analysis table
contains article year, authors, key ideas, main objectives, advantages
and disadvantages, evaluation techniques, and the journal or confer-
ence that the article presented. We also showed the name of the
publisher.

4.4. General load balancing techniques

In this section, we have surveyed and overviewed the literature in
the field of general load balancing techniques. Although several
algorithms are provided in this category, we have focused on new
ones. For example, techniques such as First-In-First-Out (FIFO), Min-
Min, Max-Min, Throttled, and Equally Spread Current Execution Load
(ESCEL) are all belong to this category.

® Komarasamy and Muthuswamy (2016) proposed a novel approach
for dynamic load balancing in a cloud environment. They called it

Journal of Network and Computer Applications 88 (2017) 50-71

E. Jafarnejad Ghomi et al.

yoressay Sunnduwod
pnop jo [ewmor Surystiqng
[euoneuru] VIFINNTO0D

(198unidg) Sunndwo) 1asnp)

(19119s19) suonedrjddy

pue sarSojoutoa],
Sunndwo) paouespy

UO 90USISJUO)) [BUONBUINUL

(axBIOPRIN)
[eUInOpQ UORWOINY
PUe SO110qOY [BUONRUINUT

parenurs

10 pojuduwd[dwil jou se0d @

uriopjerd juaSe AV pue eaep
ur pajudwd[dwl Sem Paq-1S9], @

1eH pay pue peotdeny

SE ons paq-1s9} paseq-juase
Suisn pouniojrad syuewiadxy @

A3orouyo9)

eaep Suisn uonejuewedw] ¢

a3en3uey eaer
Suisn powweidoid aie s1UASY @
B{[00}

ungpno[) Suisn uoneWIS @

(S00) 991108

Jo AIEnd) IopISuod j0u S0 @
parenuis 1o pajusuadul 10N @

d[qeress A[ny jou

st pue yoeordde [enued © s1 1] @
peay1aao uonelsiu Yy ¢

WSTURYIW

uonoipard o8esn ou opuoild e

PpeayI240
UOIRISIU A 9}BUIIISO JOU S0P @

Surunsuoo

-ow) ST pue SA d[qe[eAe
10 [o1eas Seop Juode UONRISIN @
suonenduioo Aaeay] sepnpu] ¢

Juared wody
o8essou 10] 1lem pue Sukonsep
-J[9S 10J Iaw] B dARY J0U

Op sjue JuseSeuRW Iojusdele(@

A1ISe]d dWRIXD

oyl jofdxe 01 J[qIxd[SI
pnop ur d3us[eyd ur-}o0[
Tepuoid oyl SurwodrsAQ
Suroueeq peoj 10J S90IN0SAL
pnop-nmu 3uisn

SINA pue
SI9AILS JO Aouagoralay
Suuapisuo)
SI91USORIEP PNOJ INOqR
uoneurioyur fenaed Suisn
Suuereq peo| op sy
swn ssuodsal seonpay
SIoJuadRIED

srdnnur pue 191usdeIRp

B UIfm uonezinn
soaoxdwy

anenb ur syse} Jo
owmn Sunrem oy} Suronpey
1500
Suronpay
uonesSru
JIWRUAD 90NPal 10 PIOAY

Bl

92IN0SaI

uoneIdiur o}

uonezmn

92IN0SaI aseaJouy

am

SJUSUWIUOIIATD PNO[D

jo Ayonsep [0y Suisn @

Sunuereq
peof

Isuuew paINqLISIP
' ul Suoueeq

peo| WeRYH o

wIn} JIAIRS SUPNPYY @
SINA Sunueleq peo] e

VIS oY1 99jueIen) e
awn

asuodsai a1} SuNPayY @
SOUITDRW [eNIIA

ssoloe Suueeq peo] e
uonezinn

90Imosel SUZIWIXE]N @

Puop-nNI @

190UR[Rq PRO] PNO-NNW
areme uoneodrjdde ue Surdopaasp
10j wSipered paseq-juade Suis) e

uoneISiur WA

SAI] QUAWUOIIAUD SN0AUST0I91AY

® ul Suoueeq peoj 1oj anbruyoa)
Suajos-wisqoad paseq -juagde Suis) @

Sunndwoo pnop ur Sunuereq
peol 1o} sjuade oremyos Suis)) @

sateordde parenIuI-I19A19091

pue pajeniul -s1vpuss yloq Suis) e
SOUIYORW [eN1IIA
sso1oe Suroue[eq PeO[dIUeuLp

10y wSipered jueSenmp Suis) e

(ST0Q) 1) 1ombseg,

(ST0T) drerrejeN
-ZaIruey pue
BOIDIRD) -ZALIDNING)

(S102) Te 3 ysurg

(5102)
‘T2 19 TPRAYSaY

S10T

S10T

S10C

9102

Q0URIRJUO) /[eUInOp

sanbrutoa) uoneneAy

sagejueapesiq

sagejueApy

S9ATIY9(qO UTRIN

®vop]I Ao

sI0yINY

Ieax

‘sanbruyoe) Suoueeq peo| paseq-1uade JO MIIAIOAO Uy

S 9IqeL

61

Journal of Network and Computer Applications 88 (2017) 50-71

E. Jafarnejad Ghomi et al.

Eleiiel soseryd UONEOO[[B PUEB UOIII[IS
Swe)SAS suornedo] [eoryderdoad Aonsepd o) aaordw] @ oasuodsar Y} INPIY @ UM [} UONEBAISSAI 3uls)) @
A3I9Uy puR UONBIIUNUIWO) 1USIJIP 18 pako[dop sIejusdelep sanoy| yead sanoy yead SuLmp SINA Sumuereq peoy
‘sonfeuioju] ‘3uissanold [eusls ID[001 ISA[RUYPNO[D SSOI0® SINA 01 AJuLIojrun oyl Suunp [Pm SYIom 1] @ uaAd SNA 01 sisenbaa 01 1sA[euypno[) ut pajusws[dur (s102)
U0 9JUAIJUOY [eUOTIRWINU] HAAT Suisn uoneWIS @ PeO[O} 91LIO[R 10U S0 SINA Suue[eq peo] @ JO UONEIO[[E ULIOJIU() @ WIPLIOSY JNA ANV SulkJIpON e Vg pue ey S10¢
SYSB) JO 9WIT] UOTINOIXD
101 o1 Suwnpey e
Sunuereq
SJUTRIISUOD A|qeIapIsuod PeO[10] NA 03} JUWIUOIIATUD
sjoyIeW SUI[PESp JIpISUOd 10U $90(QW UONNDAXD [e10] SAONPay @ Sqof udisse Auadiolu] @ Pno ul uwue[eq peol 01 wylLod[e
Surdisws ur Sunnduwod pnop 1D[[00] WISPNO[) uonenyis peopIOm uonezimn uonezinn pamoay} pue £3ojopoyoux (S102)
U0 90UAIRJUO)) [eUONRUIIU] HHH] Ul uoneWIS @ JUSIPIP Ul djenwils jou pIq 901IN0Sax SZIWIXE]N @ 90INOsal Suiziwuixe]y @ J1onbuo) -pue-apalq oy} Suruiquio) @ Appay pue [euewiod SI0Z
oun Sutssadoxd pue
owm osuodsar Suwmoidw] ¢
SUOISSTW 9AIIO9JJ9 dI0W S| @ s
uoqaed pue uondwnsuod SINA Suissaooad o) Suonpsy e
A3o[ouyoa], uoneIIUNWWO) A310u8 Jo wolqoid oY1 sesne) 01 sqol udisse 03 az1s qol pue SINA Sumuefeq peo] e SINA
0UBAPY UO 90UAIJUO) 1D{[00} WISPNO[) pareordwoo st 1omod Surssavord SINA Jo 1omod Surssadoad Eleigel Suroue[eq peo[0} SWI} JDIAISS JO
[puoneuIul PIYT AAHAI Sursn uoneNWIS @ JUBISUI [EnjoR oY) SuluruLeldg JUBISUI [BNIOR Y]} SISPISUO) @ osuodsar oy} SuUNPay @ Pud JO poylow Sunewns? oy Suisn e (9102) ‘Te 1@ Wy 910
o Suniem qol seonpey e
uonezinn
Mﬁm\rﬁm A319U9 JIPISU0d J0U S90(J 92IN0SaI soseamu] ¢ amn
Surunsuod mdysnoay) seaordw] @ Sunrem qof Suonpay e JUSWUOIIAUS PNO[d Ul Suroueeq
ASojouypa], 1{[001 WISPNo[) 9oeds s1 9[qe] UONBAISSAI uonenyis yead Suump SauIyoRW PeO[10J UONRINSYUOIAT A (910¢) Awremsnynpy
pue 20oualog jo [ewnol uelpuy Ut uoneMWIS @ ‘O[qel puodds Ay} Suis)) @ sisonbar Iesn Ay so[pueHq @ [emuia Supueeq peo] @ Ppue wipuoSe Jupped ulg Suisn e pue Aweserewoy 910g
Q0URIRJUO) /[RUINOL sanbrutpa) uonenfeay sagejueapesiq sagelueApY S9ATIY2(qO uTRI ®ap]I Aoy s1oyny JIeox

‘sonbruyoe) Suroueeq peo| A1039180-g'TH 1USLIND JO MIIAIDAO UY

9 d1qeL

62

E. Jafarnejad Ghomi et al.

dynamic load balancing with effective bin packing and VM reconfi-
guration (DLBPR). DLBPR maps jobs into VMs based on the
required processing speed of the job. The main objectives of their
work were process the jobs within their deadline and to balance the
load among the resources. In the proposed approach, the VMs are
dynamically clustered as small, medium and large according to
process speed and the jobs are mapped into a suitable VM existing in
the cluster. The clusters are sometimes overloaded due to the arrival
of a similar kind of job. In that situation, the VMs may either split or
integrate the VMs in the data center based on the request of the job
using a receiver-initiated approach. After reconfiguration, the VMs
will dynamically regroup based on the processing speed of the VMs.
The proposed methodology is composed of three tiers: (1) web tier,
(2) schedule tier, (3) resource allocation tier. Users’ requests are
submitted to the web tier at any arbitrary time, which are forwarded
to the scheduler tier. The deadline-based scheduler classifies and
prioritizes the incoming jobs. These jobs are processed efficiently by
VMs in the resource allocation tier. The proposed approach auto-
matically improves the throughput and also increases the utilization
of the resources.

