
Dirty Little Tricks From the
Dark Corners of Front-End

Vitaly Friedman (illustrations by Simon C Page, Nelson Cash)
December 13, 2016

Vitaly Friedman, editor-in-chief 
and co-founder of SmashingMag

This webinar is about techniques.

And about tricky front-end strategies.
This webinar is about techniques.

And what works in real-life projects.
And about tricky front-end strategies.
This webinar is about techniques.

It’s your lucky day. You grow, and your
company expands to foreign markets. Your
site has to support 23 languages. How do
you architect CSS/JS to support it?

The crucial asset of longevity is
building “neutral”, configurable
components which can be easily
extended and adjusted.

// english.json  
{  
 serviceName: 'english';  
 language: 'en';  
 textDirection: 'ltr';  
 socialMediaButtons: ['twitter', 'facebook', 'reddit'];  
}  
 
// russian.json  
{  
 serviceName: 'russian';  
 language: 'ru';  
 textDirection: 'ltr';  
 textLength: 'verbose';  
 socialMediaButtons: ['twitter', 'facebook', 'vk'];  
}

extended and adjusted.

config/english.json  
 /russian.json

 
css/english.css  
 /russian.css  
 
sass/english.scss  
 /russian.scss  
 /mixins/_textDirection.scss  
 /mixins/_textLength.scss  
 /mixins/_socialMediaButtons.scss  
 
index.en.html  
index.ru.html

// english.scss  
$english = true;  
$script = 'latin';  
 
// russian.scss  
$russian = true;  
$script = 'cyrillic';  
 
@if $russian {  
 // apply styling only to Russian version  
}

With a templating language, we can then plug data  
from config files and hence customize HTML output 
for every language.

// english.scss  
$english = true;  
$script = 'latin';  
$direction = 'left';  
@include(mixins/directions);  
@include(mainstyles);  
 
// arabic.scss  
$arabic = true;  
$script = 'arabic';  
$direction = 'right';  
@include(mixins/directions);  
@include(mainstyles);  
 
@if $arabic {  
 // apply styling only to Arabic version  
}

// directions.scss  
$margin-left: margin-left;  
if $direction == 'right' {  
 $margin-left: margin-right;  
}  

 
$padding-left: padding-left;  
if $direction == 'right' {  
 $padding-left: padding-right;  
}  
 
$left: left;  
if $direction == 'right' {  
 $left: right;  
}

// directions.scss  
$margin-left: margin-left;  
if $direction == 'right' {  
 $margin-left: margin-right;  
}  
 
$padding-left: padding-left;  
if $direction == 'right' {  
 $padding-left: padding-right;  
}  

 
$left: left;  
if $direction == 'right' {  
 $left: right;  
}

$margin-right: margin-right;  
if $direction == 'right' {  
 $margin-right: margin-left;  
}

$padding-right: padding-right;  
if $direction == 'right' {  
 $padding-right: padding-left;  
}

$right: right;  
if $direction == 'right' {  
 $right: left;  
}

// global.scss  
.nav-element {  
 #{$margin-left}: 10px;  
 #{$padding-right}: 10px;  
 #{$left}: 10px;  
}  
 
// english.css  
.nav-element {  
 margin-left: 10px;  
 padding-right: 10px;  
 left: 10px;  
}  
 
// arabic.css  
.nav-element {  
 margin-right: 10px;  
 padding-left: 10px;  
 right: 10px;  
}  

.nav-element {  
 float: flip(left, right);  
 padding: flip(10px 10px 0 0,  
 10px 0 0 10px);  
 line-height: get-script-value  
 (latin 1.3, arabic 1.6);  
}

// global.scss  
.nav-element {  
 float: flip(left, right);  
 padding: flip(10px 10px 0 0, 10px 0 0 10px);  
 line-height: get-script-value(latin 1.3, arabic 1.6);  
}  
 
// english.css  
.nav-element {  
 float: left;  
 padding: 10px 10px 0 0;  
 line-height: 1.3em;  
}  
 
// arabic.css  
.nav-element {  
 float: right;  
 padding: 10px 0 0 10px;  
 line-height: 1.6em;  
}  

You want to add a background to inline
text for headings, but the text should be
padded along both the left and right edge
of each line. Left/right padding will only
apply to the very first and very last line.

The box-decoration-break in CSS
specifies element’s appearance if the
box for the element is fragmented, i.e
when an inline box wraps onto
multiple lines, or when a block spans
more than one column inside a
column layout container.

We can use a little trick: apply a
zero-spread box-shadow on an
inline element by defining the
shadow only on the x-axis.

You have to build in fluid, flexible type,
and designers want you to implement
perfect modular scale. The proportions
have to stay consistent across screens.

CSS Architecture

• Main CSS contains default type styles:

/* CSS Reset of your choice */  
body { font-size: 100%; line-height: 1.45em; }

/* 2:3 Perfect Fifth: 7.111, 10.667, 16 (i), 24, 36, 54 */  
h1 { font-size: 3.375rem }  
h2 { font-size: 2.25rem }  
h3 { font-size: 1.5rem }  
h4 { font-size: 1rem }  
caption { font-size: 0.667rem }  
small { font-size: 0.444rem }

CSS Architecture

/* CSS Reset of your choice */  
body { font-size: 100%; line-height: 1.45em; }

/* 2:3 Perfect Fifth: 7.111, 10.667, 16 (i), 24, 36, 54 */  
h1 { font-size: 3.375rem }  
h2 { font-size: 2.25rem }  
h3 { font-size: 1.5rem }  
h4 { font-size: 1rem }  
caption { font-size: 0.667rem }  
small { font-size: 0.444rem }

