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ABSTRACT
Course selection is a crucial and challenging problem that
students have to face while navigating through an under-
graduate degree program. The decisions they make shape
their future in ways that they cannot conceive in advance.
Available departmental sample degree plans are not person-
alized for each student, and personal discussion time with
an academic advisor is usually limited. Data-driven meth-
ods supporting decision making have gained importance to
empower student choices and scale advice to large cohorts.
We propose Scholars Walk, a random-walk-based approach
that captures the sequential relationships between the dif-
ferent courses. Based on the “wisdom of the crowd” and the
students’ prior courses, we recommend a short list of courses
for next semester. Our experimental evaluation illustrates
that Scholars Walk outperforms other collaborative filtering
and popularity-based approaches. At the same time, our
framework is very efficient, easily interpretable, while also
being able to take into consideration important aspects of
the educational domain.

Keywords
course recommendation, Markov chains, random walks, se-
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1. INTRODUCTION
The general purpose of higher education is to offer programs,
which will help learners to gain knowledge throughout their
studies. Students enjoy a plethora of offerings. However,
course selection can be “messy and unorganized” [3] as it
depends on many factors that students need to consider.
Students have to balance personal preferences (interests, ob-
jectives, and career goals) and general education and degree
program requirements. As a result, course selection can be
a non-trivial task.

Decisions can be made based on manual guides offered from
each department, but these are not tailored to individual

cases [7] in a higher education setting. Personalized assis-
tance can be given by academic advisers, however this is not
scalable with large cohorts with thousands of students. The
ratio of student to advisor may be very high [14], limiting
the adviser-advisee discussion time. Additionally, college
students take on average up to 20% more courses than re-
quired [2]. Better advising can help alleviate these problems.
We need predictive models that can be employed to enable
strategic action and attain better results. In this paper, we
focus on appropriately designing a course recommendation
system (CRS) that could facilitate the conversation between
advisors and students for future planning.

There are several existing approaches to generate a set of
courses to recommend for next semester. Their majority
suggest courses based on either the constraints and require-
ments that they satisfy or their expected grades. This paper
introduces Scholars Walk, a random-walk based approach
for the course selection problem. It describes a personal-
ized model that takes advantage of the sequential nature of
course selection. We assume that students’ choices for the
next term depend on the courses they have taken so far.
In our approach, we build a Markov chain for each degree
program over the courses taken consecutively. Then, we per-
form a random walk, starting from the courses that students
took in the previous semester. We evaluated the proposed
approach on a number of different departments with dif-
ferent subjects and characteristics. Scholars Walk overall
outperforms other competing approaches in all the metrics
considered in this paper.

2. RELATED WORK
Recommender systems have been broadly applied within the
context of student learning [16]. We will further review the
different approaches developed to help students select a sub-
set of courses to register for an upcoming semester. The
first course recommender systems are based on constraint
satisfaction [22]. The sequence-based recommender [24] also
considers complex constraints to improve the expected time-
to-degree and GPA. A related body of work involves mining
of association rules. Al-Badarenah et al. [1] cluster the stu-
dents based on their grades first. Nguyen et al. [18] apply
sequential rule mining in (course, grade) pairs and recom-
mend the courses with the best performance. A different
CSR was proposed by Esteban et al. [10], where there is
available information about students’ satisfaction after tak-
ing a course.
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Table 1: Statistics for each major.

