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Abstract. Deep learning models for next event prediction in predictive
process monitoring have shown significant performance improvements
over conventional methods. However, they are often criticized for being
black-box models. Without allowing analysts to understand what such
models have learned, it is difficult to establish trust in their abilities.

In this work, we propose a technique to infer a likelihood graph from
a next event predictor (NEP) to capture and visualize its behavior. Our
approach first generates complete cases, including event attributes, using
the NEP. From this set of cases, a multi-perspective likelihood graph is
inferred. Including event attributes in the graph allows analysts to better
understand the learned decision and branching points of the process.

The results of the evaluation show that inferred graphs generalize
beyond the event log, achieve high F-scores, and small likelihood devi-
ations. We conclude black-box NEP can be used to generate conform-
ing cases even for noisy event logs. As a result, our visualization tech-
nique, which represents exactly this set of cases, shows what the NEP
has learned, thus mitigating one of their biggest criticisms.

Keywords: Process mining · Next event predictors ·
Multi-perspective likelihood graph

1 Introduction

In process mining, more and more approaches make use of machine learning
(ML) techniques, especially deep neural networks, to better capture the behavior
of a process. ML algorithms are capable of incorporating more contextual factors
of a case than conventional and hand-crafted models, making them a nice fit
for the application in this field. For instance, predictive process monitoring has
shown significant performance improvements with respect to predictive accuracy
using recurrent neural networks [3,6,17,22].

The primary goal of process mining is to obtain valuable insights for ana-
lysts to improve process performance. On the one hand, many process mining
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tasks are human-centric, like process discovery or conformance checking, pre-
senting results such that humans can actually see and understand them (e.g.,
process models). On the other hand, ML approaches to process mining are a
popular choice as their predictive power can be much better [3,17,22], despite
inhibiting direct inspection of trained models by analysts. Therefore, ML models
are often rightfully criticized for being black-boxes [12,14,18,19,21,23]. Recent
discussions in the community voiced the need for process mining methods that
can be explained and interpreted [5] by analysts to build trust [11,12,15,23]
and to reduce the vulnerability of prediction errors [19]. Explainability should
encompass the visualization of processes as graphs or enriched process models
with decision and constraint annotations [4]. While techniques for explaining
predictions made by ML models exist, they often focus on relevant parts in the
input, i.e., which part in the input case is important for the prediction, on a
single prediction at a time, or are not directly tailored to process mining. There-
fore, extracting knowledge about what the ML model has actually learned, to
build trust in its capabilities and inspect what the model “thinks” the process
is, remains challenging.

In this paper, we propose a technique for inferring a multi-perspective likeli-
hood graph of events, transitions, and event attributes given an algorithm pre-
dicting the next event of a case. Such a next event predictor (NEP) can be a
trained ML model but can also be any other algorithm performing this task
(e.g., an ensemble of NEPs). The inferred graph can be visualized and explored
by analysts to outline what the NEP has learned, similar to process models.
The proposed approach is a post-hoc explanation technique because it is applied
after training or creation of the NEP and aims at explaining the NEP’s behavior.
The visual explanation through a graph further contributes to the main goal of
better understanding the behavior of the predictive model [1].

Our proposed approach consists of two main steps: First, using the NEP we
generate all possible cases reflecting the process behavior. Second, we convert
these cases to a graph by merging nodes which share the same behavior to remove
redundancies and to compact the graph. The case generation is agnostic to the
architecture of the NEP and, thus, can be adapted to work with any NEP.

In summary, our contributions are:

1. A novel method for revealing the process an NEP has learned from training
on an event log.

2. A visual representation of the learned behavior in form of a likelihood graph
that also includes event attributes.

3. A comprehensive evaluation showing our approach is capable of accurately
representing the behavior of an NEP and its decision points in the process.

The rest of the paper is organized as follows. In Sect. 2 we provide an overview
of the related work, followed in Sect. 3 by some preliminaries used throughout
the paper. In Sect. 4 we describe the details of our approach. Then, in Sect. 5
we present the results of the evaluation of our approach. Finally, in Sect. 7 we
conclude the paper with a discussion and future work.
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2 Related Work

Next Event Predictors (NEP). ML-based NEPs have previously been used
for generating cases from scratch. Tax et al. [17] iteratively predict the next
activity and time, choosing the most likely continuation until a case is completed.
Similarly, Camargo et al. [2] use Long Short-Term Memory (LSTM) networks to
predict sequences of next events, their timestamps, and event attributes. Both
of these approaches either focus on the most likely choice for the next activity or
a random selection following the predicted probability distribution. As a result,
depending on the complexity of the model, it is required to generate a large
number of cases to capture the entire behavior of the NEP. In contrast, we aim
to explore all non-noisy cases using a threshold heuristic.