/* Ideal line length: 66 ch; => max-width: 33em */ 
article { max-width: 33em; }  
:lang(de) article { max-width: 40em; }  
p, ul, ol, dl, table { margin-bottom: 1.45rem; }

CSS Architecture

/* CSS Reset of your choice */  
body { font-size: 100%; line-height: 1.45em; }

/* 2:3 Perfect Fifth: 7.111, 10.667, 16 (i), 24, 36, 54 */  
h1 { font-size: 54px; font-size: 3.375rem }  
h2 { font-size: 36px; font-size: 2.25rem }  
h3 { font-size: 16px; font-size: 1rem; }  
h4 { font-size: 24px; font-size: 1.5rem }  
caption { font-size: 7px; font-size: 0.667rem }  
small { font-size: 11px; font-size: 0.444rem }

/* Ideal line length: 66 ch; => max-width: 33em */ 
article { max-width: 33em; }  
:lang(de) article { max-width: 40em; }  
p, ul, ol, dl, table { margin-bottom: 1.45rem; }

“ How do you efficiently scale up /
down any UI component (e.g. a
slider or calendar) and keep all the
proportions intact—without
fiddling with width, height or
border-radius manually?

 

— @simurai

“ By sneaking a Trojan horse into
your components. We use rem for
components “root” and em for sub-
parts of the components. Then, by
adjusting the font-size of the root,
we adjust all size-related CSS
properties of a component at once.

 

— @simurai

With media queries, we can
target specific screen width
ranges and adjust type by just
manipulating the font-size rem
value of the article’s container.

“ To achieve fluid typography, we can
combine the calc() function in CSS
with viewport units (vw/vh/vmin/
vmax). But what if you want to
apply a modular scale to font sizes?

We can get perfectly fluid type with  
html { font-size: calc(1em + 1vw); }
but it gives us little control over the
rate at which viewport units change.
Media queries? Well, with them
usually there is an annoying “visual”
jump between fixed and fluid values.

 

— Mike Riethmuller

…E.g. if we wanted to choose a font-
size of 16px at a screen resolution of
400px and then transition to 24px at
a resolution of 800px, we couldn’t do
it without a breakpoint.

 

— Mike Riethmuller

You choose the min and max font-
size and the screen sizes, over which
the font should scale and plug them
into the equation. You can use any
unit type including ems, rems or px.

 

— Mike Riethmuller

Implement the baseline rhythm in CSS.
Insert two differently formatted elements
next to each other and they’ll seem out of
phase. How do we fix it?

“ So you want to implement a
baseline rhythm in CSS. Insert two
differently formatted elements
next to each other and they’ll seem
out of phase. How do we bring
them under control?

 

— Jan Dudek

Often we define a common line height
value (or its multiple) that’s used for
all elements, including their paddings
and margins, occasionally taking
border widths into the equation.

What if we align the baseline instead?
So that all type—regardless of its size
—lies on the same grid line? We just
need to calculate the offset and then
shift the content by that offset.

By default, browsers center the cap
height (the height of a capital letter
above the baseline) between grid
lines. So we shift it by the half of the
difference between line height and
cap height.

To determine the cap height, we 
fiddle with offset values until the 
type is properly aligned with the grid.

$font-stacks: ( 

 s: $font-stack-text,  
 m: $font-stack-text,  
 l: $font-stack-display,  

 xl: $font-stack-display  
);

• vertical-rhythm.scss:

$line-height: 24px;

$font-sizes: (s: 13px, m: 15px, l: 19px, xl: 27px);  
$cap-heights: (s: 0.8, m: 0.8, l: 0.68, xl: 0.68);

$font-stacks: ( 

 s: $font-stack-text,  
 m: $font-stack-text,  
 l: $font-stack-display,  

 xl: $font-stack-display  
);

@function rhythm-shift($size-name) {  
 $font-size: map-get($font-sizes, $size-name);  
 $cap-height: map-get($cap-heights, $size-name);  
 $offset: ($line-height - $cap-height * $font-size) / 2;  
 return round($offset);  
}

$line-height: 24px;

$font-sizes: (s: 13px, m: 15px, l: 19px, xl: 27px);  
$cap-heights: (s: 0.8, m: 0.8, l: 0.68, xl: 0.68);

Now we just need to apply the offset,
and do so reliably. We can combine
positive top margin and negative
bottom margin to make it work.

.rhythm-m {  
 margin-top: $offset;  
 margin-bottom: -1 * $offset;  
}

$offset: rhythm-shift(m);

• Collapsing works differently with positive and
negative margins:

• Two positive margins  
The bigger one wins.

• Two negative margins 
The lower (i.e. the more negative) wins.

• One positive, one negative margin 
The margins sum up.

If an element doesn’t have a border
nor padding, and its first child has a
margin, that margin will flow out of
the parent. Use overflow: hidden.

Often we want to target a specific child 
in the DOM, but the parent might have
many children. Usually we style all
children first and the overwrite the styles.

“ What if you want all links to have an
underline except the ones you
specify? Or you want all ’s in the
navigation to have a right border,
except the last one. Normally you
would use :last-child (or extra class)
to overwrite a default CSS rule.

 

— Ire Aderinokun

“ You’ve built an alert message box.
To be resilient to failure, how can
we make sure that the box will be
hidden when there is no content
within it?

— Ire Aderinokun

“ What if you want a tidy grid with
fine and consistent line endings?
Sometimes you might end up with
not enough space to display all
content blocks in a row, or not
enough items to properly fill a row.

 

— Patrick Clancey

A quantity selector is a CSS
selector that allows styles to be
applied to elements based on the
number of siblings.