® Domanal and Reddy (2015) proposed a hybrid scheduling algorithm
for load balancing in a distributed environment by combining the
methodology of Divide-and-Conquer and Throttled algorithms re-
ferred to as DCBT. The authors defined two scenarios. In scenario 1,
they deployed a distributed environment that consists of a client, a
load balancer and n nodes, which act as Request Handlers (RH) or
servers. The requests come from different clients and the load
balancer assigns incoming requests or tasks to the available RHs
or servers. In scenario 2, the CloudSim simulator was used for
simulation which consisted of a data center, VMs, servers, and the
load balancer. Here, the client's requests were coming from the
Internet users. In both scenarios, the DCBT algorithm was used for
scheduling the incoming client's requests to the available RHs or
VMs depending on a load of each machine. The proposed DCBT
utilizes the VMs more efficiently while reducing the execution time
of the tasks.

e Chien et al. (2016) proposed a novel load-balancing algorithm based
on the method of estimating the end of service time. In their
algorithm, they considered the actual instant processing power of
VM and size of assigned jobs. They included two factors in the
method of estimating the end-of-service time in VMs: (1) the
selected VM should be able to finish it as soon as possible, (2) on
the next allocation request, the load-balancing algorithm has to
estimate the time that all queuing jobs and the next incoming job are
completely done in every VM. The VM that corresponds to the
earliest will be chosen to distribute the job. The simulation results
showed that the proposed algorithm improves response time and
processing time.

e Kulkarni and BA (2015) proposed a novel VM load-balancing
algorithm that ensures a uniform assignment of requests to VMs
even during peak hours (i.e., when the frequency of received
requests in the data center is very high) to ensure faster response
times to users. They modified the active VM algorithm implemented
in the CloudAnalyst toolkit that has problems during the peak traffic
situation. For this purpose, in addition to an allocation table, they
used a reservation table between the phases of selection and
allocation of VMs. The reservation table maintains the information
of the VM reservations suggested by the load balancer to data center
controller, but they did not update the allocation table until the
notification arrives from allocation phase. The proposed load
balancer takes into account both reservation table entry and
allocation statistics table entry for a particular VM id to select a
VM for the next request. The simulations results showed that the
algorithm allocated requests to VM uniformly even during peak
traffic situations.

63

Journal of Network and Computer Applications 88 (2017) 50-71

We have investigated and analyzed the general load balancing
category; the results are presented in Table 6. The analysis table
contains article year, authors, key ideas, main objectives, advantages
and disadvantages, evaluation techniques, and the journal or confer-
ence that the article presented. We also showed the name of the
publisher.

4.5. Application oriented load balancing techniques

In this section, we have surveyed and overviewed the literature in
the field of application-oriented load balancing techniques.

e Wei et al. (2015) proposed an efficient application scheduling in
mobile cloud computing based on MAX-MIN ant system. Firstly,
the authors presented a local mobile cloud model with detail
application scheduling structure. Secondly, they presented a sche-
duling algorithm for the mobile cloud model based on MAX-MIN
Ant System (MMAS). Experiments results showed that the algo-
rithm could effectively promote the performance of the mobile
cloud.

® Wei et al. (2013) defined the Hybrid Local Mobile Cloud Model
(HLMCM) consisting of cloudlet and mobile devices where cloudlet
plays the role of a central broker while both neighboring mobile
devices and cloudlet play the role of service provider. The objective
of application scheduling is to maximize the profit as well as a
lifetime of HLMCM while considering the capacity limitations of
service providers. They proposed the Hybrid Ant Colony-based
Application Scheduling (HACAS) algorithm to solve the scheduling
problem. The algorithm only considers the available resources and
does not consider overhead when calculating the advantage ratio of
mobile devices for joining the cloudlet. Simulation results revealed
that when the load of the system was heavy, HACAS algorithm could
select those applications with maximum profit and minimum energy
consumption.

® Deye et al. (2013) proposed an approach to make load balancing
more dynamic to better manage the QoS of multi-instance applica-
tions in the cloud, the approach mainly limits the number of
requests through a load balancer equipped with a queue for
incoming user requests at given time to send and process the
requests effectively. Simulation results showed that the approach
improved the system performance.

e Sarood et al. (2012) developed techniques that reduce the gap
between application performance on cloud and supercomputers.
The scheme uses object migration to achieve load balance for tightly
coupled parallel applications executing in virtualized environments
that suffer from interfering jobs. While restoring load balance, it not
only reduces the timing penalty caused by interfering jobs but also
reduces energy consumption significantly.

We have investigated and analyzed the application-oriented load
balancing techniques; the results are presented in Table 7. The analysis
table contains article year, authors, key ideas, main objectives, ad-
vantages and disadvantages, evaluation techniques, and the journal or
conference that the article presented. We also showed the name of the
publisher.

4.6. Network-aware task scheduling and load balancing

In this section, we have surveyed and overviewed the literature in
the field of network-aware task scheduling and load balancing techni-
ques.

e Shen et al. (2016) proposed a probabilistic network-aware task
placement for MapReduce scheduling to minimize overall data
transmission cost and delays and hence to reduce job completion
time while balancing the transmission cost reduction and resource

E. Jafarnejad Ghomi et al.

Table 7

An overview of application-oriented load balancing techniques.

Publication/Presentation

Evaluation Techniques

Disadvantages

Advantages

Main Objectives

Key Ideas

Authors

Year

Soft computing (springer)

CloudSim

® No considering dynamic resource

® Improving performance

idle

exploiting of

® Designing a mobile cloud @ Efficient

Wei et al.

2016

® Reducing energy consumption requirement of applications

computing, storage and

model with efficient

(2015)

profit of

the

® Improving

sensing capability of mobile

device
® Improving QoS

® Limiting the number of ® Making load balancing more

application processing

scheduling

International Conference on
Cloud Computing and Big

Data (IEEE)

® No prediction the intensity of CloudSim

® More scalable

Deye et al.
(2013)

2013

requests to obtain appropriate

number of instances

® Reducing the rate of request

dynamic

® Mitigating

requests through load

rejection in two cases: with and
without resource sharing
® Reducing response time

effects of

the
interference of sharing

resources

® Verifying the definitions of ® Reducing response latency

balancer at a given time

Journal of Applied

CloudSim

® No adaptive

® Decreasing response time

Wei et al.

2013

mathematics (Hindawi)

® No distributed

® Decreasing energy consumption
® Integrated cloudlet with mobile

® Maximizing the profit

mobile cloud computing
® Providing a Bio-inspiring @ Improving utilization

(2013)

® Mobile device can be overloaded

® No considering the completion

device
® In heavy load situation selects an

application scheduling

algorithm

time of application in the
scheduling algorithm

application with highs profit and

min energy consumption
tightly ® Reducing timing penalty caused ® No implementation in a public

A testbed located at department of 41st International

® Using a message driven ® Load balancing for

2012 Sarood

computer science at the university Conference on Parallel

of illinois Urbara Champaaign

cloud
® No decision making every time a

by interfering jobs
® Reducing energy consumption

® Reducing execution time

coupled parallel application

adaptive runtime system

et al. (2012)

Processing Workshops(IEEE)

load balancer is invoked

64

Journal of Network and Computer Applications 88 (2017) 50-71

utilization. They found that a task is faced with three challenges: (1)
the available servers for running tasks dynamically change due to
resource allocation and release over time; (2) the data fetching time
of reduce tasks depends on both the placement of reduce tasks and
the locations and sizes of the intermediate data produced by map
tasks; (3) the link load on the routing path also has a significant
impact on the data access latency. In order to reduce the latency, the
link status of the network must be considered in the scheduling
decision. The experimental results showed that the scheduling
algorithm improved the job completion time and cluster resource
utilization.

e Scharf et al. (2015) presented an extension of the OpenStack
scheduler that enables a network-aware placement of instances by
taking into account bandwidth constraints to and from nodes. Their
solution follows the host-local network resource allocation, and it
can be combined with bandwidth enforcement mechanisms such as
rate limiting. The author presented a prototype that requires only
very few changes in the OpenStack open source software. The
authors showed that for heterogeneous VMs, a network-aware
placement could achieve a larger network throughput and a more
predictable performance, for example, by avoiding the congestion of
network resources.

® Shen et al. (2016) proposed a new cloud job scheduler with elastic
bandwidth reservation in clouds, in which each tenant only needs to
specify job deadline and each job's reserved bandwidth is elastically
determined by leveraging the elastic feature to maximize the total
job rewards, which represent the worth of successful completion by
deadlines. It also considers both the computational capacity of VMs
and reserved VM bandwidth in job scheduling. A simulation and real
cluster implementation results showed the efficiency and effective-
ness of the algorithm in comparison with other scheduling algo-
rithms.

e Kliazovich et al. (2016) proposed a model, called CA-DAG, for cloud
computing applications taking into account a variety of commu-
nication resources of various types used in real systems. This
communication-aware model of cloud applications allows making
separate resource allocation decisions, assigning processors to
handle computing jobs and network resources for information
transmissions, such as requests for application database. It is based
on DAGs that in addition to computing vertices include separate
vertices to represent communications. The proposed communica-
tion-aware model creates space for optimization of many existing
solutions to resource allocation and, together with performance and
energy efficiency metrics of communication systems, will become an
essential tool in the design of completely new scheduling schemes of
improved efficiency.

We have investigated and analyzed the network-aware task sche-
duling and load balancing techniques; the results are presented in
Table 8. The analysis table contains article year, authors, key ideas,
main objectives, advantages and disadvantages, evaluation techniques,
and the journal or conference that the article presented. We also
showed the name of the publisher.

