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The combined PROSPECT leaf optical properties model and SAIL canopy bidirectional reflectance model, also
referred to as PROSAIL, has been used for about sixteen years to study plant canopy spectral and directional
reflectance in the solar domain. PROSAIL has also been used to develop new methods for retrieval of
vegetation biophysical properties. It links the spectral variation of canopy reflectance, which is mainly related
to leaf biochemical contents, with its directional variation, which is primarily related to canopy architecture
and soil/vegetation contrast. This link is key to simultaneous estimation of canopy biophysical/structural
variables for applications in agriculture, plant physiology, or ecology, at different scales. PROSAIL has become
one of the most popular radiative transfer tools due to its ease of use, general robustness, and consistent
validation by lab/field/space experiments over the years. However, PROSPECT and SAIL are still evolving:
they have undergone recent improvements both at the leaf and the plant levels. This paper provides an
extensive review of the PROSAIL developments in the context of canopy biophysics and radiative transfer
modeling.
© 2009 Elsevier Inc. All rights reserved.
1. Introduction

From the beginning of optical remote sensing, radiative transfer
models have helped in the understanding of light interception by plant
canopies and the interpretation of vegetation reflectance in terms of
biophysical characteristics. Since they attempt to describe absorption
and scattering, the two main physical processes involved in such a
medium, canopy radiative transfer models are useful in designing
vegetation indexes, performing sensitivity analyses, and developing
inversion procedures to accurately retrieve vegetation properties from
remotely sensed data. Among all the codes published during the last
two decades (see for instance Liang, 2003), the SAIL canopy bidi-
rectional reflectance model and the PROSPECT leaf optical properties
model are the most popular. An analysis based on the ISI (Institute of
Science Information) Web of Science finds a total of 113 and 105
articles using PROSPECT and SAIL, respectively, that have been pub-
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lished since 1992, showing parallel evolution of the models (Fig. 1).
They score 1675 and 1783 citations both with an h-index (number of
papers hwith at least h citations each) between 23 and 24. PROSPECT
combinedwith SAIL are used in 29 articleswith 513 citations leading to
18 citations per article, slightly higher than PROSPECT (15) and SAIL
(16) separately. This confirms the importance of these two models in
the scientific community and their close relations.

Linking thesemodels into PROSAIL about sixteenyears ago allowed
description of both the spectral and directional variation of canopy
reflectance as a function of leaf biochemistry — mainly chlorophyll,
water, and dry matter contents— and canopy architecture— primarily
leaf area index, leaf angle distribution, and relative leaf size. The
principles on which PROSAIL is founded have been extensively tested,
which partly explains its success.

In this review, we will focus on the foundations of PROSPECT and
SAIL and their applications, with special emphasis on the coupled
PROSAIL model. The first section is an overview of the model
principles and time evolution. Then we will see how one can use
these models to generate databases and test new spectral indexes, or
to perform sensitivity analyses intended to highlight the main canopy
biophysical variables that contribute to spectral and directional
reflectance variability. In the third section, we report research
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Fig. 1. Number of publications per year retrieved from the ISI Web of Science for
PROSPECT (query= ‘PROSPECT’ & ‘leaf’) and SAIL (query= ‘SAIL’ & ‘reflectance’) during
the period 1992–2007.
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activities evaluating PROSAIL. Finally, applications of the models are
listed, with a special focus on techniques used to retrieve canopy
biophysical variables from remote sensing observations (iterative
methods, look-up tables, artificial neural networks, etc.). We draw
conclusions on the future of PROSAIL, both in terms of the required
evolution of radiative transfer models and their application.

2. Model overview

Now in widespread use in the remote sensing community, SAIL
(Scattering by Arbitrary Inclined Leaves) is one of the earliest canopy
reflectance models (Verhoef, 1984, 1985). It is an extension of the 1-D
model developed by Suits (1972) to simulate the bidirectional
reflectance factor (see Schaepman-Strub et al., 2006, for details on
radiometric definitions of reflectance) of turbid medium plant
canopies, by solving the scattering and absorption of four upward/
downward radiative fluxes. SAIL actually provides all four-stream
optical properties (nine in total) of the canopy layer at the output
(Verhoef, 1985). It has given rise to several derivative versions: to
describe vertically heterogeneous canopies, multi-layer (vertical
gradients of leaf optical properties) and multi-element one-dimen-
sional models have been proposed such as GeoSAIL (Verhoef & Bach,
2003b) or 2M-SAIL (Weiss et al., 2001); the hot-spot effect was added
in SAILH after a formalism by Kuusk (1991) as a function of the ratio of
leaf size to canopy height; a numerically robust and speed-optimized
version of the model called 4SAIL was recently published by Verhoef
et al. (2007); in order to simulate horizontally discontinuous
canopies, the SAIL model was also combined with geometric models
like in GeoSail where protrusions are either cylinders or cones
allowing inclusion of some clumping at the canopy scale (Huemmrich,
2001); and more recently, Verhoef and Bach (2007) proposed an
extension of GeoSAIL (not to be confused with GeoSail) including
crown clumping, called 4SAIL2, that was additionally combined with
PROSPECT and a soil BRDF model based on Hapke's work (Hapke,
1981; Hapke & Wells, 1981). Besides this gradual improvement and
parallel increase in complexity, the SAIL formalism was adapted to
include emission in the radiative transfer processes: solar-induced
chlorophyll a fluorescence emission was added in FLSAIL (Rosema
et al., 1991) and FluorSAIL (Miller et al., 2005), and thermal emission
in 4SAIL (Verhoef et al., 2007) to simulate canopy brightness
temperature in a consistent way with that used for reflectance.