• CSS: 
li:nth-last-child(6):first-child,  
li:nth-last-child(6):first-child ~ li {  
 color: green;  
}

• CSS: 
li:nth-child(n+6) {  
 color: green;  
}

li:nth-last-child(n+6) { 
 color: green; 
}

li:nth-last-child(n+6):first-child, 
li:nth-last-child(n+6):first-child ~ li { 
 color: green; 
}

To create a perfect grid, we’ll need
to define layout for any number of
items with specific quantity
selectors within media queries.

• “Mod query selector” in CSS: 
li:nth-last-child(3n):first-child,  
li:nth-last-child(3n):first-child ~ li {  
 /* … styles for list items in a list divisible by 3 … */  
}

li:nth-last-child(3n):first-child, 
li:nth-last-child(3n):first-child ~ li { 
 /* … styles for list items in a list divisible by 3 … */ 
}

— Select all following sibllings (~ li) which follow after  
— The first child (first li in the list here), (:first-child) that also is 
— Every third item starting from the end (:nth-last-child(3n)).

— Select all the items up to and including the fifth item, then 
— Select all the items from the third item onwards.

• “Range selector” in CSS: 
li:nth-child(n+3):nth-child(-n+5) {  
 /* … styles for list items from 3 to 5 … */  
}

We use a mod query to check
if the number of items is
divisible by 3. Then we use a
range selector to style items
differently, e.g. apply one
styling to first three, another
styling to the fourth through
ninth, and another to 10th
onwards. Voilà!

• “Mod query selector” in CSS: 
li:nth-last-child(3n):first-child /* mod query */  
~ li:nth-child(n+4):nth-child(-n+6) { /* range selector */  
 /* … styles for 4th to 6th elements, in a list divisible by 3 … */  
}

Holy smokes! You are tasked to build a
pattern library for your company. You
know well where to start, but what’s your
strategy to keep it up-to-date long-term?

Pain Points and Bottlenecks

• Digital not properly understood and applied,
• Subpar workflow and loose communication,
• Tech-driven design decisions made by developers,
• Legacy code base, CMS, slow workflow — “watergile”,

• Almost every mid-size/large company has similar
pain points, issues and concerns:

• Inconsistency reflected in different views,
• Gap between screen mock-ups and front-end prototypes.

Pain Points and Bottlenecks

• Design-driven approach is prioritized by management,
• Responsive design is difficult to estimate and plan for,
• Focused on content first, performance and longevity,
• Pattern library seen as ultimate source of consistency.

• Almost every mid-size/large company has similar
pain points, issues and concerns:

• Goal: one (responsive) site, serving tailored multi-
screen experiences. Maintainable, future-proof.

Success with a pattern library
means moving meaningful
metrics, such as increasing
bookings or decreasing costs.

“We collected components in a
master Sketch file. After a week or
two we began to see huge leaps in
productivity by using the library
when iterating on designs… 

— Karri Saarinen, AirBnB 
http://airbnb.design/co-creating-experiences-with-our-community/

http://airbnb.design/co-creating-experiences-with-our-community/

“ …One day, while putting together a
last-minute prototype, our team was
able to create nearly 50 screens
within just a few hours by using the
framework our library provided. 

— Karri Saarinen, AirBnB 
http://airbnb.design/co-creating-experiences-with-our-community/

http://airbnb.design/co-creating-experiences-with-our-community/

• JavaScript: 
var size =
window.getComputedStyle(document.body,':after').get  
PropertyValue('content');  
 
if (size == 'desktop') {  
 // Load some more content.  
}

“ Re-usable components can be used in
many different but similar ways. It
leaves room for interpretation. This
opens the door for all kinds of
disjointed experiences and makes the
system harder to maintain. 

— Karri Saarinen, AirBnB 
http://airbnb.design/building-a-visual-language/  

http://airbnb.design/building-a-visual-language/

“ A design system should not simply be
a collection of UI components along
with some design theory. A library
that simply provides a “kit of parts”
leaves a lot open to interpretation.  

— Jeff Crossman, GE 
https://medium.com/ge-design/ges-predix-design-system-8236d47b0891

https://medium.com/ge-design/ges-predix-design-system-8236d47b0891#.m48yttfjl

Beyond Atomic Design

• Having a shared understanding of building blocks
helps, but they need context to be used effectively.

• Pattern library isn’t the end game. It shines when  
internal teams use it to extend the product.

• Show examples. The team should know how to apply
patterns in appropriate and meaningful ways.

• The context exists on the most concrete levels of
atomic design — applications and features.

• JavaScript: 
var size =
window.getComputedStyle(document.body,':after').get  
PropertyValue('content');  
 
if (size == 'desktop') {  
 // Load some more content.  
}

Find the features your team needs.
1:1 code base mapping. Automated
updates. Masterlods don’t scale.
Show context, interface examples.

By default, broken images look pretty
unspectacular. Is there any way to improve
the experience by changing the styling if
images are actually broken?

The element is a replaced
element. This is an element “whose
appearance and dimensions are
defined by an external resource.
Pseudo-elements typically
shouldn’t work with it.

What if you wanted the color of the SVG
icon to inherit the color property of a
button in which it resides? Can we use
CSS alone (no SASS/LESS) to establish
this relationship?

What if you want to use a full-width
element in a fixed-width container? E.g.
when you want some content to extend
beyond the boundaries of the container?

• HTML: 
<div class="u—containProse">  
 <p>...</p>  
 <p>...</p>  
</div>

• CSS: 
.u—containProse {  
 margin: 0 auto;  
 max-width: 40em;  
}

• HTML: 
<div class="u—containProse">  
 <p>...</p>  
</div>  
 
  
 
<div class="u—containProse">  
 <p>...</p>  
</div>  

• CSS: 
.u—containProse {  
 margin: 0 auto;  
 max-width: 40em;  
}

To release our child element from its
container, we need to know how much
space there is between the container
edge and the viewport edge.

