ติดป้ายกำกับรูปภาพด้วยโมเดลที่ฝึกด้วย AutoML ใน Android

หลังจากฝึกฝนตัวเอง ที่ใช้ AutoML Vision Edge และนำไปใช้ในแอปเพื่อติดป้ายกำกับได้ รูปภาพ

ก่อนเริ่มต้น

  1. หากคุณยังไม่ได้ดำเนินการ เพิ่ม Firebase ลงในโปรเจ็กต์ Android
  2. เพิ่มทรัพยากร Dependency สำหรับไลบรารี ML Kit Android ลงในโมดูล ไฟล์ Gradle (ระดับแอป) (ปกติราคา app/build.gradle):
    apply plugin: 'com.android.application'
    apply plugin: 'com.google.gms.google-services'
    
    dependencies {
      // ...
    
      implementation 'com.google.firebase:firebase-ml-vision:24.0.3'
      implementation 'com.google.firebase:firebase-ml-vision-automl:18.0.5'
    }

1. โหลดโมเดล

ML Kit จะเรียกใช้โมเดลที่ AutoML สร้างขึ้นบนอุปกรณ์ อย่างไรก็ตาม คุณสามารถ กำหนดค่า ML Kit ให้โหลดโมเดลจากระยะไกลจาก Firebase ที่จัดเก็บข้อมูลในเครื่อง หรือทั้ง 2 อย่าง

เมื่อโฮสต์โมเดลใน Firebase คุณจะอัปเดตโมเดลได้โดยไม่ต้องเปิดตัว แอปเวอร์ชันใหม่ และคุณจะใช้ Remote Config และ A/B Testing เพื่อทำสิ่งต่อไปนี้ได้ แสดงรูปแบบต่างๆ แก่ผู้ใช้กลุ่มต่างๆ แบบไดนามิก

หากคุณเลือกที่จะระบุเฉพาะโมเดลโดยการโฮสต์ด้วย Firebase ไม่ใช่ รวมกลุ่มแอปไว้กับแอปของคุณ คุณจะลดขนาดการดาวน์โหลดเริ่มต้นของแอปได้ อย่างไรก็ตาม หากโมเดลไม่ได้รวมอยู่กับแอปของคุณ ฟังก์ชันการทำงานที่เกี่ยวข้องกับโมเดลจะใช้ไม่ได้จนกว่าแอปของคุณจะดาวน์โหลด โมเดลของคุณเป็นครั้งแรก

การรวมโมเดลกับแอปจะทำให้คุณมั่นใจได้ว่าฟีเจอร์ ML ของแอป ยังคงใช้งานได้เมื่อรูปแบบที่โฮสต์ด้วย Firebase ไม่พร้อมใช้งาน

กำหนดค่าแหล่งที่มาของโมเดลที่โฮสต์กับ Firebase

หากต้องการใช้โมเดลที่โฮสต์จากระยะไกล ให้สร้างออบเจ็กต์ FirebaseAutoMLRemoteModel ระบุชื่อที่คุณกำหนดให้กับโมเดลเมื่อเผยแพร่โมเดล:

Java

// Specify the name you assigned in the Firebase console.
FirebaseAutoMLRemoteModel remoteModel =
    new FirebaseAutoMLRemoteModel.Builder("your_remote_model").build();

Kotlin+KTX

// Specify the name you assigned in the Firebase console.
val remoteModel = FirebaseAutoMLRemoteModel.Builder("your_remote_model").build()

จากนั้นเริ่มงานดาวน์โหลดโมเดล โดยระบุเงื่อนไขที่ ที่คุณต้องการอนุญาตให้ดาวน์โหลด หากไม่มีรุ่นนี้อยู่ในอุปกรณ์ หรือรุ่นที่ใหม่กว่า ของโมเดลพร้อมใช้งาน งานจะดาวน์โหลด จาก Firebase ได้ดังนี้

Java

FirebaseModelDownloadConditions conditions = new FirebaseModelDownloadConditions.Builder()
        .requireWifi()
        .build();
FirebaseModelManager.getInstance().download(remoteModel, conditions)
        .addOnCompleteListener(new OnCompleteListener<Void>() {
            @Override
            public void onComplete(@NonNull Task<Void> task) {
                // Success.
            }
        });