At the leaf level, PROSPECT pioneered the simulation of direc-
tional–hemispherical reflectance and transmittance (Schaepman-
Strub et al., 2006) of various green monocotyledon and dicotyledon
species, as well as senescent leaves, over the solar spectrum from
400 nm to 2500 nm (Jacquemoud & Baret, 1990). It is based on the
Allen et al. (1969) representation of the leaf as one or several
absorbing plates with rough surfaces giving rise to isotropic scattering.
The model uses two classes of input variables: the leaf structure
parameter N which is the number of compact layers specifying the
average number of air/cell walls interfaces within the mesophyll, and
the leaf biochemical content, which has changed since the original
formulation of the model (Fourty et al., 1996; Jacquemoud et al., 1996,
2000). The absorption of light by photosynthetic pigments which
predominates in the visible (VIS) spectrum was long assumed to be
entirely caused by chlorophylls, although carotenoids (including
xanthophyll pigments) and anthocyanins may be significant in
greening or senescing leaves. Feret et al. (2008) recently succeeded
in separating total chlorophylls from total carotenoids which,
potentially, will significantly enhance the ability of remote sensing
data to estimate photosynthetic rates and more accurate monitoring
of vegetation stress. To paint a complete picture of the situation,
Bousquet et al. (2005) included a physical description of directional
reflectance properties of leaves, adding the contribution of specular
reflection on leaf surface to the original Lambertian fluxes; differences
in adaxial and abaxial optical properties were introduced in the model
by including absorption and scattering gradients in the leaf blade (Kai
et al., in press); finally, a new version calculating steady-state
chlorophyll a fluorescence is underway (Pedrós et al., submitted for
publication).

3. Coupling of PROSPECT and SAIL: PROSAIL

The first model inversions of SAIL, performed by Goel (1989),
allowed estimates of canopy architecture (LAI, leaf angle distribu-
tion) on soybean by using field bidirectional reflectance measure-
ments acquired in band 4 (0.8–1.1 µm) of the Exotech Model 100
Radiometer, for 12 solar directions. Currently, few spaceborne
instruments have the capability of monitoring the Earth surface
with such a directional coverage. Only CHRIS, MISR or PARASOL
provide simultaneously along one track data in 5, 9, or up to 16
directions of observation, respectively. Indeed, unless multi-tem-
poral acquisitions are available, most sensors measure the Earth's
radiance in several wavebands and one direction, generally at near
nadir. However, multispectral or hyperspectral data cannot be
inverted by SAIL alone because the increase in the number of
wavebands rapidly leads to an under-determined system. Since leaf
reflectance, leaf transmittance, and soil reflectance are three
wavelength-dependent input variables of SAIL, the implementation
of this model to retrieve biophysical variables from canopy
reflectance spectra at given solar and viewing angles in a defined
relative azimuthal plane requires at least three times as many
variables as wavelengths. As a consequence, the inversion of SAIL is
generally impracticable unless several viewing angles are available.
To reduce the dimensionality of the inverse problem and to assess
the canopy biochemistry, SAILH was coupled with PROSPECT early in
the 1990's to derive PROSAIL (Baret et al., 1992). This was the
beginning of a long series of published literature. The main input
variables of the integrated model are shown in Table 1 and Fig. 2
sketches the actual coupling. Note that the output variables do not
confine to the bidirectional reflectance ρc but extend to fAPAR and
albedowhich are key variables in processes describing the exchanges
of mass and energy between the canopy and the atmosphere. The
coupling simply consists in passing the output leaf reflectance and
transmittance of the PROSPECT model into the SAIL model to
simulate the whole spectrodirectional canopy reflectance field. The
soil spectral or directional reflectance is also required as input of
SAIL: field radiometric data are generally used, less often a soil BRDF
model. The input variables of Hapke's model (Jacquemoud et al.,
1992) are listed in Fig. 2: single scattering albedo α(λ), phase
function P(θ), and surface roughness parameter h. Finally, the top-
of-atmosphere apparent radiance L0 in the direction of viewing can



Table 1
Main variables of PROSAIL.

Model Symbol Quantity Unit

PROSPECT N Leaf structure parameter –

Cab Chlorophyll a+b content μg cm−2

Cw Equivalent water thickness cm
Cm Dry matter content g cm−2

Cbp Brown pigments content –

SAIL LAI Leaf area index –

LIDF⁎ Leaf inclination distribution function –

sL Hot spot parameter –

ρs Soil reflectance assumed Lambertian or not –

SKYL Ratio of diffuse to total incident radiation –

sza or θs Solar zenith angle deg
vza or θv Viewing zenith angle deg
raa or φsv Relative azimuth angle deg

⁎Several functions have been proposed to define the LIDF: polynomial, ellipsoidal or
elliptic distribution characterized by an average leaf angle (ALA), Beta distribution
characterized by two parameters (a and b).
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be computed using an atmospheric radiative transfer model (Baret
et al., 1992; Verhoef & Bach, 2007).

PROSPECT has been coupled with most subsequent versions of
SAIL that have been adapted to account for some heterogeneity within
the vegetation canopy: GeoSail (Bowyer & Danson, 2004; Koetz et al.,
2004), GeoSAIL (Verhoef & Bach, 2003a,b), 2M-SAIL (Weiss et al.,
2001; LeMaire et al., 2008), 4SAIL (Verhoef, 2005), or 4SAIL2 (Verhoef
& Bach, 2007). It has been also integrated into other canopy
reflectance models: FCR (Fast Canopy Reflectance, Kuusk, 1994),
NADIM (New Advanced DIscrete Model, Jacquemoud et al., 2000;
Ceccato et al., 2002), MCRM (Markov–Chain Canopy Reflectance Model,
Kuusk, 1995) adapted for row crops (Cheng et al., 2006), DART
(Discrete Anisotropic Radiative Transfer, Demarez & Gastellu-Etche-
gorry, 2000), SPRINT (Spreading of Photons for Radiation INTerception,
Zarco-Tejada et al., 2004a), FLIM (Forest Light Interaction Model, Zarco-
Tejada et al., 2004b), and FLIGHT (three-dimensional Forest LIGHT
interaction, Koetz et al., 2004). The last four models are used to
simulate discontinuous forest canopies. Similar leaf-canopy coupled
models were attempted by Ganapol et al. (1999) with LEAFMOD
+CANMOD, Dawson et al. (1999) with LIBERTY+FLIGHT, and Dash
and Curran (2004) with LIBERTY+SAIL. However, the distribution of
these codes in the remote sensing community has remained limited
compared to PROSAIL.
Fig. 2. The PROSAIL model: coupling of SAIL and PROSPECT radiative transfer models to
simulate canopy spectral and directional reflectance in the forward and inverse
directions. Input variables are listed in white ellipses, models and output variables are
embedded in gray boxes.
4. Sensitivity analysis with PROSAIL