What’s this space exactly? Well, we
just need to subtract half the container
width from half the viewport width.
calc() to the rescue!

• HTML: 
<div class="u—containProse">  
 <p>...</p>  
  
 <p>...</p>  
</div>

• CSS: 
.u—release {  
 margin-left: calc(-50vw + 50%);  
 margin-right: calc(-50vw + 50%);  
}

When the height or width of the
initial containing block is changed,
they are scaled accordingly. Note that
the initial containing block’s size is
affected by the presence of scrollbars
on the viewport.

• HTML: 
<div class="u—containProse">  
 <p>...</p>  
  
 <p>...</p>  
</div>

• CSS: 
.u—release {  
 margin-left: calc(-50vw + 50%);  
 margin-right: calc(-50vw + 50%);  
}

• HTML: 
<div class="u—containProse">  
 <p>...</p>  
  
 <p>...</p>  
</div>

• CSS: 
.u—release {  
 margin-left: calc(-50vw + 50%);  
 margin-right: calc(-50vw + 50%);  
}

html, body {  
 overflow-x: hidden;  
}

• CSS: 
.u—release {  
 width: 100vw;  
 position: relative;  
 left: 50%;  
 right: 50%;  
 margin-left: -50vw;  
 margin-right: -50vw;  
}

We push the container to the exact
middle of the browser window with
left: 50%, then pull it back to the left
edge with -50vw margin 
(h/t Sven Wolfermann).

Images make up a large portion of
bandwidth payload. Is there any way to
optimize images beyond good ol’ image
optimization? What if a hero image has to
render fast, e.g. on landing pages?

• The original photo has 1600px width, 971 Kb.
Quality 60 brings the size down to 213 Kb.

• Blurring unimportant parts of the photo brings
the size down to 147 Kb.

Sequential JPEG Progressive JPEG

Images taken from http://www.pixelstech.net/article/1374757887-Use-progressive-JPEG-to-improve-user-experience 13 / 44

Scans

14 / 44

Default Scan Levels

Thanks to Frédéric Kayser for creating 'jsk': http://encode.ru/threads/1800-JSK-JPEG-Scan-Killer-progressive-JPEG-explained-in-slowmo 15 / 44

16 / 44

17 / 44

18 / 44

1st Scan Layer Has Small Byte Size

Ships Fast
&

Shows Soon

19 / 44

31 / 44

1

32 / 44

2

33 / 44

3

34 / 44

4

35 / 44

5

36 / 44

37 / 44

“ What if you have a large photo that
requires a transparent shadow?
PNG is too large in file size, and
JPEG isn’t good enough in quality.
Trick: create a regular non-
transparent JPG and an 8-bit PNG
(alpha mask) and load both images
inside an SVG container.

 

 <image width="560" height="1388" xlink:href="can-top-alpha.png">  
 </image>

 </mask>

<mask id="canTopMask">

<image mask="url(#canTopMask)" id="canTop" width="560" height="1388"  
 xlink:href="can-top.jpg"></image>

• hero-image.svg: 
<svg xmlns="http://www.w3.org/2000/svg"  
xmlns:xlink="http://www.w3.org/1999/xlink" viewbox="0 0 560 1388">

<defs>

</svg>

</defs>

http://www.w3.org/2000/svg
http://www.w3.org/1999/xlink

• HTML/CSS: 
, background: url("hero-image.svg")

 

 <image width="560" height="1388" xlink:href="can-top-alpha.png">  
 </image>

 </mask>

<mask id="canTopMask">

<image mask="url(#canTopMask)" id="canTop" width="560" height="1388"  
 xlink:href="can-top.jpg"></image>

• hero-image.svg: 
<svg xmlns="http://www.w3.org/2000/svg"  
xmlns:xlink="http://www.w3.org/1999/xlink" viewbox="0 0 560 1388">

<defs>

</svg>

</defs>

http://www.w3.org/2000/svg
http://www.w3.org/1999/xlink

We want nice type, but performance
matters, too. You either rely on Typekit/
Google Fonts or self-host the fonts. What is
your strategy for loading web fonts?

Declaring @font-face

• We can use bulletproof @font-face syntax to
avoid common traps along the way:

• CSS: 
@font-face {  
 font-family: 'Elena Regular';  
 src: url('elena.eot?#iefix') format('embedded-opentype'),  
 url('elena.woff2') format('woff2'),  
 url('elena.woff') format('woff'),  
 url('elena.otf') format('opentype');  
}

Declaring @font-face

• If you want only smart browsers (IE9+) to
download fonts, declaration can be shorter:

• CSS: 
@font-face {  
 font-family: 'Elena Regular';  
 src: url('elena.woff2') format('woff2'),  
 url('elena.woff') format('woff'),  
 url('elena.otf') format('opentype');  
}

• CSS: 
@font-face {  
 font-family: 'Elena Regular';  
 src: url('elena.woff2') format('woff2'),  
 url('elena.woff') format('woff'),  
 url('elena.otf') format('opentype');  
}

• When a font family name is used in CSS,
browsers match it against all @font-face rules,
download web fonts, display content.

• When a font family name is used in CSS,
browsers match it against all @font-face rules,
download web fonts, display content.