Kotlin+KTX

val conditions = FirebaseModelDownloadConditions.Builder()
    .requireWifi()
    .build()
FirebaseModelManager.getInstance().download(remoteModel, conditions)
    .addOnCompleteListener {
        // Success.
    }

แอปจำนวนมากเริ่มงานดาวน์โหลดในโค้ดเริ่มต้น แต่คุณ จากนั้นคุณจะสามารถทำได้ทุกเมื่อก่อนที่จะต้องใช้โมเดลนี้

กำหนดค่าต้นทางของโมเดลในเครื่อง

วิธีการรวมโมเดลกับแอปมีดังนี้

  1. แยกโมเดลและข้อมูลเมตาของโมเดลจากชุดไฟล์ ZIP ที่คุณดาวน์โหลด จากคอนโซล Firebase เราขอแนะนำให้คุณใช้ไฟล์ที่ดาวน์โหลดมา โดยไม่ต้องแก้ไข (รวมถึงชื่อไฟล์)
  2. รวมโมเดลและไฟล์ข้อมูลเมตาของโมเดลไว้ในแพ็กเกจแอป ดังนี้

    1. หากไม่มีโฟลเดอร์ชิ้นงานในโปรเจ็กต์ ให้สร้างโฟลเดอร์โดย คลิกขวาที่โฟลเดอร์ app/ แล้วคลิก ใหม่ > โฟลเดอร์ > โฟลเดอร์ชิ้นงาน
    2. สร้างโฟลเดอร์ย่อยภายในโฟลเดอร์เนื้อหาเพื่อเก็บโมเดล
    3. คัดลอกไฟล์ model.tflite, dict.txt และ manifest.json ลงในโฟลเดอร์ย่อย (ทั้ง 3 ไฟล์ต้องอยู่ใน โฟลเดอร์เดียวกัน)
  3. เพิ่มข้อมูลต่อไปนี้ลงในไฟล์ build.gradle ของแอปเพื่อให้ Gradle ไม่บีบอัดไฟล์โมเดลเมื่อสร้างแอป
    android {
        // ...
        aaptOptions {
            noCompress "tflite"
        }
    }
    
    ไฟล์โมเดลจะรวมอยู่ในแพ็กเกจแอปและพร้อมให้ ML Kit ใช้งาน เป็นเนื้อหาดิบ
  4. สร้างออบเจ็กต์ FirebaseAutoMLLocalModel โดยระบุเส้นทางไปยังไฟล์ Manifest ของโมเดล ไฟล์:

    Java

    FirebaseAutoMLLocalModel localModel = new FirebaseAutoMLLocalModel.Builder()
            .setAssetFilePath("manifest.json")
            .build();
    

    Kotlin+KTX

    val localModel = FirebaseAutoMLLocalModel.Builder()
            .setAssetFilePath("manifest.json")
            .build()
    

สร้างเครื่องมือติดป้ายกำกับรูปภาพจากโมเดล

หลังจากที่กำหนดค่าแหล่งที่มาของโมเดลแล้ว ให้สร้าง FirebaseVisionImageLabeler จากหนึ่งในนั้น

หากคุณมีเฉพาะโมเดลที่รวมภายในเครื่อง ให้สร้างผู้ติดป้ายกำกับจาก FirebaseAutoMLLocalModel และกำหนดค่าเกณฑ์คะแนนความเชื่อมั่น ที่ต้องการ (ดูประเมินโมเดลของคุณ)

Java

FirebaseVisionImageLabeler labeler;
try {
    FirebaseVisionOnDeviceAutoMLImageLabelerOptions options =
            new FirebaseVisionOnDeviceAutoMLImageLabelerOptions.Builder(localModel)
                    .setConfidenceThreshold(0.0f)  // Evaluate your model in the Firebase console
                                                   // to determine an appropriate value.
                    .build();
    labeler = FirebaseVision.getInstance().getOnDeviceAutoMLImageLabeler(options);
} catch (FirebaseMLException e) {
    // ...
}

Kotlin+KTX

val options = FirebaseVisionOnDeviceAutoMLImageLabelerOptions.Builder(localModel)
    .setConfidenceThreshold(0)  // Evaluate your model in the Firebase console
                                // to determine an appropriate value.
    .build()
val labeler = FirebaseVision.getInstance().getOnDeviceAutoMLImageLabeler(options)