Major n m grades %pop flex

Accounting 846 53 22,524 45.9 0.28
Aerospace Engr 532 109 16,259 25.7 0.10
Biology 1,275 146 28,084 14.9 0.11
Biol Society Env 709 57 14,597 31.4 0.31
Biomedical Engr 644 131 19,748 23.8 0.16
Chemical Engr 826 108 24,825 26.3 0.11
Chemistry 724 145 18,292 17.4 0.14
Civil Engr 651 112 19,189 26.5 0.12
Communication 1,333 95 22,421 15.4 0.19
Computer Sc 998 161 24,899 13.7 0.11
Electrical Engr 740 164 22,191 17.1 0.12
Elementary Ed 770 49 16,527 40.4 0.31
English 1,176 153 17,736 9.5 0.11
Finance 1,234 83 32,255 29.7 0.20
Genetics Cell 680 93 15,385 23.1 0.19
Journalism 2,306 100 40,519 17.1 0.20
Kinesiology 1,176 164 33,622 14.8 0.16
Marketing 1,291 69 29,901 30.8 0.20
Mechanical Engr 1,369 132 39,436 18.9 0.11
Nursing 819 86 25,136 31.2 0.27
Nutrition 554 87 15,591 29.7 0.19
Political Science 1,307 171 19,260 8.1 0.12
Psychology 1,894 115 31,141 13.4 0.15

n, m are the number of students and courses.
%pop is the course popularity (percentage of students
that took a course at least once).
The last column (flex) is the degree flexibility.

Recently, recurrent neural networks (RNNs) have been suc-
cessfully applied within the educational domain. Long Short
Term Memory (LSTM) networks have been used for grad-
ing prediction [13, 20]. In terms of course recommenda-
tion, a combination of LSTMs and skip-gram models has
also developed to balance implicit and explicit student pref-
erences [23]. Morsy et al. [17] have also used RNN to rec-
ommend courses which are expected to help maintain or im-
prove students’ GPA. Other approaches include a Markov-
based model [15], that represents the sequence of courses
taken as a stochastic process. Garner et al. [11] build a co-
enrollment network and extract features for a network-based
structural model. Finally Elbadrawy et al. [9] propose us-
ing the academic features to improve the recommendation
performance.

3. DOMAIN & DATASET
This work focuses on the undergraduate students in a tradi-
tional educational institution. We used a dataset from the
University of Minnesota that spans more than 10 years. The
A–F grading scale (A, A-, B+, B, B-, C+, C, C-, D+, D, F)
is used. Courses in which a student receives less than a C-
do not count toward satisfying degree requirements.

We extracted the degree programs that have at least 500
graduated students from 23 different majors. We only kept
students that actually received their degree and had at least
three consecutive semesters with valid courses. We selected
the 40 most frequent courses and the courses that belonged
to frequent subjects. A subject is considered frequent if stu-

dents have taken at least three courses that belong to that
subject on average. We removed instances without an A–F
grade, and non-academic courses, like independent/directed
study or field study. We did not consider offerings in the
summer semester. As these are less common, they would
distort the course sequence of students not enrolled in sum-
mer. Basic statistics for each degree program are shown in
Table 1. The average course popularity (%pop) for course i
is the percentage of students that have taken i at least once
during their studies. The degree flexibility (flex) is a mea-
sure of how different are the course selections that students
make. It is one minus the average Jaccard similarity coef-
ficient for every pair of students. The Jaccard similarity is
computed as the number of courses that two students have
in common divided by the minimum courses that student
has taken them.

4. PROPOSED METHOD
4.1 Assumptions & Notation
In the context of course recommendation for higher educa-
tion, we make the following assumptions:

1. Time is discrete and moves in steps, from one semester
to the next.

2. There is a relative ordering of the courses in terms of
course levels, difficulty or material covered.

3. Learning is seldom non-sequential; each course com-
pleted provides some knowledge and experience that
can be used in future courses. As a consequence, se-
quence matters in course selection.

4. In the absence of enough domain experts, the order
in which courses are taken by students historically can
reveal useful information on the curriculum and degree
requirements.

5. We know the number of courses that the student will
take next semester.

For the rest of the paper we will adopt the following no-
tation. When we use the word target we will refer to the
student/course/semester for which we want to generate re-
commendation. Matrices are denoted with capital bold let-
ters, while vectors are denoted with lower bold letters. Cal-
ligraphic letters will be used for sets.

The set of students is S and has size m. The set of all courses
is denoted by C, |C| = n. Student j has an enrollment history
Hj , that is an ordered set of courses, {Cj,1, . . . , Cj,t, . . . , Cj,tj},
where Cj,t is the set of courses taken in semester t and tj is
the last semester that the student took courses. Table 2
presents the symbols we used.

