Buitdng Adzative ystoms

Chris Keathley / @ChrisKeathley / c@keatnley.io

mailto:c@keathley.io

(Sorver
I

(Sorver
I

/ have a requedl

(Sorver
I

/Wemmwma/maméw

\,

; Qm@z

’ ®

/Wemmwma/maméw

\,

; Qm@z

’ ®

; S’m@z

All services have
objectives

A resilient service should
pe able to withstand a 10x
traffic spike and continue

to meet those objectives

Lets Talk About...

Queues

Overload Mitigation
Adaptive Concurrency

Lets Talk About...

Queues

What causes
overload?

What causes overload?

What causes overload?

AWMP% > p Adéi // M

/

Little's Law
0000

Elements in the queue = Areval Rate * P 7 e

Little’s Law
/W o /OW * 700 md

O00ms

®

4
'

K

Little’s Law
/W o /OW * 700 md

O00ms

®

4
'

K

Little’s Law
/W o /OW * 700 md

O00ms

®

4
'

K

Little’s Law edls
2 rnequedts = 0 ips * 200 m4

oo

oo o

Little’s Law edls
2 rnequedts = 0 ips * 200 m4

oo

oo o

Little’s Law edls
2 rnequedts = 0 ips * 200 m4

oo

o0
K

l

Little’s Law edls
2 rnequedts = 0 ips * 200 m4

oo

oo o

Little’s Law edls
2 rnequedts = 0 ips * 200 m4

oo

oo o

Little's Law

2 requedts = 10 rpd * 200 md

BEAM FProcedded — 200ma

n
o0 o

Little's Law

2 requedts = 10 rpd * 200 md

BEAM Frocedded — 200m4

CPlY P .. .

Little's Law

3 requesls = 10 rps * 300 ma

BEAM Frocedded — 300ma

CPlY P .. .

Little's Law

30 nequedts = 10 wpd * 3000 ma

BEAM FProcedded — - 3000ms

CPlY P .. .

Little's Law

30 Wa&i&t = /0 10d * 00 pad

n
CPlY P . .

Little's Law

30 requedls = 10 rps ™ % md

Little's Law

o0 pequedls = 10 rpds ™ = md

Little's Law

— Tletd i8 bad!

Lets Talk About...

Queues

Lets Talk About...

Queues

Overload Mitigation

Overioad

Arvuval Rate > P/wcew‘/zg lime

Overioad

Arvuval Rate > P/wcedW lime

/

We need to get thete undet, controt

Load Shedding

Load Shedding

Drop /zeqaedm

Load Shedding

Drop /zeqaeda

Autoscaling

Autoscaling Zeguests alart queueing

Autoscaling

Autoscaling needs to
De in response to
l0ad shedding

Circuit Breakers

Circuit Breakers

Circuit Breakers

Circuit Breakers

Circuit Breakers

Circuit Breakers are
your last line of
defense

Lets Talk About...

Queues

Overload Mitigation

Lets Talk About...

Queues

Adaptive Concurrency

We want to allow as
Many regquests as we
can actually handle

Congestion Avoidance and Control*

Van Jacobson'
Lawrence Berkeley Laboratory

Michael J. Karels*

University of California at Berkeley

November, 1988

Introduction

Computer networks have experienced an explosive growth over the past few years and with
that growth have come severe congestion problems. For example, it is now common to see
internet gateways drop 10% of the incoming packets because of local buffer overflows.
Our investigation of some of these problems has shown that much of the cause lies in
transport protocol implementations (not in the protocols themselves): The ‘obvious’ ways
to implement a window-based transport protocol can result in exactly the wrong behavior
in response to network congestion. We give examples of ‘wrong’ behavior and describe
some simple algorithms that can be used to make right things happen. The algorithms are
rooted in the idea of achieving network stability by forcing the transport connection to obey
a ‘packet conservation’ principle. We show how the algorithms derive from this principle
and what effect they have on traffic over congested networks.

In October of 86, the Internet had the first of what became a series of ‘congestion col-
lapses’. During this period, the data throughput from LBL to UC Berkeley (sites separated
by 400 yards and two IMP hops) dropped from 32 Kbps to 40 bps. We were fascinated by
this sudden factor-of-thousand drop in bandwidth and embarked on an investigation of why
things had gotten so bad. In particular, we wondered if the 4.3BSD (Berkeley UNIX) TCP
was mis-behaving or if it could be tuned to work better under abysmal network conditions.
The answer to both of these questions was “yes”.

*Note: This is a very slightly revised version of a paper originally presented at SIGCOMM ’88 [12]. If you
wish to reference this work, please cite [12].

"This work was supported in part by the U.S. Department of Energy under Contract Number DE-AC03-
76SF00098.

#This work was supported by the U.S. Department of Commerce, National Bureau of Standards, under
Grant Number 60NANB8D0830.

Adaptive Limits

Adaptive Limits

Adaptive Limits

Load Shedding

/ S’@‘Zl/%

/ gm%

¢

k

K

Load Shedding

/ Serwver

®

— Are we dt the bimit?

[Sewer

|
|
|

Load Shedding
Am/wéw&@?

S'P/‘Zl/%

.

/ Serwver
|

Load Shedding

/ S’@‘Zl/%

/ gm%

®

K

k

Adaptive Limits

Co

//w‘zeadea’(hte/w%

Signals for Adjusting Limits

Latency
Successtul vs. Failed requests

Additive Increase Multiplicative Decrease

Success state: limit + 1
Backoft state: |imit * 0.95

Prior, At/ Allernalived

nttps://github.com/ferd/pobox/
Nttps://github.com/fishcakez/sbroker/

Nttps://github.com/heroku/canal lock

Nttps://eithub.com/jlouis/satetyvalve
https://github.com/jlouis/fuse

https://github.com/ferd/pobox/
https://github.com/fishcakez/sbroker/
https://github.com/fishcakez/sbroker/
https://github.com/fishcakez/sbroker/
https://github.com/jlouis/fuse

P utalon
/

Nttps://github.com/Keathley/regulator

https://github.com/keathley/regulator

Regulator

Regulator.install v
limit: {Regulator.Limit.AIMD,

1)

Regulator.ask(, fn =->
{ , Finch.request(/
end)

[

5001}

) 1

Conclusion

Queues are
everywhere

Those queues need
to be bounded to
avoid overload

If your system is

dynamic, your
solution will also
nheed to be dynamic

Go and build
awesome stuff

Y

Chris Keathley / @ChrisKeathley / c@keathley.io