หากคุณมีโมเดลที่โฮสต์จากระยะไกล คุณจะต้องตรวจสอบว่ามีการ ซึ่งดาวน์โหลดมาก่อนที่จะเรียกใช้ คุณตรวจสอบสถานะการดาวน์โหลดโมเดลได้ โดยใช้เมธอด isModelDownloaded() ของผู้จัดการโมเดล

แม้ว่าคุณจะต้องยืนยันเรื่องนี้ก่อนเรียกใช้ผู้ติดป้ายกำกับเท่านั้นหากคุณ มีทั้งโมเดลที่โฮสต์จากระยะไกลและโมเดลที่รวมอยู่ภายใน ความรู้สึกที่จะดำเนินการตรวจสอบนี้เมื่อเริ่มต้นเครื่องมือติดป้ายกำกับรูปภาพ: สร้าง ผู้ติดป้ายกำกับจากโมเดลระยะไกลหากดาวน์โหลดแล้ว และจากในเครื่อง หากไม่เป็นเช่นนั้น

Java

FirebaseModelManager.getInstance().isModelDownloaded(remoteModel)
        .addOnSuccessListener(new OnSuccessListener<Boolean>() {
            @Override
            public void onSuccess(Boolean isDownloaded) {
                FirebaseVisionOnDeviceAutoMLImageLabelerOptions.Builder optionsBuilder;
                if (isDownloaded) {
                    optionsBuilder = new FirebaseVisionOnDeviceAutoMLImageLabelerOptions.Builder(remoteModel);
                } else {
                    optionsBuilder = new FirebaseVisionOnDeviceAutoMLImageLabelerOptions.Builder(localModel);
                }
                FirebaseVisionOnDeviceAutoMLImageLabelerOptions options = optionsBuilder
                        .setConfidenceThreshold(0.0f)  // Evaluate your model in the Firebase console
                                                       // to determine an appropriate threshold.
                        .build();

                FirebaseVisionImageLabeler labeler;
                try {
                    labeler = FirebaseVision.getInstance().getOnDeviceAutoMLImageLabeler(options);
                } catch (FirebaseMLException e) {
                    // Error.
                }
            }
        });

Kotlin+KTX

FirebaseModelManager.getInstance().isModelDownloaded(remoteModel)
    .addOnSuccessListener { isDownloaded -> 
    val optionsBuilder =
        if (isDownloaded) {
            FirebaseVisionOnDeviceAutoMLImageLabelerOptions.Builder(remoteModel)
        } else {
            FirebaseVisionOnDeviceAutoMLImageLabelerOptions.Builder(localModel)
        }
    // Evaluate your model in the Firebase console to determine an appropriate threshold.
    val options = optionsBuilder.setConfidenceThreshold(0.0f).build()
    val labeler = FirebaseVision.getInstance().getOnDeviceAutoMLImageLabeler(options)
}

หากคุณมีเฉพาะโมเดลที่โฮสต์จากระยะไกล คุณควรปิดใช้โมเดลที่เกี่ยวข้องกับ เช่น เป็นสีเทาหรือซ่อนบางส่วนของ UI จนถึง คุณยืนยันว่าดาวน์โหลดโมเดลแล้ว คุณสามารถทำได้โดยการแนบ Listener ไปยังเมธอด download() ของผู้จัดการโมเดล:

Java

FirebaseModelManager.getInstance().download(remoteModel, conditions)
        .addOnSuccessListener(new OnSuccessListener<Void>() {
            @Override
            public void onSuccess(Void v) {
              // Download complete. Depending on your app, you could enable
              // the ML feature, or switch from the local model to the remote
              // model, etc.
            }
        });

Kotlin+KTX

FirebaseModelManager.getInstance().download(remoteModel, conditions)
    .addOnCompleteListener {
        // Download complete. Depending on your app, you could enable the ML
        // feature, or switch from the local model to the remote model, etc.
    }

2. เตรียมรูปภาพอินพุต

จากนั้นสร้างออบเจ็กต์ FirebaseVisionImage สำหรับแต่ละรูปภาพที่ต้องการติดป้ายกำกับ โดยใช้หนึ่งในตัวเลือกที่อธิบายไว้ในส่วนนี้และส่งต่อไปยังอินสแตนซ์ FirebaseVisionImageLabeler (อธิบายในส่วนถัดไป)

คุณสามารถสร้างออบเจ็กต์ FirebaseVisionImage จากออบเจ็กต์ media.Image ซึ่งเป็น ในอุปกรณ์ ไบต์อาร์เรย์ หรือออบเจ็กต์ Bitmap

