Puede utilizar ML Kit para reconocer puntos de referencia conocidos en una imagen.
Antes de que empieces
- Si aún no has agregado Firebase a tu aplicación, hazlo siguiendo los pasos de la guía de introducción .
- Incluya las bibliotecas del kit ML en su Podfile:
pod 'Firebase/MLVision', '6.25.0'
Después de instalar o actualizar los Pods de su proyecto, asegúrese de abrir su proyecto Xcode usando su.xcworkspace
. - En tu aplicación, importa Firebase:
Rápido
import Firebase
C objetivo
@import Firebase;
Si aún no ha habilitado las API basadas en la nube para su proyecto, hágalo ahora:
- Abra la página API del kit de aprendizaje automático de Firebase console.
Si aún no ha actualizado su proyecto a un plan de precios de Blaze, haga clic en Actualizar para hacerlo. (Se le pedirá que actualice solo si su proyecto no está en el plan Blaze).
Solo los proyectos de nivel Blaze pueden utilizar API basadas en la nube.
- Si las API basadas en la nube aún no están habilitadas, haga clic en Habilitar API basadas en la nube .
Configurar el detector de puntos de referencia
De forma predeterminada, el detector de nubes utiliza la versión estable del modelo y devuelve hasta 10 resultados. Si desea cambiar cualquiera de estas configuraciones, especifíquelas con un objeto VisionCloudDetectorOptions
como en el siguiente ejemplo:
Rápido
let options = VisionCloudDetectorOptions() options.modelType = .latest options.maxResults = 20
C objetivo
FIRVisionCloudDetectorOptions *options = [[FIRVisionCloudDetectorOptions alloc] init]; options.modelType = FIRVisionCloudModelTypeLatest; options.maxResults = 20;
En el siguiente paso, pase el objeto VisionCloudDetectorOptions
cuando cree el objeto detector de nubes.
Ejecute el detector de puntos de referencia
Para reconocer puntos de referencia en una imagen, pase la imagen comoUIImage
o CMSampleBufferRef
al método detect(in:)
de VisionCloudLandmarkDetector
:- Obtenga una instancia de
VisionCloudLandmarkDetector
:Rápido
lazy var vision = Vision.vision() let cloudDetector = vision.cloudLandmarkDetector(options: options) // Or, to use the default settings: // let cloudDetector = vision.cloudLandmarkDetector()
C objetivo
FIRVision *vision = [FIRVision vision]; FIRVisionCloudLandmarkDetector *landmarkDetector = [vision cloudLandmarkDetector]; // Or, to change the default settings: // FIRVisionCloudLandmarkDetector *landmarkDetector = // [vision cloudLandmarkDetectorWithOptions:options];
Cree un objeto
VisionImage
utilizandoUIImage
oCMSampleBufferRef
.Para usar una
UIImage
:- Si es necesario, gire la imagen para que su propiedad
imageOrientation
sea.up
. - Cree un objeto
VisionImage
utilizandoUIImage
girado correctamente. No especifique ningún metadato de rotación; se debe utilizar el valor predeterminado,.topLeft
.Rápido
let image = VisionImage(image: uiImage)
C objetivo
FIRVisionImage *image = [[FIRVisionImage alloc] initWithImage:uiImage];
Para utilizar
CMSampleBufferRef
:Cree un objeto
VisionImageMetadata
que especifique la orientación de los datos de la imagen contenidos en el búferCMSampleBufferRef
.Para obtener la orientación de la imagen:
Rápido
func imageOrientation( deviceOrientation: UIDeviceOrientation, cameraPosition: AVCaptureDevice.Position ) -> VisionDetectorImageOrientation { switch deviceOrientation { case .portrait: return cameraPosition == .front ? .leftTop : .rightTop case .landscapeLeft: return cameraPosition == .front ? .bottomLeft : .topLeft case .portraitUpsideDown: return cameraPosition == .front ? .rightBottom : .leftBottom case .landscapeRight: return cameraPosition == .front ? .topRight : .bottomRight case .faceDown, .faceUp, .unknown: return .leftTop } }
C objetivo