4.7. Workflow specific scheduling algorithms

In this section we have surveyed and overviewed the literature on
workflow specific scheduling algorithms; articles with regard to bag of
tasks, dependent task, priority based task scheduling are reviewed.

® Ghosh and Banerjee (2016) proposed a new enhanced algorithm and
implemented it in cloud computing environment, which adds a new
feature like priority basis service of each request. Determining the
priorities of a request, the request allocated to VMs. A Switching
queue has proposed to hold the requests, which have been removed
temporarily from the VM due to the arrival of higher priority request

Journal of Network and Computer Applications 88 (2017) 50-71

E. Jafarnejad Ghomi et al.

(NOODI) N10MIN
PUE UOIIRIIUNWWO)
19mndwo) uo UAIJUOD

[euonewIiu] YH,¢ HHAI

SI9AIdS MdJ B JO SUIISISUOD
,2snoyao],, yoeiguad(Q Jo dmies paqisel v

YI0M1aU
Jo £3010d0) [enjoe oy} SULIAPISUOD ON @
JLIOW B S Y1pIMpUR(JO 9sn dy1
sjuaadid s1g)y Sunsixe uo SUKPY e
s 01 03 doog

soueuriojrod

drqerorpaxd Q0N o

Ia[MPaYds

S1UTR1ISUOD
IPIMPpUR(JUNOdOR
ojur Sunye) Aq seouelsul Jo

(s102)

[onuod jo Aurenueld swn Suxy] e mmdysnoaq) Suisesrou] @ YoriSUId(Q JO UOISUAXY @ JudWROR[d -aIBME YIOMION @ ‘8 19 JIRUDS GT0T
uedsoyew Surzumdo ¢
Surnpayos 10y £3010odoy uoISSIusuen}
SIDAIIS [BOTIUPI JO 13S B JO JUSWIUOIIAUS PNO[D yIomiau Surpnpout UOTJBULIOJUT I0J SIOINOSII
Pposodwiod 21n109NIYdIR WoISAS PAqISS], @ JO AoUs301919] SULISPISUOD ON @ PIBP-1Xe1U0d Suisn) e y1omiau gursnsqol (OVA-vD) Sunndwoo
(198un1dg) peopiiom sonpoid uonnjos JUSUIUOIIAUS PNO[D JO Sunndwod s[puey PO Ul [opow dIemE (9102)
Sunndwo) puo jo rewrnop 01 JIojerousd yderd topuip Suisn @ posodoid jo uonepiea [eonoeid oN @ SOIWRUAD 9y} SuLIOPISUC) @ 01 sSIossedoid Surudissy @ -uopedUNWWod e SUIS)) @ ymozep] 910g
uonejuawadurt
[SSOUDAIIIND
pue AHuanyd o
0UAIS wiLose ayl aun
ue A3o[outpa], Sunnduo) Sunuswe[dwssuryorul (), JO SISISUOD uonnodxa qol Suwnpay e sjuauraambai
PNO[D) UO 2DUIJUO) oI © UM I9JUIIBIED paIjeNuIs e SpIEMal auI[pesap oY} AJsiyes SPNOJO UI UOTJBAIISAI (9102)
[euoneuIaU] JHAI PROPIOM PIZISOYIUAS Y0O(qaoR,] SUIS[) @ UOIRAIISAI IPIMpUR(donewolne ON @ qof [ej0} SuizZiwiuily @ O} 9[npayds qof e Jupul] @ [YIpMpueq onsep 3Juisn e ‘e 19 udyS 910¢
Aeop Suziuuiy @ UOTBZI[IIN 90INOSdL
SUOT}IPUOD YIOMIU uoneznn pUE UOTIONPAI 1509
Sunndwoo wuopierd Sunndwod soueuniojod-y3iy JUSISJIP I9PUN JBN[BAS 10U PIP [9POW I9ISN|d Suisearou] @ uoIssiwsuen] Junuerqg @ Surmpaypos qol ut 1500
I91SN[O UO IUAIJUOD & uo sjusurLadxe JpnpuopdoopeH 9} JO URULIOJIDJUMOUY 10U ST Bl 1S00 UOISSTUISURI} uorsstwsuern pue £3oj0doy (9102)
[euoneuraul gEAI oyoedy uo urnpioSe ay) Sunusweidw] @ [opow [enusuodxs jo Anpewndo oyl @ uona[dwo) qof Supnpay @ eIEp SuIZIUIUIN @ MNIOMIAU Surepisuo) ¢ RERERIEI NI} (414
UOTIBIUASAIJ /uonedrqng sanbruyoa], uoneneay sogejueapesiq safejueApy S9A03[(qO UTRA seap] Aoy sIOyImy Iedx

‘Suue[eq Peo[pue SUIMNPaYdS Ysk] dIEME-YIOMIDU JO MIIAIIAO UY

8 dIqeL

65

Journal of Network and Computer Applications 88 (2017) 50-71

paseq Auoug

Surnpayps
MO[PLIOM

syse) Jo Seq

Suimpayos
MOP[IOM

Surnpaypos
s[qepuadaq

Surnpayos
s[qepuadaq

paseq Auog

syse) Jo Seq

(3vNpnor)) Sunndwo)
PNO[D UO SDUSISJUOD
[euonRWISIU] PIE AHHATL

(F941D)

ele(q Sig pue pnop)
PAOUBAPY UO 90USISJUOD
[eUOIRWISIU] PITY]T,

(I91A9ST) aIeMIJOS
pue swelsAS Jo [euanop

(198unidg)
Sunndwo) I191sN[)

(191498 SWRISAS
1onduwo) uoneIausn
aImny jo rewrnop

(WOV)

Sunndwo) parddy uo
wnisodw4s WOV [enuuy
1ST€ 94 Jo sSuipasooig
(F9d1)

A3orouyoa, uonenduwo)
SAIULAU] UO

90ULISJUO) [BUOTIRUINIUT

(19149S[) SWISAS
I9ndwo) uoneIousn

enqaNuadQ
ur wpLIoSe oy Sunuawaduy

[00} UOIR[NWIIS WISPNO) @

PRO[O PoIRISPa) OYNUSIIS B

ut paysa) yoeoadde pasodolg e

MO[PLIOM
PHOM [BdI UO UOR[NIIIS

adoang ssoioe

SI9IUSD BJep PIINLISIP

uo juswkodop [eax

® Ul pa)sa) pue pajustuajdurr

puis [ea1 e uo Sunusws[dury

[00) UOTR[NUIIS WISPNOT)

uoneIdiu WA pnop
-SSOID 10J UOLOUNJ 1S00 OU ST 91N,
sarrjod uoneidtu Surpraoid oN

SAISULIUL
Suriepisuoo oN
suoneoarjdde
aatsuoul 9ndwiod uo A[uo snooq
aandepe A[nj 10N

-uoredrunuruod

welsAs

prnop ur uoneluewe[dwl [ed1 ON
B30 10U ST SPNOd 3} UaMIaq
syse) [o[ered Surpeaads jo Aorjod oy,

SWNUNI 18 MO[PIOM 9]} Yorll ON
SUOTB[OIA STUT}-UNI PIOAR ON

Kouaroyge uonardwod qof oN
S[qeeds ATy 10N

S[qe[IeAR 10U SI }sean[nW

9I9UyM SUONEMIS dY] JOPISU0d ‘ON
sqol

Auoud mof 10y swmy asuodsar Suo
s1sonbax

£uioud mo[10J UOTIBAIR)S 9SNed AR\

99150p SWIOS 0] ST} UOTINISXD
yse)] [eorjorad a1} 91LWIISAISA0
POY19W UONLWINISS S} UOINIAXD

doueuriojrad

walsAs Sursearouy
uonezimn

90IN0SaI Surroxduy
AW} UOTINODXD

qof 01 Sunpay
Pnop pajeIapay

oYNUAns e SuLIPPISUO)
syse}

Jo a1e1 aanyrey SurziundQ
Sunuereq

peo| SurzrundQ

uedsoyew Surzrwndo
aun asuodsar Suronpay
doueurrojrad Suraordug
uonezInn Suisearouy
Jjo-apen doueuLojad
-1500 poo$ e Sururejurejy
uedsayey Sunpay
SMO[]PLIOM JO SUI[pesp

pue 198pnq SuLapisuo)
1500 pue

uedsoyeuwr 3uisearosq
swm-uni je Aeuad
Ppaadxa Suronpay
SJUTRIISUOD

MO[PLIOM JO UOLR[OIA JO
Aqeqord a3 Suonpay
Surmpaypos

aIeme-anyre] Juipiaoid
UI-Y00[JIOPUSA PIOAE O}
A3o[outoe) pIepuels as()
wiLose
Sunooysa[qnon [esou Yy
IS[NPAYDS PIZI[BITUSIA
mmdysnoayy umordwy
uondwnsuod

pmpueq Suronpay
doueurtojrad Suraorduy
Sqe[eos

Ayirenb do1a19s Suraoaduuy
W uornosxe SurNpay
aun asuodsar Suronpay
109 Apear

[oes 10J poylouwr Apaaid
poseq odfy oSurs Vv
a1mypnns

3eq oy asn Ang
1500 SUNULI 90INOSAT

uonduwmsuod

A319U0 Sunpsy e
uoneznn

90Inosal Suisearou] @

$90IN0SaI 0]
syse} jo Surddewr 1odo1g o

1500 pue sourwIOLd
Suiziwndp o

Swa)sAs pnop
poyurpaur - Surziundo e

SUONIR[OIA JO
Aypqeqord Surziuuiy @
SJUTRIISUOD
MO[P[IOM JO UOLIB[OIA
el SuzZIuuy @

