
Chris Keathley / @ChrisKeathley / c@keathley.io

Building Adaptive Systems

mailto:c@keathley.io

Server Server

Server Server

I have a request

Server Server

Server Server

Server Server

No Problem!

Server Server

Server Server

Thanks!

Server Server

Server Server

I have a request

Server Server

Server Server

Server Server

I’m a little busy

Server Server

I’m a little busyI have more requests!

Server Server

I’m a little busyI have more requests!

Server Server

I’m a little busyI have more requests!

Server Server

I’m a little busyI have more requests!

Server Server

I’m a little busyI have more requests!

Server Server

I’m a little busyI have more requests!

Server Server

I’m a little busyI have more requests!

Server Server

I’m a little busyI have more requests!

Server Server

I don’t feel so good

Server

Server

Welp

Server

Welp

All services have
objectives

A resilient service should
be able to withstand a 10x
traffic spike and continue
to meet those objectives

Lets Talk About…
Queues
Overload Mitigation
Adaptive Concurrency

Lets Talk About…
Queues
Overload Mitigation
Adaptive Concurrency

What causes
overload?

What causes overload?

Server

Queue

What causes overload?

Server

Queue

Processing TimeArrival Rate >

Little’s Law
Elements in the queue = Arrival Rate * Processing Time

Little’s Law

Server

1 requests = 10 rps * 100 ms
100ms

Little’s Law

Server

1 requests = 10 rps * 100 ms
100ms

Little’s Law

Server

1 requests = 10 rps * 100 ms
100ms

Little’s Law

Server

2 requests = 10 rps * 200 ms
200ms

Little’s Law

Server

2 requests = 10 rps * 200 ms
200ms

Little’s Law

Server

2 requests = 10 rps * 200 ms
200ms

Little’s Law

Server

2 requests = 10 rps * 200 ms
200ms

Little’s Law

Server

2 requests = 10 rps * 200 ms
200ms

Little’s Law

Server

2 requests = 10 rps * 200 ms
200msBEAM Processes

Little’s Law

Server

2 requests = 10 rps * 200 ms
200msBEAM Processes

CPU Pressure

Little’s Law

Server

3 requests = 10 rps * 300 ms
300msBEAM Processes

CPU Pressure

Little’s Law

Server

30 requests = 10 rps * 3000 ms
3000msBEAM Processes

CPU Pressure

Little’s Law

Server

30 requests = 10 rps * ∞ ms
∞BEAM Processes

CPU Pressure

Little’s Law

30 requests = 10 rps * ∞ ms

Little’s Law

∞ requests = 10 rps * ∞ ms

Little’s Law

∞ requests = 10 rps * ∞ ms
This is bad

Lets Talk About…
Queues
Overload Mitigation
Adaptive Concurrency

Lets Talk About…
Queues
Overload Mitigation
Adaptive Concurrency

Overload
Arrival Rate > Processing Time

Overload
Arrival Rate > Processing Time

We need to get these under control

Load Shedding
Server

Queue

Server

Load Shedding
Server

Queue

Server
Drop requests

Load Shedding
Server

Queue

Server
Drop requests

Stop sending

Autoscaling

Autoscaling

Autoscaling

Server DBServer

Autoscaling

Server DBServer

Requests start queueing

Autoscaling

Server DB

Server

Server

Autoscaling

Server DB

Server

Server

Now its worse

Autoscaling needs to
be in response to
load shedding

Circuit Breakers

Circuit Breakers

Circuit Breakers

Server Server

Circuit Breakers

Server Server

Circuit Breakers

Server Server

Shut off traffic

Circuit Breakers

Server Server

Circuit Breakers

Server Server

I’m not quite dead yet

Circuit Breakers are
your last line of
defense

Lets Talk About…
Queues
Overload Mitigation
Adaptive Concurrency

Lets Talk About…
Queues
Overload Mitigation
Adaptive Concurrency

We want to allow as
many requests as we
can actually handle

Adaptive Limits

Time

Con
curr

en
cy

Adaptive Limits
Actual limit

Time

Con
curr

en
cy

Adaptive Limits
Actual limit

Dynamic Discovery
Time

Con
curr

en
cy

Load Shedding
ServerServer

Load Shedding
ServerServer

Are we at the limit?

Load Shedding
ServerServer

Am I still healthy?

Load Shedding
ServerServer

Load Shedding
ServerServer

Update Limits

Adaptive Limits

Time

Con
curr

en
cy

Increased latency

Latency
Successful vs. Failed requests

Signals for Adjusting Limits

Additive Increase Multiplicative Decrease

Success state: limit + 1

Backoff state: limit * 0.95

Time

Con
curr

en
cy

Prior Art/Alternatives
https://github.com/ferd/pobox/
https://github.com/fishcakez/sbroker/
https://github.com/heroku/canal_lock
https://github.com/jlouis/safetyvalve
https://github.com/jlouis/fuse

https://github.com/ferd/pobox/
https://github.com/fishcakez/sbroker/
https://github.com/fishcakez/sbroker/
https://github.com/fishcakez/sbroker/
https://github.com/jlouis/fuse

Regulator
https://github.com/keathley/regulator

https://github.com/keathley/regulator

Regulator.install(:service, [
 limit: {Regulator.Limit.AIMD, [timeout: 500]}
])

Regulator.ask(:service, fn ->
 {:ok, Finch.request(:get, "https://keathley.io")}
end)

Regulator

Conclusion

Queues are
everywhere

Those queues need
to be bounded to

avoid overload

If your system is
dynamic, your

solution will also
need to be dynamic

Go and build
awesome stuff

Thanks
Chris Keathley / @ChrisKeathley / c@keathley.io