- (FIRVisionDetectorImageOrientation) imageOrientationFromDeviceOrientation:(UIDeviceOrientation)deviceOrientation cameraPosition:(AVCaptureDevicePosition)cameraPosition { switch (deviceOrientation) { case UIDeviceOrientationPortrait: if (cameraPosition == AVCaptureDevicePositionFront) { return FIRVisionDetectorImageOrientationLeftTop; } else { return FIRVisionDetectorImageOrientationRightTop; } case UIDeviceOrientationLandscapeLeft: if (cameraPosition == AVCaptureDevicePositionFront) { return FIRVisionDetectorImageOrientationBottomLeft; } else { return FIRVisionDetectorImageOrientationTopLeft; } case UIDeviceOrientationPortraitUpsideDown: if (cameraPosition == AVCaptureDevicePositionFront) { return FIRVisionDetectorImageOrientationRightBottom; } else { return FIRVisionDetectorImageOrientationLeftBottom; } case UIDeviceOrientationLandscapeRight: if (cameraPosition == AVCaptureDevicePositionFront) { return FIRVisionDetectorImageOrientationTopRight; } else { return FIRVisionDetectorImageOrientationBottomRight; } default: return FIRVisionDetectorImageOrientationTopLeft; } }
Luego, crea el objeto de metadatos:
Rápido
let cameraPosition = AVCaptureDevice.Position.back // Set to the capture device you used. let metadata = VisionImageMetadata() metadata.orientation = imageOrientation( deviceOrientation: UIDevice.current.orientation, cameraPosition: cameraPosition )
C objetivo
FIRVisionImageMetadata *metadata = [[FIRVisionImageMetadata alloc] init]; AVCaptureDevicePosition cameraPosition = AVCaptureDevicePositionBack; // Set to the capture device you used. metadata.orientation = [self imageOrientationFromDeviceOrientation:UIDevice.currentDevice.orientation cameraPosition:cameraPosition];
- Cree un objeto
VisionImage
utilizando el objetoCMSampleBufferRef
y los metadatos de rotación:Rápido
let image = VisionImage(buffer: sampleBuffer) image.metadata = metadata
C objetivo
FIRVisionImage *image = [[FIRVisionImage alloc] initWithBuffer:sampleBuffer]; image.metadata = metadata;
- Si es necesario, gire la imagen para que su propiedad
- Luego, pasa la imagen al método
detect(in:)
:Rápido
cloudDetector.detect(in: visionImage) { landmarks, error in guard error == nil, let landmarks = landmarks, !landmarks.isEmpty else { // ... return } // Recognized landmarks // ... }
C objetivo
[landmarkDetector detectInImage:image completion:^(NSArray<FIRVisionCloudLandmark *> *landmarks, NSError *error) { if (error != nil) { return; } else if (landmarks != nil) { // Got landmarks } }];
Obtenga información sobre los puntos de referencia reconocidos.
Si el reconocimiento de puntos de referencia se realiza correctamente, se pasará una serie de objetosVisionCloudLandmark
al controlador de finalización. De cada objeto, puede obtener información sobre un punto de referencia reconocido en la imagen.Por ejemplo:
Rápido
for landmark in landmarks { let landmarkDesc = landmark.landmark let boundingPoly = landmark.frame let entityId = landmark.entityId // A landmark can have multiple locations: for example, the location the image // was taken, and the location of the landmark depicted. for location in landmark.locations { let latitude = location.latitude let longitude = location.longitude } let confidence = landmark.confidence }
C objetivo
for (FIRVisionCloudLandmark *landmark in landmarks) { NSString *landmarkDesc = landmark.landmark; CGRect frame = landmark.frame; NSString *entityId = landmark.entityId; // A landmark can have multiple locations: for example, the location the image // was taken, and the location of the landmark depicted. for (FIRVisionLatitudeLongitude *location in landmark.locations) { double latitude = [location.latitude doubleValue]; double longitude = [location.longitude doubleValue]; } float confidence = [landmark.confidence floatValue]; }
Próximos pasos
- Antes de implementar en producción una aplicación que utiliza una API de la nube, debe tomar algunas medidas adicionales para prevenir y mitigar el efecto del acceso no autorizado a la API .