• CSS: 
body {  
 font-family: 'Elena Regular',  
 AvenirNext, Avenir, /* iOS */  
 'Roboto Slab', 'Droid Serif', /* Android */  
 'Segoe UI', /* Microsoft */  
 Georgia, 'Times New Roman', serif; /* Fallback */  
}

• CSS: 
body {  
 font-family: 'Elena Regular',  
 AvenirNext, Avenir, /* iOS */  
 'Roboto Slab', 'Droid Serif', /* Android */  
 'Segoe UI', /* Microsoft */  
 Georgia, 'Times New Roman', serif; /* Fallback */  
}

• HTML: 
<link href='http://fonts.googleapis.com/css?family=Skolar_Reg'
rel='stylesheet' type='text/css'>  
 
<script type="text/javascript"  
 src="//use.typekit.net/tbb3uid.js"></script>  
<script type="text/javascript">  
 try{Typekit.load();}catch(e){}</script>

• Once DOM and CSSOM are constructed, if
@font-face matches, a font will be required.

• If fonts aren’t cached yet, they will be requested,
downloaded and applied, deferring rendering.

• FOUT (Flash Of Unstyled Text): show content in
fallback fonts first, then switch to web fonts.

• FOIT (Flash Of Invisible Text): no content
displayed until the font becomes available.

Async Data URI Stylesheet

• To eliminate FOIT, we display fallback right away, and
load web fonts async with loadCSS.

• Verdict: bare minimum for the web font loading
strategy today. Self-hosting required.

• Easy to group requests into a single repaint,
• Has a noticeable short FOIT during parsing,

• How to choose a format to load? JS loader needed.

CSS Font Loading API

• Native browser API à la Web Font Loader, with a  
FontFace object representing @font-face rules.

• JavaScript: 
var elena_reg = new FontFace( 

'Elena Regular',  
'url(elena_reg.woff) format("woff"),' +  
'url(elena_reg.otf) format("otf")',  
{ weight: 'regular', unicodeRange: 'U+0-7ff' }  

);

• JavaScript: 
document.fonts.load('1em elena_reg')  
.then(function() {  

var docEl = document.documentElement;  
docEl.className += ' elena_reg-loaded';  

}).catch(function () {  
var docEl = document.documentElement;  
docEl.className += ' elena_reg-failed';  

});

• JavaScript: 
var elena_reg = new FontFace( 

'Elena Regular',  
'url(elena_reg.woff) format("woff"),' +  
'url(elena_reg.otf) format("otf")',  
{ weight: 'regular', unicodeRange: 'U+0-7ff' }  

);

• JavaScript: 
document.fonts.load('1em elena_reg')  
.then(function() {  

var docEl = document.documentElement;  
docEl.className += ' elena_reg-loaded';  

}).catch(function () {  
var docEl = document.documentElement;  
docEl.className += ' elena_reg-failed';  

});

• CSS: 
.elena_reg-loaded h1 {  

font-family: "Elena Regular";  
}

• JavaScript: 
document.fonts.load('1em elena_reg’)  
.then(function() {  

var docEl = document.documentElement;  
docEl.className += ' elena_reg-loaded’;  

}).catch(function () {  
var docEl = document.documentElement;  
docEl.className += ' elena_reg-failed’;  

});

• CSS: 
.elena_reg-loaded h1 {  

font-family: "Elena Regular";  
font-rendering: "block 0s swap infinite"; // FOUT  
// font-rendering: "block 3s swap infinite"; // FOIT  

 }

• JavaScript: 
document.fonts.load('1em elena_reg’)  
.then(function() {  

var docEl = document.documentElement;  
docEl.className += ' elena_reg-loaded’;  

}).catch(function () {  
var docEl = document.documentElement;  
docEl.className += ' elena_reg-failed’;  

});

• CSS: 
.elena_reg-loaded h1 {  

font-family: "Elena Regular";  
// font-rendering: "block 0s swap infinite"; // FOUT  
font-rendering: "block 3s swap 3s"; // FOIT, at most 3sec  

 }

Font Load Events

• Use the CSS Font Loading API with a polyfill to apply
web font only after it has loaded successfully.

• Verdict: good option for web font loading, to integrate
with 3rd-party hosting providers.

• Toggle a class on <html>; with Sass/LESS mixins,

• Requires strict control of CSS; a single use of a web
font font-family will trigger a FOIT.

• Optimize for repeat views with sessionStorage,

• Easy to implement with 3rd-party hosts,

Flash of Faux Text

• When using multiple weights, we split web fonts into
groups: Roman / Faux content.

• Two-stage render: Roman first and rest later,
• Optimize for repeat views with sessionStorage,

• Font synthesis is a big drawback.

• Verdict: good option for great performance, but 
font synthesis might produce awkward results.

Critical FOFT

• When using multiple weights, we split web fonts into
groups: Roman / Faux content.

• Two-stage render: Roman first and rest later,

• Optimize for repeat views with sessionStorage,

• Font synthesis is a big drawback.

• Verdict: good option for great performance, but 
font synthesis might produce awkward results.

• Subset fonts to minimum (A–Z, 0–9, punctuation),

• Subset is duplicated in the full Roman font.
• Licensing issues: requires subsetting.

Critical FOFT With Data URI

• Instead of loading via a JavaScript API, we inline the
web font directly in the markup.

• Verdict: the fastest web font loading strategy as of
today. Eliminates FOIT and greatly reduces FOUT.

• Two-stage render: Roman first and rest later,

• Load full fonts with all weights and styles async,

• Subset fonts to minimum (A–Z, 0–9, punctuation),

• Load the subsetted font (Roman) first inline,

• Use sessionStorage for return visits,
• Requires self-hosting; data URI blocks rendering.

Critical FOFT Data URI/SW
(CFOFTWDUASW)

• Instead of using sessionStorage, we inline the web
font in the markup and use Service Workers cache.

• Verdict: the fastest web font loading strategy as of
today. Eliminates FOIT and greatly reduces FOUT.