Model simulations help quantify the contribution of canopy
biophysical and biochemical properties to canopy reflectance. One of
the first applications of PROSAIL focused on the red edge (Baret et al.,
1992; Broge & Leblanc, 2000). From the beginning of imaging
spectrometry, this portion of the reflectance spectrum between the
red and the near-infrared, which switches from concave to convex and
then gives rise to an inflexion point, has been a focus of research and
development in hyperspectral remote sensing. PROSAIL numerical
simulations showed that the spectral shifts in this wavelength
window were mainly produced by variations in leaf chlorophyll and
leaf area index. Moreover, the wavelength position of the inflexion
point was found to be almost insensitive to soil substrate and
atmospheric conditions, giving this index an advantage over many
previous vegetation indexes. Interestingly, Le Maire et al. (2004) who
used a 1 nm resolution version of PROSPECT revealed the existence of
a sudden jump of the red edge position from ~695 nm to ~725 nm
when chlorophyll exceeded 45 µg cm−2. This was attributed to nearby
chlorophyll a absorption peaks (at 679 and 703 nm). Although the
inflexion point per se seems to be no longer a useful indicator, the red
edge properties still remain characteristic of plant chlorophyll content
(Le Maire et al., 2008).

By successively changing PROSAIL input variables, Jacquemoud
(1993) performed a simple sensitivity analysis which revealed that N
only slightly changed canopy reflectance over thewhole solar domain,
and that LAI and the average leaf angle (ALA) of the LIDF produced
similar effects in the model. As a result, identification of these three
variables appeared to be problematic. Fig. 3 presents a simple but
instructive simulation of PROSAIL intended to show how sensitive the
reflectance of a plant canopy is to variation in LAI from 0 (bare soil) to
10 (very dense vegetation). All other variables are kept constant to
highlight canopy reflectance changes due to LAI variation only. Such a
situation is highly unlikely under natural conditions because canopy
biophysical variables in a given ecosystem often co-vary. For instance,
when foliage is packed more densely in a canopy, the biochemical
composition of leaves changes, although more or less predictably.
Nonetheless, Fig. 3 demonstrates the well accepted notion that an
increase of LAI induces a decrease of reflectance in the red and an
increase in the near infrared (NIR), but this occurs with no noticeable
effects in the shortwave infrared (SWIR) at 1450 nm where water
absorption is maximal. The small influence in the green is attributable
here to the darkness of the soil but it may increase when using a
brighter soil background. Fig. 3 illustrates how vegetation indexes
based on the red and NIR wavebands of optical sensors make use of
these remarkable properties to quantify LAI. Other indexes have been
designed to correlate with canopy water content by combining
reflectances in the NIR and SWIR at ~1200 nm. Contrary to the VIS,
Fig. 3. Effect of LAI on canopy reflectance using PROSAIL (θs=20°, θv=0°, φsv=0°,
horizontal visibility=100 km, LIDF=spherical, sL=0.25, N=1.5, Cab=50 µg cm−2,
Cw=0.01 cm, and Cm=0.005 g cm−2).



Fig. 5. Spectral variation of the contributions of interactions of the PROSAIL variables to
top-of-canopy reflectance. Solar zenith angle θs=31.6°.
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where the effects of LAI on canopy reflectance are rather limited, the
SWIR is highly sensitive to LAI between 1000 nm and 1400 nm as
illustrated by Fig. 3. This means that caution is advised when using
these indexes for water retrieval.

The response of canopy reflectance to leaf optical properties was
evaluated by Baret et al. (1994), who showed that leaf biochemical
signals could be enhanced at the canopy level by up to a factor of two.
All subsequent simulations using more rigorous statistical methods
including the Design Of Experiments for Simulation method (DOES,
Bacour et al., 2001, 2002b,c) or the Extended Fourier Amplitude
Sensitivity Test (EFAST, Bowyer & Danson, 2004) have confirmed these
results. Such methods make it possible to perform comprehensive
sensitivity analyses of PROSAIL to identify, at any wavelength and/or
in any direction, which variables explain most of the observed
variability of a reflectance field. This gives valuable insight about the
optimal wavebands (position, width) and/or viewing angles to
retrieve the canopy biophysical variables.

For applications in imaging spectrometry, Bacour et al. (2002a)
implemented the DOES method between 400 nm and 2500 nm to
quantify the relative contributions of all canopy variables on
reflectance, i.e., the percentage of the total variance explained by a
given variable, and then to organize them into a hierarchy. The
PROSAIL bidirectional reflectance factor was integrated over the
hemisphere to provide a directional–hemispherical reflectance. As
illustrated by Fig. 4, the results of this study indicate that chlorophyll
content drives about 60% of the reflectance variation in the VIS, with a
weaker contribution near 550 nm and 700 nm (the green and red
edge regions which do not saturate at high concentrations). In the NIR,
the most important variables are the average leaf angle and the leaf
area index which contribute to reflectance in equal proportions. The
SWIR confirms the prominent importance of light absorption by water
with an average contribution of Cw of 50% between 1450 nm and
2100 nm. Surprisingly, this effect tends to lessen, and be replaced by
LAI at wavelengths where the specific absorption coefficient of pure
liquid water kw is high (note that kw≈30 cm−1 at 1450 nm,
kw≈120 cm−1 at 1950 nm, and kw≈90 cm−1 at 2500 nm), which
is also noticeable in Fig. 3. The ability to quantify interactions between
variables is a major benefit of the DOES method. Interactions occur
when the effect of variable A on a response depends on the level of
variable B. The combined change in two variables may produce a
Fig. 4. Spectral variation of the contributions of the PROSAIL variables to the top-of-
canopy directional–hemispherical reflectance. A Hyper Graeco Latin Geometric
sampling scheme allowing full investigation of all interactions between two variables
and consisting of 2401 simulations corresponding to different combinations of the
PROSAIL input variables was used (adapted from Bacour et al., 2001, 2002a). Solar
zenith angle θs=31.6°.
greater effect than the sum of effects expected from either variable
alone (Bacour et al., 2002c). Fig. 5 presents the nine most significant
interactions between the canopy variables, considered two by two,
over the twenty-one possible in their sampling scheme. In the VIS, the
Cab–LAI and Cab–ALA interactions are each about 8%, while the LAI–
ALA interaction prevails in the NIR with a contribution of 5–6%. The
situation is more confused in the SWIR where predominant contribu-
tions vary between 3% and 7%, strongly depend on thewavelength and
on leaf equivalent water thickness. The total contribution of the
variables and their interactions almost equals 100%.