  • วิธีสร้างออบเจ็กต์ FirebaseVisionImage จาก media.Image เช่น เมื่อจับภาพจาก กล้องของอุปกรณ์ ส่งวัตถุ media.Image และ การหมุนเวียนเป็น FirebaseVisionImage.fromMediaImage()

    หากคุณใช้แท็ก ไลบรารี CameraX, OnImageCapturedListener และ ImageAnalysis.Analyzer คลาสจะคำนวณค่าการหมุนเวียน คุณเพียงแค่ต้องแปลงการหมุนเป็น ML Kit ค่าคงที่ ROTATION_ ก่อนโทร FirebaseVisionImage.fromMediaImage():

    Java

    private class YourAnalyzer implements ImageAnalysis.Analyzer {
    
        private int degreesToFirebaseRotation(int degrees) {
            switch (degrees) {
                case 0:
                    return FirebaseVisionImageMetadata.ROTATION_0;
                case 90:
                    return FirebaseVisionImageMetadata.ROTATION_90;
                case 180:
                    return FirebaseVisionImageMetadata.ROTATION_180;
                case 270:
                    return FirebaseVisionImageMetadata.ROTATION_270;
                default:
                    throw new IllegalArgumentException(
                            "Rotation must be 0, 90, 180, or 270.");
            }
        }
    
        @Override
        public void analyze(ImageProxy imageProxy, int degrees) {
            if (imageProxy == null || imageProxy.getImage() == null) {
                return;
            }
            Image mediaImage = imageProxy.getImage();
            int rotation = degreesToFirebaseRotation(degrees);
            FirebaseVisionImage image =
                    FirebaseVisionImage.fromMediaImage(mediaImage, rotation);
            // Pass image to an ML Kit Vision API
            // ...
        }
    }

    Kotlin+KTX

    private class YourImageAnalyzer : ImageAnalysis.Analyzer {
        private fun degreesToFirebaseRotation(degrees: Int): Int = when(degrees) {
            0 -> FirebaseVisionImageMetadata.ROTATION_0
            90 -> FirebaseVisionImageMetadata.ROTATION_90
            180 -> FirebaseVisionImageMetadata.ROTATION_180
            270 -> FirebaseVisionImageMetadata.ROTATION_270
            else -> throw Exception("Rotation must be 0, 90, 180, or 270.")
        }
    
        override fun analyze(imageProxy: ImageProxy?, degrees: Int) {
            val mediaImage = imageProxy?.image
            val imageRotation = degreesToFirebaseRotation(degrees)
            if (mediaImage != null) {
                val image = FirebaseVisionImage.fromMediaImage(mediaImage, imageRotation)
                // Pass image to an ML Kit Vision API
                // ...
            }
        }
    }

    หากคุณไม่ได้ใช้ไลบรารีกล้องถ่ายรูปที่ให้การหมุนของภาพ คุณ สามารถคำนวณได้จากการหมุนของอุปกรณ์และการวางแนวของกล้อง เซ็นเซอร์ในอุปกรณ์:

    Java

    private static final SparseIntArray ORIENTATIONS = new SparseIntArray();
    static {
        ORIENTATIONS.append(Surface.ROTATION_0, 90);
        ORIENTATIONS.append(Surface.ROTATION_90, 0);
        ORIENTATIONS.append(Surface.ROTATION_180, 270);
        ORIENTATIONS.append(Surface.ROTATION_270, 180);
    }
    
    /**
     * Get the angle by which an image must be rotated given the device's current
     * orientation.
     */
    @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
    private int getRotationCompensation(String cameraId, Activity activity, Context context)
            throws CameraAccessException {
        // Get the device's current rotation relative to its "native" orientation.
        // Then, from the ORIENTATIONS table, look up the angle the image must be
        // rotated to compensate for the device's rotation.
        int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation();
        int rotationCompensation = ORIENTATIONS.get(deviceRotation);
    
        // On most devices, the sensor orientation is 90 degrees, but for some
        // devices it is 270 degrees. For devices with a sensor orientation of
        // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees.
        CameraManager cameraManager = (CameraManager) context.getSystemService(CAMERA_SERVICE);
        int sensorOrientation = cameraManager
                .getCameraCharacteristics(cameraId)
                .get(CameraCharacteristics.SENSOR_ORIENTATION);
        rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360;
    