Surmpaypos qol
d[qepuadop peouryua
pue SuLiojuow

a[qeress Surpuoly ¢

sayoIeq qol £ARaY JO
uonnoaxe o} Sunnoidwy e

QuWIT} UOIINIIXd

aSeroAe Sunordw] ¢

ourppeap

wyLoge
UoIRIO[[e JNA Poseq
-fuoud Sunuasaly @

urmpayos MopIoM
10] WYILI03[e onsLIMaYy
aandepe ue Suis) ¢

suoneorjdde syse}
jo Seq jo SwNpPaps e

19[NPaAYIs MOPIOM
1snqou & dofaasp 01
wasAs Auojod jue Suis)) ¢

SOLIRUSDS UTBTOP-BIIUL
10] wiSipered aqLIOSqNS
/ustqnd - oyy Suisn @

pus 10f

Suriojiuow a[qeeds pue

soyoeoidde Surmpayds
SIeme-aIn[re] Surpiaold e

1senbax
I9SN T[2Bd JO UOTROO[[B
90IAISS paseq AWIOL] @

MOIPIOM 109 10
wLod[e Surnpayos
90In0sa1 pnop

(r102)

Te e Ieier $10¢
(s102)

] pue Sueyyz SI0C
(ST0?) TRZIRIRY

pue BSD[RUOSOIN ST0T
(9102)

‘e 12 yaysiduenyy 910g
(9102)

‘Te 19 eISIAR[[2g 9T10¢
(9102)

Te 1@ anbur) 910g
(9107) 99(1oueg

pue ysoyn 9102

66

aImny jo feurnop [00) urigonSeq Surs() @ YSB] Paseq SOUBLIEA PUE UONEIadXy @ pnopP oY) SUZIWIUIN @ MO[IOM 3} [[J [N @ OlWEULp Surpuold @ (LT07) T2 ®D LIOC

o SN0 90ULISJUO) /[RWINOL sanbruya) uoneneAy saSejueapesI(q saSejueApy S9ATIIR(qO UTRIN ©op] Ao) sIoymy JIedax

E. Jafarnejad Ghomi et al.

‘swiLIoSe Surmnpayds dg1ads MO[IOM JO MIIAIDIAO UY
6 dIqBL

E. Jafarnejad Ghomi et al.

2017;3% 2008; 3%

2009; 3%

2012:12%

2014; 1%

Fig. 4. The distribution of studied articles over time From 2008 until February 2017.

earlier. The authors analyzed the performance of their algorithm
with respect to Throttled Load Balancing algorithms and Round
Robin.

® Jaikar et al. (2014) proposed system architecture and the VM
allocation algorithm for the load balancer in a scientific federated
cloud. They tested the proposed approach in a scientific federated
cloud. Experimental results showed that the proposed algorithm not
only increased the utilization of resources but also reduced the
energy consumption.

e Moschakisa and Karatzaa (2015) developed the simulated annealing
and thermodynamic simulated annealing in the multi-criteria sche-
duling of a dynamic multi-cloud system with VMs of heterogeneous
performance serving Bag-of-Tasks (BoT) applications. The schedul-
ing heuristics applied, consider multiple criteria when scheduling
said applications and try to optimize both for performance and cost.
Simulation results indicated that the use of these heuristics could
have a significant impact on performance while maintaining a good
cost-performance trade-off.

® Cai et al. (2017) proposed A delay-based dynamic scheduling
algorithm (DDS), DDS is a dynamic cloud resource provisioning
and scheduling algorithm to minimize the resource renting cost
while meeting workflow deadlines. New VMs are dynamically rented
by the DDS according to the practical execution state and the
estimated task execution times to fulfill the workflow deadline.
The bag-based deadline division and bag-based delay scheduling
strategies consider the bag structure to decrease the total renting
cost. The results showed that the algorithm decreased the resource
renting cost while guaranteeing the workflow deadline compared to
the existing algorithms

e Cinque et al. (2016) proposed a Grid Architecture for scalable
Monitoring and Enhanced dependable job ScHeduling (GAMESH).
GAMESH is a completely distributed and highly efficient manage-
ment infrastructure for the dissemination of monitoring data and
troubleshooting of job execution failures in large-scale and multi-
domain Grid environments. The solutions improve job processing
throughput in both intra/inter-domain environments.

e Bellavista et al. (2016) proposed GAMESH, a Grid Architecture for
scalable Monitoring and Enhanced dependable job ScHeduling. The
proposed solution is conceived as a completely distributed and
highly efficient management infrastructure. The paper relevantly
extends the authors previous work appeared in Cinque et al. (2016).
With respect to it, this extended version provides additional details
about the effective design and implementation of selected and
primary GAMESH components. In addition, it reports a novel and
extensive measurements in both intra-domain and inter-domain
deployments. Moreover, it provides the detailed description of the

67

Journal of Network and Computer Applications 88 (2017) 50-71

original Stochastic Reward Network models that have been pro-
duced to perform the simulation of the GAMESH failure-aware
scheduling solution. The proposed solution improves job processing
throughput in both intra/inter- domain environments.

® Kianpisheh et al. (2016) investigated the problem of workflow
scheduling regarding the user-defined budget and deadline. The
probability of violation of constraints (POV) has been used as
robustness criteria for a workflow schedule at run-time. By aggre-
gating the execution time distributions of the activities on the critical
path the Probability Density Function (PDF) of makespan is
computed. Ant Colony System has been utilized to minimize an
aggregation of violation function and POV.

® Zhang and Li (2015) proposed an Improved Adaptive heuristic
algorithm (TAHA). At first, the TAHA algorithm makes tasks
prioritization in complex graph considering their impact on each
other, based on graph topology. Through this technique, the
completion time of application can be efficiently reduced. Then, it
is based on adaptive crossover rate and mutation rate to cross and
mutate to control and lead the algorithm to an optimized solution.
The experimental results showed that the proposed method im-
proved response time and makespan.

We have investigated and analyzed the network-aware task sche-
duling and load balancing techniques; the results are presented in
Table 9. The analysis table contains article year, authors, key ideas,
main objectives, advantages and disadvantages, evaluation techniques,
and the journal or conference that the article presented. We also
showed the name of the publisher. We specified in column “Focus on”,
which subcategory the algorithm belongs to.

5. Discussion and statistics

In this section, we provide some statistics based on the studied
articles. Fig. 4 shows the distribution of the reviewed articles by the
year of publication from 2008 until February 2017. In the Figure we see
the number of articles in each year on the corresponding slice; for
example, the number of studied articles in 2015 is 29 that is the
highest. The percentage of studied articles in each year is shown in the
Figure too. Moreover, the number of articles in 2016 is noteworthy.
Fig. 4 shows that 3% of the articles were published in 2017, 17% of
them were published in 2016, 27% of them were published in 2015,
11% of them published in 2014, and 9% of them published in 2013. It
means that 72% of the studied articles have been published in the last
five years.

The distribution of the studied from different publishers is shown in
Fig. 5. In the Figure, the article frequency of each publisher is shown on
the corresponding slice, where 29 out of 108 total articles of journals
belong to IEEE (27%). To further investigate the foundation journal of
article, 12% of the literature is related to Elsevier, 10% of the literature
is related to Springer, 8% of the literature belongs to ACM, 2% of the
literature belongs to IJMECE, 2% of the literature is related to ACEEE,
42% of them published by others.

In Table 10 and Fig. 6, we showed how the studied articles
addressed the load balancing QoS metrics. The information is extracted
from Tables 3-9. By referring to Table 10, we can differentiate the
articles based on single objective and multi-objective load balancing
techniques. References Hsueh et al. (2014), Hou et al. (2014), Babu
et al. (2013), Chien et al. (2016), Scharf et al. (2015), Shen et al.
(2016), Bok et al. (2016), and Kliazovich et al. (2016) in the Table are
single objective while the others are multi-objective. Fig. 6 shows that
22% of the studied techniques addressed the response time metric,
24% addressed the makespan, 19% addressed the resource utilization
metric, 9% addressed the throughput, %9 addressed the energy saving,
9% addressed the scalability, 8% addressed the migration time metric.
We see that the majority of techniques have concentrated on the
response time and makespan metrics.

E. Jafarnejad Ghomi et al.

UMECE; ACEEE;
2% 2%

ACM;
8%

Others;
39%

Elsevier;
12%

IEEE;
27%

Fig. 5. The distribution of studied articles based on different publishers.

Evaluation techniques used in the articles and the corresponding
statistics are shown in Fig. 7. We divided evaluation techniques in five
classes: Real Testbed, CloudSim, Witten Program, CloudAnalyst and
the others. Article frequencies in each class are shown on the
corresponding slice; 19 articles used a real testbed for algorithm
evaluation, eight articles used CloudSim, authors of three articles
wrote a program for algorithm evaluation, two articles used
CloudSim, and seven articles used other techniques. To further
investigate the foundation evaluation techniques of the articles, 49%
of the literature used a real testbed that is the highest, and 20% of them
used ClousSim, 3% of them used an arbitrarily written program, 2% of

Table 10
Load balancing QoS metrics in the reviewed techniques.

Journal of Network and Computer Applications 88 (2017) 50-71

Migration Time;
8%

Scalability;
9%

Response Time;
22%

Energy
Saving;

Makespan;
24%

Resource
Utilization;
19%

Fig. 6. An overview of load balancing metrics addressed by the reviewed techniques.

them used CloudAnalyst, and 18% of them used other tools.

The venue types of papers are shown in Fig. 8. In the Figure, the
absolute number of papers in each venue and the percentage are
shown. It is shown that 20 papers presented on the conference, 16
papers published in journals, and two papers presented in a sympo-
sium. To further investigate the paper, 53% of the literature presented
on the conference, 42% published in journals, and 5% presented in
symposium.

6. Open issues and future trends

In this section, we offer major load balancing techniques issues that

References Energy saving Migration time Response time Scalability =~ Resource utilization =~ Throughput = Makespan
1 Scharf et al. (2015) .