Model Discovery. An approach more focused on explainability is introduced
by Shunin et al. [13], who generate a finite state machine from a neural network
NEP. Similar to our approach, the neural network is trained on an event log,
and is then used to generate a set of cases from scratch. Then, a process model is
generated from the finite state machine. Another process model-based approach
is to learn a generic mapping between event log structures and process mod-
els [16]. The idea is that a graph neural network learns the generic dependencies
between relationships of events to generate the structures of the process model.
The learned mapping can then be applied to new, unseen event logs.

Different from our approach, both related works do not consider noisy event
logs. Furthermore, only the control-flow of a process is discovered, making it
difficult to analyze decision points.

Evaluation Frameworks and Metrics. As an alternative to explanatory
approaches, related work also presents evaluation frameworks and metrics.
Camargo et al. [2] compare the generated cases of an NEP to the event log to
evaluate their quality. However, the metric does not consider noisy cases that are
typically present in real-life event logs, leading to an increase of both precision
and fitness. Despite this property being undesirable, the evaluation measures do
not reflect it. A framework investigating the generalization ability of neural net-
works is introduced by Peeperkorn et al. [9]. Their metrics are based on removing
variants from an event log, training the neural network and then checking how
many of the removed variants the network can reconstruct. The authors conclude
that overfitting avoidance methods are important to allow the neural network to
generalize beyond the training data. The approach is restricted to control-flow
only and does not consider noise. Different from our approach, the approach
samples from the probability distribution instead of an exhaustive search. Addi-
tionally, both presented approaches do also not visualize the generated cases,
preventing efficient exploration and inspection.

3 Background

Throughout the paper, we refer to the event log, event, case, and attribute
definitions from [20]:
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Definition 1 (Case, Event, and Event Log). Let A = {a1, . . . , aA} be a set
of ordered attributes and V be a set of attribute values, where Vai

is the set of
possible values for attribute ai ∈ A. Furthermore, let a1 be the activity and aj

with j = 2, . . . , A the event attributes.
Let C be the set of all cases and E be the set of all events. A case c ∈ C is an

event sequence c ∈ E∗, where E∗ is the set of all sequences over E. An event log
is a set of cases L ⊆ C. A prefix is an ongoing, incomplete case, where the prefix
length is the number of completed events.

Furthermore, let |c| be the number of events in case c, C=|L| be the number of
cases in L, A= |A| be the number of attributes and E=maxc∈L |c| be the case with
the most events in L. We denote start and end symbol by ▶ and ∎, respectively.

In process mining, next event prediction is a set of A multi-class classification
problems. For the classification problem of ai with i = 1, . . . , A, the classes to be
predicted are its values Vai

. The features, based on which the event at position
i is determined, are the previous events, the prefix 1, . . . , i − 1 of the input case.

Definition 2 (Next Event Predictor). A next event predictor is any algo-
rithm N receiving a prefix as input and producing a set of next events, annotated
with likelihoods for each attribute value.

From the likelihoods for each attribute value, the likelihood of the event
can be calculated and the most likely one returned, for example. The above
definition of an NEP allows our approach to be applicable independently of the
NEP’s specific architecture.

4 Inferring Graphs from Next Event Predictors

Our approach is a post-hoc explanation technique that infers a directed and
acyclic likelihood graph from an NEP to reveal the process it has learned from an
event log. The resulting graph compactly represents the predictions made by the
NEP and serves as a visual explanation of the NEP’s behavior. The semantics
of the likelihood graph is similar to that of a stochastic process model [10].
However, it may contain nodes with the same labels multiple times to model
loop behavior more accurately. This allows us to model different probabilities of
the same activity for different paths through the process. Additionally, the graph
includes event attributes to better capture the behavior of the NEP at decision
points. These can reveal dependencies between activities and event attributes
that remain hidden when only constructing a process map.

