@ N\

@ddemaree typekit Adobe

I like pie. The web’s best fonts. We make Photoshop™

REFACTORH\IG
PREFACTORH\IG

Don't
Repeat
Yourself

Too much
abstraction

® 06 5
O » | @ GitHub, Inc. & ¢ | Reader || ©

gith“b ¢ Q search... ' Explore Gist Blog Help ﬂm“ %X P

typekit / typekit i1 Pull Request & Unwatch - % Unstar 3 [Fork 0

Code Issues 41 Wiki Graphs

1,308 NEEE #1308

4 Discussion ‘ - Commits (74 | [2) Diff (s |

Localize Email Templates +1,008 additions

- 302 deletions
No one is assigned &)~ No milestone)~

This branch is just a localization branch.

One of the initial ideas was to replace PostOffice with ActionMailer, but it seems like this task is orthogonal to the 118n
project and while it has some benefits, it's more of a scope creep than a must to work on now.

4 participants ‘ ﬁ a

a month ago
POC to localize email templates eaa7f59
Placeholder for Maillocale::User to be used for localized emails blaffa2

module rename 13ace82

THE PROBLEM

It’s really easy to
convince yourself that
today’s code will be more
complexin the future,

and design for that.

® 06

IR [2L @ GitHub, Inc. &

PRIVATE

gith“b <] Q, Search.. ' Explore Gist Blog
typekit / typekit n
Code Network Pull Requests 10
Closed

4™ Discussion ‘ - Commits (74 | [#) Diff (es]

>

=== Localize Email Templates
No one is assigned &)~

This branch is just a localization branch.

One of the initial ideas was to replace PostOffice with ActionMailer, buf
project and while it has some benefits, it's more of a scope creep than .

4 participants a ﬁ ﬂ

POC to localize email templates
Placeholder for Maillocale::User to be used

module rename

|

|

I B

N B ¢
|

|

When is it time
to refactor?

When is it not time
to refactor?

Rules of thumb

The Rule of Three

“Code can be copied once, but that when the
same code is used three times, it should be
extracted into a new procedure.”

http://en.wikipedia.org/wiki/Rule_of_three_(computer_programming)

http://en.wikipedia.org/wiki/Rule_of_three_(computer_programming
http://en.wikipedia.org/wiki/Rule_of_three_(computer_programming

def foo
Does some stuff

if Quser.status == :active
@usere.status = :inactive OK
@usere.save!

end
end

def foo
Does some stuff

if Quser.status == :active
@usere.status = :inactive
@usere.save!
end
end
def bar
Does some other stuff
if Quser.status == :active
@usere.status = :inactive
@user.save!
end

end

1@ oK

@ sTiLLoK

def foo
Does some stuff

if Quser.status == :active
@usere.status = :inactive
@user.save!
end
end
def bar
Does some other stuff
if Quser.status == :active
@usere.status = :1nactive
@usere.save!
end
end
def baz
Does yet other stuff
if @Quser.status == :active
@user.status = :1nactive
@usere.save!
end

end

def deactivate_user(user)
if user.status == :active
user.status = :inactive
user.save!
end
end

def foo

deactivate_user(@Quser)
end

def bar

deactivate_user(@Quser)
end

def ba:z

deactivate_user(@user)
end

def deactivate_user(user)

if user.status == :active
user.status = :inactive
user.save!
end
end
def foo

Does some stuff ...

deactivate_user(@Quser)
end

def bar

Does some other stuff ...

deactivate_user(@Quser)
end

def baz

Does yet other stuff ...

deactivate_user (Quser)
end

This is better code

BUT

Resist the temptation to
do this until you really
have repeated yourself

three times

Three of a Kind

Three or more related methods/symbols
can be meaningtully grouped together

class User < ActiveRecord::Base
def adobe_profile

AdobeIdssProfile.new(self.adobe_profile_1id)
end

def connected_to_adobe_profile?
!self.adobe_profile_id.nil? I

end

end

class User < ActiveRecord::Base

def adobe_profile
AdobeIdssProfile.new(self.adobe_profile_1id)
end

def connected_to_adobe_profile?
!self.adobe_profile_id.nil?
end

def connect_to_adobe_profile(profile_obj)
self.adobe_profile_id = profile_obj.1id
self.email_unique = false
save

end

end

class User < ActiveRecord::Base

def adobe_profile
AdobeIdssProfile.new(self.adobe_profile_1id)
end

def connected_to_adobe_profile?
!self.adobe_profile_id.nil?
end

def connect_to_adobe_profile(profile_obj)
self.adobe_profile_id = profile_obj.1id
self.email_unique = false
save

end

def disconnect_adobe_profile
self.adobe_profile_id = nil
self.email_unique = true
save

end

end

module UserAdobeProfile

def adobe_profile
AdobeIdssProfile.new(self.adobe_profile_1id)
end

def connected_to_adobe_profile?
!self.adobe_profile_id.nil?
end

Anything else pertaining to users'
Adobe profiles ..

end
class User < ActiveRecord::Base

include UserAdobeProfile
end

A

No Assumptions

You don’t know what you know
until you know it.

JEFF ATWOOD:

| believe writing a truly reusable class is an order of

magnitude harder than writing a single use class.
Sometimes the right thing to do is resist the urge to
write "general purpose" solutions.

http://www.codinghorror.com/blog/2004/09/the-delusion-of-reuse.html

http://www.codinghorror.com/blog/2004/09/the-delusion-of-reuse.html
http://www.codinghorror.com/blog/2004/09/the-delusion-of-reuse.html

XREFACTORH\IG

ssssssssss

»4 ddemaree@adobe.com

¥ @ddemaree

t log.demaree.me

(- WindyCityRails typekit A'd“b‘

mailto:ddemaree@adobe.com
mailto:ddemaree@adobe.com

It will not surprise you to learn that

http://bit.ly/typekitrailsjob

or just come talk to me

- WindyCityRails P

http://bit.ly/typekitrailsjob
http://bit.ly/typekitrailsjob