2 Shen et al. (2016) .
3 Keliazovich (2016) .
4 Hou et al. (2014) .
5 Bok et al. (2016) .
6 Hsueh et al. (2014) .

7 Babu et al. (2013) .

8 Chient et al. (2016) .

9 Yakhchi et al. (2015)

10 Dasgupta et al. (2013) . . .
11 Nishant et al. (2012) . .
12 Singh et al. (2015)
13 Gutierrez-Garcia and Ramirez-Nafarrate (2015)

14 Keshvadi et al. (2015)

15 Tasquire (2015)
16 Kumarasamy et al. (2015)

17 Domanal and Reddy (2015)
18 Kulkarni and BA (2015) . .

19 Ghoneem and Kulkarni (2016) . .
20 Benfia et al. (2017) . . .
21 Yang and Chen (2015) . .

22 Wei et al. (2015) . .

23 Deye et al. (2013) . .

24 Wei et al. (2013) . . .

25 Sarood et al. (2012) . .
26 Shen et al. (2016) . . .
27 Ghosh and Banerjee (2016) . .
28 Cinque et al. (2016) . .

29 Kianpisheh et al. (2016) . .
30 Maschakis et al. (2015) . .
31 Zhang and Li (2015) . .
32 Jaikar et al. (2014) . .
33 Total 7 6 17 7 14 7 18

68

E. Jafarnejad Ghomi et al.

CloudAnalyst;
5%

Others;
18%
Real Testbed;
49%
CloudSim;

20%

Fig. 7. Evaluation techniques used by articles.

Symposium;

5%

16|

Conference;
53%

Journal;
42%

Fig. 8. Studies venue types.

have not been comprehensively and completely addressed. In our
literature review, we found that there is not a perfect technique for
improving the entire load balancing metrics. For example, some
techniques considered response time, resource utilization, and migra-
tion time, while the others ignored these metrics and considered other
metrics. However, it seems that some metrics are mutually exclusive.
For example, relying on VM migration for load balancing may cause an
increase in the response time. Service cost is another metric, which is
not considered in the studied articles. Presenting a comprehensive
technique to improve as many metrics as possible is, therefore, very
desirable.

Furthermore, our study showed that the energy consumption and
carbon emission are two important drawbacks due to the incremental
growth of the number of datacenters. However, just a few articles
addressed these two drawbacks. Energy consumption is regarded as an
economic efficiency factor while carbon emission is regarded as a
health-related, and/or an environmental factor. Each of these issues is
critically important. Therefore, providing load balancing mechanisms
in a cloud environment while also addressing these two problems is
very desirable too.

Recently, a large volume of data is produced daily from social
networks, medical records, e-commerce, e-shopping, e-pay, banking
records, etc. This huge volume of data makes big data, and therefore
needs near-perfect distribution for fast servicing. Our study showed
that in recent years just a few articles addressed this topic. Further
optimization of Hadoop MapReduce for processing big data in the
future research, is quite promising.

Recently, in addition to the existing popular cloud providers such as

69

Journal of Network and Computer Applications 88 (2017) 50-71

Google, Microsoft, and Amazon, other cloud providers are growing too.
In some situations, it is necessary for a cloud provider to send some
workload to another cloud provider for processing for the purpose of
load balancing. In other words, using resources of more than one cloud
provider is a critical requirement for load balancing in the future. In
this case, the cloud providers will face data lock-in problems. Our study
shows that just a few articles have paid attention to these topics.
Therefore, another interesting line for future research can be the
investigation of data lock-in and cross-cloud servicing problems.

7. Conclusion and future works

Balancing of the workload among cloud nodes is one of the most
important challenges that cloud environments are facing today. In this
paper, we surveyed research literature in the load balancing area,
which is the key aspect of cloud computing. We found in the literature,
several metrics for load balancing techniques that should be considered
in future load balancing mechanisms. Based on our observations, we
have presented a new classification of load balancing techniques: (1)
Hadoop MapReduce load balancing category, (2) natural phenomenon-
based load balancing category, (3) agent-based load balancing category,
and (4) general load balancing category. In each category, we studied
some techniques and analyzed them in terms of some metrics and
summarized the results in tables. Key ideas, main objectives, advan-
tages, disadvantages, evaluation techniques, publication year were
metrics that we considered for load balancing techniques. Recently,
load balancing techniques are focusing on two critical metrics, That is,
energy saving and reducing carbon dioxide emission. As future works,
we suggest the followings: (1) Study and analyze more recent techni-
ques in each of our proposed categories, (2) Evaluate each technique in
a simulation toolkit and compare them based on new metrics.

References

Abdolhamid, M., Shafi’i, M., Bashir, M.B., 2014. Scheduling techniques in on-demand
grid as a service cloud: a review”. J. Theor. Appl. Inf. Technol. 63 (1), 10-19.

Abdullahi, M., Md, Asri Ngadi, Md.A., Abdulhamid, S.M., 2015. Symbiotic organism
search optimization based task scheduling in cloud computing environment. Future
Gener. Comput. Syst. 56, 640—-650.

Aditya, A., Chatterjee, U., Gobata, S., 2015. A comparative study of different static and
dynamic load-balancing algorithm in cloud computing with special emphasis on time
factor. Int. J. Curr. Eng. Technol. 3 (5).

Ahmad, F., Chakradhar,S.T., Raghunathan,A., Vijaykumar, T.N., 2012. Tarazu:
optimizing mapreduce on het-erogeneous clusters. International Conference on
Architectural Support for Programming Languages and Operating Systems
(ASPLOS). 40(1), 61-74.

Ahmad, R.W., Gani, A., Hamid, S.H.A., Shiraz, M., 2015. A survey on virtual machine
migration and server consolidation frameworks for cloud data centers. J. Netw.
Comput. Appl. 52, 11-25.

Alakeel, A.M., 2010. A guide to dynamic load balancing in distributed computer systems.
Int. J. Comput. Sci. Netw. Secur. 10 (6), 153-160.

Apostu, A., Puican, F., Ularu, G., George Suciu, G., Todoran, G., 2013. Study on
advantages and disadvantages of cloud computing — the advantages of telemetry
applications in the cloud. Recent Adv. Appl. Comput. Sci. Digit. Serv..

Babu, L.D.D., Krishna, P.V., 2013. Honey bee behavior inspired load balancing of tasks in
cloud computing environments. Appl. Soft Comput. 13 (5), 2292-2303.

Bellavista, P., Cinque, M., Corradi, A., Foschini, L., Frattini, F., Molina, J.P., 2016.
GAMESH: a grid architecture for scalable monitoring and enhanced dependable job
scheduling. Future Gener. Comput. Syst..

Benifa, J.V.B., Dejey, 2017. Performance improvement of MapReduce for heterogeneous
clusters based on efficient locality and Replica aware scheduling (ELRAS) strategy.
Wirel. Personal. Commun., 1-25.

Bhatia, J., Patel, T., Trivedi, H., Majmudar, V., 2012. HTV Dynamic Load-balancing
algorithm for Virtual Machine Instances in Cloud. International Symposium on
Cloud and Services Computing, 15-20.

Bok, K., Hwang, J., Jongtae Lim, J., Kim, Y., Yoo, J., 2016. An efficient MapReduce
scheduling scheme for processing large multimedia data. Multimed. Tools Appl.,
1-24.

Cai, Z., Li, X., Ruize, R., Lia, Q., 2017. A delay-based dynamic scheduling algorithm for
bag-of-task workflows with stochastic task execution times in clouds. J. Future
Gener. Comput. Syst. 71, 57-72.

Chethana, R., Neelakantappa, B.B., Ramesh, B., 2016. Survey on adaptive task
assignment in heterogeneous Hadoop cluster. IEAE Int. J. Eng. 1 (1).

Chien, N.K., Son, N.H., HD, 2016. Load-balancing algorithm Based on Estimating Finish
Time of Services in Cloud Computing, International Conference on Advanced

http://refhub.elsevier.com/S1084-8045(17)30148-0/sbref1
http://refhub.elsevier.com/S1084-8045(17)30148-0/sbref1
http://refhub.elsevier.com/S1084-8045(17)30148-0/sbref2
http://refhub.elsevier.com/S1084-8045(17)30148-0/sbref2
http://refhub.elsevier.com/S1084-8045(17)30148-0/sbref2
http://refhub.elsevier.com/S1084-8045(17)30148-0/sbref3
http://refhub.elsevier.com/S1084-8045(17)30148-0/sbref3
http://refhub.elsevier.com/S1084-8045(17)30148-0/sbref3
http://refhub.elsevier.com/S1084-8045(17)30148-0/sbref4
http://refhub.elsevier.com/S1084-8045(17)30148-0/sbref4
http://refhub.elsevier.com/S1084-8045(17)30148-0/sbref4
http://refhub.elsevier.com/S1084-8045(17)30148-0/sbref5
http://refhub.elsevier.com/S1084-8045(17)30148-0/sbref5
http://refhub.elsevier.com/S1084-8045(17)30148-0/sbref6
http://refhub.elsevier.com/S1084-8045(17)30148-0/sbref6
http://refhub.elsevier.com/S1084-8045(17)30148-0/sbref6
http://refhub.elsevier.com/S1084-8045(17)30148-0/sbref7
http://refhub.elsevier.com/S1084-8045(17)30148-0/sbref7
http://refhub.elsevier.com/S1084-8045(17)30148-0/sbref8
http://refhub.elsevier.com/S1084-8045(17)30148-0/sbref8
http://refhub.elsevier.com/S1084-8045(17)30148-0/sbref8
http://refhub.elsevier.com/S1084-8045(17)30148-0/sbref9
http://refhub.elsevier.com/S1084-8045(17)30148-0/sbref9
http://refhub.elsevier.com/S1084-8045(17)30148-0/sbref9
http://refhub.elsevier.com/S1084-8045(17)30148-0/sbref10
http://refhub.elsevier.com/S1084-8045(17)30148-0/sbref10
http://refhub.elsevier.com/S1084-8045(17)30148-0/sbref10
http://refhub.elsevier.com/S1084-8045(17)30148-0/sbref11
http://refhub.elsevier.com/S1084-8045(17)30148-0/sbref11
http://refhub.elsevier.com/S1084-8045(17)30148-0/sbref11
http://refhub.elsevier.com/S1084-8045(17)30148-0/sbref12
http://refhub.elsevier.com/S1084-8045(17)30148-0/sbref12

E. Jafarnejad Ghomi et al.

Commutation Technology (ICACT), 228-233.