The proposed approach follows two main steps to generate a likelihood graph
of the determined process by the NEP:

1. Exhaustive Case Generation. Our approach explores the NEP to generate
an exhaustive set of cases by repeatedly extending prefixes with predicted
events. A heuristic strategy is applied to distinguish between normal and
noisy behavior.
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Fig. 1. Overview of the components of the proposed approach.

2. Likelihood Graph Generation. We use the generated set of cases to build
a likelihood graph that captures the predictions made by the NEP. A merging
strategy is used to compact the graph such that similar behavior is grouped.

Next, we provide a detailed description of each step. An overview of the approach
is depicted in Fig. 1.

4.1 Exhaustive Case Generation

In this step, our approach extracts the knowledge about the process the NEP has
learned. We perform an exhaustive search to explore all possible cases that the
NEP generates and to capture its behavior in form of an event log, representing
its predictions given certain prefixes. In order to avoid pursuing all possible and
very unlikely cases, which may lead to a huge search space, we use a threshold
heuristic to only consider case continuations with at least a certain likelihood. As
a result, activities and attribute values below this threshold are not considered
in the case generation; they are considered to be noise.

Algorithm 1 shows our case generation algorithm, which is a worklist algo-
rithm that starts with an empty prefix of a case, only containing the artificial
start symbol (▶) of the NEP. For each remaining prefix (line 5), the algorithm
obtains all possible combinations of next events with their likelihoods in the
sequence from the NEP, denoted by ⟨. . . ⟩ (line 8). The prefix is then extended
by the continuation to generate a new prefix cnew (line 11). If the activity of the
next event is the end symbol (∎, line 12), the entire case is added to the list of
completed cases (ccomplete). Otherwise, the new prefix is added to the worklist.

In most scenarios, our algorithm terminates when all possible cases are gener-
ated. However, in certain cases it may be that the NEP predicts looping behavior
(e.g., activities a and b are predicted alternatingly). To allow the algorithm to
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Algorithm 1. Extract all cases with normal behavior from an NEP.

Require: NEP N , likelihood thresholds t1, ..., tA
1: function GenerateCases
2: ccomplete = ∅
3: cinitial = ⟨▶

A
⟩ ∈ R

1×A

4: q = [cinitial]
5: while |q| > 0 do
6: c = q[0]
7: remove c from q
8: enext = N (c)
9: for each (e ∈ RA, l ∈ RA) in enext do

10: if ∀i ∈ {1, . . . , A} : li ≥ ti then
11: cnew = ⟨c, e⟩ ∈R(|c |+1)×A

12: if e0 = ∎ then
13: ccomplete = ccomplete ∪ cnew
14: else
15: q = [cnew, q]

16: return ccomplete

terminate in all scenarios, cases are discarded if an activity occurs more than
ε-times. If a too high percentage of cases is discarded, the algorithm is termi-
nated, indicating either a too low likelihood threshold or an inaccurate NEP. For
filtering out noisy behavior, we choose to set likelihood thresholds t1, . . . , tA for
each attribute (line 10). Therefore, for a prediction for attribute ai to be further
considered in the case generation, its probability needs to be at least ti. We use
a separate threshold for each attribute to allow a more precise filtering of noise.
Related work [7] has shown that the likelihoods vary significantly between differ-
ent attributes, thus, specifying individual thresholds allows fine grained control
(see Sect. 4.3).

4.2 Likelihood Graph Generation

In this step, our approach constructs the likelihood graph from the set of cases,
generated by the NEP. We opted for a graph because analysts are familiar with
this structure (e.g., process models in process discovery), which are also used
for visual exploration. As a result, we obtain a compact representation of the
generated cases that serves as a visual explanation of the NEP. For obtaining such
a likelihood graph, we use a merge strategy to eliminate redundant sequences
of events if they behave similarly. Different from process discovery techniques,
we explicitly include event attributes in the graph to better reflect branching
decisions depending on the attribute probabilities.

Basic Graph Structure. We start by converting the set of cases to nodes and
edges in a graph. The initial graph consists of an independent path for each case,
only afterwards we merge. For each event, we convert it into a list of nodes, one
for each attribute value in the event. Each node is assigned a label (activity or
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event attribute value name) and an unique identifier. The nodes representing
attribute values are ordered and connected following the order of the attributes.
Events are then linked in the order they appear in the case. To be more precise,
when linking two events, the last attribute value node of the previous event is
connected to the activity value node of the current event. All cases share the
same start and end symbol. The conversion approach is illustrated in Fig. 1.