• Two-stage render: Roman first and rest later,

• Load full fonts with all weights and styles async,

• Subset fonts to minimum (A–Z, 0–9, punctuation),

• Load the subsetted font (Roman) first inline,

• Use Service Workers for return visits,
• Requires self-hosting/HTTPS; data URI blocks rendering.

• When a font family name is used in CSS,
browsers match it against all @font-face rules,
download web fonts, display content.

• CSS: 
body {  
 font-family: 'Elena Regular',  
 AvenirNext, Avenir, /* iOS */  
 'Roboto Slab', 'Droid Serif', /* Android */  
 'Segoe UI', /* Microsoft */  
 Georgia, 'Times New Roman', serif; /* Fallback */  
}

• CSS: 
body {  
 font-family: 'Elena Regular',  
 AvenirNext, Avenir, /* iOS */  
 'Roboto Slab', 'Droid Serif', /* Android */  
 'Segoe UI', /* Microsoft */  
 Georgia, 'Times New Roman', serif; /* Fallback */  
}

• CSS: 
body {  
 font-family: 'Elena Regular', /* Web font */  
 AvenirNext, Avenir, /* iOS */  
 -apple-system, BlinkMacSystemFont, /* macOS San Francisco */  
 Roboto Slab', 'Droid Serif', /* Android */  
 'Segoe UI', /* Microsoft */  
 Oxygen-Sans, /* KDE */  
 Ubuntu, /* Ubuntu */  
 Cantarell, /* GNOME */  
 Georgia, 'Times New Roman', serif; /* Fallback */  
}

• CSS: 
.lowBattery {  
 font-family: /* 'Elena Regular' */ /* Web font */  
 AvenirNext, Avenir, /* iOS */  
 -apple-system, BlinkMacSystemFont, /* macOS San Francisco */  
 Roboto Slab', 'Droid Serif', /* Android */  
 'Segoe UI', /* Microsoft */  
 Oxygen-Sans, /* KDE */  
 Ubuntu, /* Ubuntu */  
 Cantarell, /* GNOME */  
 Georgia, 'Times New Roman', serif; /* Fallback */  
}

What if you have to translate an interface
into many languages? The length of
words is unpredictable. How do you
manage it across devices?

The overflow-wrap property is used
to specify whether or not the browser
may break lines within words in order
to prevent overflow when an
otherwise unbreakable string is too
long to fit in its containing box.

You’ve built a perfect grid with perfectly
sized thumbnail images (e.g. squared size),
but when the client uploads images with
incorrect dimensions, they are squished
into the rectangle, incorrectly resized.

“ For img src, we can use object-fit
property in CSS to “letterbox” the
images, preserving the ratio, or
crop the images inside the block.
For background images, we can
apply background-size exactly the
same way.

Is there any way to isolate expensive
components, be it JavaScript, comments or
off-canvas navigation, similar to lazy
loading, and paint important content faster
using CSS alone?

The contain property is a primitive
for isolating style, layout and paint.
It allows us to limit a specific DOM
sub-tree and the rest of the
document with native boundaries.

• With the contain property, we can define priorities
for loading and painting CSS components.

• Third-party widgets 
Delay expensive layout with contain: strict.

• Off-screen modules 
Delay expensive paints with contain: paint.

• Container queries 
Focus on the local scope with contain: strict.

• With the contain property, we can define priorities
for loading and painting CSS components.

• Third-party widgets 
Delay expensive layout with contain: strict.

• Off-screen modules 
Delay expensive paints with contain: paint.

• Container queries 
Focus on the local scope with contain: strict.

• Browser support is coming. 
Enabled by default in Chrome 52.

What’s the deal with emoji? Can we style
them with CSS, or change them with
JavaScript? Or even better, can they be an
alternative to SVG and icon fonts?

🔂

🔂
Clockwise Rightwards and
Leftwards Open Circle Arrows
With Circled One Overlay  
(also known as U+1F502,
🔂 or \u1f502).

🙌
Person Raising Both Hands in
Celebration (also known as
Festivus Miracle Emoji, 
U+1F64C, f64c; or \u1f64c).

🍕 🎪 %

🍭 🎪 🔥

Emoji are coloured glyphs added
into Unicode 6.0 in 2010. They are
depicted in the spec, but the exact
appearance isn’t defined and varies
between fonts, just like normal
typefaces display letters differently.

Because emoji are Unicode code
points, we can create a font with the
emoji that we need in our interface
and override platform-specific
designs to avoid inconsistencies.

Internally strings are represented 
in UTF-16, so each code point can be
represented by one or more 16-bit
code units. Some emoji use only 1
code unit, others 2 and more.

Not all emoji are created equal. 
They can be modified with emoji
modifiers, so some are surrogates
which is why sometimes icons are
rendered incorrectly.

(

)
*

• HTML: 
<p style="font-family: 'Comic Sans', sans-serif;">%</p>  

• The browser will:

— Look up the glyph in the Comic Sans font, 
— If it can’t find the glyph, it will fall back to the fallback font, 
— In this case, fallback is sans-serif (Helvetica/Arial), 
— The fallback doesn’t have the glyph either, 
— Browser will try to figure out the glyph type,  
— Eventually it will look up in a locally installed Emoji font  
 (e.g. AppleColorEmoji),  
— The browser will render the icon.

• HTML: 
<p style="font-family: 'Comic Sans', sans-serif;">%</p>  

How do you highlight both a row and a
column on hover and on tap in a multi-
column table? Highlighting the current
row is easy, but what about the column?

“ We create tall pseudo elements on
<td>’s with a negative top-value of
half of that value. Then we hide
these pseudo elements with oveflow:
hidden, and use negative z-index to
keep it below the content. Then we
make all cells focusable and focus
them on touchstart.

