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All services have 
objectives



A resilient service should 
be able to withstand a 10x 
traffic spike and continue 
to meet those objectives
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Processing TimeArrival Rate >



Little’s Law
Elements in the queue = Arrival Rate * Processing Time
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Overload
Arrival Rate > Processing Time

We need to get these under control
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Now its worse



Autoscaling needs to 
be in response to 
load shedding
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Server Server

I’m not quite dead yet



Circuit Breakers are 
your last line of 
defense
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We want to allow as 
many requests as we 
can actually handle
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Latency 
Successful vs. Failed requests

Signals for Adjusting Limits



Additive Increase Multiplicative Decrease

Success state: limit + 1 

Backoff state:  limit * 0.95
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Prior Art/Alternatives
https://github.com/ferd/pobox/
https://github.com/fishcakez/sbroker/
https://github.com/heroku/canal_lock
https://github.com/jlouis/safetyvalve
https://github.com/jlouis/fuse

https://github.com/ferd/pobox/
https://github.com/fishcakez/sbroker/
https://github.com/fishcakez/sbroker/
https://github.com/fishcakez/sbroker/
https://github.com/jlouis/fuse


Regulator
https://github.com/keathley/regulator

https://github.com/keathley/regulator


Regulator.install(:service, [
  limit: {Regulator.Limit.AIMD, [timeout: 500]}
])

Regulator.ask(:service, fn ->
  {:ok, Finch.request(:get, "https://keathley.io")}
end)

Regulator



Conclusion



Queues are 
everywhere



Those queues need 
to be bounded to 

avoid overload



If your system is 
dynamic, your 

solution will also 
need to be dynamic



Go and build 
awesome stuff



Thanks
Chris Keathley / @ChrisKeathley / c@keathley.io