Merging Nodes Strategy. We merge nodes based on their context to remove
redundancies and improve comprehensiveness of the resulting likelihood graph.
Given any two nodes n1 and n2 in the graph with the same label (e.g., same
activity) but different identifiers. If the two nodes share the same preceding
sequences of labels (even though the nodes in the sequences might have different
identifiers), one of the nodes is redundant, i.e., their behavior cannot be distin-
guished, up until that point in the sequence. Therefore, we merge these nodes
into a single node n with possibly two outgoing edges. As a result, nodes with
the same label are not merged if their behavior is different. With the same moti-
vation, we also apply the merge strategy if two nodes share the same succeeding
sequences of labels. The presented merging strategy does not change the set of
cases the graph represents but only the structure of the nodes. As a result, no
information (e.g., decision points or attribute values) gets lost due to merging.

To remove both types of redundancies, our approach merges once based on
preceding and succeeding sequences, respectively. For generating the preceding
paths of a node n, all paths between the start node and n are determined by
following the ingoing edges of n backwards. For the succeeding paths of a node
n, all paths between n and the end node are determined by following the out-
going edges of n forwards. Afterwards, only behavior impacting the control-flow
remains. The order of merging does not affect the final result because the set of
preceding or succeeding label sequences is not changed but only the structure
of the graph. Note that the event attribute nodes are not entirely separated
from their activity node. While activity nodes are always checked to see if they
can be merged, the user may specify which event attribute nodes to attempt to
merge. The proposed merging procedure contrasts process discovery algorithms,
which typically merge activities with the same name, regardless of their context.
Merging event attributes can further reduce the size of the graph at the expense
of run time.

Example. Let us consider the following three cases: ⟨▶, a, b, d, e,∎⟩,
⟨▶, a, c, c, e,∎⟩ and ⟨▶, b, d, e,∎⟩. In the first step, the initial graph is created
where every case is a single, isolated and independent path (Fig. 1, left). In the
second step, nodes are merged based on their predecessor paths. Both nodes
with activity a have the same preceding paths and are, thus, merged together,
resulting in the middle graph in Fig. 1. After merging nodes based on predecessor
paths, nodes are merged based on successor paths. Note that only nodes with
the same activities are compared. The first and third case are merged because
the third one is a suffix of the first one. Furthermore, activity e is always followed
by the end symbol, resulting in the right graph in Fig. 1. No other nodes can be
merged without changing the behavior of the graph.
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4.3 Likelihood Thresholds

A main component of our approach is the threshold heuristic strategy for identi-
fying noisy behavior predicted by the NEP. Here, the set of likelihood thresholds
t1, . . . , tA control the predictions being considered in the extension of a prefix.
While low thresholds might lead to noise being included in cases, high thresh-
olds lead to a likelihood graph only focused on common variants. As such, the
thresholds control the granularity of the inferred likelihood graph and the extent
to which filter out noisy behavior.

As a strategy to determine a likelihood threshold for each attribute, we
use the (mean-centered) lowest plateau heuristic, earlier introduced for anomaly
detection in [8]. The heuristic provides an out-of-the-box threshold, which serves
as a starting point for further adjustments, e.g., decreasing in steps if only few
cases are generated, based solely on the prediction probabilities.

An alternative approach is to find candidate thresholds by optimizing the F-
score of the likelihood graph, given the event log that was used to train the NEP.
Particularly, we systematically explore different thresholds to maximize the F-
score for the resulting likelihood graph. If the training event log contains much of
the ground truth process behavior, this behavior will then also be reflected in the
resulting likelihood graph. However, the noise that is present in the training event
log, can, if incorporated in the inferred likelihood graph, have a negative impact
because including the noise improves the graph’s F-score, therefore resulting in
an undesired optimization.

5 Evaluation

In this section, we evaluate our approach using synthetic and real-life event logs.
The primary objective of our experiments is to find out how well our approach
is able to capture the behavior of the ground truth event log. To ensure trans-
parency and reproducibility of the results, we publish our source code1 and rely
on publicly available datasets. The repository also contains additional example
graphs for real-life event logs.