To investigate directional reflectance sensitivity, one can likewise
compare a set of viewing angles which sample the whole hemisphere,
at onewaveband or over a given spectral domain (Bacour et al., 2001).
The integrated 400–700 nm domain (VIS) and 700–900 nm domain
(NIR) have been separated. In the VIS, results show that canopy
reflectance is mostly influenced by Cab in the backward direction
where shadows are reduced (Fig. 6a). The negligible influence of
chlorophyll in the NIR is expected and only explained by the selected
wavelength range that includes the end of the red edge (Fig. 6b). For
LAI, the forward directions seem to be favored in the VIS but with a
very low contribution (Fig. 6c). The forward and backward directions
where a large fraction of photons have interacted at least once with
the canopy are to be preferred in the NIR (Fig. 6d), while near nadir
observations when the soil background may be visible show the
largest influence to leaf orientation characterized by an average leaf
angle (Fig. 6f). The same trend is observed, to a lesser extent, in the VIS
(Fig. 6e). For LAI, this means that the information carried by the
reflectance of a turbid medium target viewed under a unique angle of
0° is poor compared to that measured at an oblique angle. Fig. 6 shows
that the most accurate estimation of Cab, LAI and ALA requires
measurements at a minimum of three view angles: one in the forward
direction, one at nadir, and one in the backward direction. Bowyer and
Danson (2004), using a similar approach, also determined the spectral
domain where canopy reflectance is the most sensitive to the leaf
water content or to its mass per area. Indeed, by quantifying the
contribution of each input variable to the model outputs, as well as
their interactions, such analyses have been informative in isolating the
optimal wavebands and viewing directions to retrieve canopy
biophysical characteristics. Recently, Verhoef and Bach (2007)
integrated PROSAIL with the Hapke soil BRDF model and an
atmospheric radiative transfer model (see Fig. 2) to assess the
performance of CHRIS (Compact High Resolution Imaging Spectrometer)
onboard PROBA. They demonstrated that top-of-atmosphere



Fig. 6. Directional variation of the contribution (%) of the PROSAIL variables to the top-of-canopy reflectance: (a–b) Cab, (c–d) LAI, and (e–f) ALA (adapted from Bacour et al., 2001).
The solar zenith angle at θs=31.6° is indicated by a star.
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hyperspectral radiances under multiple view angles could be
accurately predicted. These types of coupled vegetation-atmosphere
sensitivity analyses are however scarce in the literature.

5. Validation of PROSPECT and SAIL models

Validation is an important issue that consists in assessing the
quality of themodel. This can be firstly achieved by comparing outputs
with reflectance measurements at different scales. Most investiga-
tions that concentrated on PROSPECT and SAIL, separately, will not be
detailed in this paper. In summary, the PROSPECT model proved to
perform well on broadleaves and to provide a reasonable description
of needle optical properties, even though the basic assumptions
associated with the plate model are obviously violated. Validation of
the SAIL model was achieved by several authors based on experi-
ments, mostly over crops where direct measurements of canopy
structure are tractable. All reported relatively good agreement with
observed data though the sampling of the variable space and the
measurement configurations tested were limited. As for PROSAIL,
direct comparisons of modeled andmeasured spectrawere performed
by Andrieu et al. (1997) and Danson and Aldakheel (2000) to monitor
changes in spectral reflectance of a sugar beet crop caused by diurnal
water stress. Verhoef and Bach (2007) tested the quality of 4SAIL2 and
Schlerf et al. (2007) compared 4SAIL2 and FLIM, a hybrid model also
coupled with PROSPECT, with CHRIS-PROBA satellite observations
over broadleaf and conifer forest stands.
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While such approaches show trends, they are not actual valida-
tions of the model because input variables have been tuned, or the
available information is incomplete, which limits the evaluation
process. To prevent such limitations, validation could be achieved by
comparison with some reference radiative transfer model outputs
when input variables are accurately known and can be manipulated
easily. For instance, SAIL was compared with three-dimensional
models of maize canopies (Weiss et al., 2000). And recently, the
latest versions of SAIL were successfully compared to other 1-D and 3-
D models for homogeneous canopies in the framework of the RAMI
(RAdiation transfer Model Intercomparison) experiment, organized by
the Joint Research Centre in Ispra, Italy (Widlowski et al., 2007).
Model inversion process, as discussed in the following section, will
provide a more comprehensive validation of PROSAIL.