 

— @simurai

• CSS: 
table { overflow: hidden; }  
td, th { position: relative; }  
tr:hover { background-color: #ffa; }  
td:hover::after { content: "";  
 position: absolute;  
 width: 100%;  
 height: 10000px;  
 left: 0;  
 top: -5000px;  
 background-color: currentColor;  
 z-index: -1;  
 }

• CSS: 
table { overflow: hidden; }  
tr:hover { background-color: #ffa; }  
td:hover::after,  
th:hover::after { content: "";  
 position: absolute;  
 width: 100%;  
 height: 10000px;  
 left: 0;  
 top: -5000px;  
 background-color: currentColor;  
 z-index: -1;  
 }

https://css-tricks.com/simple-css-row-column-highlighting/
https://css-tricks.com/simple-css-row-column-highlighting/
https://css-tricks.com/simple-css-row-column-highlighting/
https://css-tricks.com/simple-css-row-column-highlighting/
https://css-tricks.com/simple-css-row-column-highlighting/
https://css-tricks.com/simple-css-row-column-highlighting/
https://css-tricks.com/simple-css-row-column-highlighting/
https://css-tricks.com/simple-css-row-column-highlighting/
https://css-tricks.com/simple-css-row-column-highlighting/
https://css-tricks.com/simple-css-row-column-highlighting/
https://css-tricks.com/simple-css-row-column-highlighting/
https://css-tricks.com/simple-css-row-column-highlighting/
https://css-tricks.com/simple-css-row-column-highlighting/
https://css-tricks.com/simple-css-row-column-highlighting/
https://css-tricks.com/simple-css-row-column-highlighting/
https://css-tricks.com/simple-css-row-column-highlighting/
https://css-tricks.com/simple-css-row-column-highlighting/
https://css-tricks.com/simple-css-row-column-highlighting/
https://css-tricks.com/simple-css-row-column-highlighting/
https://css-tricks.com/simple-css-row-column-highlighting/
https://css-tricks.com/simple-css-row-column-highlighting/
https://css-tricks.com/simple-css-row-column-highlighting/
https://css-tricks.com/simple-css-row-column-highlighting/
https://css-tricks.com/simple-css-row-column-highlighting/
https://css-tricks.com/simple-css-row-column-highlighting/
https://css-tricks.com/simple-css-row-column-highlighting/
https://css-tricks.com/simple-css-row-column-highlighting/
https://css-tricks.com/simple-css-row-column-highlighting/
https://css-tricks.com/simple-css-row-column-highlighting/
https://css-tricks.com/simple-css-row-column-highlighting/
https://css-tricks.com/simple-css-row-column-highlighting/
https://css-tricks.com/simple-css-row-column-highlighting/
https://css-tricks.com/simple-css-row-column-highlighting/
https://css-tricks.com/simple-css-row-column-highlighting/
https://css-tricks.com/simple-css-row-column-highlighting/
https://css-tricks.com/simple-css-row-column-highlighting/
https://css-tricks.com/simple-css-row-column-highlighting/
https://css-tricks.com/simple-css-row-column-highlighting/
https://css-tricks.com/simple-css-row-column-highlighting/
https://css-tricks.com/simple-css-row-column-highlighting/
https://css-tricks.com/simple-css-row-column-highlighting/
https://css-tricks.com/simple-css-row-column-highlighting/
https://css-tricks.com/simple-css-row-column-highlighting/
https://css-tricks.com/simple-css-row-column-highlighting/
https://css-tricks.com/simple-css-row-column-highlighting/
https://css-tricks.com/simple-css-row-column-highlighting/
https://css-tricks.com/simple-css-row-column-highlighting/
https://css-tricks.com/simple-css-row-column-highlighting/
https://css-tricks.com/simple-css-row-column-highlighting/
https://css-tricks.com/simple-css-row-column-highlighting/
https://css-tricks.com/simple-css-row-column-highlighting/
https://css-tricks.com/simple-css-row-column-highlighting/
https://css-tricks.com/simple-css-row-column-highlighting/
https://css-tricks.com/simple-css-row-column-highlighting/
https://css-tricks.com/simple-css-row-column-highlighting/
https://css-tricks.com/simple-css-row-column-highlighting/
https://css-tricks.com/simple-css-row-column-highlighting/
https://css-tricks.com/simple-css-row-column-highlighting/
https://css-tricks.com/simple-css-row-column-highlighting/
https://css-tricks.com/simple-css-row-column-highlighting/
https://css-tricks.com/simple-css-row-column-highlighting/
https://css-tricks.com/simple-css-row-column-highlighting/
https://css-tricks.com/simple-css-row-column-highlighting/
https://css-tricks.com/simple-css-row-column-highlighting/
https://css-tricks.com/simple-css-row-column-highlighting/
https://css-tricks.com/simple-css-row-column-highlighting/
https://css-tricks.com/simple-css-row-column-highlighting/
https://css-tricks.com/simple-css-row-column-highlighting/
https://css-tricks.com/simple-css-row-column-highlighting/
https://css-tricks.com/simple-css-row-column-highlighting/
https://css-tricks.com/simple-css-row-column-highlighting/
https://css-tricks.com/simple-css-row-column-highlighting/
https://css-tricks.com/simple-css-row-column-highlighting/
https://css-tricks.com/simple-css-row-column-highlighting/
https://css-tricks.com/simple-css-row-column-highlighting/
https://css-tricks.com/simple-css-row-column-highlighting/
https://css-tricks.com/simple-css-row-column-highlighting/
https://css-tricks.com/simple-css-row-column-highlighting/
https://css-tricks.com/simple-css-row-column-highlighting/
https://css-tricks.com/simple-css-row-column-highlighting/
https://css-tricks.com/simple-css-row-column-highlighting/
https://css-tricks.com/simple-css-row-column-highlighting/
https://css-tricks.com/simple-css-row-column-highlighting/
https://css-tricks.com/simple-css-row-column-highlighting/
https://css-tricks.com/simple-css-row-column-highlighting/
https://css-tricks.com/simple-css-row-column-highlighting/
https://css-tricks.com/simple-css-row-column-highlighting/
https://css-tricks.com/simple-css-row-column-highlighting/
https://css-tricks.com/simple-css-row-column-highlighting/

“ By default, tables are quite
unpredictable and spongy, and if you
don’t know how lengthy the content
inside cells will be, some columns
can be unpredictably wide,
destroying the layout. What to do?