5.1 Datasets

We use process models introduced by Nolle et al. [7] to generate likelihood graphs
of activities and event attributes that serve as the ground truth in our evaluation.
These graphs allow us to compare the inferred graphs to the desired outcome
and, thus, are referred to as the ground truth likelihood graphs. These graphs
vary in complexity w.r.t. the number of activities, depth, and width. We playout
these graphs to obtain a ground truth event log that represents the entire process
designed in the ground truth likelihood graph. To generate a sampled event
log, random walks through the ground truth likelihood graph are performed in
compliance with the transition probabilities. In addition, we introduce noise to
1 https://github.com/yannikgerlach/likelihood-graphs-from-neps.

https://github.com/yannikgerlach/likelihood-graphs-from-neps


Multi-perspective Likelihood Graphs from Next Event Predictors 27

Table 1. Statistics of the synthetic event logs used in the evaluation

Name # Cases # Events # Variants # Activities Avg. case length

Small 2 148 43 498 670 39 8.7

Wide 6 414 31 810 563 56 6.4

Medium 16 672 31 928 684 63 6.4

p2p 21 608 43 265 610 25 8.7

Paper 52 020 50 413 777 27 10.1

huge 102 475 43 249 890 107 8.7

TrainGround Truth
Likelihood Graph

Sampled 
Event Log

Inferred 
Likelihood GraphNEP

Ground Truth
Event Log

Event Log by
Playing Out Graph

Calculate 
Evaluation Metrics

Fig. 2. Relation between ground truth graph, event log, NEP and inferred graph.

the sampled event log by randomly applying noise (skip, insert, rework, early,
and late activities as well as attribute anomalies) [7] to 30% of the cases.

If the sampled event log does not contain all cases of the ground truth event
log, we can be sure the NEP has not seen all ground truth cases during training.
We can therefore effectively measure its generalization ability. For the used event
logs, for which an overview is given in Table 1, sampled event logs with 5 000
cases each allows us to do this.

5.2 Experimental Setup

We compare the cases obtained by playing out the inferred likelihood graph
to the ground truth event log, which does not contain noisy behavior. This
improves upon related work, which evaluates the generated cases on the sampled
event log, as described in Sect. 2. It allows to better estimate how well an NEP
extracts relevant behavior from a sampled event log and metrics such as precision
and fitness are more meaningful. Figure 2 shows the evaluation setup for our
approach.

Training of the NEPs. For our experiments, we use the NEP by Nolle
et al. [7] which is a multi-perspective NEP, predicting the next activity and
event attributes. When predicting the event attributes, the predicted activity is
considered, enabling the NEP to better learn dependencies.
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Algorithm 2. Calculate fitness and precision between two event logs.

1: function WeightedLevenshteinDistance(L1,L2)
2: L̂1 = L1 ∖ L2, L̂2 = L2 ∖ L1

3: d =
∑

c2∈L̂2
minc1∈L1 LV(c2, c1)

4: dweighted = d/
∑

c∈L2
|c|

5: return 1 − dweighted

We train an ensemble of 10 NEPs (with different seeds) on and for each
sampled event log. To compare the prediction quality to a single NEP, we also
use each NEP individually and average the resulting evaluation measures. For
training, we use 90% of the data; the remaining 10% are used for validation.

Optimizing Likelihood Threshold. In Sect. 4.3 we propose optimizing the
threshold for F-score on the sampled event log as a heuristic. To evaluate this
approach, we also determine the threshold achieving the best F-score on the
ground truth event log, i.e., an optimal threshold. However, this optimal thresh-
old cannot be determined without a ground truth likelihood graph. The opti-
mization on the sampled event log can always be performed. For optimizing, we
use Bayesian optimization with 10 initial steps and 10 optimization steps. We
investigate thresholds in the range of 0.02 to 0.4.

5.3 Evaluation Measures

We evaluate our approach with respect to the following aspects:

(1) We measure fitness, precision, and generalization ability to evaluate the
quality of the resulting likelihood graph. For a better comparison, we also
show the F 1-measure. To measure generalization ability, we take the set of
generated cases, remove the cases present in the event log, and only take
from the remaining cases those that are also present in the ground truth
event log. We then divide the size of this set by the number of generated
cases.

(2) We measure both the difference in likelihood prediction in single events and
in the likelihood of a case to compare how well the inferred event and case
likelihoods approximate the likelihoods defined in the ground truth graph.