4.2 Building the Markov chain
Markov models satisfy the Markov property, i.e., the condi-
tional probability distribution of future states depends only
on the current state. In the simplest Markov model, known
as first-order, each state is formed by a single action, i.e.,
a student took a course. In the case of K-th-order models,
the state-space will correspond to all possible sequences of
K actions. As the available data could not adequately sup-
port the number of states of higher-order chains, these mod-
els would suffer from reduced coverage and possibly worse
overall performance [6]. Therefore, we adopted a first-order
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Table 2: Notation.

n,m number of courses, students
i, i′ indexes for courses
j, j′ indexes for students
tj number of semesters that j has taken courses
t index for semesters
C, S set of courses, courses
A set of states in Markov chain {A1, . . . ,An}
Hj enrollment history of student j
Cj,t course that student j took in semester t
T, F matrices (n× n)
Tk,l the (k, l) element of matrix T
Tk the k-th row of matrix T (1× n)
T:,l the l-th column of matrix T (n× 1)
u personalization vector (1× n)

p(k) state vector (1× n) at timestep k

Figure 1: Example: Anna’s enrollment history.

1st	Semester	 2nd	Semester	
	

3rd	Semester	

MATH1000	

MATH1111	

CSCI1111	

MATH2222	

CSCI4444	

MATH3333	

CSCI2222	
Anna	

Markov chain. We assume that the next-semester courses
depend only on the courses that the student is taking the
current semester.

Markov models are represented by the parameters 〈A,T〉,
where A is the set of states for which the Markov model is
defined; and T is an (n × n) transition probability matrix
(TPM), where n is the number of states (i.e., courses). In
this context, state Ai is associated with the fact that the
student took the course i. Each entry Ti,i′ corresponds to
the probability of moving to state Ai′ when the process is
in state Ai, i.e., taking course i′ after course i. Note that
this matrix is not symmetric, i.e., Ti,i′ 6= Ti′,i, as the order
in which the courses are taken matters.

Based on the historical enrollment information of the stu-
dents, we first compute F, an (n × n) matrix that holds
the counts of every pair of consecutive courses. Every pair
of courses (i, i′) that a student has taken consecutively is
used to estimate the entry Fi′,i, i.e., the frequency of the
event that state Ai′ follows the state Ai. For example, con-
sider student Anna in Fig. 1. The entry corresponding to
the course pair of (MATH1000, CSCI1111) will be updated.
Similarly, every line connecting two courses will equally con-
tribute in the corresponding element of matrix F.

After we compute the frequencies of matrix F, we need to
normalize it to get T, a row stochastic matrix, so that the
total transition probability from state i to any other state

will sum up to 1:

Ti = Fi/

n∑
i′=1

Fi,i′ , if

n∑
i′=1

Fi,i′ > 0.

Additionally, it is possible that the sum of some rows to
be zero. This occurs when a course is taken at the last
semester of every student, so there are no courses after that
to pair it with. In that case, we set the diagonal elements
of the zero rows to one; Ti,i = 1 and Ti,i′ = 0 for i 6= i′, if∑n
i′=0 Fi,i′ = 0.

4.3 Walking over courses
We can view the Markov chain in the context of random
walk on a course-to-course graph that is governed by the
transition probability matrix. A random walk on a directed
graph will form a path of vertices generated from a start
vertex by selecting an edge, making a step by traversing the
edge to a new vertex, and repeating the process [4]. This
concept has been applied to many scientific fields. Closer to
this work, random walks have recently been used for top-
n item recommendation [19], and they are also known to
empower systems used in production at major social media
platforms [12, 8].

A random walk starts with any probability distribution u ∈
R1×n. ui is the probability of starting at vertex i. If one
starts at a vertex i, then ui = 1, else ui′ = 0 for i′ 6= i.
In our setting, the random walk for student j will equally
start from any course in the student’s last semester, so the
personalization vector will be:

ui =

{
1/|Cj,tj | if i ∈ Cj,tj ,
0 otherwise.