Cinque, M., Corradi, A., Luca Foschini,L., Frattini, F., Mol, J.P., 2016. Scalable
Monitoring and Dependable Job Scheduling Support for Multi-domain Grid
Infrastructures. In: Proceedings of the 31st Annual ACM Symposium on Applied
Computing.

Dagli, M.K., Mehta, B.B., 2014. Big data and Hadoop: a review. Int. J. Appl. Res. Eng. Sci.
2(2), 192.

Daraghmi, E.Y., Yuan, S.M., 2015. A small world based overlay network for improving
dynamic load-balancing. J. Syst. Softw. 107, 187-203.

Dasgupta, K., Mandalb, B., Duttac, P., Mondald, J.K., Dame, S., 2013. A Genetic
Algorithm (GA) based Load-balancing strategy for Cloud Computing, International
Conference on Computational Intelligence: Modeling Techniques and Applications
(CIMTA), 10, 340-347.

Destanoglu, O., Sevilgen, F.E., 2008. Randomized Hydrodynamic Load Balancing
Approach, IEEE International Conference on Parallel Processing, 1, 196-203.

Deye, M.M,, Slimani, Y., sene, M., 2013. Load Balancing approach for QoS management
of multi-instance applications in Clouds. Proceeding on International Conference on
Cloud Computing and Big Data, 119-126.

Domanal, S.G., Reddy, G.R.M., 2015. Load Balancing in Cloud Environment using a
Novel Hybrid Scheduling Algorithm. IEEE International Conference on Cloud
Computing in Emerging Markets, 37-42.

Doulkeridis, C., Norvag, K., 2013. A survey of large-scale analytical query processing in
MapReduce. VLDB J., 1-26.

Dsouza, M.B., 2015. A survey of Hadoop MapReduce scheduling algorithms. Int. J.
Innov. Res. Comput. Commun. Eng. 3 (7).

Fadika, Z., Dede, E., Govidaraju, M., 2011. Benchmarking MapReduce Implementations
for Application Usage Scenarios. In: 2011 IEEE/ACM Proceedings of the 12th
International Conference on Grid Computing, 0, 90-97.

Farrag, A.A.S., Mahmoud, S.A., 2015. Intelligent Cloud Algorithms for Load Balancing
problems: A Survey. IEEE In: Proceedings of the Seventh International Conference
on Intelligent Computing and Information Systems (ICICIS 'J 5), 210-216.

Gautam, J.V., Prajapati, H.B., Dabhi, V.K., Chaudhary, S., 2015. A Survey on Job
Scheduling Algorithms in Big Data Processing. IEEE International Conference on
Electrical, Computer and Communication Technologies (ICECCT’15), 1-11.

Ghoneem, M., Kulkarni, L., 2016. An Adaptive MapReduce Scheduler for Scalable
Heterogeneous Systems. Proceeding of the International Conference on Data
Engineering and Communication Technology, 603—6011.

Ghosh, S., Banerjee, C., 2016. Priority Based Modified Throttled Algorithm in Cloud
Computing. International Conference on Inventive Computation Technology.

Goyal, S., Verma, M.K., 2016. Load balancing techniques in cloud computing
environment: a review. Int. J. Adv. Res. Comput. Sci. Softw. Eng. 6 (4).

Gupta, H., Sahu, K., 2014. Honey bee behavior based load balancing of tasks in cloud
computing. Int. J. Sci. Res. 3 (6).

Gutierrez-Garcia, J.O., Ramirez-Nafarrate, A., 2015. Agent-based load balancing in
Cloud data centers. Clust. Comput. 18 (3), 1041-1062.

Hefny, H.A., Khafagy, M.H., Ahmed, M.W., 2014. Comparative study load balance
algorithms for MapReduce environment. Int. Appl. Inf. Syst. 106 (18), 41.

Hou, X., Kumar, A., Varadharajan, V., 2014. Dynamic Workload Balancing for Hadoop
MapReduce. Proceeding of International Conference on Big data and Cloud
Computing, 56-62.

Hsueh, S.C., Lin, M.Y., Chiu, Y.C., 2014. A load-balanced MapReduce algorithm for
blocking-based entity-resolution with multiple keys. Parallel Distrib. Comput.
(AusPDC), 3.

Hwang, K., Dongarra, J., Fox, G.C., 2013. Distributed and Cloud Computing: from
Parallel Processing to the Internet of Things.

Ivanisenko, I.N., Radivilova, T.A., 2015. Survey of Major Load-balancing algorithms in
Distributed System. Information Technologies in Innovation Business Conference
(ITIB).

Jadeja, Y., Modi, K., 2012. Cloud Computing - Concepts, Architecture and Challenges.
International Conference on Computing, Electronics and Electrical Technologies
[ICCEET].

Jaikar, A., Dada, H., Kim, G.R., Noh, S.Y., 2014. Priority-based Virtual Machine Load
Balancing in a Scientific Federated Cloud. IEEE In: Proceedings of the 3rd
International Conference on Cloud Computing.

Kabir, M.S., Kabir, K.M., Islam, R., 2015. Process of load balancing in cloud computing
using genetic algorithm. Electr. Comput. Eng.: Int. J. 4 (2).

Kanakala, V.R.T., Reddy, V.K., 2015a. Performance analysis of load balancing techniques
in cloud computing environment. TELKOMNIKA Indones. J. Electr. Eng. 13 (3),
568-573.

Kanakala, V.R.T., Reddy, V.K., 2015b. Performance analysis of load balancing techniques
in cloud computing environment. TELKOMNIKA Indones. J. Electr. Eng. 13 (3),
568-573.

Kansal, N.J., Inderveer Chana, I., 2012. Cloud load balancing techniques: a step towards
green computing. Int. J. Comput. Sci. Issues 9 (1), 238-246.

Kaur, R., Luthra, P., 2014. Load Balancing in Cloud Computing, International
Conference on Recent Trends in Information. Telecommunication and Computing,
ITC, pp. 1-8.

Ke, K., Anyanwu, K., 2010. Scheduling Hadoop Jobs to Meet Deadlines. In: Proceedings
of the 2nd IEEE International Conference on Cloud Computing Technology and
Science (CloudCom), 388—-392.

Keshvadi, S., Faghih, B., 2016. A multi-agent based load balancing system in Iaa$ cloud
environment. Int. Robot. Autom. J. 1 (1).

Khalil, S., Salem, S.A., Nassar, S., Saad, E.M., 2013. Mapreduce performance in
heterogeneous environments: a review. Int. J. Sci. Eng. Res. 4 (4), 410-416.

Khiyaita, A., Zbakh, M., Bakkali, H.E.I., Kettani, D.E.I., 2012. Load balancing cloud
computing: state of art. Netw. Secur. Syst. (JNS2), 106—109.

70

Journal of Network and Computer Applications 88 (2017) 50-71

Kianpisheh, S., Charkari, N.M., Kargahi, M., 2016. Ant colony based constrained
workflow scheduling for heterogeneous computing systems. Clust. Comput. 19,
1053-1070.

Kliazovich, D., Pecero, J.E., Tchernykh, A., Bouvry, P., Khan, S.U., Zomaya, A.Y., 2016.
CA-DAG: modeling communication-aware applications for scheduling in cloud
computing. J. Grid Comput., 1-17.

Kolb, L., Thor, A., Rahm, E., 2011. Block-based Load Balancing for Entity Resolution
with MapReduce. International Conference on Information and Knowledge
Management (CIKM), 2397-2400.

Kolb, L., Thor, A., Rahm, E., 2012. Load Balancing for MapReduce-based Entity
Resolution, IEEE In: Proceedings of the 28th International Conference on Data
Engineering, 618-629.

Komarasamy, D., Muthuswamy, V., 2016. A novel approach for dynamic load balancing
with effective Bin packing and VM reconfiguration in cloud. Indian J. Sci. Technol. 9
(11), 1-6.

Koomey, J.G., 2008. Worldwide electricity used in datacenters. Environ. Res. Lett. 3 (3),
034008.

Kulkarni, A.K., B, A, 2015. Load-balancing strategy for Optimal Peak Hour Performance
in Cloud Datacenters. In: Proceedings of theIEEE International Conference on Signal
Processing, Informatics, Communication and Energy Systems (SPICES).

Kumar, S., Rana, D.H., 2015. Various dynamic load-balancing algorithms in cloud
environment: a survey. Int. J. Comput. Appl. 129 (6).

Lee, K.H., Choi, H., Moon, B., 2011. Parallel data processing with MapReduce: a survey.
SIGMOD Rec. 40 (4), 11-20.

Li, R., Hu, H., Li, H., Wu, Y., Yang, J., 2015. MapReduce parallel programming model: a
state-of-the-art survey. Int. J. Parallel Program., 1-35.

Lin, C.Y., Lin, Y.C., 2015. A Load-Balancing Algorithm for Hadoop Distributed File
System, International Conference on Network-Based Information Systems.

Lua, Y., Xie, Q., Klito, G., Geller, A., Larus, J.R., Greenberg, A., 2011. Join-Idle-Queue: a
novel load-balancing algorithm for dynamically scalable web services. Int. J.
Perform. Eval. 68, 1056—1071.

Malladi, R.R., 2015. An approach to load balancing In cloud computing. Int. J. Innov.
Res. Sci. Eng. Technol. 4 (5), 3769-3777.

Manjaly, J.S., A, CE, 2013. Relative study on task schedulers in Hadoop MapReduce. Int.
J. Adv. Res. Comput. Sci. Softw. Eng. 3 (5).

Mesbahi, M., Rahmani, A.M., 2016. Load balancing in cloud computing: a state of the art
survey. Int. J. Mod. Educ. Comput. Sci. 8 (3), 64.