6. Using PROSAIL to design and evaluate vegetation indexes

PROSAIL has been particularly useful in screening, designing and
evaluating vegetation indexes: a query in the ISI Web of Science on
‘SAIL’ & ‘VI’ & ‘vegetation’ yields 8 papers. Among these, Clevers and
Verhoef (1993), Plummer et al. (1994) and Chaurasia and Dadhwal
(2004) verified the relationship between LAI and WDVI (Weighted
Difference Vegetation Index), AVI (Angular Vegetation Index), and NDVI
(Normalized Difference Vegetation Index), respectively, for varying leaf
and canopy factors. Baret et al. (1995) compared eight vegetation
indexes using a neural network approach to retrieve canopy gap
fraction. Haboudane et al. (2002) and Zarco-Tejada et al. (2004b)
simulated canopy reflectance spectra in the VIS-NIR to test the ratio of
TCARI (Transformed Chlorophyll Absorption in Reflectance Index) to
OSAVI (Optimized Soil-Adjusted Vegetation Index), which was expected
to be sensitive at low chlorophyll values and resistant to non-
photosynthetic plant materials. In the SWIR, Zarco-Tejada et al. (2003)
and Bowyer and Danson (2004) related the fuel moisture content at
canopy level to SRWI (Simple Ratio Water Index) and NDWI
(Normalized Difference Water Index), respectively. These two studies
illustrated the difficulty in obtaining accurate estimates using semi-
empirical approaches and demonstrated the need for a coupled leaf-
canopy model to successfully estimate Cw at the canopy level. Cheng
et al. (2006) tested PROSPECT linked to different canopy models
including SAIL to evaluate the impact of soil and canopy conditions on
the retrieval of Cw. Within the same category, Broge and Leblanc
(2000) and Le Maire et al. (2008) produced large reflectance datasets
using PROSAIL to select and calibrate normalized reflectance differ-
ence indexes that are sensitive to leaf chlorophyll, dry matter content
or LAI. The latter paper showed good agreement between field
measurements and remote sensing estimates for these variables, from
tree scale (ASD spectra) to regional scale (HYPERION images).
Nonetheless, direct comparison of model-derived indexes with field
measurements remains scarce.

7. Inversion of PROSAIL to retrieve canopy biophysical variables

The remote sensing inverse problem is critical when the radio-
metric signal has to be interpreted in terms of canopy biophysical
characteristics. The inversion of PROSAIL gave rise to active research
efforts and this success can be explained by the relatively small
number of input variables required and good computer efficiency
(Jacquemoud et al., 2000). A general description of the inverse
theory, which is beyond the scope of this paper, can be found in
Tarantola (2005). Its formulation for radiative transfer models
devoted to exploit remote sensing observations was specified by
Verstraete et al. (1996), Kimes et al. (2000), Liang (2003), and
recently by Baret and Buis (2008) who reviewed the state of the art in
this domain.

In brief, we may represent the mathematical model of a physical
system, for instance PROSAIL, by the symbol m and the variables
needed to completely describe the system by the symbol x. The
physical observation, here the reflectance R, is formally expressed by:

R = m xð Þ + e ð1Þ

Eq. (1) is a short notation for the set of equationsRi=mi(x1,x2,…xk)+
εi for (i=1,2…n). εi represents the residual errors between simulated
andmeasured reflectance. If some variables listed inTable 1 are perfectly
known, e.g. the zenith and azimuth angles, they can be considered as
fixed constants. If they are uncertain, e.g. the canopy biophysical
characteristics, theymust enter theparameter set x. The inverse problem
of a nonlinear model such as PROSAIL is based on the minimization of a
cost (ormisfit) function δ2 that concurrentlymeasures the discrepancies
between i) the observed and simulated reflectance and ii) the variables
to estimate and the associated prior information:

δ2 =
Xn
i=1

Ri−mi x1; x2; N ; xkð Þ
σRi

� �2
+
Xk
j=1

xj−xpriorj

σ xj

 !2

ð2Þ

where σRi and σxj are respectively the diagonal elements of the error
covariance matrices on observations and parameters. σRi corresponds
to the measurement/model uncertainties and σxj to the uncertainty of
any prior information on the variables to estimate xj

prior, i.e., obtained
independently of the measurements. If statistics σRi and σxj are not
available, the cost function simplifies while increasing the risk of
converging towards local minima due to the non-unicity of the inverse
solution. Eq. (2) does not incorporate boundary constraints or
relationships between parameters. Two main categories of inversion
approaches have been exploited: the first one emphasizes the first
part of the misfit function such that the solution corresponds to a
minimum distance between reflectance measurements and model
simulations, with respect to the a priori constraints. Iterative
optimization, Markov chain Monte Carlo methods and look-up tables
belong to this category. The other family of approaches emphasizes
the second part of the misfit function, focusing on the space of
canopy biophysical variables: a parametric model is adjusted over
the surface response between reflectance and the biophysical variables
of interest. VIs related to the biophysical variables through parametric
models and artificial neural networks belong to this second category.