(1)

Let pt ∈ R1×n be a row vector with an element for each
vertex specifying the probability of being there at time t.
Before we start the walk, p0 = u. After the first step, the
probability of being at vertex i′ is the sum over each adjacent
vertex i of starting at i and taking the transition from i to
i′. In matrix notation, when we are at state k and we take
a step, we will get the following probability distribution:

pk+1 = pkT, (2)

where the i-th entry of the pk+1 is the probability of the walk
after k+ 1 steps to land at vertex i. This can be written as
a function of the starting probability vector as:

pk+1 = uTk. (3)

The probability of the walker to reach the vertices after K
steps provides an intuitive measure that can be used to rank
the courses and offer personalized recommendations to the
student accordingly.

Scholars Walk
To introduce an additional way for personalization in our
model, we perform a random walk with restarts [21]. We in-
troduce a parameter α, 0 < α ≤ 1 that controls if the walk
will take the step described above, or if the walk will restart.
In the latter case, we use the personalized probability dis-
tribution as the restarting distribution. The probability dis-

Proceedings of The 12th International Conference on Educational Data Mining (EDM 2019) 398



Algorithm 1 Scholars Walk

Input: Model T, student’s personalization vector u, pa-

rameters α, β, number of steps K.

Output: Recommendation vector prec.

p0 ← u, k ← 0

repeat

k ← k + 1

pk ← αpk−1T + (1− α)u . Take a step.

pk ← pk/‖pk‖1 . Normalize pk.

until ‖pk − pk−1‖2 < tol or k ≥ K
for i← 1 to n do

pki ← pki ∗ pop−βi . Penalize popular courses.

end for

prec ← pk

tribution now is defined as:

pk+1 = αpkT + (1− α)u

= pk(αT + (1− α)1u)

= u(αT + (1− α)1u)k,

(4)

where 1 is a column vector (n× 1) of ones. The product of
1u will give us an (n×n) matrix where every row will have
the probability that the walk will start at the corresponding
course. Scholars Walk will perform a random walk governed
by the matrix αT + (1− α)1u.

The exact steps we followed are shown in Alg. 1. We can
specify the number of steps to perform, or we can allow the
algorithm to converge. If the number of steps is very small,
the walk might not explore enough courses. If the number of
steps is large, the walk might travel too far, and the recom-
mendations might not be so relevant for the student. Addi-
tionally, to limit the domination of popular courses, we pe-
nalize the probabilities with the term pop−βi [5], where popi
is the popularity of the course. The parameter β, 0 < β ≤ 1
shows how harsh we need to be with the penalty term.

Scholars Walk allows us to consider direct, as well as, tran-
sitive relations between the courses. It also provides a con-
siderable degree of personalization, in order to recommend
courses that are relevant to each particular student.

5. EXPERIMENTAL DESIGN
5.1 Competing approaches
The baselines are two group popularity approaches, on the
department level (Pop1) and the academic level (Pop2)
of the student measured by the number of years in the pro-
gram [9]. For Pop1, we recommend the most popular courses
in the major. For Pop2, we recommend the most common
courses on the major and the academic level of the student
(“freshmen”, “sophomores”, “juniors”, and “seniors”). Stu-
dents after their forth year are considered seniors.

We also compared against Basic Markov model (Markov)
and Basic Markov model with skip (MarkovSkip) [15]. In
these models, for a target student, the set of courses that
other students have taken after taking a course that the
target student took are the possible courses to recommend.
We consider the combination of courses during the last two

semesters to build and test the model. Each course is as-
signed a recommendation score that is the sum of all the
conditional probabilities that lead to that course starting
from the student’s enrollment in the last semester. While
the counts used in this case are the same with the ones
computed in our matrix F, the conditional probabilities are
computed differently. In order to produce recommendations
for students whose set of prior courses did not have a match,
the skip model was introduced. In that case, we find other
students that have similar course history with the target
student, and weight their corresponding probabilities by a
parameter λ.