We calculate fitness and precision between two event logs, the set of generated
cases (GCs) and the set of ground truth cases (GTCs) in ground truth event log.
Similar to Camargo et al. [2], who use a related measure in their evaluation, we
use the normalized Levenshtein (LV ) edit distance (see Algorithm 2) to compute
the distance between two cases, excluding the start and end symbol. Note that
for cases that are contained in both event logs, the distance is 0. Let L1 be
the GTCs and L2 be the GCs. Then Algorithm 2 calculates the precision of the
inferred likelihood graph. When switching the sets of cases, i.e. L1 are the GCs
and L2 are the GTCs, Algorithm 2 calculates the fitness.
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We define the (average) absolute likelihood difference per event and attribute
(ALDE), as well as the mean squared error per event and attribute (MSEE).
In comparison to ALDE, MSEE penalizes greater differences in the likeli-
hoods more. Regarding case likelihoods, their magnitudes can be vastly different
depending on the length of a case and the values are usually quite small. These
two observations make the evaluation of absolute case likelihoods difficult and
unintuitive. We mitigate this problem by dividing the difference in case likeli-
hoods by the ground truth case likelihood. As a result, we obtain the relative
likelihood difference, in the following called normalized (average) likelihood dif-
ference per case (NLDC).

As a baseline, we compare the sampled event log with the ground truth event
log. Depending on the predictive performance of the NEP, it should be able to
outperform the baseline. First, the NEP should filter out noise and, thus, have
higher precision than the sampled event log. Second, the NEP should generalize
the seen behavior and, thus, have higher fitness. Nevertheless, the reconstructed
likelihood graph does not contain all attribute values and transitions because
unlikely ones are filtered out using the likelihood thresholds. In contrast, the
event log contains all attribute values and transitions, even those below the
likelihood thresholds.

5.4 Results: Synthetic Event Logs

Table 2 lists the results for each synthetic event log. The baseline is outperformed
by our approach for all event logs regarding the control-flow considerably, except
for the p2p event log. Due to the structure of the p2p event log it appears to be
difficult to find automatic thresholds. In general, however, optimization based
on the ground truth event log yields good F-scores, with the optimization on
the sampled event log being a reasonable choice as well. Interestingly, across all
settings, the achieved precision is often close to 1.0, implying that mostly correct
cases are generated. However, usually not all of the correct cases are generated,
as indicated by the fitness values. Disregarding p2p, fitness appears to decrease
with increasing size of the ground truth event log as the sampled event log size
stays constant. As a result, more behavior is missing in the sampled event log.
We also observe good generalization ability in the tested NEP, implying the NEP
generates a good amount of correct cases that it has not seen in training.

When presented with a real-life event log, the choice is to use the lowest-
plateau heuristic or optimization on the sampled event log. In the results we
observe no clear tendency for one or the other, although the optimization on the
event log appears to be slightly better, but also more time-intensive. Regarding
the found thresholds, the threshold for the event attribute appears to be espe-
cially important for achieving good F-scores. As an activity often has multiple
valid event attribute values, getting them right appears to have more impact on
the F-score than getting the activity right.

When comparing the performance of single NEPs to ensembles, we observe
improved prediction performance (especially when optimizing for an optimal
threshold), indicating its effectiveness.
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Table 2. The found thresholds (t1 for the activity and t2 for the event attribute), F1-
score, precision, fitness, generalization ability and quality of likelihoods for the synthetic
event logs and NEP. Optimized on Event Log (EL), mean lowest-plateau threshold
Heuristic (HR) or Optimal (OPT) threshold. Using a Single Model (SM) or Ensemble
(EM). Note that averaging the thresholds for single models is not meaningful.