7.1. Approaches based on the observation space

These approaches were the first to be applied to canopy reflectance
model inversion. Goel and Strebel (1983) foresaw the potential use of
canopy reflectance models for estimating agronomic variables, at a
period when models were still in their infancy, and explored the
inversion of the Suits model (Suits, 1972), the forerunner of SAIL, and
then of the SAIL model (see Goel, 1989). Various iterative minimiza-
tion techniques have been implemented (e.g., simplex, steepest
descent, quasi-Newton, genetic algorithms) that mainly differ from
the downhill search algorithms, the capacity to avoid trapping in local
minima, and constraints on the range of variation of each unknown
variable to be estimated. The number of variables to be concurrently
adjusted and the number of configurations considered define the size
of the inverse problem. As pointed out by Jacquemoud et al. (1994), it
is somewhat difficult to make general recommendations as to the
choice of one algorithm instead of another because these are typically
well-adapted to the problem being considered. Jacquemoud and Baret
(1993) made the first attempt to jointly estimate biochemical and
structural attributes of plant canopies (namely Cab, Cw, and LAI) from
high resolution reflectance spectra acquired at nadir in the solar
domain on sugar beet crops with the simplex minimization algorithm.
As above-mentioned, inverting the SAIL model wavelength per
wavelength is a highly underdetermined problem because three
unknowns have to be estimated at each wavelength in addition to
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canopy structure variables: leaf reflectance, transmittance, and soil
reflectance. Coupling SAIL with PROSPECT offers therefore a unique
advantage of imposing a strong spectral constraint on the inversion
process that decreases drastically the number of unknown variables
while providing enhanced spectral consistency. However, some
inversion instabilities were observed due to compensations between
several canopy variables (e.g., LAI and LIDF) in the inversion process
(Jacquemoud,1993; Jacquemoud et al., 1995, 2000; Zarco-Tejada et al.,
2001; Zhang et al., 2005) when using actual AVIRIS (Advanced Visible
Infrared Imaging Spectrometer), CASI (Compact Airborne Spectrographic
Imager), TM (Thematic Mapper) or MODIS (Moderate Resolution
Imaging Spectroradiometer) observations, or even synthetic reflec-
tance data (Weiss et al., 2000). These studies showed increased
robustness and accuracy when estimates of biochemical contents
were integrated at the canopy level (total chlorophyll, Cab×LAI, or
water, Cw×LAI) rather than at the leaf level (Jacquemoud et al., 1994;
Weiss et al., 2000). An optimized number of wavebands and view
angles, carefully selected, however, should permit more reliable
separation of the variables (Bacour et al., 2002b; Meroni et al.,
2004). Nevertheless, radiative transfer model inversion is generally
ill-posed because of measurement and model uncertainties, and the
often underdetermined nature of the problem since the radiometric
signal carries only limited information (Combal et al., 2002a,b; Baret &
Buis, 2008). Regularization of the inversion problem to get more
stable and accurate solutions requires introducing prior information
on the distribution of the variables, as well as possible additional
spatial or temporal constraints (Koetz et al., 2005; Lauvernet et al.,
2008).

Although iterative minimization methods proved to be efficient for
case studies or limited number of observations to be processed, they
could not be applied over large spatial or temporal domains because of
prohibitive computation times. Operational implementation of such
methods is facilitated when using pre-computed simulated data
bases. Look-up tables are a simple technique that consists of
generating a training table with the model for a discrete set of input
variables covering their prescribed range of variation. They offer the
advantage of providing the global minimum if the variable space is
sufficiently sampled, avoiding the tricky problem of local minima.
Sensitivity analyses of the model can help to better choose the sub-
domains where reflectance is sensitive to a variable, when all of them
are varying; and as in the case of iterative methods, prior information
can be introduced. Implementations of this method permitted
estimation of Cab, LAI, fAPAR, and fCover (Weiss et al., 2000; Combal
et al., 2002a; Verhoef & Bach, 2003a; Koetz et al., 2005; González-
Sanpedro et al., 2008).

7.2. Approaches focusing on the space of canopy variables

Although the use of vegetation indexes may be considered as an
inverse techniquewhen radiative transfer models are used to calibrate
parametric equations between VIs and some canopy characteristics,
this will not be discussed in this section since it has already been
addressed. Machine learning techniques such as artificial neural
networks also belong to this type of approaches and have lately
become a popular method to operationally invert models because of
their high computational speed, once they have been calibrated. They
interconnect a set of inputs (the reflectances) to a set of outputs (the
canopy biophysical variables), assuming that they are functionally
related, during the so-called “learning phase”. Their performances
mainly depend on the characteristics of the training database, for
which no explicit assumption about the physics of radiative transfer
within plant canopies is mandatory, so that pairs of reflectance
observations and corresponding biophysical variables can be used, in
theory, to train an artificial neural network. However, because
such datasets gathering both radiometric and biophysical data are
scarce and prone to significant uncertainties associated to ground
measurements of canopy characteristics, observations are conveni-
ently replaced by model simulations. This approach has been
successfully applied to VEGETATION (Weiss & Baret, 1999), airborne
POLDER (POLarization and Directionality of the Earth's Reflectances,
Weiss et al., 2002), Landsat TM (Atzberger, 2004), and MERIS
(Medium Resolution Imaging Spectrometer, Bacour et al., 2006) to
determine LAI, gap fraction, fAPAR, or the canopy chlorophyll content.
Trombetti et al. (2008) recently published the first monthly global
maps of vegetation canopy water content (LAI×Cw) over the
continental USA usingMODIS data trainedwith an artificial neural net.

A frequently asked question is “which method should be selected
to solve an inversion problem?”. The answer varies because each
approach has specific advantages and disadvantages. The performance
of iterative methods, look-up tables, and artificial neural networks
were compared using synthetic datasets by Combal et al. (2002b).
While results demonstrated a significant improvement of the retrieval
when using prior information, the accuracy seemed to depend in a
large manner on model uncertainties. For example, SAIL may not
represent properly the structure of heterogeneous plant canopies that
deviate from the model hypotheses. The accuracy also depends on
measurement errors associated with the signal-to-noise ratio of the
sensor and on the quality of the calibration procedure, i.e., mostly the
removal of the atmospheric effects. Prior information on model
variables is represented by a probability distribution that is often
empirically characterized because of a lack of observations on
vegetation canopies corresponding to different plant species and
ecosystems, or because the available information is incomplete and
scattered throughout the literature. Collecting databases on leaf
biochemistry to better document the range of variation and
probability density functions of Cab, Cw, and Cm, for instance, would
significantly improve the mapping of these constituents for applica-
tions in both agriculture and ecology. The next section emphasizes
some of these applications.

8. Application of PROSAIL

Table 2 summarizes some examples of application of PROSAIL for
canopy biophysical variables estimation. It shows that most of the
studies are focused on the spectral dimension of observations.
Directional observations mainly stem from airborne and spaceborne
POLDER instruments. Even when directional observations are avail-
able (e.g., multi-temporal VEGETATION images), researchers seem to
prefer to fit a parametric BRDF model and then use normalized
reflectances such as the one at nadir viewing as input. Although
interrogation of ISI Web of Science shows 22 articles dealing with
‘SAIL’ & ‘directions’, most of these papers are related to improvement
of the modeling of directional effects, or on theoretical considerations
on optimal sampling of directions. Association of ‘SAIL model’ &
‘hyperspectral’ or ‘imaging spectroscopy data’ yield only 11 articles, all
published after 2001. Association between ‘PROSPECT’ & ‘hyperspec-
tral’ provides 24 articles published after 2000 while association with
‘imaging spectroscopy’ yields 5 articles published before 2000,
showing a possible trend in terminology, ‘hyperspectral’ replacing
‘imaging spectroscopy’.