 

— Louis Lazaris

“ With table-layout: fixed; the layout is
fixed based on the widths defined for
the first row. Set the width of those,
and the rest of the table follows.

 

— Chris Coyier

Oh heavens! You’ve been promoted to
craft responsive emails. Many of your
users use AOL/Outlook clients. How do
you make emails bulletproof ?

<table> /* “Desktop” width = 600px = 300*2 */  
 <tr>  
 <td class="col" width="300">...</td>  
 <td class="col" width="300">...</td>  
 </tr>  
</table>  

• Content Stacking

@media only screen and (max-width: 600px) {  
 table, tr, td {  
 display: block; /* table-cell -> block */  
 width: 100%;  
 }  
}  

• Content Stacking

• Column Switching

<table> /* “Desktop” width = 600px = 300*2 */  
 <tr>  
 <td class="sub-col" width="300">...</td>  
 <td class="main-col" width="300">...</td>  
 </tr>  
</table>  

@media only screen and (max-width: 500px) {  
 table, tr, td {  
 display: block; /* table-cell -> block */  
 width: 100%;  
 }  
 
 td[class=main-col] { display: table-header-group; }  
 td[class=sub-col] { display: table-footer-group; }  
}  

• Column Switching

• Order and Re-order

<td class="wrapper"> /* Nested tables, oh my... */  
 <table class="header">Header</table>  
 <table class="nav">Navigation</table>  
 <table class="content">Content</table>  
 <table class="footer">Footer</table>  
 /table>

@media only screen and (max-width: 500px) {  
 table[class=wrapper] { display: table; }  
 table[class=header] { display: table-caption; }  
 table[class=nav] { display: block; }  
 table[class=content] { display: table-header-group; }  
 table[class=footer] { display: table-footer-group; }  
}  

• Order and Re-order

HTTP/1.1 Deployment Strategy

• CSS: 
.box {  
 width: 320px;  
 min-width: 480px;  
 max-width: 160px;  
}

If the width value is greater
than the max-width value,
max-width wins.

HTTP/1.1 Deployment Strategy

• CSS: 
.box {  
 width: 320px;  
 min-width: 480px;  
 max-width: 160px;  
}

If the min-width value is
greater than the width or
max-width values, then min-
width wins.

HTTP/1.1 Deployment Strategy

• CSS: 
.box {  
 display: inline-block;  
 min-width: 50%; // basically 2-col-desktop version  
 max-width: 100%; // basically 1-col-mobile version  
 width: calc((480px - 100%) * 480);  
/* 480px = the breakpoint, 100% = width of the parent 
Goal: create a value bigger than our max-width or smaller
than our min-width, so that either one of those property is
applied instead. */  
}

Let’s build a 2-col-layout that
stacks and grows below 480px. 
No media queries allowed.

“ Can we replicate interactivity that
require maintaining state, such as
switching tabs or panels or toggle
menus, with CSS? JS binds events
that manipulate classes and CSS
restyles elements based on those
classes. What if we used radio
buttons for the same purpose?..

 

— Art Lawry

“ We use a connected label and
checkbox input to control another
element (e.g. <div>). We hide the
checkbox but <label> still toggles its
value on and off. By using adjacent
sibling combinator, we can style the
<div> differently based on
the :checked state.

 

— Chris Coyier

• HTML: 
<label for= "toggle-1">  
<input type="checkbox" id="toggle-1" />  
 

<div>Responsive component without JavaScript</div>

• CSS: 
input[type=checkbox] { position: absolute;  
 top: -9999px; left: -9999px; }  
/* Or checkbox on top of clickable area with opacity: 0; */  
div { color: grey; } /* default state */  
input[type=checkbox]:checked ~ div { color: red; } /* toggled */

• CSS: 
#itemA-3:checked ~  
#itemB-6:checked ~  
#itemC-2:checked ~  
#itemD-11:checked ~  
#itemE-5:not:checked ~  
#itemF-2:checked ~  
#itemG-5:checked ~ * .div1 {  
 display: block;  
}

• HTML: 
<input type="radio" id="itemA-1" />  
<input type="radio" id="itemA-2" />  
<input type="radio" id="itemA-3" />  
...  
<label for="itemA-1" />Carousel</label>  
<label for=“itemD-11" />Div</label>  
...

• CSS: 
body {  
 counter-reset: amount;  
}  
#itemA-3:checked ~  
#itemE-5:not:checked {  
 counter-increment: amount;  
}  
.price {  
 content: '$' + counter(amount);  
}  

• Shopping Cart Email Checkout 
— 117 radio buttons, 
— 4 checkboxes, 
— Multi-page layout, 
— Adding/removing products, 
— Edit quantity, color, size, 
— See live calculation, 
— Select payment and delivery, 
— Form validation — all in the email,  
— Fallback: just a regular ol’ email.

In email clients, we just need
support for :checked values and
siblings selectors. But: In email, file
size is limited to 102 Kb. In Gmail,
CSS is limited to 12,000 characters.