Log Model t1 t2 F1 Prec. Fit. Gen. NLDC ALDE MSEE

small Baseline – – 0.905 0.840 0.981 – – – –

EL SM – – 0.988 1.000 0.977 0.183 0.486 0.005 0.001

EL EM 0.213 0.020 0.994 1.000 0.989 0.247 0.579 0.004 0.001

HR EM 0.364 0.090 0.983 1.000 0.967 0.150 0.367 0.005 0.001

OPT SM – – 0.991 0.999 0.982 0.205 0.533 0.005 0.001

OPT EM 0.368 0.021 0.994 1.000 0.989 0.247 0.579 0.004 0.001

wide Baseline – – 0.847 0.828 0.866 – – – –

EL SM – – 0.895 0.975 0.830 0.583 1.353 0.071 0.028

EL EM 0.143 0.051 0.892 0.946 0.845 0.591 1.014 0.066 0.026

HR EM 0.210 0.090 0.844 1.000 0.730 0.485 2.009 0.081 0.033

OPT SM – – 0.914 0.946 0.886 0.594 0.760 0.053 0.018

OPT EM 0.219 0.020 0.953 0.989 0.918 0.755 0.416 0.045 0.017

medium Baseline – – 0.878 0.873 0.883 – – – –

EL SM – – 0.941 0.994 0.894 0.700 0.991 0.026 0.005

EL EM 0.136 0.083 0.926 0.990 0.863 0.680 0.998 0.025 0.005

HR EM 0.420 0.070 0.932 1.000 0.872 0.695 0.931 0.020 0.003

OPT SM – – 0.961 0.972 0.950 0.632 0.671 0.023 0.004

OPT EM 0.214 0.020 0.974 0.989 0.918 0.727 0.519 0.020 0.003

p2p Baseline – – 0.854 0.858 0.849 – – – –

EL SM – – 0.782 0.982 0.652 0.469 2.270 0.030 0.005

EL EM 0.073 0.095 0.794 0.993 0.662 0.633 1.476 0.023 0.003

HR EM 0.140 0.080 0.802 1.000 0.670 0.713 0.999 0.021 0.003

OPT SM – – 0.786 0.965 0.668 0.494 2.401 0.028 0.004

OPT EM 0.073 0.095 0.794 0.993 0.662 0.633 1.476 0.023 0.003

paper Baseline – – 0.883 0.899 0.868 – – – –

EL SM – – 0.911 0.999 0.836 0.683 5.084 0.042 0.013

EL EM 0.102 0.112 0.908 1.000 0.831 0.660 4.626 0.039 0.013

HR EM 0.351 0.030 0.943 0.990 0.900 0.837 2.863 0.034 0.011

OPT SM – – 0.928 0.988 0.875 0.746 3.667 0.040 0.013

OPT EM 0.295 0.070 0.927 0.999 0.865 0.813 3.195 0.035 0.012

huge Baseline – – 0.843 0.890 0.801 – – – –

EL SM – – 0.881 0.985 0.799 0.522 3.509 0.023 0.006

EL EM 0.400 0.057 0.912 0.987 0.848 0.620 1.781 0.023 0.004

HR EM 0.130 0.050 0.842 0.827 0.857 0.274 1.452 0.028 0.007

OPT SM – – 0.892 0.933 0.856 0.366 1.993 0.030 0.007

OPT EM 0.329 0.021 0.912 0.917 0.907 0.124 1.034 0.030 0.007
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Fig. 3. Inferred graph on the travel permits log (BPIC 2020) with a single event
attribute. Undefined user implies activity performed by the system.

The inferred transition likelihoods are typically quite close to the true likeli-
hood (ALDE ≤ 0.04). The likelihoods of cases is also often not too far away from
the true case likelihood, although it remains somewhat difficult to interpret. The
best likelihood approximations correlate with the best F-scores, possibly due to
the averaging of the outgoing edges.

5.5 Results: Real-Life Event Log

We apply our approach to publicly available real-life event logs from the BPI
Challenge (2012, 2013, 2015, 2017, and 2020). Due to the space limitation of
the paper, the details and the resulting likelihood graphs can be accessed from
our repository. Here, we discuss the results of the Travel Permits event log from
20202, which consists of 7, 065 cases and 86, 581 events. The resulting likelihood
graph is depicted in Fig. 3. Likelihoods of 1.0 are omitted for better readability.
The NEP is trained with the activity and the resource event attribute; likelihood
thresholds are set according to our threshold strategy. The likelihood graph
shows three branching paths (permit approved vs. permit final approved, dec-
laration approved vs. declaration rejected, and declaration submitted vs. send
reminder) with different probabilities depending on the activity performed. Also,
the additional activities executed for the permit approved-path are shown.