Because of the basic physical assumptions made in PROSPECT and
SAIL (e.g., Lambertian broad-flat leaves, semi-infinite horizontally
homogeneous plant canopies), and because it represents compro-
mises that have generally been considered acceptable, PROSAIL was
first used with crops for applications in agriculture as illustrated by
Table 2. In addition, the biophysical characteristics of crops are easier
to measure than those of other vegetation types such as forests. SAIL
and PROSPECT are now operationally used in precision farming, an
economically profitable concept which also preserves the environ-
ment. In this concept, intra-field variability is identified so that the
appropriate agricultural inputs (fertilizers, fungicides, herbicides, etc.)
are only applied at specific locations and cultural practices are



Table 3
Distribution (in %) between subject categories for articles using PROSPECT (‘PROSPECT’
& ‘leaf’) and SAIL (‘SAIL’ & ‘reflectance’) as extracted from ISI Web of Science.

Subject category PROSPECT SAIL

Remote sensing 29 29
Imaging science and photographic technology 27 27
Environmental sciences 25 23
Agronomy 5 5
Plant sciences 3 0
Geochemistry and geophysics 2 1
Geosciences multidisciplinary 2 2
Engineering, electrical and electronic 2 1
Meteorology and atmospheric sciences 2 4
Forestry 1 2
Horticulture 1 0
Water resources 1 0
Ecology 0 2
Agriculture, multidisciplinary 0 2
Engineering, aerospace 0 1
Geography, physical 0 1
Total 100 100

Note that one article could address several subject categories.

Table 2
Examples of studies on canopy biophysical variables estimated by inversion of PROSAIL for applications in agriculture, forestry, environment or ecology.

Sensor VIS NIR SWIR Nv Plant species Variable Method Reference

Ground data
CIMEL/CROPSCAN 1-6 1-2 1 Sugar beet Gap fraction NNT Baret et al. (1995)
GER IRIS Mk IV 3-30 1-60 2-90 1 Sugar beet Cab, Cw, LAI OPT Jacquemoud et al. (1995)
GER IRIS Mk IV 7 4 1 Sugar beet N, Cab, Cw, LAI, ALA, sL LUT Combal et al. (2002a)
GER 1500 30 50 61 1 Potato LAI, ALA OPT Casa & Jones (2004)
ASD 300 600 900 1 New Guinea impatiens N, Cw, LAI, ALA OPT Yang & Ling (2004)
ASD 300 600 900 1 Beech, oak Cab, Cm, LAI VI Le Maire et al. (2008)

Airborne data
CAESAR 2 1 2 Onion, pea, potato, sugar beet, wheat N, Cab, LAI, ALA, sL OPT Jacquemoud et al. (1994)
CASI 7 3 1 Maize, soybean Cab, LAI OPT Jacquemoud et al. (2000)
POLDER 3 1 var Alfalfa, maize, sunflower, wheat Cab, LAI, ALA, sL, αsoil OPT Bacour et al. (2002b)
POLDER 3 1 var Alfalfa, maize, sunflower, wheat Gap fraction, LAI NNT Weiss et al. (2002)
CASI 7 4 1 Maize LAI LUT Koetz et al. (2005)
CASI 40 32 1 Sugar mapple Cab, LAI VI Zarco-Tejada et al. (2001)
DAIS 20 10 6 1 Poplar LAI OPT Meroni et al. (2004)
ROSIS/DAIS 40 32 1 Olive trees Cab, LAI VI Zarco-Tejada et al. (2004b)

Spaceborne data
MODIS 3 2 2 1 Chaparral Cw OPT Zarco-Tejada et al. (2003)
POLDER 2 1 11 Global domain LAI NNT Lacaze (2005)
MODIS 3 2 2 1 Black birch, red oak, red mapple, white pine N, Cab, Cw, Cm, Cb, PAI, fCover MCMC Zhang et al. (2005)
MERIS 7 4 1 Global domain LAI×Cab, LAI, fAPAR, fCover NNT Bacour et al. (2006)
IKONOS, SPOT, ETM+ 2-3 1 0-2 1 Temperate coniferous and deciduous forest LAI VI Soudani et al. (2006)
MODIS 3 2 2 1 Vegetation of the continental USA LAI×Cw NNT Trombetti et al. (2008)
VEGETATION 2 2 1 Global domain LAI, fAPAR, fCover NNT Baret et al. (2007), Weiss et al. (2007)
TM, TM+ 3 1 1 1 Corn, sugar beet, potato, sunflower, alfalfa,

garlic, onion, other
LAI LUT González-Sanpedro et al. (2008)

HYPERION 34 50 136 1 Broad-leaved forest Cab, Cm, LAI VI Le Maire et al. (2008)

Sensors used, number of bands available per spectral domain (VIS, NIR, SWIR), number of view directions (Nv), plant species, inferred canopy variables and inverse method (OPT:
iterative minimization; VI: vegetation index; LUT: look-up table; MCMC: Markov chain Monte Carlo; NNT: artificial neural network) along with the corresponding references are
indicated.
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modulated depending on canopy actual status as seen from remote
sensing. For instance, the cropmonitoring service of Infoterra (http://
www.infoterra.fr/) called FarmStar, includes the physics of PROSAIL. It
uses both satellite and airborne data on an operational basis to provide
timely field-level maps of LAI and nitrogen recommendation,
assuming that there is a strong relationship between nitrogen and
chlorophyll content (Blondlot et al., 2005).