        // Return the corresponding FirebaseVisionImageMetadata rotation value.
        int result;
        switch (rotationCompensation) {
            case 0:
                result = FirebaseVisionImageMetadata.ROTATION_0;
                break;
            case 90:
                result = FirebaseVisionImageMetadata.ROTATION_90;
                break;
            case 180:
                result = FirebaseVisionImageMetadata.ROTATION_180;
                break;
            case 270:
                result = FirebaseVisionImageMetadata.ROTATION_270;
                break;
            default:
                result = FirebaseVisionImageMetadata.ROTATION_0;
                Log.e(TAG, "Bad rotation value: " + rotationCompensation);
        }
        return result;
    }

    Kotlin+KTX

    private val ORIENTATIONS = SparseIntArray()
    
    init {
        ORIENTATIONS.append(Surface.ROTATION_0, 90)
        ORIENTATIONS.append(Surface.ROTATION_90, 0)
        ORIENTATIONS.append(Surface.ROTATION_180, 270)
        ORIENTATIONS.append(Surface.ROTATION_270, 180)
    }
    /**
     * Get the angle by which an image must be rotated given the device's current
     * orientation.
     */
    @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
    @Throws(CameraAccessException::class)
    private fun getRotationCompensation(cameraId: String, activity: Activity, context: Context): Int {
        // Get the device's current rotation relative to its "native" orientation.
        // Then, from the ORIENTATIONS table, look up the angle the image must be
        // rotated to compensate for the device's rotation.
        val deviceRotation = activity.windowManager.defaultDisplay.rotation
        var rotationCompensation = ORIENTATIONS.get(deviceRotation)
    
        // On most devices, the sensor orientation is 90 degrees, but for some
        // devices it is 270 degrees. For devices with a sensor orientation of
        // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees.
        val cameraManager = context.getSystemService(CAMERA_SERVICE) as CameraManager
        val sensorOrientation = cameraManager
                .getCameraCharacteristics(cameraId)
                .get(CameraCharacteristics.SENSOR_ORIENTATION)!!
        rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360
    
        // Return the corresponding FirebaseVisionImageMetadata rotation value.
        val result: Int
        when (rotationCompensation) {
            0 -> result = FirebaseVisionImageMetadata.ROTATION_0
            90 -> result = FirebaseVisionImageMetadata.ROTATION_90
            180 -> result = FirebaseVisionImageMetadata.ROTATION_180
            270 -> result = FirebaseVisionImageMetadata.ROTATION_270
            else -> {
                result = FirebaseVisionImageMetadata.ROTATION_0
                Log.e(TAG, "Bad rotation value: $rotationCompensation")
            }
        }
        return result
    }

    จากนั้นส่งออบเจ็กต์ media.Image และ ค่าการหมุนเวียนเป็น FirebaseVisionImage.fromMediaImage():

    Java

    FirebaseVisionImage image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation);

    Kotlin+KTX

    val image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation)
  • หากต้องการสร้างออบเจ็กต์ FirebaseVisionImage จาก URI ของไฟล์ ให้ส่ง บริบทของแอปและ URI ของไฟล์เพื่อ FirebaseVisionImage.fromFilePath() วิธีนี้มีประโยชน์เมื่อคุณ ใช้ Intent ACTION_GET_CONTENT เพื่อแจ้งให้ผู้ใช้เลือก รูปภาพจากแอปแกลเลอรี

    Java

    FirebaseVisionImage image;
    try {
        image = FirebaseVisionImage.fromFilePath(context, uri);
    } catch (IOException e) {
        e.printStackTrace();
    }

    Kotlin+KTX

    val image: FirebaseVisionImage
    try {
        image = FirebaseVisionImage.fromFilePath(context, uri)
    } catch (e: IOException) {
        e.printStackTrace()
    }
  • วิธีสร้างออบเจ็กต์ FirebaseVisionImage จาก ByteBuffer หรืออาร์เรย์ไบต์ ให้คำนวณรูปภาพก่อน การหมุนตามที่อธิบายไว้ข้างต้นสำหรับอินพุต media.Image

    จากนั้นสร้างออบเจ็กต์ FirebaseVisionImageMetadata ที่มีความสูง ความกว้าง รูปแบบการเข้ารหัสสีของรูปภาพ และการหมุน:

    Java

    FirebaseVisionImageMetadata metadata = new FirebaseVisionImageMetadata.Builder()
            .setWidth(480)   // 480x360 is typically sufficient for
            .setHeight(360)  // image recognition
            .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21)
            .setRotation(rotation)
            .build();

    Kotlin+KTX

    val metadata = FirebaseVisionImageMetadata.Builder()
            .setWidth(480) // 480x360 is typically sufficient for
            .setHeight(360) // image recognition
            .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21)
            .setRotation(rotation)
            .build()

    ใช้บัฟเฟอร์หรืออาร์เรย์ และออบเจ็กต์ข้อมูลเมตาเพื่อสร้าง ออบเจ็กต์ FirebaseVisionImage รายการ:

    Java

    FirebaseVisionImage image = FirebaseVisionImage.fromByteBuffer(buffer, metadata);
    // Or: FirebaseVisionImage image = FirebaseVisionImage.fromByteArray(byteArray, metadata);

    Kotlin+KTX

    val image = FirebaseVisionImage.fromByteBuffer(buffer, metadata)
    // Or: val image = FirebaseVisionImage.fromByteArray(byteArray, metadata)
  • วิธีสร้างออบเจ็กต์ FirebaseVisionImage จาก ออบเจ็กต์ Bitmap รายการ:

    Java

    FirebaseVisionImage image = FirebaseVisionImage.fromBitmap(bitmap);

    Kotlin+KTX

    val image = FirebaseVisionImage.fromBitmap(bitmap)
    รูปภาพที่แสดงโดยออบเจ็กต์ Bitmap ต้อง ให้ตั้งตรงโดยไม่ต้องมีการหมุนเพิ่มเติม

3. เรียกใช้เครื่องมือติดป้ายกำกับรูปภาพ

หากต้องการติดป้ายกำกับวัตถุในรูปภาพ ให้ส่งออบเจ็กต์ FirebaseVisionImage ไปยัง เมธอด processImage() ของ FirebaseVisionImageLabeler

Java

labeler.processImage(image)
        .addOnSuccessListener(new OnSuccessListener<List<FirebaseVisionImageLabel>>() {
            @Override
            public void onSuccess(List<FirebaseVisionImageLabel> labels) {
                // Task completed successfully
                // ...
            }
        })
        .addOnFailureListener(new OnFailureListener() {
            @Override
            public void onFailure(@NonNull Exception e) {
                // Task failed with an exception
                // ...
            }
        });

Kotlin+KTX

labeler.processImage(image)
        .addOnSuccessListener { labels ->
            // Task completed successfully
            // ...
        }
        .addOnFailureListener { e ->
            // Task failed with an exception
            // ...
        }

หากติดป้ายกำกับรูปภาพสำเร็จ อาร์เรย์ของออบเจ็กต์ FirebaseVisionImageLabel รายการ จะส่งไปยังผู้ฟังที่ประสบความสำเร็จ จากออบเจ็กต์แต่ละรายการ คุณจะเห็น ข้อมูลเกี่ยวกับองค์ประกอบที่รู้จักในรูปภาพ

เช่น

Java

for (FirebaseVisionImageLabel label: labels) {
    String text = label.getText();
    float confidence = label.getConfidence();
}

Kotlin+KTX

for (label in labels) {
    val text = label.text
    val confidence = label.confidence
}

เคล็ดลับในการปรับปรุงประสิทธิภาพแบบเรียลไทม์

  • กดคันเร่งไปยังตัวตรวจจับ หากเฟรมวิดีโอใหม่กลายเป็น วางเฟรมได้ในขณะที่ตัวตรวจจับกำลังทำงานอยู่
  • หากคุณกำลังใช้เอาต์พุตของเครื่องมือตรวจจับเพื่อวางซ้อนกราฟิก รูปภาพอินพุต รับผลลัพธ์จาก ML Kit ก่อน จากนั้นจึงแสดงผลรูปภาพ ซ้อนทับในขั้นตอนเดียว การทำเช่นนี้จะช่วยให้แสดงผลบนพื้นผิวจอแสดงผล เพียงครั้งเดียวสำหรับเฟรมอินพุตแต่ละเฟรม
  • หากคุณใช้ Camera2 API ให้จับภาพใน ImageFormat.YUV_420_888

    หากคุณใช้ Camera API รุ่นเก่า ให้จับภาพใน ImageFormat.NV21