2 van Dongen, Boudewijn (2020): BPI Challenge 2020. 4TU.ResearchData. Collection.
https://doi.org/10.4121/uuid:52fb97d4-4588-43c9-9d04-3604d4613b51.

https://doi.org/10.4121/uuid:52fb97d4-4588-43c9-9d04-3604d4613b51


32 Y. Gerlach et al.

6 Discussion

The results of our evaluation show that the inferred likelihood graph reflects
the behavior that an ML-based NEP has learned. Similar to a stochastic pro-
cess model in process discovery, it visualizes the process of the NEP for further
exploration, inspection, and debugging of the NEP. However, it should be noted
that our approach is not designed as a discovery algorithm, although it simi-
larly infers a graph with directly-follows relations. Contrary to many process
discovery algorithm, which usually solely focus on the activity, our approach is
able to handle an arbitrary number of event attributes (within machine mem-
ory limits) in addition to the activity if the NEP predicts those. Our approach
allows analysts to better understand the decision points due to the explicit inclu-
sion of event attributes. Therefore, we support explaining the black-box NEP
and the process, besides offering a graphical representation of what the NEP has
learned [4]. Dependencies between activities and event attributes are represented
as separate paths through the graph, each with their respective probabilities.

6.1 Limitations

We consider that our approach exhibits mainly two limitations. One is the poten-
tial exponential explosion in the number of generated cases due to the exhaustive
search that explores all combinations of activities and attributes. Thus, generat-
ing the cases can be time-intensive for processes with very long cases and a large
set of attribute value combinations. The second limitation is that our approach
only supports the interleaving of concurrent activities, which is susceptible to
different orderings of activities. This could be addressed using the same heuris-
tics as process discovery algorithms. Also, our approach does not create loops
but unrolls them to better model probabilities for different case prefixes and
attribute values. However, this can lead to large graphs containing repeating
sequences of nodes. We address this issue by limiting the number of activity
occurrences within a case. If this limit is exceeded, the case is discarded and,
thus, excluded from the case generation. As a result, it is not included in the
inferred graph and also not considered in the evaluation.

6.2 Threats to Validity

While our evaluation on a deep learning model provided relevant observations,
we did not explicitly include the evaluation of the NEP itself which directly
influences the quality and the interpretability of the likelihood graph. Take, for
instance, a NEP randomly predicting activities which is entirely disconnected
from the original input data it was “trained” on. Since the likelihood graph
is inferred from the generated cases, the likelihood graph will not contain any
behavior of the original input but the behavior that the NEP predicts with the
noise cut off. This is the expected behavior because we want to know what the
NEP has learned, and in this example we can see that it did not learn the original
process. Consequently, incorporating an extensive evaluation of the NEP itself
may be needed to fully understand the likelihood graph.
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7 Conclusion

In this paper, we introduced a novel approach for inferring a multi-perspective
likelihood graph from any NEP trained on an event log. Our proposed approach
first explores the predictions of the NEP and then creates a compact visual repre-
sentation of its revealed internals, combining the sequence of activities as well as
the event attributes into a single likelihood graph. Therefore, the graph uncovers
what black-box NEPs (e.g., ML models) have learned, thus visually explaining
them, allowing analysts to better understand branching decisions and mitigat-
ing one of their biggest criticisms. Particularly, the visual explanation allows
analysts to estimate if the NEP is sufficiently trained and good to deploy. By
exploring the graph, the analyst can check assumptions about the process and if
the learned process appears reasonable (e.g. the graph might be bigger in regions
of uncertainty). As the inferred likelihood graph includes the event attributes,
the analyst can identify decision points that lead to different paths and process
outcomes (i.e. dependencies between activities and event attributes). For exam-
ple might a process take a different path depending on the users executing a
certain activity. Such decision points can provide valuable insight into how real
processes are executed. In this regard, our likelihood graph also provides the
probability distribution over the directly-followed activity and event attribute
values, additionally allowing us to calculate likelihoods of cases and outcomes.
The results of our experiments show that the inferred likelihood graphs accu-
rately describe the original likelihood graphs from which the event logs were
sampled and the NEPs were trained on.

As for future work, it is needed to systematically prune case continuations
that lead to no additional knowledge about the NEP, i.e., paths or loops through
the graph that are already covered by other paths. Also, our approach does not
consider the concurrent execution of activities, which could reduce the complex-
ity and increase expressiveness of the likelihood graph. Regarding the evaluation,
a study with real users might give valuable insights into how business analysts
can use the presented approach to generate value.
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business process anomaly classification. In: Information Systems (2019)
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