The area of applications of PROSAIL is meanwhile extended to
natural vegetation canopies although they may not meet all require-
ments of the model. Broadleaf homogeneous canopies are indeed
seldom encountered in nature and are a rather idealized approxima-
tion for many ecosystems. However, since an exhaustive description of
the 3-D structure of most terrestrial ecosystems is impossiblewith our
present tools, the simplified assumption that considers horizontal
homogeneity should not invalidate the use of 1-D models. Table 2
mainly shows large-scale ecosystem studies based on medium
resolution spaceborne sensors such as MODIS, MERIS, VEGETATION,
and POLDER for the estimation of global fields of LAI, fCover, fAPAR,
LAI×Cab or LAI×Cw. Validation using ground measurements is a
difficult task at this scale (Morisette et al., 2006) but results obtained
by Bacour et al. (2006) andWeiss et al. (2007) show that estimates of
fAPAR are reliable and accurate, while those of LAI suffer from
saturation effects that cannot be dissociated from radiative transfer
within plant canopies. The retrieved LAI values appear thus closer to
an effective LAI value, that may partly explain the early saturation
observed on LAI products. Nevertheless, as compared to LAI products
collection 4 derived from MODIS through inversion of 3-D radiative
transfer models (Myneni et al., 2002), PROSAIL LAI products derived
from VEGETATION sensors appear to perform reasonably well when
compared with effective LAI derived from gap fraction measurements
performed at the ground level (RMSE=0.73). On forest canopies,
PROSAIL LAI derived from HYPERION sensors (using wavelengths at
970 and 1725 nm) showed only a slight saturation (values as high as
10 were easily obtained), and a higher RMSE was observed
(RMSE=1.56 for LAI ranging from 0 to 10).

Inspection of the distribution of subject categories addressed in
articles dealing with SAIL or PROSPECT models (Table 3) shows here
again a close parallelism between scores by SAIL and PROSPECT. When
focusing on SAIL, ‘remote sensing’ and ‘imaging science’ get non
surprisingly the highest scores, just before ‘environmental sciences’.
Then, ‘agronomy’ and ‘meteorology and atmospheric sciences’
correspond to the main application, getting significantly higher scores
than, ‘forestry’, ‘ecology’ and ‘agriculture multidisciplinary’. This
confirms the previous comments extracted from Table 2 on the
application domains.

http://www.infoterra.fr/
http://www.infoterra.fr/
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9. Conclusion

The coupling of PROSPECT with SAIL models made it possible to
physically interpret spectral and directional reflectance fields as
sampled by Earth observation sensors in terms of leaf biochemical
contents and canopy architecture. When run in direct mode, PROSAIL
provides a means to generate databases and test new spectral indexes,
and to perform sensitivity analyses that will allow better designs on
forthcoming sensors devoted to specific applications, long before their
launch. When embedded in an inversion procedure, PROSAIL turns
into a powerful tool to derive new products. The first large scale maps
of chlorophyll content appeared just a few years ago, those of water
content and dry matter content (or specific leaf area) a few months
ago. In the future, the functionality of terrestrial ecosystems could be
monitored in a totally different way when estimating the main leaf
pigments individually, e.g. chlorophylls and carotenoids, when
interpreting the xanthophyll cycle and fluorescence emission fluxes
in green leaves in terms of photosynthesis efficiency, and when the
UV-screening role of anthocyanins in plant foliage is fully understood.
The mapping of vegetation water content is another emerging
application for forest fire risk assessment, and forest defoliation
resulting from heat waves, insect or fungus infections. This obviously
goes through new developments and evolution of these models, to get
more detailed and realistic simulations of canopy reflectance with
inclusion of additional processes such as fluorescence or thermal
infrared emission, which are already ongoing (Miller et al., 2005;
Zarco-Tejada et al., 2006; Verhoef et al., 2007).

Although other models have been developed, generally they have
received less validation and comparison to previously existing ones,
either due to lack of resources or limited access by other researchers.
The large diffusion of PROSPECTand SAIL in the research community is
attributed to their simplicity, accuracy and, above all, their availability.
These twomodels, individually or together, have probably contributed
to pave the road towards improved use of our physical understanding
of radiative transfer processes in plant canopies. However, they are
still often perceived as excessively complicated tools compared to
vegetation indexes. The inversion of PROSAIL and of the other
available codes, is actually still a job for a specialist. The design of
optimized vegetation indexes that include aspects of the physics of the
radiative transfer within plant canopies is destined for success. On-
line educational tools like the Graphical User Interfaces (GUI) which
allow people to “play” with models would be very helpful to make
users understand their operation and to recognize their value in
obtaining more accurate information about plant biophysical
properties.

As reviewed in this paper, plant canopy reflectance models have
become essential tools for the analysis of optical remote sensing data,
providing meaningful links between radiometry and environmental
applications, such as ecological processes, environment and precision
agriculture. Radiative transfer models are now routinely used by space
agencies or more specific service providers to produce spatially and
temporally continuous fields of canopy biophysical variables to be
integrated into process models for decision making. Desirable
biophysical variables required by these process models are fAPAR,
LAI, leaf nitrogen content, leaf mass per area, stand biomass, leaf
biomass, etc. (Plummer, 2000; Le Maire et al., 2005; Davi et al., 2006).
However, the SAIL model has intrinsic limitations in its capacity to
simulate heterogeneous canopies showing clumping at several scales
which explains why, under these circumstances, use of RT models to
estimate some canopy characteristics finally achieve performances
often comparable to those of empirical relationships with vegetation
indexes. Improvements will require a more complex description of
canopy architecture to account for leaf clumping as already initiated
with hybrid turbid/geometrical models. Unfortunately, these
improvements will require additional variables that may vary with
time and space, needing them to be therefore estimated. A good
balance is thus mandatory between realism and complexity for
application through radiative transfer model inversion. Part of the
increased complexity could be compensated for by exploiting prior
knowledge on the distribution of variables, which will be much easier
to define at relatively high spatial resolution (5–20 m) where most
pixels will be ‘pure’, corresponding to only one type of vegetation.
There are good times ahead for models!
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