Milani, A.S., Navimipour, N.J., 2016. Load balancing mechanisms and techniques in the
cloud environments: systematic literature review and future trends. J. Netw.
Comput. Appl. 71, 86-98.

Mishra, N.K., Misha, N., 2015. Load balancing techniques: need, objectives and major
challenges in cloud computing: a systematic review. Int. J. Comput. 131 (18).

Moschakisa, I.A., Karatzaa, H.D., 2015. Multi-criteria scheduling of Bag-of-Tasks
applications on heterogeneous interlinked clouds with simulated annealing. J. Softw.
Syst. 101, 1-14.

Mukhopadhyay, R., Ghosh, D. , Mukherjee, N., 2010. A Study on the application of
existing load-balancing algorithms for large, dynamic, and heterogeneous distributed
systems ACM, A Study on the Application of Existing Load-balancing algorithms for
Large, Dynamic, and Heterogeneous Distributed System. In Proceedings of 9th
International Conference on Software Engineering, Parallel and Distributed Systems,
238-243 .

Neeraj, R., Chana, 1., 2014. Load balancing and job migration techniques in grid: a survey
of recent trends. Wirel. Personal. Commun. 79 (3), 2089-2125.

Nishant, K., Sharma, P., Krishna, V., Gupta, C., Singh, K.P., Nitin, N., Rastogi,R., 2012.
Load Balancing of Nodes in Cloud Using Ant Colony Optimization. In: Proceedings of
the 14th International Conference on Modelling and Simulation, 3-8.

Nuaimi, K., Mohamed, N., Mariam Al-Nuaimi, M., Al-Jaroodi, J., 2012. A Survey of Load
Balancing in Cloud Computing: Challenges and Algorithms, IEEE In: Proceedings of
the Second Symposium on Network Cloud Computing and Applications.

Palta, R., Jeet, R., 2014. Load balancing in the cloud computing using virtual machine
migration: a review. Int. J. Appl. Innov. Eng. Manag. 3 (5), 437-441.

Patel, H.M., 2015. A comparative analysis of MapReduce scheduling algorithms for
Hadoop. Int. J. Innov. Emerg. Res. Eng. 2 (2).

Polato, I., Re, R., Goldman, A., Kon, F., 2014. A comprehensive view of Hadoop research
— a systematic literature review. J. Netw. Comput. Appl. 46, 1-25.

Rajabioun, R., 2011. Cuckoo optimization algorithm. Appl. Soft Comput. 11, 5508-5518.

Randles, M., Lamb, D., Tareb-Bendia, A., 2010. A Comparative Study into Distributed
Load-balancing algorithms for Cloud Computing, IEEE In: Proceedings of the 24th
International Conference on Advanced Information Networking and Applications
Workshops, pp. 551-556.

Rao, B.T., Reddy, L.S.S., 2011. Survey on improved scheduling in Hadoop MapReduce in
cloud environments. Int. J. Comput. Appl. 34 (9).

Rastogi, G., Sushil, R., 2015. Analytical Literature Survey on Existing Load Balancing
Schemes in Cloud Computing. International Conference on Green Computing and
Internet of Things (ICGCloT).

Rathore, N., Channa, I., 2011. A Cognitive Analysis of Load Balancing and job migration
Technique in Grid World Congress on Information and Communication
Technologies Congr. Inf. Commun. Technol. (WICT). pp. 77-82.

Rathore, N., Chana, I., 2013. A Sender Initiate Based Hierarchical Load Balancing
Technique for Grid Using Variable Threshold Value. Signal Processing, Computing
and Control (ISPCC), IEEE International Conference.

Ray, S., Sarkar, A.D., 2012. Execution analysis of load-balancing algorithms in cloud
computing environment. Int. J. Cloud Comput.: Serv. Archit. (IJCCSA) 2 (5).

Sarood, O., Gupta, A., Kale, L.V., 2012. Cloud Friendly Load Balancing for HPC
Applications: Preliminary Work. International Conference on Parallel Processing
Workshops, 200-205.

http://refhub.elsevier.com/S1084-8045(17)30148-0/sbref13
http://refhub.elsevier.com/S1084-8045(17)30148-0/sbref13
http://refhub.elsevier.com/S1084-8045(17)30148-0/sbref14
http://refhub.elsevier.com/S1084-8045(17)30148-0/sbref14
http://refhub.elsevier.com/S1084-8045(17)30148-0/sbref15
http://refhub.elsevier.com/S1084-8045(17)30148-0/sbref15
http://refhub.elsevier.com/S1084-8045(17)30148-0/sbref16
http://refhub.elsevier.com/S1084-8045(17)30148-0/sbref16
http://refhub.elsevier.com/S1084-8045(17)30148-0/sbref17
http://refhub.elsevier.com/S1084-8045(17)30148-0/sbref17
http://refhub.elsevier.com/S1084-8045(17)30148-0/sbref18
http://refhub.elsevier.com/S1084-8045(17)30148-0/sbref18
http://refhub.elsevier.com/S1084-8045(17)30148-0/sbref19
http://refhub.elsevier.com/S1084-8045(17)30148-0/sbref19
http://refhub.elsevier.com/S1084-8045(17)30148-0/sbref20
http://refhub.elsevier.com/S1084-8045(17)30148-0/sbref20
http://refhub.elsevier.com/S1084-8045(17)30148-0/sbref21
http://refhub.elsevier.com/S1084-8045(17)30148-0/sbref21
http://refhub.elsevier.com/S1084-8045(17)30148-0/sbref21
http://refhub.elsevier.com/S1084-8045(17)30148-0/sbref22
http://refhub.elsevier.com/S1084-8045(17)30148-0/sbref22
http://refhub.elsevier.com/S1084-8045(17)30148-0/sbref23
http://refhub.elsevier.com/S1084-8045(17)30148-0/sbref23
http://refhub.elsevier.com/S1084-8045(17)30148-0/sbref23
http://refhub.elsevier.com/S1084-8045(17)30148-0/sbref24
http://refhub.elsevier.com/S1084-8045(17)30148-0/sbref24
http://refhub.elsevier.com/S1084-8045(17)30148-0/sbref24
http://refhub.elsevier.com/S1084-8045(17)30148-0/sbref25
http://refhub.elsevier.com/S1084-8045(17)30148-0/sbref25
http://refhub.elsevier.com/S1084-8045(17)30148-0/sbref26
http://refhub.elsevier.com/S1084-8045(17)30148-0/sbref26
http://refhub.elsevier.com/S1084-8045(17)30148-0/sbref27
http://refhub.elsevier.com/S1084-8045(17)30148-0/sbref27
http://refhub.elsevier.com/S1084-8045(17)30148-0/sbref28
http://refhub.elsevier.com/S1084-8045(17)30148-0/sbref28
http://refhub.elsevier.com/S1084-8045(17)30148-0/sbref29
http://refhub.elsevier.com/S1084-8045(17)30148-0/sbref29
http://refhub.elsevier.com/S1084-8045(17)30148-0/sbref29
http://refhub.elsevier.com/S1084-8045(17)30148-0/sbref30
http://refhub.elsevier.com/S1084-8045(17)30148-0/sbref30
http://refhub.elsevier.com/S1084-8045(17)30148-0/sbref30
http://refhub.elsevier.com/S1084-8045(17)30148-0/sbref31
http://refhub.elsevier.com/S1084-8045(17)30148-0/sbref31
http://refhub.elsevier.com/S1084-8045(17)30148-0/sbref31
http://refhub.elsevier.com/S1084-8045(17)30148-0/sbref32
http://refhub.elsevier.com/S1084-8045(17)30148-0/sbref32
http://refhub.elsevier.com/S1084-8045(17)30148-0/sbref33
http://refhub.elsevier.com/S1084-8045(17)30148-0/sbref33
http://refhub.elsevier.com/S1084-8045(17)30148-0/sbref34
http://refhub.elsevier.com/S1084-8045(17)30148-0/sbref34
http://refhub.elsevier.com/S1084-8045(17)30148-0/sbref35
http://refhub.elsevier.com/S1084-8045(17)30148-0/sbref35
http://refhub.elsevier.com/S1084-8045(17)30148-0/sbref36
http://refhub.elsevier.com/S1084-8045(17)30148-0/sbref36
http://refhub.elsevier.com/S1084-8045(17)30148-0/sbref36
http://refhub.elsevier.com/S1084-8045(17)30148-0/sbref37
http://refhub.elsevier.com/S1084-8045(17)30148-0/sbref37
http://refhub.elsevier.com/S1084-8045(17)30148-0/sbref38
http://refhub.elsevier.com/S1084-8045(17)30148-0/sbref38
http://refhub.elsevier.com/S1084-8045(17)30148-0/sbref39
http://refhub.elsevier.com/S1084-8045(17)30148-0/sbref39
http://refhub.elsevier.com/S1084-8045(17)30148-0/sbref40
http://refhub.elsevier.com/S1084-8045(17)30148-0/sbref40
http://refhub.elsevier.com/S1084-8045(17)30148-0/sbref40
http://refhub.elsevier.com/S1084-8045(17)30148-0/sbref41
http://refhub.elsevier.com/S1084-8045(17)30148-0/sbref41
http://refhub.elsevier.com/S1084-8045(17)30148-0/sbref42
http://refhub.elsevier.com/S1084-8045(17)30148-0/sbref42
http://refhub.elsevier.com/S1084-8045(17)30148-0/sbref42
http://refhub.elsevier.com/S1084-8045(17)30148-0/sbref43
http://refhub.elsevier.com/S1084-8045(17)30148-0/sbref43
http://refhub.elsevier.com/S1084-8045(17)30148-0/sbref44
http://refhub.elsevier.com/S1084-8045(17)30148-0/sbref44
http://refhub.elsevier.com/S1084-8045(17)30148-0/sbref45
http://refhub.elsevier.com/S1084-8045(17)30148-0/sbref45
http://refhub.elsevier.com/S1084-8045(17)30148-0/sbref46
http://refhub.elsevier.com/S1084-8045(17)30148-0/sbref46
http://refhub.elsevier.com/S1084-8045(17)30148-0/sbref47
http://refhub.elsevier.com/S1084-8045(17)30148-0/sbref48
http://refhub.elsevier.com/S1084-8045(17)30148-0/sbref48
http://refhub.elsevier.com/S1084-8045(17)30148-0/sbref49
http://refhub.elsevier.com/S1084-8045(17)30148-0/sbref49

E. Jafarnejad Ghomi et al.

Scharf, M., Stein, M., Voith,T., Hilt, V., 2015. Network-aware Instance Scheduling in
OpenStack. International Conference on Computer Communication and Network
(ICCCN), 1-6.