Last, we train an LSTM-based course prediction model sim-
ilar to [17, 23]. LSTMs can learn temporal dependencies
with additional gates to retain and forget selected informa-
tion. As input, we use a multi-hot representation of course
enrollments per semester which are mapped to a predicted
sequence of vectors. Once the LSTM has been learnt, we
feed the network with a binary vector that indicates the
courses that the target student has taken the past semester.
The weights at the output of the model are used to rank the
courses.

5.2 Evaluation metrics
Like in prior work [9, 15, 17, 23], we used Recall@ns as
the primary evaluation metric for the predictions, where
ns is the number of courses that the student took in the
target semester. This is the percentage of actual enrolled
courses that were contained in the recommendation list. The
reported metrics are averaged out across all students pre-
dicted. Note that recall and precision are equivalent in our
setting, since we recommend exactly as many courses as the
student will take the upcoming semester.

We also compute the percentage of queries for which we were
able to retrieve at least one of the courses that the student
took in the target semester (%rel). It measures for how
many cases we were able to recommend at least one course
that was relevant.

5.3 Experimental setting
Model selection. Using the dataset described in Sect. 3,
we split it into train, validation and test sets as follows.
All semesters before 2013 (about 10 years) were used for
training, courses taken during 2013 and in Spring 2014 were
used for validation, and courses taken afterwards (Fall 2014
to Spring 2017) were used for test purposes, to report the
results. The training set was used for building the mod-
els, whereas the validation set was used to select the best
performing parameters in terms of the highest Recall@ns.
Based on the best set of parameters for the validation set,
we computed the test set results in Sect. 6.

Parameters. For parameter α, we tried the following set of
values: {1e-4, 1e-3, 1e-2, 1e-1, 0.2, 0.4, 0.6, 0.7, 0.8, 0.85,
0.9, 0.99, 0.999}. For parameter β, we tested values from
0 to 0.8, in increments of 0.025. In terms of the number of
steps that we allowed for our walker, we tested the values 1,
3, and 1000. The last value corresponds to no limit for the
number of steps.

Additional filtering. We build a different model for each
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Table 3: Results for Scholars Walk w.r.t. K.

K Recall@ns %rel α β avg#steps

1 0.466 75.1 0.955 0.047 1
3 0.460 74.6 0.088 0.053 1.95

1000 0.461 74.6 0.075 0.051 2.32

K is the number of steps that we allow to our walker.
α, β columns show the average values of these param-
eters over the models of all the majors.
The last column shows the actual average number of
steps the Scholars Walk made before convergence.

Table 4: Performance comparison.

Model Recall@ns %rel

Pop1 0.336 62.5
Pop2 0.338 64.6
Markov 0.456 73.0
MarkovSkip 0.400 69.6
LSTM 0.406 69.6
Scholars Walk 0.466 75.1

major for all the approaches we tested. After we generate
a ranked list of the courses using any method, we filter out
courses that are not offered the target semester. We also
remove courses that the student has taken in the past and
achieved a grade above C-, as they do not count towards any
degree requirements, as mentioned in Sect. 3. In the end, we
return a list with as many recommendations as the number
of courses, ns, that the student took next semester, based
on assumption 5.

6. RESULTS
In this section, we will try to answer the following questions:
1) How do the parameters in our models affect the overall
performance? Specifically, how does the number of steps
affect recommendation performance? 2) What is the per-
formance of our approach compared to the state-of-the-art
approaches?

6.1 The effect of the number of steps
The performance of our models in terms of the metrics com-
puted for different values of K is shown in 3. For each
model and selection of K, we see the values of the parame-
ters α and β that were used. These parameters were selected
based on the recall on the validation set. The parameter α
controls the restarting probabilities, while β is used to re-
weight the probability distribution before recommending its
highest-weighted courses. The column avg#steps shows the
average number of steps that the Scholars Walk actually
made before convergence.