Selvi, R.T., Aruna, R., 2016. Longest approximate time to end scheduling algorithm in
Hadoop environment. Int. J. Adv. Res. Manag. Archit. Technol. Eng. 2 (6).

Shadkam, E., Bijari, M., 2014. Evaluation the efficiency of cuckoo optimization
algorithm. Int. J. Comput. Sci. Appl. 4 (2), 39-47.

Shaikh, B., Shinde, K., Borde, S., 2017. Challenges of big data processing and scheduling
of processes using various Hadoop Schedulers: a survey. Int. Multifaceted Multiling.
Stud. 3, 12.

Shen, H., Sarker, A., Yuy, L., Feng Deng, F., 2016. Probabilistic Network-Aware Task
Placement for MapReduce Scheduling. In: Proceedings of the IEEE International
Conference on Cluster Computing.

Shen, H., Yu, L., Chen,L., Li, Z., 2016. Goodbye to Fixed Bandwidth Reservation: Job
Scheduling with Elastic Bandwidth Reservation in Clouds. In: Proceedings of the
International Conference on Cloud Computing Technology and Science.

Sidhu, A.K., Kinger, S., 2013. Analysis of load balancing techniques in cloud computing.
Int. J. Comput. Technol. 4 (2).

Sim, K.M., 2011. Agent-based cloud computing. IEEE Trans. Serv. Comput. 5 (4),
564-577.

Singh, P., Baaga, P., Gupta, S., 2016. Assorted load-balancing algorithms in cloud
computing: a survey”. Int. J. Comput. Appl. 143 (7).

Singha, A., Juneja, D., Malhotra, M., 2015. Autonomous Agent Based Load-balancing
algorithm in Cloud Computing. International Conference on Advanced Computing
Technologies and Applications (ICACTA), 45, 832—841.

Sui, Z., Pallickara, S., 2011. A survey of load balancing techniques forData intensive
computing. In. In: Furht, Borko, Escalante, Armando (Eds.), Handbook of Data
Intensive Computing. Springer, New York, 157-168.

Tasquier, L., 2015. Agent based load-balancer for multi-cloud environments. Columbia
Int. Publ. J. Cloud Comput. Res. 1 (1), 35—49.

Vaidya, M., 2012. Parallel processing of cluster by Map Reduce. Int. J. Distrib. Parallel
Syst. 3 (1).

Valvég, S.V., 2011. Cogset: A High-Performance MapReduce Engine. Faculty of Science
and Technology Department of Computer Science, University of Tromso, 14.

Valvég, S.V., Johansen, D., 2009. Cogset: A unified engine for reliable storage and
parallel processing, In: Proceedings of the Sixth IFIP International Conference on

71

Journal of Network and Computer Applications 88 (2017) 50-71

Network and Parallel Computing, 174-181.

Vasic, N., Barisits, M., 2009. Salzgeber, V. Making Cluster Applications Energy-Aware, In
ACDC ’09 In: Proceedings of the 1st Workshop on Automated Control for
Datacenters and Clouds, ACM, New York, NY, USA, pp. 37—42.

Vernica, R., Balmin, A., Beyer, K.S., Ercegovac, V., 2012. Adaptive MapReduce using
situation-aware mappers. International Conference on Extending Database
Technology (EDBT), 420—431.

Wei, X., Fan, J., Lu, Z., Ding, K., 2013,. Application scheduling in mobile cloud
computing with load balancing. J. Appl. Math., 1-13.

Wei, X., Fan, J., Wang, T., Wang, Q., 2015. Efficient application scheduling in mobile
cloud computing based on MAX—MIN ant system. Soft Comput., 1-15.

Xia, Y., Wang, L., Zhao, Q., Zhang, G., 2011. Research on job scheduling algorithm in
Hadoop. J. Comput. Inf. Syst. 7, 5769-5775.

Yahaya, B., Latip, R., Othman, M., Abdullah, A., 2011. Dynamic load balancing policy
with communication and computation elements in grid computing with multi-agent
system integration. Int. J. New Comput. Archit. Appl. (IJNCAA) 1 (3), 757-765.

Yakhchi, M., Ghafari, S.M., Yakhchi, S., Fazeliy, M., Patooghi, A., 2015. Proposing a Load
Balancing Method Based on Cuckoo Optimization Algorithm for Energy
Management in Cloud Computing Infrastructures. Published In: Proceedings of the
6th International Conference on Modeling, Simulation, and Applied Optimization
(ICMSAO).

Yang, S.J., Chen, Y.R., 2015. Design adaptive task allocation scheduler to improve
MapReduce performance in heterogeneous clouds. J. Netw. Comput. Appl. 57,
61-70.

Zaharia, M., 2009. Job Scheduling with the Fair and Capacity Schedulers 9. Berkley
University.

Zaharia, M., Borthakur, D., Sarma, J.S., 2010. Delay Scheduling: A Simple Technique for
Achieving Locality and Fairness in Cluster Scheduling, in Proceedings of the
European conference on Computer systems (EuroSys'10), 265-278.

Zaharia, M., Konwinski, A., Joseph, A.D., Katz, R., Stoica, I., 2008. Improving
MapReduce Performance in Heterogeneous Environments. In: Proceedings of the
8th conference on Symposium on Opearting Systems Design and Implementation,
29-42.

Zhang, Y., Li, Y., 2015. An improved Adaptive workflow scheduling Algorithm in cloud
environments. In: Proceedings of the Third International Conference on Advanced
Cloud and Big Data, 112-116.

http://refhub.elsevier.com/S1084-8045(17)30148-0/sbref50
http://refhub.elsevier.com/S1084-8045(17)30148-0/sbref50
http://refhub.elsevier.com/S1084-8045(17)30148-0/sbref51
http://refhub.elsevier.com/S1084-8045(17)30148-0/sbref51
http://refhub.elsevier.com/S1084-8045(17)30148-0/sbref52
http://refhub.elsevier.com/S1084-8045(17)30148-0/sbref52
http://refhub.elsevier.com/S1084-8045(17)30148-0/sbref52
http://refhub.elsevier.com/S1084-8045(17)30148-0/sbref53
http://refhub.elsevier.com/S1084-8045(17)30148-0/sbref53
http://refhub.elsevier.com/S1084-8045(17)30148-0/sbref54
http://refhub.elsevier.com/S1084-8045(17)30148-0/sbref54
http://refhub.elsevier.com/S1084-8045(17)30148-0/sbref55
http://refhub.elsevier.com/S1084-8045(17)30148-0/sbref55
http://refhub.elsevier.com/S1084-8045(17)30148-0/sbref56
http://refhub.elsevier.com/S1084-8045(17)30148-0/sbref56
http://refhub.elsevier.com/S1084-8045(17)30148-0/sbref56
http://refhub.elsevier.com/S1084-8045(17)30148-0/sbref57
http://refhub.elsevier.com/S1084-8045(17)30148-0/sbref57
http://refhub.elsevier.com/S1084-8045(17)30148-0/sbref58
http://refhub.elsevier.com/S1084-8045(17)30148-0/sbref58
http://refhub.elsevier.com/S1084-8045(17)30148-0/sbref59
http://refhub.elsevier.com/S1084-8045(17)30148-0/sbref59
http://refhub.elsevier.com/S1084-8045(17)30148-0/sbref60
http://refhub.elsevier.com/S1084-8045(17)30148-0/sbref60
http://refhub.elsevier.com/S1084-8045(17)30148-0/sbref61
http://refhub.elsevier.com/S1084-8045(17)30148-0/sbref61
http://refhub.elsevier.com/S1084-8045(17)30148-0/sbref62
http://refhub.elsevier.com/S1084-8045(17)30148-0/sbref62
http://refhub.elsevier.com/S1084-8045(17)30148-0/sbref63
http://refhub.elsevier.com/S1084-8045(17)30148-0/sbref63
http://refhub.elsevier.com/S1084-8045(17)30148-0/sbref63
http://refhub.elsevier.com/S1084-8045(17)30148-0/sbref64
http://refhub.elsevier.com/S1084-8045(17)30148-0/sbref64
http://refhub.elsevier.com/S1084-8045(17)30148-0/sbref64
http://refhub.elsevier.com/S1084-8045(17)30148-0/sbref65
http://refhub.elsevier.com/S1084-8045(17)30148-0/sbref65

	Load-balancing algorithms in cloud computing: A survey
	Introduction
	The load balancing model, metrics, and policies in literature
	Load balancing metrics
	Taxonomy of load-balancing algorithms
	Policies in dynamic load-balancing algorithms

	Challenges in cloud-based load balancing
	Virtual machine migration (time and security)
	Spatially distributed nodes in a cloud
	Single point of failure
	Algorithm complexity
	Emergence of small data centers in cloud computing
	Energy management

	Survey on existing load balancing mechanisms
	An Introduction to Hadoop MapReduce
	Load balancing schedulers in Hadoop
	MapReduce optimization for load balancing

	Natural phenomena-based load balancing category
	Agent-based load balancing techniques
	General load balancing techniques
	Application oriented load balancing techniques
	Network-aware task scheduling and load balancing
	Workflow specific scheduling algorithms

	Discussion and statistics
	Open issues and future trends
	Conclusion and future works
	References