In this domain, we need only a few steps, as we can under-
stand from Table 3: not only when we set K = 1 we get the
best performance, but also, when we allow the walk to take
many steps, the parameter α gets smaller values. This forces
the walk to go back to the student’s personalized starting
vector with higher probability, indicating that the starting
distribution is very important. Additionally, even if we do
not put any constraints in K, the number of steps that the

Scholars Walk takes is quite small. There is a small increase
when increasing K from 1 to 3, but after that, the number
of steps actually taken is not that high.

It is worth pointing out that, while setting K = 1 gives us
the best overall performance, this is not the case for all the
departments. The right value for K depends on the dataset
used. In our data, there are four departments that need
these extra steps. We observed that these departments have
low average course popularity, which is average percentage
of students that have taken a course at least once at some
point during their studies, over all the courses. The aver-
age value for the departments with K > 1 was 16.7± 9.7%,
while for the rest of the models the corresponding number
is 24.1± 7.2%. A stronger signal is present in the metric of
the degree flexibility, which is the average Jaccard distance
between the courses that any pair of students took, as de-
fined in the end of Sect. 3. The departments with K > 1
have 0.118 ± 0.005 degree flexibility against 0.184 ± 0.066
of the rest of the departments. This is an indicator that
for stricter degrees, the walk depends on the extra steps to
explore more courses. In these departments, students will
take overall very similar sets of courses. On the other hand,
if the degree program offers more freedom to the students,
they select a wider range of courses, and there are more
connections within courses.

6.2 Performance comparison
By comparing the best Scholars Walk model against five
competing approaches, we get the results on Table 4. Our
model performs the best, both in terms of recall, and in the
percentage of cases for which it manages to be return some
relevant recommendations.

Popularity approaches are having considerably satisfactory
performance. However, specifying the academic level of the
student does not help much. They can recommend rele-
vant courses to more than 60% of the cases. The two Ba-
sic Markov models have quite different performance. The
Markov model with skips performs poorly, compared to the
Basic model. Additionally, it is worth mentioning that the
Skip model was performing better and better as the param-
eter λ was getting smaller. The weight of the cases that
do not completely match the target student’s history, have
as weight a power of λ. Consequently, when λ → 0, the
Skip model becomes the Basic Model. For that reason, the
smaller value of λ that we report results for, is 0.4.

While comparing the Basic Markov model with Scholars
Walk, it may seem that they have similar performance. How-
ever, that might be misleading, as the Basic Markov model
utilizes longer course enrollment history than the Scholars
Walk. It looks back two semesters on the student’s courses,
which corresponds to a second-order Markov chain. More-
over, the model uses data from two semesters not only for
computing the associated probabilities, but also to make pre-
dictions. This leads to increased complexity because of the
larger state-space with no benefit in recommendation qual-
ity. In the same boat are the LSTMs as well. Their increased
complexity might lead to the overfitting of the model, when
the data are not sufficient for training. Our approach, which
is a first-order Markov chain, manages to perform better
than the higher-order models and LSTMs.
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Scholars Walk can accurately predict the course selection
of the students, by taking advantage of the “breadth and
depth” of the data. In terms of time complexity, once we
build the transition probability matrix, walking through the
courses is trivial. As a result, it scales well with the number
of students, while providing them personalized recommen-
dations. At the same time, it is a white-box model, where
the recommendations are easily explainable.

7. CONCLUSION
In this paper we propose Scholars Walk, a novel method
designed to harvest the sequential patterns arising from past
course enrollment data in order to recommend a short list of
personalized course suggestions for the next semester. The
proposed method relies on a random walk-based scheme on a
course-to-course graph and personalization is achieved by a
student-adapted starting distribution reflecting the current
student’s enrollments. When compared with five competing
models, from popularity-based to LSTMs and Basic Markov
models, Scholars Walk achieves the best performance. It
manages to be a successful, scalable approach that provides
personalized recommendations for every student.
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